Microscopie multiphoton multicolore grand volume appliquée à l’imagerie du cerveau de souris
Auteur / Autrice : | Hugo Blanc |
Direction : | Emmanuel Beaurepaire |
Type : | Thèse de doctorat |
Discipline(s) : | Physique |
Date : | Soutenance le 09/11/2023 |
Etablissement(s) : | Institut polytechnique de Paris |
Ecole(s) doctorale(s) : | École doctorale de l'Institut polytechnique de Paris |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'Optique et Biosciences (Palaiseau, Essonne) - Laboratoire d'Optique et Biosciences / LOB |
Jury : | Président / Présidente : Alexandra Fragola |
Examinateurs / Examinatrices : Emmanuel Beaurepaire, Laurent Cognet, Stéphane Dieudonné, Pierre Mahou, Perrine Paul-Gilloteaux | |
Rapporteur / Rapporteuse : Laurent Cognet, Stéphane Dieudonné |
Mots clés
Résumé
L’architecture cellulaire du cerveau est en grande partie définie au cours du développement précoce. Les rôles respectifs des différents mécanismes biologiques menant à cette organisation sont encore mal compris, à cause de la grande complexité du tissu cérébral. L'analyse expérimentale de cette complexité nécessite de pouvoir imager le tissu cérébral en trois dimensions avec une résolution cellulaire, ce qui pose des défis considérables à la fois en microscopie (hétérogénéité optique du tissu cérébral) et en gestion de données (plusieurs teraoctets/acquisition).Ce travail de thèse a porté sur le développement d'une méthode de microscopie grand volume couleurs permettant de cartographier de façon robuste des cerveaux de souris ex vivo avec une résolution micrométrique, quel que soit leur stade de développement (ChroMS-2). La méthode repose sur la microscopie multiphotonique couleurs en coupes sériées, ou ChroMS (chromatic multiphoton serial microscopy), optimisée pour imager des tissus marqués avec des combinaisons de protéines fluorescentes de différentes couleurs ('Brainbow').Nous présentons d'abord le fonctionnement et l'optimisation du microscope ChroMS, de façon à accélérer le débit d’acquisition, améliorer la qualité des données, et assurer la fiabilité du microscope. Ce travail a notamment permis de réaliser un gain de temps de deux ordres de grandeur pour l'acquisition volumique par rapport au prototype, permettant ainsi de cartographier un millimètre cube de tissus en quelques minutes, ou un cerveau de souris adulte en quelques jours.Ensuite, nous détaillons la mise en place d'un pipeline automatisé de traitement et reconstruction de ces grandes images. En particulier, nous discutons les problèmes liés à la présence de déformations dans les images et leur traitement pour la reconstruction des volumes.Enfin, nous présentons l'application de ce nouveau système d'imagerie pour différents projets. Nous discutons la mise au point d'un protocole de préparation et d’acquisition permettant de cartographier le tissu cérébral de souris à différents stades de développement, et présentons les images obtenues. Nous illustrons également le caractère versatile de la plateforme ChroMS et son utilisation possible sur d'autres organes (cœur, moelle épinière), ou espèces (poulet) et avec d’autres sources de contraste que la fluorescence (génération d'harmoniques).