Thèse soutenue

Quorum sensing dans des assemblées de particules actives synthétiques : Séparation de phase induite par la motilité

FR  |  
EN
Auteur / Autrice : Thibault Lefranc
Direction : Denis Bartolo
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 18/12/2023
Etablissement(s) : Lyon, École normale supérieure
Ecole(s) doctorale(s) : École doctorale de Physique et Astrophysique de Lyon (Lyon ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de physique (Lyon ; 1988-....)
Jury : Président / Présidente : Hamid Kellay
Examinateurs / Examinatrices : Denis Bartolo, Hamid Kellay, Léa-Laetitia Pontani, Mathieu Leocmach, Cesare Nardini, Salima Rafaï
Rapporteurs / Rapporteuses : Léa-Laetitia Pontani, Mathieu Leocmach

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

On définit la matière active comme une assemblée de particules capables de transformer à leur échelle l'énergie en mouvement. Les exemples de matière active sont nombreux dans la nature, allant de la colonie de bactérie au troupeau de zèbres en passant par les bancs de poissons et les foules humaines. Malgré ce mouvement perpétuel des individus, il est possible dans certains cas d'observer une séparation de phase, c'est-à-dire la formation de zones définies de densités différentes. Ceci peut s'expliquer par la détection de quorum : les particules tiennent compte de leurs voisines pour ajuster leur activité. Depuis une dizaine d'années, l'ensemble des briques élémentaires de la matière molle (polymères, colloïdes, ...) ont été motorisées pour fabriquer de la matière active en laboratoire. Cependant aucune forme de détection du quorum synthétique n'a été rapportée jusqu'à aujourd'hui. Dans cette thèse, nous présentons les premiers résultats permettant de montrer la possibilité de créer une forme simple de détection de quorum en laboratoire. Pour cela nous avons choisi comme élément de base un bâtonnet colloïdal. Nous présentons d'abord une analyse théorique expliquant le comportement de bâtonnets actifs. Cette analyse est une extension aux particules anisotropes du phénomène d'électrorotation de Quincke, déjà utilisé pour rendre des sphères actives. Elle permet de mettre en lumière le comportement plus riche des bâtonnets. Puis nous détaillons la démarche expérimentale pour la mise en œuvre concrète de la motorisation de ces colloïdes actifs, qui est au cœur de ces travaux de thèse. Enfin, nous rapportons les résultats obtenus, qui indiquent une première réalisation expérimentale de détection de quorum artificielle, avec notamment l'observation et la caractérisation d'une séparation de phase induite par la motilité conditionnelle des particules.