Thèse soutenue

Dynamique des génomes bactériens : Une étude expérimentale in silico avec la plateforme Aevol

FR  |  
EN
Auteur / Autrice : Marco Foley
Direction : Guillaume Beslon
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 19/12/2023
Etablissement(s) : Lyon, INSA
Ecole(s) doctorale(s) : École doctorale en Informatique et Mathématiques de Lyon (Lyon ; 2009-....)
Partenaire(s) de recherche : Membre de : Université de Lyon (2015-....)
Laboratoire : LIRIS - Laboratoire d'Informatique en Image et Systèmes d'information (Rhône ; 2003-....) - Laboratoire d'InfoRmatique en Image et Systèmes d'information / LIRIS
Equipe de recherche : BEAGLE - Artificial Evolution and Computational Biology
Jury : Président / Présidente : Ingrid Lafontaine
Examinateurs / Examinatrices : Guillaume Beslon, Ingrid Lafontaine, Nicolas Bredèche, Ivan Junier, Jonathan Rouzaud-Cornabas
Rapporteurs / Rapporteuses : Nicolas Bredèche, Ivan Junier

Résumé

FR  |  
EN

Aevol est une plate-forme de simulation de l’évolution de populations d’organismes par variation et sélection. La conception du modèle est axée sur le réalisme de la structure du génome et des processus de mutations, permettant ainsi aux organismes simulés d'évoluer sur un fitness landscape comparable à celui d'organismes biologiques, avec des contraintes d’exploration similaires. Ces processus permettent l’émergence de comportements d’intérêt, pour l'étude de l'évolution de la structure des génomes, et pour produire des données de benchmarks pour tester les méthodes de phylogénie moléculaire. Les résultats obtenus jusqu’ici dans aevol concourent à suggérer que les éléments non-codants du génome sont soumis à sélection. Dans ce travail, nous avons utilisé Aevol pour mener une large campagne de simulation sur de très longues échelles de temps. Ces expériences nous permettent de montrer que la quantité de séquences non-codantes est finement régulée par deux forces contraires. La première est une force de sélection pour des génomes réduits car plus robustes face aux réarrangements chromosomiques. La seconde provient d'un biais mutationnel indirect favorisant les évènements de duplications neutres sur les délétions neutres menant à l'accumulation de non-codant par dérive génétique. Dans un deuxième temps, nous avons utilisé aevol comme outil de génération de benchmarks pour la phylogénie. En effet, Aevol ayant été développé indépendamment de la communauté de phylogénie moléculaire, il ne contient pas les a priori classiquement inclus dans les simulateurs de cette communauté, évitant ainsi la validation ad hoc des méthodes. Cependant, les séquences composant les génomes étant binaires dans Aevol, nous avons développé une version du simulateur utilisant des séquences génomiques quaternaire (ACTG). Cette nouvelle version a ensuite été utilisée pour générer des données de benchmarks afin de tester les reconstructions d'arbres phylogénétiques.