Thèse soutenue

Simplification des modèles CAO 3D avec l'apprentissage profond pour la réalité augmentée

FR  |  
EN
Auteur / Autrice : Abhaya Dhathri Arige
Direction : Titus Bogdan ZahariaMarius Preda
Type : Thèse de doctorat
Discipline(s) : Informatique, données, IA
Date : Soutenance le 14/12/2023
Etablissement(s) : Institut polytechnique de Paris
Ecole(s) doctorale(s) : École doctorale de l'Institut polytechnique de Paris
Partenaire(s) de recherche : Laboratoire : Télécom SudParis (Evry ; 2012-....) - Institut Polytechnique de Paris / IP Paris - Département Advanced Research And Techniques For Multidimensional Imaging Systems / ARTEMIS
Etablissement opérateur d'inscription : Télécom SudParis (Evry ; 2012-....)
Equipe de recherche : ARMEDIA / ARMEDIA-SAMOVAR
Jury : Président / Présidente : Valeriu Vrabie
Examinateurs / Examinatrices : Jean-Marc Lecaillec, Francisco MORáN BURGOS, Arianne Hinds
Rapporteurs / Rapporteuses : Valeriu Vrabie, Jean-Marc Lecaillec

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Dans l'Industrie 4.0, l'utilisation d'appareils de Réalité Augmentée (RA) tels que HoloLens a acquis une acceptation significative pour la formation des opérateurs de ligne d'assemblage dans diverses industries. La simplification des modèles CAO 3D pour la formation en RA est essentielle pour une meilleure performance des applications. Notre recherche se concentre sur le développement de méthodes et de techniques visant à rationaliser des modèles CAO 3D complexes, les rendant adaptés aux applications de RA.Notre recherche met en avant le rôle des modèles 3D en RA, améliorant l'expérience virtuelle en superposant des modèles CAO sur le monde réel. Nous détaillons les applications de la RA dans la formation des opérateurs et comment l'intégration de modèles CAO 3D améliore la compréhension des instructions et des procédures.Nous avons réalisé une revue approfondie de la littérature sur la simplification des modèles CAO pour leur intégration dans des scénarios de réalité augmentée (RA). Nos conclusions indiquent que les techniques de simplification basées sur le maillage excellent dans la préservation des éléments essentiels des modèles CAO, offrant un contrôle précis sur les niveaux de détail.De plus, nous avons effectué quatre types distincts d'évaluations dans notre recherche. Ces évaluations comprenaient des évaluations objectives utilisant des techniques basées sur le maillage issu de la littérature existante, des avis d'experts impliquant un examen approfondi de chaque modèle simplifié pour déterminer le niveau de simplification en fonction des plages de sommets, des tests en conditions réelles assistés par HoloLens2, qui ont révélé des améliorations du taux de rafraîchissement lors de l'utilisation de modèles CAO au lieu de leurs versions originales.Pour conclure nos évaluations, nous avons également réalisé des évaluations par les utilisateurs, en donnant la priorité à l'expérience utilisateur dans notre étude. Ces évaluations ont confirmé que les modèles simplifiés sont hautement capables de remplacer les versions originales. Cependant, il a été observé qu'une simplification supplémentaire est nécessaire, en particulier pour les modèles CAO complexes.La méthodologie principale propose une approche innovante axée sur la segmentation du maillage et la simplification adaptative grâce à l'utilisation de méthodes d'apprentissage profond. Pour réduire la complexité associée à la segmentation et à la simplification 3D, nous avons projeté les données dans le domaine 2D pour effectuer la segmentation et avons ensuite cartographié les résultats dans le domaine 3D. Nous avons illustré ce cadre à l'aide d'une fonction spécifique appelée "chaînes continues" pour expliquer le processus de simplification. Par la suite, nous avons réalisé une analyse comparative par rapport à des techniques de pointe établies, démontrant la performance supérieure de notre méthodologie. Dans nos futures recherches, nous visons à élargir la portée de notre cadre pour englober plusieurs caractéristiques et les régions fonctionnelles à l'intérieur des modèles CAO.