Pronostic de défaillance basé sur les données pour la prise de décision en maintenance : Exploitation du principe d'augmentation de données avec intégration de connaissances à priori pour faire face aux problématiques du small data set
Auteur / Autrice : | Antonin Gay |
Direction : | Benoît Iung, Alexandre Voisin |
Type : | Thèse de doctorat |
Discipline(s) : | Automatique, Traitement du signal et des images, Génie informatique |
Date : | Soutenance le 06/06/2023 |
Etablissement(s) : | Université de Lorraine |
Ecole(s) doctorale(s) : | École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....) |
Partenaire(s) de recherche : | Laboratoire : Centre de recherche en automatique (Nancy) |
Jury : | Président / Présidente : Christophe Bérenguer |
Examinateurs / Examinatrices : Benoît Iung, Alexandre Voisin, François Pérès, Birgit Vogel-Heuser, Olga Fink, Rémi Bonidal, Ahmed Khelassi | |
Rapporteurs / Rapporteuses : François Pérès, Birgit Vogel-Heuser |
Mots clés
Mots clés contrôlés
Résumé
Cette thèse CIFRE est un projet commun entre ArcelorMittal et le laboratoire CRAN, dont l'objectif est d'optimiser la prise de décision en maintenance industrielle par l'exploitation des sources d'information disponibles, c'est-à-dire des données et des connaissances industrielles, dans le cadre des contraintes industrielles présentées par le contexte sidérurgique. La stratégie actuelle de maintenance des lignes sidérurgiques est basée sur une maintenance préventive régulière. L'évolution de la maintenance préventive vers une stratégie dynamique se fait par le biais de la maintenance prédictive. La maintenance prédictive a été formalisée au sein du paradigme Prognostics and Health Management (PHM) sous la forme d'un processus en sept étapes. Parmi ces étapes de la PHM, le travail de ce doctorat se concentre sur la prise de décision et le pronostic. En regard de cette maintenance prédictive, le contexte de l'Industrie 4.0 met l'accent sur les approches basées sur les données, qui nécessitent une grande quantité de données que les systèmes industriels ne peuvent pas fournir systématiquement. La première contribution de la thèse consiste donc à proposer une équation permettant de lier les performances du pronostic au nombre d'échantillons d'entraînement disponibles. Cette contribution permet de prédire quelles performances le pronostic pourraient atteindre avec des données supplémentaires dans le cas de petits jeux de données (small datasets). La deuxième contribution de la thèse porte sur l'évaluation et l'analyse des performances de l'augmentation de données appliquée au pronostic sur des petits jeux de données. L'augmentation de données conduit à une amélioration de la performance du pronostic jusqu'à 10%. La troisième contribution de la thèse est l'intégration de connaissances expertes au sein de l'augmentation de données. L'intégration de connaissances statistiques s'avère efficace pour éviter la dégradation des performances causée par l'augmentation de données sous certaines conditions défavorables. Enfin, la quatrième contribution consiste en l'intégration des résultats du pronostic dans la modélisation des coûts de la prise de décision en maintenance et en l'évaluation de l'impact du pronostic sur ce coût. Elle démontre que (i) la mise en œuvre de la maintenance prédictive réduit les coûts de maintenance jusqu'à 18-20% et (ii) l'amélioration de 10% du pronostic peut réduire les coûts de maintenance de 1% supplémentaire.