Thèse soutenue

Gestion de l'énergie dans des systèmes micro-réseaux DC multi-sources pour des applications résidentielles

FR  |  
EN
Auteur / Autrice : Sadaqat Ali
Direction : Michel AillerieZhixue Zheng
Type : Thèse de doctorat
Discipline(s) : Génie électrique
Date : Soutenance le 29/09/2023
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....)
Partenaire(s) de recherche : Laboratoire : LMOPS - Laboratoire Matériaux Optiques, Photoniques et Systèmes (Metz)
Jury : Président / Présidente : Damien Guilbert
Examinateurs / Examinatrices : Michel Aillerie, Zhixue Zheng, Gilles Notton, Anne Migan-Dubois, Claude Delpha, Melika Hinaje
Rapporteurs / Rapporteuses : Gilles Notton, Anne Migan-Dubois

Résumé

FR  |  
EN

Comparé au réseau électrique alternatif (AC), le réseau électrique en courant continu (DC) a démontré de nombreux avantages tels que son interface naturelle avec les RES, les systèmes de stockage d'énergie et les charges en courant continu, une efficacité supérieure avec moins d'étapes de conversion, et un contrôle plus simple sans effet de peau et sans considérations sur le flux de puissance réactive. Le micro-réseaux DC reste une technologie relativement nouvelle, et ses architectures de réseau, stratégies de contrôle, techniques de stabilisation méritent d'énormes efforts de recherche. Dans ce contexte, cette thèse porte sur les problèmes de gestion de l'énergie d'un réseau électrique en courant continu (DC) multi-source dédié aux applications résidentielles. Le réseau électrique en courant continu (DC) est composé de générateurs distribués (panneaux solaires), d'un système de stockage d'énergie hybride (HESS) avec des batteries et un supercondensateur (SC), et de charges en courant continu, interconnectées via des convertisseurs de puissance DC/DC. L'objectif principal de cette recherche est de développer une stratégie avancée de gestion de l'énergie (EMS) d'améliorer l'efficacité opérationnelle du système tout en renforçant sa fiabilité et sa durabilité. Une plateforme de simulation hiérarchique de réseau électrique DC a été développée sous MATLAB/Simulink. Elle est composée de deux couches avec des échelles de temps différentes : une couche de contrôle de niveau local (échelle de temps de quelques secondes à quelques minutes en raison des comportements de commutation des convertisseurs) pour les contrôles des composants locaux, et une couche de contrôle de niveau système (avec une échelle de temps de quelques jours à quelques mois avec un test accéléré) pour la validation à long terme de l'EMS et son évaluation de performance. Dans la couche de contrôle de niveau local, les panneaux solaires, les batteries et le supercondensateur ont été modélisés et contrôlés séparément. Différents modes de contrôle tels que le contrôle de courant, le contrôle de tension et le contrôle du point de puissance maximale (MPPT) ont été mis en œuvre. Un filtre passe-bas (LPF) a été appliqué pour diviser la puissance totale du HESS : basse et haute fréquence pour les batteries et le supercondensateur. Différentes fréquences de coupure du LPF pour le partage de puissance a également été étudiée. Un EMS hybride bi-niveau combiné et un dimensionnement automatique ont été proposés et validés. Il couvre principalement cinq scénarios d'exploitation, notamment la réduction de la production des panneaux solaires, la réduction de la charge et trois scénarios via le contrôle du HESS associé à la rétention du contrôle de l'état de charge (SOC) du supercondensateur. Une fonction objective prenant en compte à la fois le coût en capital (CAPEX) et les coûts d'exploitation (OPEX) a été conçue pour l'évaluation des performances de l'EMS. L'interaction entre l'HESS et l'EMS a été étudiée conjointement sur la base d'un ensemble de données ouvertes de profils de consommation électrique résidentielle couvrant à la fois l'été et l'hiver. Finalement, une plateforme expérimentale de réseau électrique à courant continu (DC) multi-source a été développée pour valider en temps réel l'EMS. Elle est composée de quatre batteries lithium-ion, d'un supercondensateur, d'une alimentation électrique à courant continu programmable, d'une charge à courant continu programmable, de convertisseurs DC/DC correspondants et d'un contrôleur en temps réel (dSPACE/Microlabbox). Des tests accélérés ont été réalisés pour vérifier l'EMS proposé dans différents scénarios d'exploitation en intégrant des panneaux solaires réels et les profils de consommation de charge. Les plateformes de simulation hiérarchique de réseau électrique en courant continu (DC) et expérimentale, peuvent être utilisées de manière générale pour vérifier et évaluer divers EMS.