Thèse soutenue

Développement et validation d’une modélisation thermo-aéraulique tridimensionnelle et dynamique du bâtiment pour l’étude des environnements thermiques intérieurs complexes

FR  |  
EN
Auteur / Autrice : Teddy Gresse
Direction : Frédéric Kuznik
Type : Thèse de doctorat
Discipline(s) : Thermique énergétique
Date : Soutenance le 16/03/2023
Etablissement(s) : Lyon, INSA
Ecole(s) doctorale(s) : Ecole doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....)
Partenaire(s) de recherche : Membre de : Université de Lyon (2015-....)
Laboratoire : CETHIL - Centre d'Energétique et de Thermique de Lyon (Villeurbanne, Rhône) - Centre d'Energétique et de Thermique de Lyon / CETHIL
Jury : Président / Présidente : Pierre Sagaut
Examinateurs / Examinatrices : Pierre Sagaut, Pascal Biwole, Christian Inard, Frédéric Kuznik, Lucie Merlier, Auline Rodler
Rapporteurs / Rapporteuses : Pascal Biwole, Christian Inard

Résumé

FR  |  
EN

Avec le changement climatique en cours et l’augmentation de la fréquence et de l’intensité des vagues de chaleur comme typiquement en France, l’enjeu du confort thermique d’été devient central pour la conception et la rénovation des bâtiments, notamment en ville. L’étude du confort thermique dans des environnements thermiques intérieurs complexes, mettant en jeu des phénomènes radiatifs et convectifs dynamiques et locaux, nécessite de disposer d’outils de simulation thermique du bâtiment capables de prendre en compte cette complexité physique et de produire des données fiables et adaptées. Ainsi, afin de pouvoir étudier de façon détaillée les différents phénomènes en jeu, ce travail de thèse propose le développement et la validation d’une modélisation thermo-aéro-radiative de pièce basée sur la BES (Building Energy Simulation) dynamique et tridimensionnelle, la CFD (Computational Fluid Dynamics) par la méthode de Boltzmann sur réseau (LBM) avec la simulation des grandes échelles (LES), et finalement le couplage de ces deux approches. Dans un premier temps, le modèle de BES développé, capable notamment de localiser la tâche solaire sur les surfaces intérieures et de prendre en compte les multi-réflexions radiatives, a été validé suivant une confrontation avec des mesures en conditions réelles réalisées dans une pièce dans laquelle évolue une tâche solaire (configuration solaire passive BESTLab d’EDF Re&D). Les résultats montrent des résidus inférieurs à 4°C et des erreurs moyennes autour de 0,6°C sur les températures de surface intérieures. L’application du modèle de BES à l’étude d’un matériau à changement de phase dans cette même pièce a notamment permis de montrer que le stockage d’énergie latente s’effectue principalement dans les parties de mur ensoleillées (tâche solaire), ce que ne peuvent pas prédire les codes de calcul couramment utilisés. Dans un second temps, la modélisation LBM-LES adoptée a été confrontée à un vaste ensemble de données expérimentales portant sur une pièce d’essai à échelle 1 (MINIBAT) équipée d’une ventilation mécanique, mettant en jeu des jets turbulents (Re∼10^4), axisymétriques et anisothermes se développant près du plafond. Une attention particulière a été portée au traitement dynamique et thermique proche paroi afin d’adapter les modèles aux écoulements dans les bâtiments. Les résultats montrent un bon accord entre les profils moyens de vitesse et de température avec des positions et des valeurs de maximums en cohérence avec les mesures ainsi qu’une anisotropie de la turbulence correctement retrouvée par la simulation. Enfin, le couplage BES-CFD a été mis en place et confronté aux données expérimentales d’une pièce équipée d’un radiateur en régime permanent. L’analyse porte sur le transfert de chaleur aux parois ainsi que le comportement du radiateur et les caractéristiques du panache thermique. Les résultats obtenus montrent que le couplage employé conduit à des résultats fiables.