Thèse soutenue

Caractérisation ex-situ par RMN et IRM des transferts d'eau à l'interface membrane/électrode dans les piles à combustible PEMFC

FR  |  
EN
Auteur / Autrice : Christine Mrad
Direction : Jean-Christophe PerrinAssma El Kaddouri
Type : Thèse de doctorat
Discipline(s) : Énergie et mécanique
Date : Soutenance le 08/12/2023
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale SIMPPé - Sciences et ingénierie des molécules, des produits, des procédés, et de l'énergie (Lorraine ; 2018-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Energies et Mécanique Théorique et Appliquée
Jury : Président / Présidente : Marie Poirier-Quinot
Examinateurs / Examinatrices : Jean-Christophe Perrin, Assma El Kaddouri, Anthony Thomas, Olivier Lottin, Éliane Espuche
Rapporteurs / Rapporteuses : Marie Poirier-Quinot, Anthony Thomas

Résumé

FR  |  
EN

Dans le cadre de la transition énergétique durable, les piles à combustible à membrane échangeuse de protons (PEMFC) sont considérées comme des alternatives prometteuses aux moteurs conventionnels. Elles offrent une conversion efficace de l'hydrogène en électricité sans émettre de polluant. Néanmoins, pour espérer un large déploiement de ces systèmes il est indispensable de réduire leur coût et améliorer leur durabilité. C'est pourquoi le projet européen « ALPE : Advanced Low-Platinum hierarchical Electrocatalysts for low-T fuel cells », dans lequel s'inscrit cette thèse, vise à réduire le coût des PEMFC en diminuant la quantité du catalyseur de platine (Pt) utilisée dans leurs électrodes, ciblant une réduction de 1.5 à 2 fois par rapport à l'état de l'art de 2019. Le fonctionnement des PEMFC repose essentiellement sur les réactions électrochimiques se produisant sur les sites catalytiques de Pt, et le transport protonique est étroitement lié à l'état d'hydratation de la membrane électrolyte (l'eau servant de vecteur pour les protons). Ce travail de thèse a donc pour objectif d'étudier l'impact de la réduction de la quantité de Pt sur les phénomènes de transport de l'eau à travers les interfaces membrane-électrode/air. Afin d'atteindre cet objectif, des dispositifs et des méthodologies expérimentaux permettant l'analyse de l'interface membrane/électrode par spectroscopie et imagerie de résonance magnétique (RMN/IRM) ont été développés. Dans un premier temps, l'étude se focalise sur l'étude d'une membrane seule de type Nafion® (N1110). Une analyse in-situ permettant de visualiser l'impact de l'histoire hygrothermale de la membrane sur les propriétés de l'eau est présentée. De plus, des expérimentations sous différentes conditions d'humidité relative, d'un côté et de l'autre de cette membrane, démontrent la capacité de notre approche à quantifier les résistances au transport de l'eau à interface de la membrane en les découplant des effets diffusifs. En complément, une modélisation 1D en régime permanent de la diffusion de l'eau à travers l'épaisseur de la membrane permet de déterminer l'évolution du coefficient de diffusion mutuelle de l'eau. Pour compléter notre analyse, une séquence de mesure en acquisition partielle a été conçue pour minimiser le temps d'acquisition des profils d'eau dans la membrane, ouvrant la voie à une étude en régime transitoire. Enfin, une comparaison des résistances d'interfaces entre une membrane seule et une membrane avec électrode(s) permet d'évaluer l'impact de l'ajout d'un dépôt d'une électrode et celui d'une variation de quantité de platine, sur les phénomènes de transport de l'eau. Les résultats mettent en lumière qu'en régime transitoire, il n'y a pas de différences significatives entre une membrane seule et un assemblage membrane/électrode (avec une seule ou deux électrodes). Toutefois, il apparaît que la présence de l'électrode et la quantité de platine semblent avoir un impact sur l'évolution des résistances d'interfaces en fonction de l'humidité relative de l'air alimentant la membrane.