Ordonner les nœuds pour passer à l'échelle sur les grands réseaux réels
Auteur / Autrice : | Fabrice Lécuyer |
Direction : | Lionel Tabourier, Clémence Magnien |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences et technologies de l'information et de la communication |
Date : | Soutenance le 06/07/2023 |
Etablissement(s) : | Sorbonne université |
Ecole(s) doctorale(s) : | École doctorale Informatique, télécommunications et électronique de Paris (1992-...) |
Partenaire(s) de recherche : | Laboratoire : LIP6 (1997-....) |
Jury : | Président / Présidente : Claire Hanen |
Examinateurs / Examinatrices : David Coudert, Rémy Cazabet | |
Rapporteur / Rapporteuse : Laurent Viennot, Marco Bressan |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Cette thèse porte sur l'utilisation des outils théoriques de l'informatique pour améliorer les algorithmes dans la pratique, en particulier ceux qui traitent des données sous forme de graphes. Un graphe représente des éléments (nœuds) et leurs interactions (arêtes). L'informatique théorique a conçu des algorithmes pour des graphes arbitraires, tels que la recherche des chemins les plus courts ou l'identification des nœuds interconnectés. Cependant, les réseaux réels ont des propriétés spécifiques qui sont inconnues à l'avance en raison des situations du monde réel dont ils sont issus. Ils peuvent être très volumineux, ce qui pose un problème pour les traiter en un temps raisonnable. Pour aider à concevoir des algorithmes qui passent à l'échelle sur de gros graphes, nous nous concentrons sur la technique qui consiste à réordonner les nœuds selon un ordre spécifique qui dépend des propriétés locales ou globales du graphe. Nous classifions les différents mécanismes et méthodes qui ont été utilisés pour concevoir des ordres dans divers domaines d'application. Ensuite, nous présentons trois contributions qui utilisent l'ordre des nœuds pour rendre les algorithmes plus efficaces. Tout d'abord, nous reproduisons un article qui conçoit un ordre pour rendre les systèmes de cache plus efficaces, ce qui accélère différents algorithmes de graphes. Deuxièmement, nous créons de nouveaux ordres qui réduisent le nombre d'opérations dans un algorithme existant pour lister les triangles. Troisièmement, nous utilisons des algorithmes simples avec des ordres appropriés pour limiter la taille d'une couverture minimale par les sommets sur une instance spécifique de graphe, ce qui nous permet de certifier la qualité des résultats obtenus par des valeurs approchées. Ces résultats insistent sur les questions de passage à l'échelle, les mesures de temps, les fondements mathématiques et la validation par l'expérience. Enfin, nous présentons une collaboration sur l'analyse des réseaux qui consiste à décrire la mobilité des chercheurs et chercheuses dans l'espace de la connaissance.