Thèse soutenue

Méthodes d'apprentissage automatique pour la complétion de graphes de connaissances

FR  |  
EN
Auteur / Autrice : Armand Boschin
Direction : Thomas Bonald
Type : Thèse de doctorat
Discipline(s) : Informatique, données, IA
Date : Soutenance le 21/04/2023
Etablissement(s) : Institut polytechnique de Paris
Ecole(s) doctorale(s) : École doctorale de l'Institut polytechnique de Paris
Partenaire(s) de recherche : Laboratoire : Laboratoire Traitement et communication de l'information (Paris ; 2003-....)
Etablissement opérateur d'inscription : Télécom Paris (Palaiseau, Essonne ; 1878-....)
Jury : Président / Présidente : Amel Bouzeghoub
Examinateurs / Examinatrices : Amel Bouzeghoub, Nathalie Pernelle, Sébastien Ferré, Luis Galárraga Del Prado
Rapporteur / Rapporteuse : Nathalie Pernelle, Sébastien Ferré

Résumé

FR  |  
EN

Un graphe de connaissances est un graphe orienté dont les nœuds sont des entités et les arêtes, typées par une relation, représentent des faits connus liant les entités. Ces graphes sont capables d'encoder une grande variété d'information mais leur construction et leur exploitation peut se révéler complexe. Historiquement, des méthodes symboliques ont permis d'extraire des règles d'interaction entre entités et relations, afin de corriger des anomalies ou de prédire des faits manquants. Plus récemment, des méthodes d'apprentissage de représentations vectorielles, ou plongements, ont tenté de résoudre ces mêmes tâches. Initialement purement algébriques ou géométriques, ces méthodes se sont complexifiées avec les réseaux de neurones profonds et ont parfois été combinées à des techniques symboliques antérieures.Dans cette thèse, on s'intéresse tout d'abord au problème de l'implémentation. En effet, la grande diversité des bibliothèques utilisées rend difficile la comparaison des résultats obtenus par différents modèles. Dans ce contexte, la bibliothèque Python TorchKGE a été développée afin de proposer un environnement unique pour l'implémentation de modèles de plongement et un module hautement efficace d'évaluation par prédiction de liens. Cette bibliothèque repose sur l'accélération graphique de calculs tensoriels proposée par PyTorch, est compatible avec les bibliothèques d'optimisation usuelles et est disponible en source ouverte.Ensuite, les travaux portent sur l'enrichissement automatique de Wikidata par typage des hyperliens liant les articles de Wikipedia. Une étude préliminaire a montré que le graphe des articles de Wikipedia est beaucoup plus dense que le graphe de connaissances correspondant dans Wikidata. Une nouvelle méthode d'entrainement impliquant les relations et une méthode d'inférence utilisant les types des entités ont été proposées et des expériences ont montré la pertinence de l'approche, y compris sur un nouveau jeu de données.Enfin, le typage automatique d'entités est exploré comme une tâche de classification hiérarchique. Ceci a mené à la conception d'une fonction d'erreur hiérarchique, utilisée pour l'entrainement de modèles tensoriels, ainsi qu'un nouveau type d'encodeur. Des expériences ont permis une bonne compréhension de l'impact que peut avoir une connaissance a priori de la taxonomie des classes sur la classification. Elles ont aussi renforcé l'intuition que la hiérarchie peut être apprise à partir des données si le jeu est suffisamment riche.