Thèse soutenue

Méthodes d'optimisation sur réseaux pour la distribution de contenu populaire et l'apprentissage automatique distribué

FR  |  
EN
Auteur / Autrice : Marina Costantini
Direction : Thrasyvoulos Spyropoulos
Type : Thèse de doctorat
Discipline(s) : Sciences de l'ingénieur
Date : Soutenance le 26/06/2023
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris (1992-...)
Partenaire(s) de recherche : Laboratoire : Institut EURECOM (Sophia-Antipolis, Alpes-Maritimes)
Jury : Président / Présidente : Pietro Michiardi
Examinateurs / Examinatrices : Aurélien Bellet, Giovanni Neglia, Angelia Nedich
Rapporteurs / Rapporteuses : Olivier Fercoq, Marco Lorenzi

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Le nombre d'utilisateurs et d'applications sur l'internet pose un grand nombre de défis aux opérateurs de réseaux pour pouvoir répondre aux demandes de trafic élevées. Dans ce contexte, il est devenu impératif d'utiliser efficacement les ressources disponibles. Dans cette thèse, nous développons des méthodes d'optimisation pour améliorer l'utilisation du réseau dans deux applications : la mise en cache à la périphérie du réseau et l'apprentissage de modèles distribués. La mise en cache à la périphérie du réseau est une technique qui propose de stocker à la périphérie du réseau des copies de contenus populaires afin de réduire la latence et d'améliorer l'expérience de l'utilisateur. Traditionnellement, lorsqu'un utilisateur demande une page web ou une application, la requête est envoyée à un serveur distant qui stocke les données. Le serveur récupère les données demandées et les renvoie à l'utilisateur. Ce processus peut entraîner des problèmes de congestion. Pour résoudre ce problème, les opérateurs de réseau peuvent déployer des serveurs de mise en cache à proximité des utilisateurs. Ces serveurs sont ensuite remplis pendant les heures creuses avec des contenus qui ont une forte probabilité d'être demandés, de sorte que pendant les périodes de fort trafic, l'utilisateur peut toujours les récupérer en peu de temps. D'autre part, l'apprentissage distribué de modèles, ou plus généralement l'optimisation distribuée, est une méthode d'entraînement de modèles d'apprentissage automatique utilisant plusieurs agents qui travaillent ensemble pour trouver les paramètres optimaux du modèle. Dans ce cadre, les agents intercalent des étapes de calcul local avec des étapes de communication pour entraîner un modèle qui prend en compte les données de tous les agents. Nous considérons ici deux contextes de formation distribuée : le contexte décentralisé et le contexte fédéré. Dans le cadre décentralisé, les agents sont interconnectés dans un réseau et ne communiquent leurs valeurs d'optimisation qu'à leurs voisins directs. Dans le cadre fédéré, les agents communiquent avec un serveur central qui calcule régulièrement la moyenne des valeurs les plus récentes d' un sous-ensemble d'agents et diffuse le résultat à tous les agents. Naturellement, le succès de ces techniques repose sur la communication fréquente des agents. C'est pourquoi la conception d'algorithmes d'optimisation distribués permettant d'obtenir des performances de pointe à des coûts de communication moindres suscite un grand intérêt. Dans cette thèse, nous proposons des algorithmes qui améliorent les performances des méthodes existantes pour la fourniture de contenu populaire et l'apprentissage automatique distribué en faisant une meilleure utilisation des ressources du réseau. Dans le chapitre 2, nous proposons un algorithme qui exploite les moteurs de recommandation pour concevoir conjointement les contenus mis en cache à la périphérie du réseau et les recommandations présentées à l'utilisateur. Cet algorithme permet d'atteindre une fraction plus élevée de demandes servies par le cache que ses concurrents, et nécessite donc moins de communication avec le serveur distant. Dans le chapitre 3, nous concevons un algorithme asynchrone pour l'optimisation décentralisée qui nécessite une coordination minimale entre les agents et permet donc des interruptions de connexion et des défaillances de liaison. Nous montrons que la convergence de cet algorithme peut être rendue beaucoup plus rapide en laissant les agents décider de leur schéma de communication en fonction des gains fournis par la communication avec chacun de leurs voisins. Enfin, au chapitre 4, nous proposons un algorithme qui exploite la communication inter-agents dans le cadre de l'apprentissage fédéré classique et qui peut atteindre la même vitesse de convergence que la configuration classique avec moins de cycles de communication avec le serveur, qui constituent le principal goulot d'étranglement dans ce cadre.