On box-total dual integrality and total equimodularity
Auteur / Autrice : | Francesco Pisanu |
Direction : | Roberto Wolfer Calvo, Roland Grappe, Mathieu Lacroix |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 22/12/2023 |
Etablissement(s) : | Paris 13 |
Ecole(s) doctorale(s) : | École doctorale Galilée (Villetaneuse, Seine-Saint-Denis) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire informatique de Paris-Nord (Villetaneuse, Seine-Saint-Denis ; 2001-....) |
Jury : | Président / Présidente : Frédérique Bassino |
Examinateurs / Examinatrices : Mathieu Lacroix, Frédérique Bassino, Frédéric Meunier, Mourad Baïou, Daniele Catanzaro, Denis Cornaz | |
Rapporteurs / Rapporteuses : Frédéric Meunier, Mourad Baïou |
Mots clés
Mots clés contrôlés
Résumé
Dans cette thèse, nous étudions les polyèdres total dual box-intègraux (box-TDI) associés à plusieurs problèmes et matrices totalement équimodulaires. De plus, nous étudions la complexité de certaines questions fondamentales liées à ces polyèdres. Nous commençons par considérer les matrices totalement équimodulaires, qui sont des matrices telles que, pour chaque sous-ensemble de lignes linéairement indépendantes, toutes les sous-matrices maximales non-singulières ont le même déterminant en valeur absolue. Malgré leurs similitudes avec les matrices totalement unimodulaires, nous mettons en évidence plusieurs différences, même dans le cas des matrices d'incidence et d'adjacence des graphes. Comme on le sait, la matrice d'incidence d'un graphe donné est totalement unimodulaire si et seulement si le graphe est biparti. Cependant, la totale équimodularité d'une matrice d'incidence dépend du fait que nous considérons la représentation sommet-arête ou arête-sommet. Nous fournissons des caractérisations pour les deux cas. En conséquence, nous prouvons que reconnaître si un polyèdre donné est box-TDI est un problème co-NP-complet. La caractérisation de la totale unimodularité ou de la totale équimodularité de la matrice d'adjacence d'un graphe biparti donné reste non résolue, alors que nous avons résolu le problème correspondant dans le cas de la totale équimodularité lorsque le graphe est non-biparti. Dans une dernière partie, nous caractérisons les graphes pour lesquels le polytope des couplages parfaits (PMP) est décrit par des inégalités triviales et des inégalités correspondant à des coupes serrées. Les coupes serrées sont définies comme des coupes qui partagent précisément une arête avec chaque couplage parfait. Nous prouvons ensuite que tout graphe pour lequel le PMP correspondant est box-TDI appartient à cette classe. En conséquence, reconnaître si le PMP est box-TDI est un problème résoluble en temps polynomial. Cependant, nous fournissons plusieurs contre-exemples montrant que cette classe de graphes ne garantit pas la box-TDIness du PMP. Enfin, nous présentons des conditions nécessaires pour un polytope de couverture des arêtes pour être box-TDI et caractérisons quand le polytope des couplages extensibles est box-TDI, qui est l'enveloppe convex des couplages inclus dans un couplage parfait.