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Abstract

This thesis studies how real-world markets affected by various sources of noise, infor-
mation asymmetry and bounded rationality. Chapter 1 examines markets in which
one party "sells" their talent to the other party, yet the true value of this talent is not
easily quantifiable by either side. How to submit a paper to a journal, for instance,
becomes a strategic task for authors, and whether to accept a seemingly good pa-
per is equally challenging for editors. In equilibrium, the seller adjusts her strategy
by learning (rejection). Recognizing that the "talent" could have been previously
rejected by others, the buyer corrects his selection bias by raising the threshold of
acceptance. Furthermore, in the induced dynamic game with incumbent and entrant
buyers, the competition is unfair for the latter because at the time of entry, the lat-
ter will also receive the "talent" previously rejected by the former. This finding
brings a new insight into the formation of entry barriers in such markets. Chapter
2 introduces a search model to examine how information asymmetry evolves in a la-
bor market where Graduates search for jobs and Employers make offers. The model
shows that while the market can be efficient initially, as low-type Graduates remain
in the market, Employers lower their offers to correct for selection bias. However,
in large markets, where search costs are low, these effects dissipate, leading to more
efficient outcomes. The presence of noise in the market and graduate’s belief that
she can receive a better offer than her outside option enhance employer competition.
The results show that the presence of noise in the market has a significant impact on
market efficiency. Chapter 3 explores how bounded rationality leads to suboptimal
decision-making by individuals in the market for talent and the Graduate-Employer
market. In the market for talent, editors who are subject to cognitive errors may
set lower thresholds for paper acceptance, which could lead to lower-quality papers
being published. This offers entrants the chance to challenge incumbents’ status.
In the graduate-employer market, unsophisticated employers who do not consider
a graduate’s type or the signal provided by an interview may overbid or underbid,
respectively, leading to adverse selection effects and decreasing deal prices in the
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market. The findings from this chapter could be applied to explain overbidding in
corporate acquisitions.

Keywords: Market, information asymmetry, noisy perception, bounded rationality,
searching.
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Résumé

Cette ths̀e examine l’impact de diverses sources de bruit, d’asymt́rie d’information
et de rationalité limitée sur les marchés du monde réel. Le premier chapitre se
concentre sur les marchés où une partie "vend" son talent à une autre partie, mais
où la véritable valeur de ce talent n’est pas facilement quantifiable pour les parties
impliquées. Par conséquent, soumettre un article á une revue devient une tâche
stratégique pour les auteurs, tandis que les éditeurs sont confrontés à la difficulté
d’accepter ou de refuser un article apparemment bon. A l’équilibre, le vendeur
ajuste sa stratégie par apprentissage (rejet). L’acheteur, reconnaissant que le "tal-
ent" aurait pu être précédemment rejeté par d’autres, corrige son biais de sélection
en relevant son seuil d’acceptation. De plus, dans le jeu dynamique qui se crée entre
les acheteurs historiques et les nouveaux entrants, ces derniers sont désavantagés
car, au moment de leur entrée, ils reçoivent également le "talent" précédemment re-
jeté par les premiers. Cette découverte apporte un nouvel éclairage sur la formation
des barrières à l’entrée sur ces marchés. Le deuxième chapitre présente un modèle
de recherche visant à examiner comment l’asymétrie d’information évolue sur un
marché du travail où les diplômés recherchent des emplois et les employeurs font
des offres. Le modèle montre que si le marché peut être efficace au départ, comme
les diplômés de faible niveau restent sur le marché, les employeurs réduisent leurs
offres pour corriger le biais de sélection. Cependant, sur les grands marchés, où les
coûts de recherche sont faibles, ces effets se dissipent, conduisant à des résultats
plus efficaces. La présence de bruit sur le marché et la conviction de la diplômée
qu’elle peut recevoir une meilleure offre que son option extérieure renforcent la con-
currence des employeurs. Les résultats montrent que la présence de bruit sur le
marché a un impact significatif sur l’efficacité du marché. Le troisième chapitre ex-
plore comment la rationalité limitée entraîne une prise de décision sous-optimale par
les individus sur les marchés du talent et des diplômés-employeurs. Sur le marché
des talents, les éditeurs sujets à des erreurs cognitives peuvent fixer des seuils in-
férieurs d’acceptation des articles, ce qui pourrait entraîner la publication d’articles
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de moindre qualité. Cela offre aux participants la possibilité de contester le statut
des titulaires. Sur le marché des diplômés-employeurs, les employeurs non avertis
qui ne tiennent pas compte du type de diplômé ou du signal fourni par un entretien
peuvent respectivement surenchérir ou sous-enchérir, ce qui entraîne des effets de
sélection adverse et une baisse des prix des transactions sur le marché. Les conclu-
sions de ce chapitre pourraient être appliquées pour expliquer la surenchère dans les
acquisitions d’entreprises.

Mots clés: Marché, asymétrie de l’information, perception bruyante, rationalité
limitée, recherche.
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General Introduction

Markets are one of the most important institutions in modern economies, facilitating
the exchange of goods, services, and resources. In a perfectly competitive market,
buyers and sellers have equal access to information, and prices reflect the true un-
derlying value of the goods and services traded. However, real-world markets are
rarely perfectly competitive, and various sources of noise, information asymmetry
and bounded rationality can create inefficiencies and distortions that affect market
outcomes.

Noise:

One of the key frictions that arises in markets is noise. In many markets, both
buyers and sellers may lack a precise understanding of the true value or quality
of the product, good, or service being exchanged. For buyers, noisy perception
can arise from a variety of factors. For example, a buyer may lack the expertise
or experience needed to accurately assess the quality of a product or service. In
addition, buyers may also be influenced by various biases or heuristics that can
lead them to overestimate or underestimate the value of a product or service. For
example, buyers may be more likely to trust the opinions of others, such as friends
or online reviews, rather than conducting their own independent research.

On the seller’s side, noise can also be a significant challenge. Sellers may lack
precise information about the true demand for their product or service, which can
make it difficult to sell optimally. In addition, sellers may also struggle to accurately
assess the quality of their own product or service, particularly if they lack objective
measures or benchmarks to compare against.

Information Asymmetry:

Another key friction that arises in markets is information asymmetry. Infor-
mation asymmetry refers to situations where one party in a transaction has more
information than the other party. This can lead to market inefficiencies, as the party
with more information may be able to exploit the party with less information.

1
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There are many factors that can contribute to information asymmetry in mar-
kets. One factor is the fact that information is often costly to acquire. For example,
conducting research or performing due diligence can be time-consuming and expen-
sive, which can create a barrier to entry for some market participants.

Bounded Rationality:
A third key friction that arises in markets is bounded rationality. Bounded

rationality refers to the fact that people’s decision-making capabilities are limited
by their cognitive abilities and the information available to them. This can lead to
suboptimal decisions, even in situations where complete information is available.

There are several factors that can contribute to bounded rationality in markets.
One factor is cognitive limitations, which refer to the fact that people’s cognitive
abilities are finite. For example, people may have limited working memory or may
be prone to mental shortcuts or heuristics that can lead to biases and errors in
decision-making.

Another factor that can contribute to bounded rationality in markets is the com-
plexity of the information environment. Markets are often complex and dynamic,
with a large amount of information available to participants. This can make it dif-
ficult for individuals to process all of the available information and make optimal
decisions.

This thesis delves into the intricacies of markets, specifically with regard to
these three factors. The first chapter focuses on markets without monetary transfer,
exploring the impact of noise and information asymmetry on market outcomes.
The second chapter delves into markets with monetary transfer. Finally, the third
chapter considers the influence of bounded rationality on market outcomes, shedding
light on the ways in which human biases and cognitive limitations impact markets.

In the first chapter, entitled "Market for Talent under Asymmetric Informa-
tion", I aim to contribute to the literature on market by providing a comprehensive
understanding of how agents with noisy perception learn and make decisions in
markets under information asymmetry, as well as the mechanisms that lead to the
formation of entry barriers. The study employs various game-theoretic models and
simulation methods to analyze the dynamics of such markets and identify the factors
that affect agents’ behaviors and market outcomes. By shedding light on the com-
plexities of these markets, this study has potential to contribute to the development
of more efficient market designs and policies that can enhance social welfare and
promote competition.
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The study builds upon existing academic research that examines the dynamics
of markets with similar structures. Some studies have explored the search model,
where one side has an information disadvantage and receives noisy signals about
the state, as in Zhu [2012] and Lauermann and Wolinsky [2016]. They present
the search model where the side with information disadvantage is sampled and
receives noisy signals about the state. Different from the previous studies, this
study focuses on how the agents learn about the state through each interaction
with noisy perception. Previous research (Cooper and John [1988] and Milgrom and
Roberts [1990]) also highlights the issue of equilibrium multiplicity in markets, where
strategic complementarities and agent interactions can result in multiple equilibria.
In this study, the equilibrium multiplicity comes from the buyers’ ignorance of the
seller’s history and their noisy perception of quality. Moreover, it shows that in the
induced dynamic game, an equilibrium that favors the incumbent will be selected,
which provides a cornerstone for the existence of entry barriers.

I study a specific market that considers the behavior of authors and journals in
academic publishing. It assumes that an author’s submission history is unobservable
and that the author’s and the journal’s perception of quality is noisy. Moreover, the
authors are assumed to learn from each interaction and adjust their submission be-
havior accordingly. This assumption reflects the reality that agents in such markets
face uncertainty about the quality of their submissions and must learn from their
experiences to improve their chances of success. A key phenomenon in this market
is the selection bias effect. It arises from the fact that journal editors cannot observe
how many times a manuscript has been rejected by other journals. In the absence of
this information, editors only rely on the perceived quality of a manuscript to make
a decision on acceptance or rejection.

To correct the selection bias, journals tend to raise their acceptance threshold.
This is because they are uncertain about the number of times a paper has been
rejected by other journals, so they may mistakenly perceive a paper as of high quality
when it has actually been rejected multiple times. By setting a higher acceptance
threshold, they aim to ensure that only high-quality papers are accepted. However,
this corrective measure also creates inefficiency in the market, especially when the
market size is large.

The formation of entry barriers in such markets is a complex process that has
received limited attention in the literature. In this study, I analyze the emergence
of entry barriers as a consequence of the selection bias effect between authors and
journals. Specifically, I examine how journals’ inability to perfectly assess the quality
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of submissions and authors’ imperfect learning about the quality of their own work
interact to create an environment in which the entrant suffers immediately upon
entering the market.

In the second chapter, entitled "Adverse Selection with Dynamic Learning", I
explore situations where information asymmetry does not exist at the outset and
whether it has any qualitative impact on the outcome in a market setting. The
traditional models of adverse selection (Akerlof [1970]) assume that one side has all
the information, and the other side learns about the state from history or external
signals. However, in many real-life examples, such as in the labor market, a graduate
and potential employer are unaware of the graduate’s value at the outset, but the
graduate can learn about her value through feedback from job interviews. Other
real-life examples include high-tech firm acquisitions, startups seeking seed funds,
and securities trading in the secondary market.

I use a search model (similar setting as Lauermann and Wolinsky [2016] and
Moreno and Wooders [2016]) to analyze a game where a graduate searches for em-
ployers sequentially. The graduate’s ability can be high or low, and both parties
have the same prior belief about the graduate’s ability. After each interview, both
the graduate and the employer receive a noisy signal of either good or bad. The
graduate updates her belief using Bayes’ rule based on her past signals, while the
employer only knows the signal they receive and is unaware of the graduate’s past
signals or how many employers she has already interviewed. The sampled employer
then makes an offer, and the graduate has three options: accept the offer and end
the search, reject the offer and continue sampling, or leave the market and receive
an outside option.

I find that when search costs are not extremely high, the market can avoid
collapse and allow for efficient trades, as long as there is no initial information
asymmetry. In the presence of noise in the market, the high-type graduate is in-
clined to continue searching after receiving bad signals under the belief that better
opportunities may arise, leading to an incentive for employers to compete with each
other to offer more attractive deals. However, in small markets with a low num-
ber of employers and negligible search costs, the adverse selection effect can lower
the average deal price and prolong the search time for a trade, leading to market
inefficiency.

This study contributes to the literature on adverse selection by exploring sit-
uations where information asymmetry deepens over time and its impact on market
outcomes. It highlights the importance of considering noise in the market and how
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it affects the behavior of both sides. The study also shows that the level of infor-
mation asymmetry is crucial in determining market efficiency and that search costs
play a significant role in determining the outcome. Finally, the study sheds light on
the importance of market size in determining market efficiency, with large markets
recovering efficiency even in the presence of adverse selection.

In the third chapter, entitled "Markets with Behavioral Agents", I revisit the
two markets in the first two chapters to explore how agents with bounded rationality
can affect market outcomes. In the first market, the market for talent, where editors
make decisions about whether to publish papers based on their quality, editors can
make cognitive errors, such as failing to account for selection bias or underestimating
the quality of a paper. These errors can reduce the level of selection bias in the
market, providing entrants with an opportunity to challenge incumbents.

In the second market, the graduate-employer market, I let employers use pre-
vious experiences to make optimal strategies. However, the misuse of information
can lead to irrational behavior. I explore how employers who lack sophistication can
fail to make optimal decisions by failing to consider the probability of a graduate’s
acceptance based on their type or the importance of the signal in determining the
acceptance probability. These errors can lead to overbidding or underbidding, af-
fecting market outcomes and the willingness of employers to offer high prices due to
the adverse selection effect.

This study uses the analogy-class approach (Jehiel [2005]) to characterize the
behavior of bounded rational employers, where they bundle the nodes into analogy-
classes to form expectations about agents’ behavior. By revisiting these markets,
we gain insight into the ways in which bounded rationality affects market outcomes,
providing a better understanding of the limitations of markets and the challenges
they face. Ultimately, this knowledge can help policymakers and market participants
design more effective market mechanisms that account for the presence of agents
with bounded rationality.



Chapter 1

Market for Talent under Asymmetric
Information

1.1 Introduction

In labor markets, some workers perform routine tasks, such as truck driving, account-
ing, or programming, while others possess unique talents, such as playing football,
writing film scripts, or conducting innovative research projects. However, accurately
quantifying these talents remains a challenge. While certificates can be obtained for
tasks like accounting or truck driving, there is no clear certification process for
subjective talents such as playing football or writing novels. As a result, assess-
ing the true value of one’s talent is often noisy and uncertain, representing a key
feature of the talent market that distinguishes it from traditional labor markets.
This "seller-talent-buyer" market is illustrated with an example of "author-paper-
journal" throughout this chapter. With numerous journals available, authors face a
trade-off between the quality of journals and the possibility of acceptance. Journals,
in turn, aim to publish high-quality papers but face uncertainty over the paper’s
submission history. Upon receiving a seemingly strong paper (after observing some
good but noisy signals from the referees’ reports), editors may worry about over-
valuing it due to concerns that the paper may have been rejected by other journals
in the past. This information asymmetry between journals and authors constitutes
the second key feature of this market, the information asymmetry. Due to it,
for one journal, "receiving a paper" or "being selected" indicates that the paper in
hand may not be as good as it seems. This selection bias effect is the main topic
of this article. It discovers how journals take it into account when making optimal
choices.

6



Chapter 1. Market for Talent under Asymmetric Information 7

The author-paper-journal market is composed of several journals and an author
who writes a paper of unknown quality. The quality depends on her type, which is
her private information. The higher the type, the more likely the paper is of good
quality. Papers are submitted to journals at a cost, and if rejected, the author may
try another journal. Journals only publish papers above a certain quality standard,
but the editor cannot precisely determine quality and relies on a noisy signal. High-
quality papers are more likely to generate good signals.

In a homogeneous journal market, a low-type author knows that her paper is
unlikely to be accepted. Therefore, only when the author’s type is high enough will
she submit her paper to a randomly selected journal. Being rejected indicates that
her paper may not be of high quality and it might not be worthwhile to try again,
leading only those with relatively higher types to continue the process. The process
goes on until either the author finds it better to stop or she tries all journals.

Counterintuitively, as the market size gets larger with more journals, authors’
welfare does not necessarily increase though they have more places to try. This is
because once an editor receives a paper, it could have been rejected many times
before. In other words, the selection bias effect is more significant. To correct it,
the journals should raise their threshold, which makes it harder for the author to
get a publication.

If journals are heterogeneous, the market splits. A high-type author targets
top-class journals publishing high-quality papers because it brings a high payoff.
A low-type author has an alternative, the ordinary journals with lower standards,
because they have lower thresholds of signals and bring a higher probability of ac-
ceptance. Due to this separation, top-class journals receive papers of higher average
quality. Thus, compared to the homogeneous case, they set a lower threshold of
signals. It lets them publish more good-quality papers. Diversity is beneficial to
efficiency.

However, if the difference (the standards of the quality, the payoffs from pub-
lication) between a top-class journal and an ordinary one is not that significant,
a counterintuitive equilibrium could also exist. The ordinary journal with a lower
standard of quality sets a higher threshold than the top-class one. More precisely,
in this case, the top-class journal is the author’s first option. The ordinary journal
receives only the papers having been rejected and perceives that the quality is more
likely to be bad, leading to inverted thresholds of acceptance. The major finding
of this study is, with multiple equilibria, which one is selected depends largely on
which journal exists at first due to the two features discussed initially. This finding



8 1.1. Introduction

brings insights into the formation of entry barriers in such markets, even without
tangible costs of entry.

If the top-class journal (incumbent) exists before the ordinary journal (entrant),
the entrant is not able to challenge the incumbent by publishing papers of similar
quality. Because when entering, it receives papers rejected by the incumbent pre-
viously and it can not distinguish between them from the unrejected ones, it must
set an unfairly high threshold to select the good-quality papers mixed with bad-
quality ones. As a result, both journals publish papers with similar quality but the
entrant has a lower possibility of acceptance. This generates the convention among
the authors that they should submit to the incumbent first, leading to the entrant
receiving rejected papers again in the next period and all following periods. Then,
competing with the incumbent leads to either the amount of publications being so
small or many bad-quality papers being published. The better choice is to avoid
competition and to be the authors’ second option.

The selection bias effect is the key factor that generates this vicious cycle in
the market, stemming from noisy perceptions of quality and journals’ ignorance of
authors’ submission histories. When journals have perfect information about paper
quality, the entry barrier disappears, rendering authors’ submission histories irrele-
vant and thus eliminating information asymmetry. Conversely, when authors have
perfect information about journal quality, the entry barrier weakens. For instance,
By setting a high threshold, an entrant can become the preferred choice for authors
with high-quality papers, as they want to find a place that only publishes top-tier
papers and yields a higher payoff.

With the two features, noise and information asymmetry in the market, entry
barriers are inevitable to exist. The implications of this study extend beyond the
academic market, offering insights into the formation of oligopolies in other markets
with these two features, such as venture capital incumbent firms (e.g., Accel, An-
dreessen Horowitz, Bessemer Venture Partners, Benchmark, and Sequoia Capital)
(Hochberg et al. [2010]), and record labels’ contracts with musicians (e.g., Universal,
Sony, and Warner) (Alexander [1994]).

The rest of the article is organized as follows: Section 1.2 presents the model.
Section 1.3 characterizes the equilibrium. Section 1.4 analyzes the case with het-
erogeneous journals and shows the possibility of multiple equilibria. Section 1.5
discusses the existence of entry barriers. Section 1.6 concludes the study and pro-
vides scope for further discussion. All proofs are in Appendix 1.7.4.
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1.1.1 Related Literature

This study contributes to the literature of the market with noisy perception and
information asymmetry: i) the analysis of the agents’ learning process under noisy
environment, and ii) the existence of an entry barrier in such markets.

Several existing studies of academic publishing have a similar model structure,
Cotton [2013], Leslie [2005], Muller-Itten [2017], Ellison [2002] and Azar [2015].
Among them, Cotton [2013], Leslie [2005] and Ellison [2002] focus on the necessity
of the submission fee and the lengthy refereeing. A similar result is found in this
study that journals have the incentive to set some cost to screen those high-type
authors. Muller-Itten [2017] puts more emphasis on the author’s behavior. She
defines a score system where the author’s ranking of submission is based on a score
including some factors like the quality of the paper, the difficulty of publication,
etc. This idea could be traced back to Oster [1980]. Azar [2015] presents a simple
model with one author and one journal. He characterizes the agents’ behavior and
analyzes how it changes with submission cost, journals’ standards, and the noise in
the editor’s signal. The information structure used in the model is similar to the one
in Zhu [2012] and Lauermann and Wolinsky [2016]. They present the search model
where the side with information disadvantage is sampled and receives noisy signals
about the state. Different from the previous studies, this study focuses on how the
agents learn about the state through each interaction.

In regard to the equilibrium multiplicity, many studies (Cooper and John [1988]
and Milgrom and Roberts [1990]) attribute it to strategic complementarities. Brock
and Durlauf [2001] present a random field model where the agents are influenced
by their neighbors’ behavior, which follows the same intuition as the above two. In
this study, the equilibrium multiplicity comes from the journals’ ignorance of the
authors’ submission order and their noisy perception of quality. Moreover, it shows
that in the induced dynamic game, an equilibrium that favors the incumbent will
be selected, which provides a cornerstone for the existence of entry barriers. The
mutation method introduced in Kandori et al. [1993] and Young [1993] is also used
to see which equilibrium is selected in the long run.

There is little literature discussing the formation of entry barriers under infor-
mation asymmetry. Some discuss the asymmetry between the incumbent and the
entrant. Dell’Ariccia et al. [1999], Dell’Ariccia [2001] and Marquez [2002] present a
model of the banking industry where the entrants face the adverse selection problem
because they can not know whether the borrower has been rejected by the incum-
bent. Bofondi and Gobbi [2006] find evidence in Italian local markets. Seamans
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[2013] studies the U.S. cable TV industry and verifies the incumbent’s limit pricing
behavior. Langinier [2004] studies how the asymmetry influences the frequency of
patent renewal which further changes the likelihood of entry. Some (Aghion and
Bolton [1987], Martimort et al. [2021]) consider the asymmetry between the buyer
and the seller where the information advantage side gains by contracting. Different
from the previous studies, this study gives a simpler insight where the entrant suffers
immediately once it enters the market due to the information asymmetry.

1.2 The Model

An author writes a paper of quality q ∈ R, where the exact value of q is unknown.
It is contingent on her type θ ∈ R, which is her private information. The cumu-
lative distribution function of the quality conditional on the type is a log-concave
function F (q|θ) (corresponding probability density function f(q|θ)). f(·|θ) satisfies
the monotone likelihood ratio property (MLRP). It means that a high-type author
is more likely to write a paper of higher quality. Let the continuous function µ(θ)

be the prior distribution of the author’s type.

Assuming there are m class-A journals, each publication in one of these journals
yields a payoff of v > 1 to the author. The author must pay a submission cost of
c < 1 for each submission made to a journal. In each round, the author submits their
paper to a journal and, upon rejection, chooses another journal in the subsequent
round. The process is repeated until the author either succeeds in publishing their
paper or decides to stop trying.

The journals only accept papers of sufficiently high quality for publication.
Specifically, a journal’s payoff for publishing a paper with quality q is given by
q − qA. The journal publishes a paper if and only if the quality is higher than qA,
where qA is the minimum quality threshold. The journal can only observe a noisy
signal of the paper’s quality, denoted by s = q + ϵ, where ϵ ∼ N (0, σ2

s).

Notably, the author keeps a record of their historical submission failures, while
the selected journal remains unaware of this information. The set of all possible his-
tories is represented by H = ∅, (A), (A,A), ..., where h ∈ H represents the author’s
submission history. For example, h = (A,A) denotes that the author submitted
their paper to two class-A journals in the first and second rounds and was rejected
on both occasions. For simplicity, I use Ai to represent the history where the author
attempts i submissions, all of which fail (A0 = ∅).
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Strategy
The author’s strategy is a mapping from her type θ and her history h to either

submit her paper to a class-A journal or stop trying, denoted by τ : R × H →
{A, stop}. The journal’s strategy is a mapping from the noisy signal s to either
accept or reject the paper, denoted by ηA : s → {Ac,Rj}. Journals have no com-
mitment power to their strategies. For example, it can not raise its ranking in
authors’ submission ordering by claiming that ηA(s) = Ac for any signal s.

Belief
The author, given the history h, updates a posterior distribution of the quality

γ(q|θ, h) by applying Bayes’ rule. For instance, if h = (A), then

γ(q|θ, h) =
f(q|θ)

∫
ηA(s)=Rj

ϕ(s, q, σs)ds∫
dqf(q|θ)

∫
ηA(s)=Rj

ϕ(s, q, σs)ds

where ϕ is the probability density function of a normal distribution.
Receiving a paper, the editor of a class-A journal forms a belief βA of the quality

q.

Equilibrium
The perfect Bayesian equilibrium of this game is studied. A tuple (γ, τ, ηA, βA)

is a perfect Bayesian equilibrium if

1. Given the signal s and belief βA, class-A journals accept a paper (ηA(s) = Ac)
if and only if the expected quality is higher than qA,

EβA
[q|s] ≥ qA (1.1)

2. Given her history h and her belief γ, the author calculates the expected payoff
of submitting her paper to a class-A journal. That is,

πA(θ, h) = v

∫
γ(q|θ, h)

∫
ηA(s)=Ac

ϕ(s, q, σs)dsdq − c (1.2)

If πA(θ, h) ≥ 0 and the author has not tried all journals, she submits her paper
to a journal of class-A she has not tried before (τ(θ, h) = A). Otherwise, she
stops (τ(θ, h) = stop).

3. Given τ and ηA, γ(q|θ, h) and βA(q) are derived by Bayes’ rule.
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1.2.1 Preliminary Observation

Journal’s problem. Upon receiving a paper, the editor is concerned that it may
have already been rejected by other journals, implying that receiving a paper is not
necessarily good news. This selection bias effect needs to be taken into account when
forming the belief of the quality. I begin by examining the symmetric equilibrium
in which the author sets the submission order randomly. Specifically, a journal’s
position in the order is uniformly distributed. Under this assumption, the likelihood
of receiving a paper of quality q from an author with type θ and history h is given
by:

L(q, θ, h = Ai) =
1

m
·µ(θ)·f(q|θ)·

(
i∏

j=0

1{τ(θ,Aj)=A}

)
·
(∫

1{ηA(s)=Rj}ϕ(s, q, σs)ds

)i

(1.3)

It is the probability that the journal is ranked in the (i + 1)th position of the au-
thor’s submission order, times the prior of θ, times the distribution of the quality
conditional on type, and times the probability that the author submits and resub-
mits before and all get rejected. ϕ is the probability density function of a normal
distribution.

The editor forms a belief of the quality

βA(q) =
m−1∑
i=0

∫
L(q, θ, h = Ai)dθ

/
m−1∑
i=0

∫∫
L(q, θ, h = Ai)dθdq (1.4)

Given his belief, the editor uses a cutoff strategy because the distribution of signal
s satisfies MLRP.

Lemma 1. Given the editor’s belief βA, there exists a threshold sA such that the
journal accepts a paper if it observes a signal s ≥ sA, and otherwise, it rejects.

Author’s problem. Before deciding to submit, the author forms a belief of
the quality based on her type and her submission history h, γ(q|θ, h), and it satisfies
the MLRP. Given lemma 1, it can be rewritten as follow

γ(q|θ, h) = f(q|θ)Φi(sA, q, σs)∫
f(q|θ)Φi(sA, q, σs)dq

, if h = Ai

where Φ is the cumulative distribution function of a normal distribution.
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The author faces a trade-off between the benefits of publication and the cost of
submission. In order to decide whether to submit or not, she compares the expected
gain from publication to the cost of submission. Specifically, she finds it optimal to
submit if

v

∫
γ(q|θ, h)[1− Φ(sA, q, σs)]dq ≥ c

As the author receives more rejections, her belief in the quality of her paper de-
creases. Thus, the expected gain from publication decreases as well, and eventually
falls below the cost of submission. At this point, the author should stop submitting.
Additionally, because of the MLRP, the expected gain increases with the author’s
type. Thus, there exists a sequence of types, θ0 < θ1 < θ2 < ... < θm−1, where
authors with types θ < θ0 never submit, those with types θ ∈ (θ0, θ1) submit only
once, those with types θ ∈ (θ1, θ2) submit twice, and so on.

Lemma 2. Given sA, for any history h, there exists a unique θ∗A(h) ∈ (−∞,+∞)

such that πA(θ
∗
A(h), h) = 0. The author with history h submits her paper to a class-A

journal if her type θ ≥ θ∗A(h). She stops if her type θ < θ∗A(h) or h = Am. Moreover,
θ∗A(A

m−1) > ... > θ∗A(A) > θ∗A(∅).

1.3 Equilibrium Characterization

This section provides an analysis of the equilibrium in the model. Specifically,
I demonstrate the existence of a unique symmetric equilibrium and examine how
agents’ behavior is impacted by the number of journals, the author’s benefit-cost
ratio, and the noise level in agents’ perception.

Proposition 1. A unique symmetric equilibrium exists. The journals’ threshold is
s∗A. The author with history Ai (i = 0, 1, ...,m − 1) submits her paper to a journal
randomly selected from those she has not tried yet if and only if her type θ > θ∗A(A

i).

1.3.1 Comparative Statics

The Number of Journals

The behavior of agents is influenced by two effects as the number of journals in-
creases. Firstly, the probability of a journal being at the top of an author’s sub-
mission order decreases, resulting in a higher chance of the submitted paper being
rejected several times, making it less likely to be of high quality. Therefore, journals
should increase their threshold to correct this selection bias.
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Secondly, authors with higher types are more likely to resubmit after being
rejected, leading to an increase in the average quality of submitted papers, resulting
in journals setting lower thresholds. However, this effect is only dominant when the
submission cost is extremely high.

Proposition 2. There is c ∈ (0, v] such that if c < c, s∗A is increasing in m, and
θ∗A(h) is increasing in m for any h ∈ H.

Example 1. The author’s type θ follows a normal distribution: µ(θ) = ϕ(θ, µ, σθ).
The quality conditional on the type follows a normal distribution: f(q|θ) = ϕ(q, θ, σq).
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Figure 1.1: The upper-left graph is journals’ strategy s∗A under different numbers
of journals. The upper-right graph is the author’s strategy θ∗A(h). The parameters
are: µ = 0, σθ = σq = σs = 1, qA = 0, v = 2 and c = 0.2. The bottom two graphs
assume c = 0.001.

In Figure 1.1, panels (a) and (b) illustrate that s∗A and θ∗A increase as the number
of journals increases, and eventually converge to some value. This result may seem
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counterintuitive because, as the number of journals becomes extremely large, the
probability of being selected by any one journal becomes very small. Consequently,
the selected paper could have been rejected numerous times, suggesting lower quality.
This intuition implies that journals should set an infinitely high threshold.

However, for most authors, their beliefs of quality become passive after multiple
rejections, and the expected payoff of resubmitting becomes lower than the submission
cost. Therefore, once a journal receives a paper, it can infer that the author has not
been rejected an infinite number of times, leading to convergence of s∗A and θ∗A as the
number of journals increases.

In contrast, when submission cost approaches zero, s∗A and θ∗A do not converge.
This is illustrated in Panels (c) and (d) of Figure 1.1. □

Increasing the number of journals in the market provides authors with more
opportunities to submit their work, but it does not necessarily lead to an increase in
welfare because the selection bias effect can raise the threshold for acceptance. This
effect can make it difficult for authors to get published even when the submission
cost is negligible and they keep trying until there is no chance left, regardless of
their type. I define the market welfare as TQ(m), which represents the sum of the
quality of the papers that are ultimately accepted.

TQ(m) = E[q|Accepted] · Pr[Accepted]

=

∫∫
qµ(θ)f(q|θ)

m−1∑
i=0

Φi(sA, q, σs)[1− Φ(sA, q, σs)]dθdq

In Figure 1.2, I compare TQ(1) and TQ(2) under different µ, average authors’ type
(θ ∼ N (µ, σθ)). I find that welfare is higher with less journals when µ is high. In
this case, the papers in the market are of high quality on average. Then, being
rejected means that this paper is really bad, which makes the selection bias effect
more significant. Thus, adding another journal raises both thresholds significantly
and makes acceptance harder, not only for rejected papers but also for unrejected
ones.

The Ratio v/c

As the value from publication increases compared to the cost, it leads the author
with lower type to try or try again. Under this case, journals receive low-quality
papers more often. Thus, they will increase their thresholds.

Proposition 3. θ∗A(h) is decreasing in v/c for any h ∈ H. s∗A is increasing in v/c.
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Figure 1.2: Keep the settings of Example 1. The parameters are: σθ = σq = 1,
σs = 2, qA = 0 and c = 0.

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

v/c

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

s
* A

The journals' threshold

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

v/c

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

* A
(h

)

The author's submission strategy

Figure 1.3: The left graph is journals’ strategy s∗A under different v/c ratios. The
right graph is the author’s strategy θ∗A. The parameters are: σθ = σq = σs = 1;
qA = 0 and m = 3.

Keeping the setting of example 1, figure 1.3 shows the trends of s∗A and θ∗A
changing with different v/c. A higher submission cost discourages submission from
low-type authors. It can be used as a tool to filter them. If journals form a coalition
and set a positive submission cost cooperatively, they should let the expected quality
of the marginal author’s paper equal qA.

1.3.2 Asymmetric Equilibrium and Stability

In the preceding analysis, the symmetric equilibrium was considered, where the
author chooses a journal randomly. However, if the author has a specific submission
order, an asymmetric equilibrium may arise. Nevertheless, the existence of such an
equilibrium is not guaranteed.
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For example, suppose there are two class-A journals, A1 and A2, and the author
always tries A1 first, and then A2 after getting rejected. In this case, it is essential
that in equilibrium, A2 sets a higher threshold than A1. Otherwise, the author
would find it more advantageous to submit to A2 first. A2 has an incentive to do
so because it receives papers rejected by A1. However, it has less incentive to do
so because those low-type authors getting rejected stop trying. If the second effect
dominates, the asymmetric equilibrium may not exist.

Example 2. There are two class-A journals: A1 and A2. The author’s type θ

follows a normal distribution: µ(θ) = ϕ(θ, 0, σθ). The quality conditional on the type
follows a normal distribution: f(q|θ) = ϕ(q, θ, σq). The parameters are: σθ = 0.5,
σq = σs = 1; qA = 3; v = 2 and c = 1.2.

I try to find the asymmetric equilibrium where the author does not randomly
select the journal. If the author has a specific submission order: ’first A1 then A2’,
A1 sets a threshold of signal s1 = 2.78, and the author with a type θ > 3.14 submits
to A1. Getting rejected, she submits to A2 when her type θ > 4.08, and A2 sets a
threshold s2 = 2.73.

A2’s threshold is lower than A1. The author has no incentive to submit A1
first. Similarly, ’first A2 then A1’ can not be an equilibrium. □

Furthermore, note that as submission costs approach zero, the second effect
diminishes, and multiple equilibria may exist. Sections 1.4.2 and 1.5 discuss the
general situation in more detail. Moreover, if asymmetric equilibria exist, the sym-
metric one is not stable. This is because if there is little difference between the
thresholds of the journals, the journal with the lower threshold becomes the first
option for the author. In other words, there is a specific order of submission that
represents the asymmetric equilibrium. However, this order of submission may not
be the same for every author in reality.

One way to explain this paradox is to assume that the authors’ payoffs are
heterogeneous. Specifically, let author i’s payoff be v plus some subjective preference
ϵji for journal j.

vji = v + ϵji , ϵji ∼ N (0, σ2
ϵ )

Then, if we consider two journals, A and B, and their approximately close thresholds
sA > sB, author i submits to A first if

(v + ϵAi )Pr[Accepted by A|sA] > (v + ϵBi )Pr[Accepted by B|sB]
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ϵAi − ϵBi >
v
(
Pr[Accepted by A|sB]− Pr[Accepted by B|sA]

)
Pr[Accepted by A|sB]

=: k

The approximate probability that author i submits to A first is 1−Φ(k, 0, 2σ2
ϵ ). As

long as the variance is sufficiently large to resist the perturbation of thresholds, the
symmetric equilibrium is stable.

1.4 Heterogeneity

In this section, I consider the scenario where there exist class-B journals, which
have a lower standard compared to class-A journals. I analyze the behavior of
agents in this new setting and compare it to the previous case. I find that there
could be multiple equilibria in this market, which raises the question of potential
entry barriers.

1.4.1 Class-B Journals Exist

Suppose there are infinitely many class-B journals besides class-A journals. The
payoff from publishing in a class-B journal is normalized to 1, and the submission
cost is denoted by c. The payoff of publishing a paper with quality q for a class-B
journals is q − qB, qB < qA. Similar to class-A journals, the quality of a paper
is not precisely known, but an agent can observe a noisy signal s = q + ϵ, where
ϵ ∼ N (0, σ2).

In each round, an author can submit her paper to a journal of either class. If
the paper is accepted and published, the author receives the corresponding payoff.
If not, her can choose another journal to submit to in the next round. I assume that
the author is extremely impatient and the discount rate δ = 0. The general case
δ > 0 will be discussed later.

I use h̃ ∈ H̃ = ∅, (A), (B), (A,A), (A,B), (B,B), ... to denote the set of possible
histories of an author’s submissions. For instance, h̃ = (A,A,B) means that the
author submitted their paper to two class-A journals in the first and second rounds
and got rejected. In the third round, they submitted it to a class-B journal and got
rejected. For simplicity, I denote AiBj as the history where the author tries class-A
journals i times and class-B journals j times but fails all.

Strategy
The strategy of the author is a mapping from her type θ and her history h̃ to

either submitting her paper to A, to B, or stopping, τ̃ : R × H̃ → {A,B, stop}.
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The strategy of class-A journal is a mapping from the signal s it receives to either
accepting or rejecting, η̃A : s → {Ac,Rj}. Similarly, η̃B : s → {Ac,Rj}.

Belief
Given the history h̃, the author forms a posterior distribution of the quality

γ(q|θ, h̃) by applying Bayes’ rule. Receiving a paper, the editor of a class-A journal
forms a belief of the quality β̃A. Similarly, denote β̃B as class-B journal’s belief after
receiving a paper.

Equilibrium
I use the perfect Bayesian equilibrium concept. A tuple (γ, τ̃ , η̃A, η̃B, β̃A, β̃B) is

a perfect Bayesian equilibrium if

1. Given signal s and belief β̃A, class-A journals accept the paper (η̃A(s) = Ac)
if and only if its expected quality is higher than qA,

Eβ̃A
[q|s] ≥ qA (1.5)

Given signal s and belief β̃B, class-B journals accept the paper (η̃B(s) = Ac)
if and only if

Eβ̃B
[q|s] ≥ qB (1.6)

2. Given her history h̃, the author compares the expected payoff from submitting
her paper to a journal of either class. That is,

πA(θ, h̃) = v

∫
γ(q|θ, h̃)

∫
1{η̃A(s)=Ac}ϕ(s, q, σs)dsdq − c (1.7)

and

πB(θ, h̃) =

∫
γ(q|θ, h̃)

∫
1{η̃B(s)=Ac}ϕ(s, q, σs)dsdq − c (1.8)

If πA(θ, h̃) ≥ max{0, πB(θ, h̃)}, then she submits her paper to a journal of
class-A: τ̃(θ, h̃) = A. If πB(θ, h̃) ≥ max{0, πA(θ, h̃)}, she submits it to one of
class-B: τ̃(θ, h̃) = B. Otherwise, she stops: τ̃(θ, h̃) = stop.

3. Given τ̃ , η̃A and η̃B, γ, β̃A and β̃B are derived by Bayes’ rule.

Journal’s problem. Journals have the same problem as the previous case.
Given their belief, class-A journals set a threshold of the signal sA, and class-B
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journals set sB.

Lemma 3. There exists a sA (sB) such that the journal in class-A (B) accepts the
paper if it observes a signal s > sA (s > sB), and otherwise, it rejects.

Author’s problem. The author’s posterior belief can be expressed as follows
when the history of submissions is h̃ = (AiBj):

γ(q|θ, h̃) = f(q|θ)Φi(sA, q, σs)Φ
j(sB, q, σs)∫

dqf(q|θ)Φi(sA, q, σs)Φj(sB, q, σs)
, if h̃ = (AiBj)

Next, the author must decide whether to submit her paper to a class-A journal, to
a class-B journal, or to stop. The expected payoff from submitting her paper to
class-A (B) journals can be expressed as:

πA(θ, h̃) = v

∫
γ(q|θ, h̃)[1− Φ(sA, q, σs)]dq − c

and
πB(θ, h̃) =

∫
γ(q|θ, h̃)[1− Φ(sB, q, σs)]dq − c

If the payoffs from submitting to either type of journal are positive, the author
compares them. For a high-type author, submitting to a class-A journal is optimal,
as it may lead to a higher payoff from publication. After experiencing several rejec-
tions, the author may infer that her paper’s quality is less likely to be high, leading
her to turn to a class-B journal if πB > 0, or to stop if πB < 0.

For a medium-type author, submitting to a class-B journal is optimal, as it
provides a relatively higher probability of acceptance. The author will continue to
submit until πB < 0.

Finally, for a low-type author, it is not optimal to submit to either class of
journals.

Lemma 4. Given sA and sB, for any history h̃, there exists a unique θ∗A(h̃) ∈
(−∞,+∞) such that πA(θ

∗
A(h̃), h̃) = 0; there exists a unique θ∗B(h̃) ∈ (−∞,+∞)

such that πB(θ
∗
B(h̃), h̃) = 0; there exists a unique θ∗(h̃) ∈ [−∞,+∞) such that

πA(θ
∗(h̃), h̃) = πB(θ

∗(h̃), h̃).
If the author has not tried all class-A journals, then1

1. if θ∗(h̃) > θ∗A(h̃) > θ∗B(h̃), the author with history h̃ submits her paper to a
class-A journal if her type θ ≥ θ∗(h̃). She submits it to a class-B journal if
her type θ ∈ [θ∗B(h̃), θ

∗(h̃)). She stops if her type θ < θ∗B(h̃).
1Figure 1.4 helps explaining the relation between θ∗, θ∗A and θ∗B .
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2. if θ∗(h̃) ≤ θ∗A(h̃) ≤ θ∗B(h̃), the author with history h̃ submits her paper to a
class-A journal if her type θ ≥ θ∗A(h̃). She stops if her type θ < θ∗A(h̃).

Otherwise, the author submits her paper to a class-B journal if her type θ ≥
θ∗B(h̃). She stops if her type θ < θ∗B(h̃).
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Figure 1.4: Two cases of the order of θ∗(h̃), θ∗A(h̃) and θ∗B(h̃).

These two lemmas characterize the agents’ best responses. Moreover, one could
find that θ∗(h̃), θ∗A(h̃) and θ∗B(h̃) are continuous in sA and sB, and the best responses
of journals s∗A and s∗B should be bounded. Therefore, an equilibrium exists.

Proposition 4. An equilibrium exists where class-A (B) journals’ threshold is s∗A
(s∗B), and the author behaves in the way described in lemma 4.

Remark 1: Thresholds of Class-A Journals
In comparison to the previous section, the availability of an alternative option

for low-type authors, i.e., class-B journals, leads to high-type authors submitting
their papers to class-A journals. Consequently, class-A journals are more likely to
receive high-quality papers, and thus set a lower threshold.

Example 3. Consider a scenario with one class-A journal and other settings iden-
tical to Example 1. In the left graph of Figure 1.5, the blue curve represents the
threshold of journal s∗A under different quality standards qA. In the right graph, the
blue curve represents the author’s strategy θ∗, where she submits her paper to class-A
journal if and only if her type θ is greater than θ∗. With the introduction of class-B
journals, the red curve in the left graph represents s∗A, while in the right graph, the
author submits her paper to class-A journal only if her type is above the red curve.
Otherwise, she chooses a class-B journal or stops.
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Figure 1.5: The left graph is journals’ strategy s∗A. The right graph is the author’s
strategy θ∗(∅). If her type θ is higher than θ∗(∅), she submits her paper to class-A
journal. The parameters are: σθ = σq = σs = 1; qB = −1; v = 2 and c = 0.01.

In the right graph, the red curve is above the blue one, indicating that with the
availability of class-B journals, authors with lower types will submit their papers
to them instead of class-A journals. The left graph shows that the threshold s∗A of
class-A journals is lower because authors’ types are higher. □

The introduction of class-B journals has the effect of making it easier for high-
quality papers from high-type authors to be accepted by class-A journals. In Ap-
pendix 1.7.2, I provide a detailed analysis of how this diversity impacts market
efficiency. Specifically, my findings suggest that the presence of class-B journals
leads to an increase in the number of published papers, and high-quality papers are
more likely to be published.

Remark 2: Author’s patience

The above analysis assumes that authors aim to publish their paper as quickly
as possible. However, in reality, some authors may choose to be more patient and
try submitting to more class-A journals before considering class-B journals. In such
cases, let δ represent the author’s discount factor. An author with type θ and history
h̃ will find it optimal to submit their paper to a class-A journal instead of a class-B
journal if the following inequality holds:

vPr[s > sA|θ, h̃] + δu(h̃A)(1− Pr[s > sA|θ, h̃])

>Pr[s > sB|θ, h̃] + δu(h̃B)(1− Pr[s > sB|θ, h̃])

Here, u(h̃A) is the valuation function if the author’s history becomes h̃A. It is
important to note that u(h̃A) is greater than u(h̃B), and Pr[s > sA|θ, h̃] < Pr[s >
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sB|θ, h̃]. Therefore, if an extremely impatient author with type θ and history h̃ is
indifferent between submitting to a class-A or class-B journal (vPr[s > sA|θ, h̃] =
Pr[s > sB|θ, h̃]), then for a more patient author, submitting to a class-A journal
results in a higher payoff than submitting to a class-B journal. As a result, in such
situations, class-A journals will raise their thresholds because they receive papers
that have likely been rejected more times.

1.4.2 Equilibrium Multiplicity

Finite number of journals may result in multiple equilibria. To better understand
the intuition, we consider a simplified case of two journals, A and B, with different
quality standards (qA > qB). There is no submission fee (c → 0), and publication
in either journal yields the same payoff to the author (v → 1). In this case, we
do not need to determine the author’s cutoff strategy θ∗, but rather consider her
submission order. This simplified case can be extended to a more general setting,
as discussed in Section 1.5.

In one equilibrium, journal A sets a higher threshold than journal B (sA > sB)
because of its higher quality standard. Consequently, the author submits her paper
to journal B first, regardless of her type, because it has a lower threshold and is
more likely to accept her paper. After being rejected by journal B, she submits her
paper to journal A.

However, when the quality standards of journals A and B are close (qB is close to
qA), another equilibrium arises. In this equilibrium, the author submits her paper
to journal A first, regardless of her type. After being rejected by journal A, she
submits her paper to journal B. In this case, journal B’s threshold sB is higher
than sA because it receives papers that have been rejected by journal A and are
possibly of lower quality. The second equilibrium may seem counterintuitive as the
lower-standard journal sets a higher threshold of acceptance.

Proposition 5. There exists ∆ such that when qB ∈ (qA −∆, qA), two asymmetric
equilibria exist:

1. the author submits her paper to journal B first, and s∗A > s∗B;

2. the author submits her paper to journal A first, and s∗A < s∗B.

Which equilibrium is selected depends on which journal exists at first. If journal
B is established first, the author submits their paper to it. Then, when journal A is
established and receives the rejected paper, it sets a higher threshold not only due to
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its higher standard but also because it receives papers of potentially lower quality.
Conversely, if journal A is established first and then journal B is established, the
latter sets a higher threshold despite its lower standard. This insight sheds light
on the entry barrier in such markets, where the entrant must set an unfairly high
threshold to compete with the incumbent.

1.5 Entry Barrier

This section employs a dynamic model to explore the formation of entry barriers. I
find that an entrant cannot compete with an incumbent unless it can provide signif-
icantly higher value. I then examine how authors’ and journals’ noisy perceptions
of quality further strengthen the entry barrier. Finally, I analyze the robustness of
our results and identify the conditions under which the entry barrier exists in the
long run (see Appendix 1.7.3).

I consider a market with a continuum of (extremely impatient) authors, each of
whom writes one new paper in each period t = 0, 1, 2, . . . and seeks to publish it. To
simplify the model, I assume that there is no submission cost and that authors aim
to get published as soon as possible. I also assume that authors have no information
about the quality of their own paper other than its prior distribution f(q).

Suppose an incumbent journal exists initially, and its objective is to maximize
the sum of the quality of the published papers.2 The incumbent sets the threshold s0I
and publishes papers of which signals s ∼ N (q, σ2

s) are higher than the threshold.3

Denote Qt
I as the average quality of the papers published in the incumbent’s journal

in period t. s0I and Qt
I are public information. In period 0, the incumbent should

publish any paper with the expected quality higher than 0. Thus, it sets s0I such
that

E[q|s0I ] =
∫
qf(q)ϕ(s0I , q, σs)dq∫
f(q)ϕ(s0I , q, σs)dq

= 0

The corresponding average quality Q0
I is given by

Q0
I =

∫
qf(q)[1− Φ(s0I , q, σs)]dq∫
f(q)[1− Φ(s0I , q, σs)]dq

2This preference is a specific case where the minimum standard of journals qA, defined in the
preference of journals in section 1.2, is 0.

3Sometimes journals do not have this choice but publish the best ones among what they receive
under a fixed capacity. However, intuitively, choosing a small capacity is equivalent to setting a
high threshold, and vice versa.
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Since the incumbent is the only option for the authors for now, they submit their
new papers to it.

In the subsequent period t′ (without loss of generality, we can say t′ = 1), an
entrant with the same objective as the incumbent issues a new journal and must
set its threshold sE to compete with the incumbent. Journals have no commitment
power of their strategies. Even if they announce their threshold, they can change it
upon receiving a paper. Let Qt

E denote the average quality of papers published in
the entrant’s journal in period t. In this period t′, authors (probably with two papers
in hand: one new and one rejected by the incumbent journal) must simultaneously
decide to which journal they should submit new papers. Importantly, authors with
papers rejected by the incumbent in the previous period will submit them to the
entrant.

In each subsequent period t ≥ t′ + 1, authors simultaneously decide to which
journal they should submit their new papers. The journal also receives papers
rejected by the other in the previous period.

Let a continuous function v(Q) be the payoff authors receive for publishing in a
journal with average quality Q of published papers. v(Q) is assumed to be increasing
in Q. Without loss of generality, I normalize v(Q0

I) to be 1.

The question then arises: under which conditions will the incumbent remain
the first option for authors, even after the entrant enters the market? To find the
answer, I consider the worst (best) case for the incumbent (the entrant): in period
t′, almost all the authors submit their new papers to the entrant, resulting in the
highest average quality QE and value v(QE). Note that the entrant also receives
papers rejected by the incumbent in the previous period t′ − 1. Thus,

QE(sE) =

∫
qf(q)[1 + Φ(s0I , q, σs)][1− Φ(sE, q, σs)]dq∫
f(q)[1 + Φ(s0I , q, σs)][1− Φ(sE, q, σs)]dq

The expected payoff of submitting to the incumbent is

v(Q0
I) ·
∫

f(q)[1− Φ(s0I , q, σs)]dq =

∫
f(q)[1− Φ(s0I , q, σs)]dq

and to the entrant
v(QE) ·

∫
f(q)[1− Φ(sE, q, σs)]dq

Then, I define

ṽ(QE) :=

∫
f(q)[1− Φ(s0I , q, σs)]dq∫
f(q)[1− Φ(sE, q, σs)]dq
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such that if v < ṽ, even in the worst case for the incumbent, it is still better to
choose it first and we can say the entrant will never become the authors’ first option
and always receive rejected papers by the incumbent.

Lemma 5. ṽ(Q0
I) > v(Q0

I) = 1.

Mimicking the incumbent is not optimal
Lemma 5 shows that v(QE) must be lower than ṽ(QE) locally around QE = Q0

I .
The left graph in Figure 1.6 illustrates this point. The blue curve represents the
upper bound ṽ(QE). Even when QE is less than Q0

I , ṽ(QE) can be greater than 1.
This indicates that if QE is close to Q0

I , or if the entrant sets a threshold sE that leads
to an average quality close to the incumbent’s, the entrant will never be the authors’
first option. The reason to cause that is similar to the formation of the counter-
intuitive equilibrium in which the thresholds are inverted. Because the entrant
receives rejected papers by the incumbent previously and it can not distinguish
between them, it must set an unfairly high threshold to select the good-quality
papers mixed with bad-quality ones (as shown in the right graph of Figure 1.6).
Consequently, the entrant brings a similar payoff but has a much higher threshold
(lower possibility of acceptance), which generates the convention among the authors
that they should submit to the incumbent first. This convention leads the entrant
to receive rejected papers again in the next period and all subsequent periods.
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Figure 1.6: The left graph is the upper bound ṽ of the entrant. The right graph is
the entrant’s average quality corresponding to its threshold. The quality follows a
normal distribution: f(q) = ϕ(q, 0, σq). The parameters are: σq = σs = 1.

Corollary 1. For any value function v, there exists s̄E > s0I such that when sE ∈
(s0I , s̄E), authors always submit their papers to the incumbent first, where s̄E induces
QE = Q0

I .
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Then, the entrant’s only option is to differentiate from the incumbent by setting
a threshold that leads to an average quality either much higher or much lower than
Q0

I . In these cases, v(QE) can be higher than ṽ(QE), and the entrant can receive
not only rejected papers. However, if QE > Q0

I and v is not steep enough that
the entrant needs to set an extremely high threshold to have v(QE) > ṽ(QE), the
amount of publication will be minimal. On the other hand, if QE ≪ Q0

I and v is
not flat enough, the entrant needs to set an extremely low threshold, and many of
the papers published will be of poor quality. In either case, although the entrant
may become the authors’ first option, its utility (sum of the quality of the papers
published) will be even worse than being the second option and publishing relatively
good papers among those rejected by the incumbent. It is indeed true when the value
function is linear: v̄(Q) = max{0,Q}

Q0
I

.

Lemma 6. ṽ(Q) > v̄(Q), ∀Q.

In this linear case, the objectives of the incumbent journal and the authors of
new papers are aligned. The journal aims to maximize the sum of quality of the
papers published, which is the average quality Q, times the probability of accep-
tance, and times the volume of papers received (if there is only the incumbent, it is
1). Similarly, authors with new papers aim to maximize the expected payoff from
publication, which is the value from the journal v̄(Q) multiplied by the acceptance
rate. In the absence of the entrant, the incumbent and the authors have already
reached mutual optimization. The entrant suffering from rejected papers in the can-
didate pool can not strictly improve the situation. Therefore, in this specific case,
the authors with new papers have no incentive to switch to the entrant’s journal,
regardless of the threshold set by the entrant.

To quantify the steepness of the value function v, I introduce a parameter α ≥ 0

as follows:
v(Q) =

[
max{0, Q}

Q0
I

]α
If v is neither flat nor steep (i.e., α is neither too low nor too high), the entrant
would instead choose to be the authors’ second option and set s1E such that:

E[q|s1 < s0I , s2 = s1E] =

∫
qf(q)Φ(s0I , q, σs)ϕ(s

1
E, q, σs)dq∫

f(q)Φ(s0I , q, σs)ϕ(s1E, q, σs)dq
= 0

Proposition 6. There exists α ∈ [0, 1) and ᾱ ∈ (1,+∞) such that when α ∈ [α, ᾱ],
in the equilibrium, the incumbent sets the threshold s0I and the entrant sets s1E; in
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each period, the authors with new papers always submit to the incumbent first and
then to the entrant after rejection.

Remark: In the case where the steepness or flatness of v falls outside the interval
[α, ᾱ], multiple equilibria may exist from the authors’ perspective, rendering the
result unavailable. To overcome this issue, I assume that the equilibrium that the
last mover favors will prevail (i.e., all authors with new papers will submit to the
entrant after it enters if multiple equilibria exist; after that, if the incumbent changes
its threshold, all authors with new papers will submit to it if multiple equilibria exist,
and so on).

Suppose v is steep, and both journals want to set a higher threshold than the
other. This process continues until one finds that the amount of publication is too
low and it is better to set a low threshold. The other then finds it better to lower its
threshold as well, and the process begins anew. As a result, there is no pure-strategy
equilibrium; only a mixed-strategy equilibrium exists.4

1.5.1 Noisy Perception

The generation of entry barriers is driven by two key factors: the noisy perception
of quality and the ignorance of journals about authors’ submission histories. In this
section, I examine how perfect perception from either side reduces the barriers to
entry.

Impact of Journals’ Perception of Quality

As the signal of journals becomes less noisy, it becomes harder for the incumbent to
maintain its advantage. As shown in the left graph of Figure 1.7, the upper bound
ṽ moves downward and becomes closer to the point (Q0

I , 1). If I simulate the range
[α, ᾱ], it shrinks as σs decreases, but it does not converge to a singleton as σs → 0.
When the signal is perfect (σs = 0), ṽ crosses (Q0

I , 1).

Lemma 7. If σs = 0 and sE = sI , then QE = QI .

This lemma implies that when the signal is perfect and the entrant sets the same
threshold as the incumbent, the entrant can always mimic the incumbent. Even
though the entrant still receives rejected papers, it knows they will eventually be
eliminated because the signal is perfect and both journals have the same threshold.

4Similar result can be found in Varian [1980].
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The average quality of the two journals will be the same, and the authors with new
papers randomly submit to either journal first.

Proposition 7. Let α0 = limσs→0 α and ᾱ0 = limσs→0 ᾱ. When σs = 0 and α ∈
[α0, ᾱ0], in the equilibrium, the incumbent and the entrant sets the same threshold
sI = sE = 0; in each period, the authors with new papers always submit to either
journal first with Probability 1/2, and then to the other one after rejection.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0.5

1

1.5

2

2.5

3

3.5

Journals have noisy signals

Journals have perfect signals

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Figure 1.7: The quality follows a normal distribution: f(q) = ϕ(q, 0, σq). The
parameters are: σq = 1.

Impact of Author’s Perception of Quality

In contrast to the previously discussed scenario of coarse authors, I now assume
that the author knows their type, as defined in Section 1.2. To characterize the
author’s perception of quality, I assume that their type θ follows a normal distri-
bution N (0, σ2

θ) and the quality conditional on the type q|θ follows N (θ, σ2
q ). I set

σ2
θ + σ2

q = 1, so that when σθ approaches 1, authors know the quality perfectly, and
when σθ approaches 0, we have the fully coarse case.

If the entrant sets a slightly higher threshold sE > sI than the incumbent,
the market splits, and two equilibria can exist with cutoffs θ̄ and θ, where θ̄ > θ.
In one equilibrium, authors with type θ > θ̄ choose the entrant first, and the rest
choose the incumbent. In the other equilibrium, authors with type θ > θ choose the
entrant first. The former equilibrium favors the incumbent, while the latter favors
the entrant. However, it requires authors with θ ∈ (θ, θ̄) to change their strategy
simultaneously to transition from one equilibrium to the other.

With partial information about quality, it is difficult to predict which equilib-
rium will be selected if multiple ones exist. For instance, if the entrant sets the same
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threshold as the incumbent, sE = sI , one equilibrium is that all authors choose the
incumbent first regardless of their type, and the entrant receives only the rejected
papers. In this situation, the incumbent publishes papers with higher average qual-
ity, and authors go to the incumbent first because the possibility of acceptance is
the same. However, suppose that at some point, only the low-type authors choose
the incumbent while the rest choose the entrant. In this case, the average quality of
papers published in the entrant journal exceeds that of the incumbent journal. The
equilibrium then transitions to the one favoring the entrant, and the next transition
can occur at any time.

To investigate the stability of the equilibrium in which the incumbent holds the
advantage, I introduce the concept of "inertia". I assume that, in each period, only
a certain proportion of the authors can change their strategies, while the rest stick
to their last choices. I then find the minimal level of "inertia" necessary for the
incumbent to maintain its advantage. If this value is high, the entry barriers reduce
for the entrant.
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Figure 1.8: The minimal level of inertia under different perfectness of the authors’
perception about the quality. The value function is linear, v(Q) = max{0, Q}/Q0

I .

Figure 1.8 displays the minimum level of inertia required to establish entry
barriers for the entrant. As shown, when σθ approaches 0, the required inertia
is negligible, which is consistent with previous findings. However, as the authors
become more sophisticated about quality, the required inertia increases, making it
more difficult for the incumbent to maintain their advantage.

The increase in required inertia can be attributed to authors possessing clearer
private information about quality. When authors have a better understanding of
their paper’s quality, those who perceive their papers to be high-quality will be
more likely to submit to the journal that provides higher value, whether it is the
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incumbent or the entrant. As more authors possess this information, a greater
proportion of authors will be willing to switch journals. Consequently, a higher level
of inertia is needed to prevent authors from doing so. Therefore, clearer private
information raises the minimum level of inertia, which in turn reduces the entry
barriers for the entrant.

1.6 Conclusion

The model in this study investigates a noisy market with information asymmetry and
dynamic learning. I find that: i) without knowing the quality of "talent" perfectly,
high-type seller try to sell more times compared to low-type ones. In contrast,
knowing it perfectly, they will always try; and ii) there can be multiple equilibria
but the one favoring the incumbent will be selected, which triggers the existence of
the entry barrier. It shows that the entrant can not compete with the incumbent for
both the market share and the quality of "talent". Moreover, the noisy perception
of quality will make the entry barrier higher.

The existence of entry barriers found in this study has some inspiration in poli-
cymaking. The key factor to generate the barriers is the noisy perception. Therefore,
one direction of reducing the barriers is to implement accurate perceiving technology
or to request certification. A second direction is to diminish the information asym-
metry in the market. For instance, the journals can require the authors to reveal
their submission history. This has already appeared in the market where top jour-
nals have their affiliation journals. When the author resubmits her paper rejected by
top journals to their affiliation, she should also hand in the previous referee’s report.
It mitigates the information asymmetry between top journals and their affiliations.
However, it exacerbates the problem for other field journals because they will not
know the authors’ history or they have no commitment power to ask authors to
reveal. A third direction of breaking the vicious cycle is to change the convention
radically. One example is the draft lottery system in the North American sports
league. It leads high-potential rookies to go to weak teams so that the oligopoly
becomes harder to form.
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1.7 Appendix

1.7.1 Author’s Noisy Perception

If the author has perfect information about the quality of her paper before submis-
sion (f(q|θ) is a delta function), her problem simplifies to determining whether

πA(q, h) = v[1− Φ(sA, q, σs)]− c > 0

In this case, the author does not learn anything from rejection, and her payoff does
not depend on her submission history. If the quality of her paper is higher than a
certain threshold q∗, which satisfies v[1−Φ(sA, q

∗, σs)] = c, then she will submit the
paper until it is accepted or there is no chance left. This feature differs from the
previous case, where the author has a rough perception of quality.

A preliminary result is that q∗ must be lower than qA in the equilibrium. If
q∗ is higher than qA, the editor would accept the paper regardless of the signal
it receives, knowing that the paper’s quality is higher than the threshold. In this
case, the author would also submit the paper even if its quality is lower than q∗.
Therefore, although the journals know the quality is at least q∗, it could be rejected
before. In other words, selection bias still exists.

In contrast, without perfect perception, she learns after each submission, and
the high-type author tries more times and stops after several submissions. This
section analyzes how this ignorance affects the agents’ behavior.

Consider a case where the author’s type θ follows a normal distribution: µ(θ) =
ϕ(θ, 0, σθ). The quality follows a normal distribution conditional on θ: f(q|θ) =

ϕ(q, θ, σq). σq is a measure of the author’s ignorance level. There are two homoge-
neous journals A in the field, which yields v to the author for the publication. The
submission cost is c. Their standard of quality qA is 0. The journal observes a noisy
signal conditional on the quality s = q + ϵ, ϵ ∼ N (0, σs).

When σq is close to 0, the author has a precise perception of quality. The
analysis at the beginning indicates that θ∗(∅) are close to θ∗(A). As σq increases,
the author with a relatively lower type stops after getting a rejection. As shown in
Figure 1.9, the difference between θ∗(A) and θ∗(∅) becomes larger. Another finding
is the trend of θ∗(∅) depends on the benefit-cost ratio (v/c). When the author is
extremely ignorant, her type implies little information. If v/c is high, the ignorant
author without getting rejected wants to try regardless of her type. Thus, θ∗(∅)
decreases as σq increases. In contrast, if v/c is low, the ignorant author has less
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Figure 1.9: The left graph is the acceptance rate of a paper with quality q. The
right graph is the author’s payoff if the quality is q.

willing to have a try.
The journals are more likely to receive papers of low quality as the author

becomes ignorant. Thus, they raise their thresholds.

1.7.2 Market Differentiation

In Section 1.4, I present the idea that introducing an ordinary class of journals splits
the market of authors, makes the top-class journals easy to select those papers with
high quality, and thus is beneficial to efficiency. This section further discusses it by
analyzing the situation of two journals with three cases: 1. both set a low standard
of quality; 2. both set a high standard of quality; 3. one set a high standard, and
the other set a low one.

More specifically, consider a case where the author’s type θ follows a normal
distribution: µ(θ) = ϕ(θ, 0, 1). The quality follows a normal distribution conditional
on θ: f(q|θ) = ϕ(q, θ, 1). Assume that the paper with a quality q > 0 is valuable
and should be published. A paper with higher quality is more valuable. There are
two journals A and B in the field. The submission cost is c = 0.1. The journal
observes a noisy signal conditional on the quality s = q + ϵ, ϵ ∼ N (0, 1). In case 1,
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both set a baseline standard of quality qA = qB = 0. A publication in either of them
yields 1 to the author. In case 2, both set an aggressive standard qA = qB = 1. A
publication on either of them yields 2. In case 3, journal A sets qA = 1 while journal
B sets qA = 0. A publication on journal A yields 2, and 1 on journal B.

I define efficiency in two aspects: i) whether the paper published is worthwhile.
I use the following W1 to measure the global quality of the papers in the market.

W1 = E[q|Accepted] · Pr[Accepted] =

∫ +∞

−∞
qϕ(q, 0, 2)Pr[Accepted|q]dq

A higher W1 means that the market generates more valuable knowledge, and ii)
whether a high-quality paper is easier to be published in a journal bringing higher
payoff, and a relatively low-quality paper is easier to be published in a journal
bringing lower payoff.

First, I solve the equilibrium in these 3 cases.

Case 1

The author with a type θ > −1.65 submits her paper to either journal first.
If she gets rejected, she submits to the other journal if her type θ > −1.39. Both
journals set the threshold sA = sB = 0.16.

Case 2

The author with a type θ > −0.75 submits her paper to either journal first.
If she gets rejected, she submits to the other journal if her type θ > −0.58. Both
journals set the threshold sA = sB = 1.58.

Case 3

The author with a type θ > 0.71 submits her paper to journal A first. If she
gets rejected, she submits to journal B. The author with a type θ ∈ (−1.73, 0.71)

submits her paper to journal B first. If she gets rejected, she submits to journal A
if her type θ > −0.42. Journal A sets the threshold sA = 1.31 while journal B sets
sB = 0.08.

Secondly, I analyze market efficiency in two aspects mentioned. From the first
aspect, I compute the value of W1 under three cases: 0.4788, 0.3948, and 0.4786.
The first and third cases generate a similar amount of knowledge. In the first case,
more papers are published and some of them are of low quality, compared to the
third case. This is because journal A has a higher standard of quality in case 3. The
left graph in Figure 1.10 also shows that the yellow curve is slightly below the blue
one because journal A accepts fewer papers but with higher quality. In case 2, W1

is lower because of the fact that far fewer papers are published. This is not only
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Figure 1.10: The left graph is the acceptance rate of a paper with quality q. The
right graph is the author’s payoff if the quality is q.

because journal B has a high standard but also because journals should set higher
thresholds to correct selection bias. The right graph shows the author’s payoff if the
quality is q. In case 1, the author with a high-quality paper does not get rewarded
while in case 2, only the substantial-high-quality paper brings a reward. In case 3,
the extreme situation is improved by splitting the authors.

From the second aspect, in case 3, journal A’s threshold sA is lower compared
to case 2, and journal B’s threshold sB is lower compared to case 1. The authors
find it easier to publish either a high-quality or a relatively low-quality paper in the
corresponding journal. Still, it is because of the splitting which weakens selection
bias.

1.7.3 Entry Barrier in the Long Run

In Section 1.5, I find the existence of entry barriers. The next question is "Is it
robust?" In other words, if we tremble authors’ behavior, will the barriers still exist?
This section introduces "mutation". It is assumed that there is some probability that
the old authors pass away. Not being familiar with the payoffs from submitting, the
new coming authors just randomly choose one journal. The answer to the question
is the barriers reduce compared to the case without mutation, but when the number
of authors is large, it takes an extremely long time for the entrant to transcend it.

First, instead of using the absolute value function v(Q), I define the contin-
uous function R(Qt

I , Q
t
E) to be the authors’ relative payoff of a publication in the

entrant’s journal compared to the incumbent’s given the average quality of their
papers published respectively. More precisely, given Qt

I and Qt
E, if the authors’

payoff of a publication in the incumbent’s journal is 1, the payoff from the entrant
is R(Qt

I , Q
t
E). R(Qt

I , Q
t
E) is assumed to be increasing in Qt

E, but decreasing or Qt
I .
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Note that the absolute value function is just a special case of the generalized relative
value function.

Next, I define the deterministic dynamic5 for the authors. Specifically, they
compute the expected payoffs from submitting to the incumbent or the entrant
based on the previous period. In each period t, they submit to the entrant if doing
so yields a higher expected payoff than submitting to the entrant,

zt = b(zt−1) =

{
N if πI(t) ≥ πE(t),

0 otherwise

where zt is the number of authors who choose to submit to the incumbent first in
period t, and πI(t) (πE(t)) is the expected payoff from submitting to the incumbent
(the entrant),

πI(t) =

∫
f(q)

[
1− Φ

(
sI , q, σs

)]
dq

πE(t) = R(Qt−1
I , Qt−1

E )

∫
f(q)

[
1− Φ

(
sE, q, σs

)]
dq

Finally, assume that in each period, with Probability ϵ, each author changes her
submission order, which is the mutation. Then, I define the long run equilibrium
according to definitions 1 and 2 in Kandori et al. [1993]. First, one has a stochastic
process of zt,

zt = b(zt−1) + xt − yt

where xt and yt are binomial distributions,

xt ∼ Bin(N − b(zt−1), ϵ), yt ∼ Bin(b(zt−1), ϵ)

Then, one gets a Markov chain of zt. Let P be the Markov matrix, in which the
element

pij = Pr[zt+1 = j|zt = i]

Let µϵ =
(
µϵ(1), µϵ(2), ..., µϵ(N)

)
be the stationary distribution of zt, which is µϵP =

µϵ.

Definition 1. Denote the limit distribution

µ∗ = lim
ϵ→0

µϵ.

5This deterministic dynamic can be generalized to any one satisfying: sign{b(zt−1) − zt−1} =
sign{πI(t)− πE(t)}
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Always submitting to the incumbent (entrant) first is the long run equilibrium if
µ∗(N) = 1 (µ∗(0) = 1).

I look for the knife-edge situation in which if multiple pure-strategy equilibria
exist (authors always submitting to the incumbent or to the entrant), both can be
stable against mutations in the long run. To induce the corresponding relative value
function R̂, we consider the mixed-strategy equilibrium: for any thresholds sI and
sE set by the journals, half of the authors with new papers choosing the incumbent
first and the other half choosing the entrant first. Then, their average quality of the
papers published are

QI =

∫
qf(q)[1/2 + Φ(sE, q, σs)/2][1− Φ(sI , q, σs)]dq∫
f(q)[1/2 + Φ(sE, q, σs)/2][1− Φ(sI , q, σs)]dq

QE =

∫
qf(q)[1/2 + Φ(sI , q, σs)/2][1− Φ(sE, q, σs)]dq∫
f(q)[1/2 + Φ(sI , q, σs)/2][1− Φ(sE, q, σs)]dq

The authors’ indifference condition indicates that the expected payoffs of submitting
to either journal are the same. Therefore, R̂ is defined as

R̂(QI , QE) :=

∫
f(q)[1− Φ(sI , q, σs)]dq∫
f(q)[1− Φ(sE, q, σs)]dq

By Kandori et al. [1993] Theorem 3, if R < R̂, always submitting to the
incumbent first is the long run equilibrium regardless of the thresholds the journals
set. Otherwise, always submitting to the entrant is.

Similarly to ṽ, R̃(QI , QE) can be defined as the upper bound in the relative
value form:

R̃(QI , QE) :=

∫
f(q)[1− Φ(sI , q, σs)]dq∫
f(q)[1− Φ(sE, q, σs)]dq

where

QI =

∫
qf(q)[1− Φ(sI , q, σs)]dq∫
f(q)[1− Φ(sI , q, σs)]dq

QE =

∫
qf(q)[1 + Φ(sI , q, σs)][1− Φ(sE, q, σs)]dq∫
f(q)[1 + Φ(sI , q, σs)][1− Φ(sE, q, σs)]dq

Under the relative value R̂, regardless of the thresholds the journals set, neither
journal will definitely be the disadvantaged side by receiving only the rejected papers
in the long run. However, the following proposition shows that without mutation,
the latecomer is always the disadvantage side in a market potentially allowing two
journals to compete fairly.
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Proposition 8. R̂(QI , QE) < R̃(QI , QE) for any QI and QE.

How "long" does it need to transit to the long run equilibrium?
Even if the relative value is above R̂, it takes time to have enough proportion of

authors to mutate and to transit from the status quo to another equilibrium. First,
a higher relative value requires fewer mutations. Thus, the time needed to change
the status quo is shorter. Another factor is the number of authors. With more
authors, it asks for more mutations to reach the turning proportion. Therefore, it
becomes longer to transit from the status quo.

Consider an example with sI = sE = 0 and ϵ = 0.1. Table 1.1 shows the
expected periods for transition to the equilibrium favoring the entrant under some
bundles of parameters. It shows that when the number of authors is large, the
entrant needs to wait billions of periods to become their first option.

N R/R̂ T N R/R̂ T
20 1.1 3.7× 108 2 1.5 2
20 1.2 1.8× 107 4 1.5 6
20 1.3 1.2× 106 6 1.5 15
20 1.4 8.9× 104 10 1.5 89
20 1.5 7.8× 103 20 1.4 7.8× 103

20 1.6 770 30 1.5 6.9× 105

20 1.7 80 50 1.5 5.4× 109

20 1.8 8 100 1.5 3.0× 1019

Table 1.1: N : number of authors, R/R̂: the ratio of the relative value compare
to the fair one, T : expected periods for transition to the equilibrium favoring the
entrant.

1.7.4 Proofs

Proof of lemma 1:

The left hand side of (1.1) is increasing and continuous in s. Moreover,

lim
s→+∞

EβA
[q|s] = +∞, lim

s→−∞
EβA

[q|s] = −∞

Therefore, there exists a sA such that

EβA
[q|sA] = qA. ■
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Proof of lemma 2:

Because γ(q|θ, h) satisfies the MLRP, πA(θ, h) is monotonically increasing. Along
with

lim
θ→+∞

πA(θ, h) = v − c > 0, lim
θ→−∞

πA(θ, h) = −c < 0, ∀h ∈ H

there exists a unique θ∗A(h) such that πA(θ
∗
A(h), h) = 0. Additionally, πA(θ

∗
A(h), h) ≥

0 if θ ≥ θ∗A(h).
γ(q|θ,Ai+1)
γ(q|θ,Ai)

∝ Φ(sA, q, σs) is decreasing in q. As a result, either γ(q|θ, Ai+1)

is always lower than γ(q|θ, Ai), or they are single crossing. Under both cases,
πA(θ, A

i+1) ≥ πA(θ, A
i). Therefore, θ∗A(Am−1) > ... > θ∗A(A) > θ∗A(∅). ■

Proof of proposition 1:

According to lemma 2, given sA, θ∗A(h) are well-defined and continuous in sA

because πA is continuous in sA. Then, the journal receiving a paper forms a belief
βA based on (1.3) and (1.4). According to lemma 1, the journal could find the
optimal threshold noted as ω(sA). The left hand side of (1.1) and βA are continuous
in θ∗A(h). Therefore, ω(sA) is continuous in sA. Obviously, ω(sA) is bounded. As
a result, there exists a fixed point ω(s∗A) = s∗A according to Brouwer fixed-point
theorem.

Secondly,

πA(θ
∗(h), h = Ai) = v

∫
f(q|θ∗(h))Φi(sA, q, σs)[1− Φ(sA, q, σs)]dq∫

f(q|θ∗(h))Φi(sA, q, σs)dq
− c = 0

Define

G(sA) : = v

∫
f(q|θ∗(h))Φi(sA, q, σs)[1− Φ(sA, q, σs)]dq − c

∫
f(q|θ∗(h))Φi(sA, q, σs)dq

= (v − c)

∫
f(q|θ∗(h))Φi(sA, q, σs)dq − v

∫
f(q|θ∗(h))Φi+1(sA, q, σs)dq

= i(v − c)

∫
F (q|θ∗(h))Φi−1(sA, q, σs)ϕ(sA, q, σs)dq

− (i+ 1)v

∫
F (q|θ∗(h))Φi(sA, q, σs)ϕ(sA, q, σs)dq

Then,

G′(sA) = i(v − c)

∫
f(q|θ∗(h))Φi−1(sA, q, σs)ϕ(sA, q, σs)dq

− (i+ 1)v

∫
f(q|θ∗(h))Φi(sA, q, σs)ϕ(sA, q, σs)dq
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Since F (q|θ∗(h)) is log-concave, F/f is increasing in q. Then,

F (q|θ∗(h))Φi−1(sA, q, σs)∫
F (q|θ∗(h))Φi−1(sA, q, σs)dq

FOSDs
f(q|θ∗(h))Φi−1(sA, q, σs)∫
f(q|θ∗(h))Φi−1(sA, q, σs)dq

⇒
∫
f(q|θ∗(h))Φi−1(sA, q, σs)Φ(sA, q, σs)dq∫

f(q|θ∗(h))Φi−1(sA, q, σs)dq
>

∫
F (q|θ∗(h))Φi−1(sA, q, σs)Φ(sA, q, σs)dq∫

F (q|θ∗(h))Φi−1(sA, q, σs)dq

⇒ G′(sA) < 0

Therefore, as sA increases, πA(θ, h) decreases. Then. θ∗A(h) increases, meaning
that only high-type authors find it optimal to submit. Therefore, ω(sA) decreases
because the journal is more likely to receive a high-quality paper from high-type
author. Thus, the equilibrium is unique because ω(sA) is a decreasing function. ■

Proof of proposition 2:

If m = 1, one can find s∗A and θ∗A(∅). Then, if m = 2, one consider the expected
quality if journals keep the standard at s∗A.∫ +∞

−∞ q
∫ +∞
θ∗A(A)

γ(q|θ, A)dθdq∫ +∞
−∞

∫ +∞
θ∗A(A)

γ(q|θ, A)dθdq
, where γ(q|θ, A) ∝ f(q|θ)Φ(s∗A, q, σs)

If c → 0, θ∗A(A) → −∞. Along with γ(q|θ, ∅) first-order stochastic dominating
γ(q|θ, A), the expected quality must be lower than qA if c → 0. Thus, one can find
c1 ∈ (0, v] such that the expected quality is higher than qA.

Then, for m > 2, one repeats above process to find cm−1. c = inf1≤i≤m−1 ci. ■

Proof of proposition 3:∫ +∞
−∞ f(q|θ∗A(h), h)[1− Φ(sA, q, σs)]dq = c/v and the left hand side is increasing

in θ∗A(h). Therefore, as v/c increases, θ∗A(h) decreases. It lowers the paper’s expected
quality. Thus, to make it equal to qA, journals raise the threshold. ■

Proof of lemma 3:

The left hand side of (1.5) is increasing and continuous in s. Moreover,

lim
s→+∞

Eβ̃A
[q|s] = +∞, lim

s→−∞
Eβ̃A

[q|s] = −∞, ∀f ∈ F

Therefore, there exists a sA (sB) such that

Eβ̃A
[q|sA] = qA, Eβ̃B

[q|sB] = qB. ■
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Proof of lemma 4:

Because γ(q|θ, h̃) satisfies the MLRP, πA(θ, h̃) is monotonically increasing. Along
with

lim
θ→+∞

πA(θ, h̃) = v − c > 0, lim
θ→−∞

πA(θ, h̃) = −c < 0,

there exists a unique θ∗A(h̃) such that πA(θ
∗
A(h̃), h̃) = 0. Similarly, a unique θ∗B(h̃)

exists such that πB(θ
∗
B(h̃), h̃) = 0.

vϕ(sA,q,σs)
ϕ(sB ,q,σs)

is monotone in q. Then, the functions v[1 − Φ(sA, q, σs)] and [1 −
Φ(sB, q, σs)] are single crossing. As a result, either πA(θ, h̃) is always higher than
πB(θ, h̃), which corresponds to θ∗(h̃) = −∞, or πA(θ, h̃) and πB(θ, h̃) crosses at a
θ∗(h̃) ∈ (−∞,+∞).

Finally, based on the definition of θ∗(h̃), θ∗A(h̃) and θ∗B(h̃), there could be only
two cases: 1. θ∗(h̃) > θ∗A(h̃) > θ∗B(h̃); 2. θ∗(h̃) ≤ θ∗A(h̃) ≤ θ∗B(h̃). In the first case,
when θ ≥ θ∗(h̃), πA(θ, h̃) > 0 and πA(θ, h̃) ≥ πB(θ, h̃). When θ ∈ [θ∗B(h̃), θ

∗(h̃)),
πB(θ, h̃) ≥ 0 and πB(θ, h̃) > πA(θ, h̃). When θ < θ∗B(h̃), πA(θ, h̃) < 0 and πB(θ, h̃) <

0. In the second case, when θ ≥ θ∗A(h̃), πA(θ, h̃) ≥ 0 and πA(θ, h̃) > πB(θ, h̃). When
θ < θ∗A(h̃), πA(θ, h̃) < 0 and πB(θ, h̃) < 0. ■

Proof of proposition 4:

Proof: According to lemma 2, given sA and sB, θ∗A(h̃), θ∗B(h̃) and θ∗(h̃) are
well-defined and continuous in sA and sB because πA and πB are continuous in sA

and sB respectively. Then, the journal receiving a paper forms the believes β̃A and
β̃B based on Bayes’ rule. According to lemma 3, journals could find the optimal
threshold noted as ω(sA, sB) = (s′A, s

′
B). The left hand side of (1.5) and β̃A are

continuous in θ∗A(h̃). Therefore, ω(sA, sB) is continuous in sA. Similarly, ω(sA, sB)
is continuous in sB. Obviously, ω(sA, sB) is bounded. As a result, there exists a
fixed point ω(s∗A, s

∗
B) = (s∗A, s

∗
B) according to Brouwer fixed-point theorem. ■

Proof of proposition 5:

Proof: The first case is obvious where

s∗B = argsB

{
EβB

[q|sB] =
∫
qβB(q)ϕ(sB, q, σs)dq∫
βB(q)ϕ(sB, q, σs)dq

= qB

}
,

βB(q) =

∫
µ(θ)f(q|θ)dθ

s∗A = argsA

{
EβA

[q|sA] =
∫
qβA(q)ϕ(sA, q, σs)dq∫
βA(q)ϕ(sA, q, σs)dq

= qA

}
> s∗B,
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βA(q) =
Φ(s∗B, q, σs)

∫
µ(θ)f(q|θ)dθ∫

Φ(s∗B, q, σs)
∫
µ(θ)f(q|θ)dθdq

Then, πB(θ, ∅) > πA(θ, ∅) which means that the author will submit her paper to B
first.

For the second case,

s∗A = argsA

{
EβA

[q|sA] =
∫
qβA(q)ϕ(sA, q, σs)dq∫
βA(q)ϕ(sA, q, σs)dq

= qA

}
,

βA(q) =

∫
µ(θ)f(q|θ)dθ

s∗B = argsB

{
EβB

[q|sB] =
∫
qβB(q)ϕ(sB, q, σs)dq∫
βB(q)ϕ(sB, q, σs)dq

= qB

}
,

βB(q) =
Φ(s∗A, q, σs)

∫
µ(θ)f(q|θ)dθ∫

Φ(s∗A, q, σs)
∫
µ(θ)f(q|θ)dθdq

To ensure that s∗A < s∗B (πB(θ, ∅) < πA(θ, ∅)), qB should not be too low. s∗B is
increasing in qB. Therefore, there is a ∆ such that s∗A = s∗B when qB = qA −∆. ■

Proof of lemma 5:

Q0
I =

∫
qf(q)[1− Φ(s0I , q, σs)]dq∫
f(q)[1− Φ(s0I , q, σs)]dq

To have

Q0
I = QE =

∫
qf(q)[1 + Φ(s0I , q, σs)][1− Φ(sE, q, σs)]dq∫
f(q)[1 + Φ(s0I , q, σs)][1− Φ(sE, q, σs)]dq

,

s0I < sE because f(q) first-order stochastic dominates f(q)[1+Φ(s0I ,q,σs)]∫
f(q)[1+Φ(s0I ,q,σs)]dq

. Then,

ṽ(Q0
I) =

∫
f(q)[1− Φ(s0I , q, σs)]dq∫
f(q)[1− Φ(sE, q, σs)]dq

> 1 ■

Proof of lemma 6:
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ṽ(QE)

v̄(QE)
=

∫
f(q)[1−Φ(s0I ,q,σs)]dq∫
f(q)[1−Φ(sE ,q,σs)]dq∫

qf(q)[1+Φ(s0I ,q,σs)][1−Φ(sE ,q,σs)]dq∫
f(q)[1+Φ(s0I ,q,σs)][1−Φ(sE ,q,σs)]dq

/∫
qf(q)[1−Φ(s0I ,q,σs)]dq∫
f(q)[1−Φ(s0I ,q,σs)]dq

=

∫
qf(q)[1− Φ(s0I , q, σs)]dq∫
qf(q)[1− Φ(sE, q, σs)]dq

·

∫
qf(q)[1−Φ(sE ,q,σs)]dq∫
f(q)[1−Φ(sE ,q,σs)]dq∫

qf(q)[1+Φ(s0I ,q,σs)][1−Φ(sE ,q,σs)]dq∫
f(q)[1+Φ(s0I ,q,σs)][1−Φ(sE ,q,σs)]dq

> 1

The first item in the right hand side is higher than 1 because s = s0I maximizes∫
qf(q)[1−Φ(s, q, σs)]dq according to the definition of s0I . The second item is strictly

higher than 1 because f(q) first-order stochastic dominates f(q)[1+Φ(s0I ,q,σs)]∫
f(q)[1+Φ(s0I ,q,σs)]dq

. ■

Proof of proposition 6:
If the incumbent sets the threshold s0I , the entrant sets s1E and all the authors

submit to the former first, the latter’s utility is

u0
E =

∫
qf(q)Φ(s0I , q, σs)[1− Φ(s1E, q, σs)]dq

If the authors submit to the entrant first, its utility under different threshold sE is

u1
E(sE) =

∫
qf(q)[1− Φ(sE, q, σs)]dq

Define
slE := inf{sE|u1

E(sE) > u0
E}

and
shE := sup{sE|u1

E(sE) > u0
E}

We need to find the value of α such that when sE ∈ [slE, s
h
E], v(QE) < ṽ(QE).

By lemma 6, v(QE) < ṽ(QE) for any QE if α = 1. v(QE) is increasing in α if
QE > Q0

I and decreasing if QE < Q0
I . Then ᾱ and α are defined as

ᾱ = inf
{
α > 1

∣∣v(QE) > ṽ(QE),∃sE ∈ [slE, s
h
E]
}

α = sup
{
α ∈ [0, 1)

∣∣v(QE) > ṽ(QE),∃sE ∈ [slE, s
h
E]
}

Finally, the authors with new papers submit to the incumbent first because
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v(QE) < ṽ(QE) under thresholds s0I and s1E. If α ∈ [α, ᾱ], the entrant finds it
optimal to set threshold s1E and to be the second option of the authors because even
if it can be the first option by setting a threshold outside [slE, s

h
E], the payoff will be

lower. The incumbent finds it optimal to set threshold s0I because it maximizes its
payoff if it is always the authors’ first option. ■

Proof of lemma 7: For any threshold sI set by the incumbent

QI =

∫
qf(q)1{q ≥ sI}dq∫
f(q)1{q ≥ sI}dq

If the entrant sets the same threshold sE = sI ,

QE =

∫
qf(q)[1 + 1{q < sI}]1{q ≥ sE}dq∫
f(q)[1 + 1{q < sI}]1{q ≥ sE}dq

=

∫
qf(q)1{q ≥ sI}dq∫
f(q)1{q ≥ sI}dq

= QI ■

Proof of proposition 7:

First, if both journals set the same threshold, the authors with new papers are
indifferent between them. Therefore, they randomly decide the submission order.

Then, if the incumbent sets sI = 0 and α ∈ [α0, ᾱ0], the entrant finds it optimal
to set the same threshold sE = 0 because even if it can be the authors’ first option
by setting a threshold outside [slE, s

h
E], the payoff will be lower.

Finally, the total utility of these two journals gets maximum when the incum-
bent set threshold sI = 0. According to lemma 7, the entrant can always guarantee
the situation in which it sets the same threshold as the incumbent, and vice versa.
Thus, in the equilibrium, both journals should have the same payoff, because other-
wise the lower-utility journal can always deviate by choosing the same threshold as
the other. Then, in the next period, both journals go back to situation maximizing
their utility where sI = sE = 0. ■

Proof of proposition 8:

Given any QI and QE,

R̂(QI , QE) :=

∫
f(q)[1− Φ(ŝI , q, σs)]dq∫
f(q)[1− Φ(ŝE, q, σs)]dq
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where ŝI and ŝE are determined according to

QI =

∫
qf(q)[1/2 + Φ(ŝE, q, σs)/2][1− Φ(ŝI , q, σs)]dq∫
f(q)[1/2 + Φ(ŝE, q, σs)/2][1− Φ(ŝI , q, σs)]dq

QE =

∫
qf(q)[1/2 + Φ(ŝI , q, σs)/2][1− Φ(ŝE, q, σs)]dq∫
f(q)[1/2 + Φ(ŝI , q, σs)/2][1− Φ(ŝE, q, σs)]dq

Then, consider

R̃(QI , QE) =

∫
f(q)[1− Φ(s′I , q, σs)]dq∫
f(q)[1− Φ(s′E, q, σs)]dq

where s′I and s′E are determined according to

QI =

∫
qf(q)[1− Φ(s′I , q, σs)]dq∫
f(q)[1− Φ(s′I , q, σs)]dq

QE =

∫
qf(q)[1 + Φ(s′I , q, σs)][1− Φ(s′E, q, σs)]dq∫
f(q)[1 + Φ(s′I , q, σs)][1− Φ(s′E, q, σs)]dq

Because f(q) first-order stochastic dominates f(q)[1+Φ(ŝE ,q,σs)]∫
f(q)[1+Φ(ŝE ,q,σs)]dq

, s′I < ŝI . Then,
f(q)[1+Φ(ŝI ,q,σs)]∫
f(q)[1+Φ(ŝI ,q,σs)]dq

first-order stochastic dominates f(q)[1+Φ(s′I ,q,σs)]∫
f(q)[1+Φ(s′I ,q,σs)]dq

, s′E > ŝE. There-
fore, ∫

f(q)[1− Φ(s′I , q, σs)]dq >

∫
f(q)[1− Φ(ŝI , q, σs)]dq

and ∫
f(q)[1− Φ(s′E, q, σs)]dq <

∫
f(q)[1− Φ(ŝE, q, σs)]dq

Then,

R̃(QI , QE) =

∫
f(q)[1− Φ(s′I , q, σs)]dq∫
f(q)[1− Φ(s′E, q, σs)]dq

>

∫
f(q)[1− Φ(ŝI , q, σs)]dq∫
f(q)[1− Φ(ŝE, q, σs)]dq

= R̂(QI , QE)■



Chapter 2

Adverse Selection with Dynamic
Learning

2.1 Introduction

Many models of adverse selection in economics assume that one side possesses all
the information while the other side learns about the state from history or exter-
nal signals.1 However, in many real-world scenarios, neither party initially holds
an information advantage, but information asymmetry deepens over time. For ex-
ample, in the labor market, a graduate and potential employer are unaware of the
graduate’s value at the outset, but the graduate can learn about her value through
feedback from job interviews. This study explores situations where information
asymmetry does not exist at the outset and whether it has any qualitative impact
on the outcome. Other real-life examples where this may occur include high-tech
firm acquisitions, startups seeking seed funds, and securities trading in the secondary
market.

In this study, a search model is used to analyze a game in which Graduate
sequentially searches among a group of Employers. Graduate’s ability can be high
or low, and both parties share the same prior belief of Graduate’s ability before the
search begins. Each interview provides both Graduate and Employer with a noisy
signal of either good or bad. Graduate updates her belief using Bayes’ rule based
on her record of past signals, while each Employer only knows the signal he receives
and is unaware of Graduate’s past signals or how many Employers she has sampled.

1One seller bargains with one buyer (Deneckere and Liang [2006], Sobel and Takahashi [1983],
Fuchs and Skrzypacz [2013]); one buyer searches among multiple sellers (Lauermann and Wolinsky
[2016], Zhu [2012]); one seller waits for buyers (Kaya and Kim [2018], Daley and Green [2012]).

46
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Sampled Employer then makes an offer, and Graduate has three options: accept the
offer and end the search, reject the offer and continue sampling, or leave the market
and receive an outside option.

Adverse selection is a critical factor that impacts market efficiency. Graduate,
especially after receiving a bad signal, faces a trade-off between stopping immediately
(by either accepting the offer or choosing the outside option) or searching for another
Employer, possibly followed by a good signal and a better offer. Once she believes
she could gain from continuation, she chooses the latter. Then, sampled Employer
conjectures that Graduate might have received bad signals before. In other words,
being sampled is not good news for Employers. Consequently, even if he receives
a good signal, it may not be wise to offer a high price, which leads to the adverse
selection where the high-type Graduate who is more likely to generate good signals
does not receive an offer high enough, and thus may not enter the market at the
beginning.

If Graduate knows her type ex-ante, information asymmetry can cause the
market to collapse. This is because the high-type Graduate knows Employers will
not offer a price higher than her outside option. Thus, she does not enter the market
at the beginning. Then, the market is left with the low-type Graduate who takes
a chance on the occurrence of good signals. Being aware of this, Employers offer
her the outside option, which makes the low-type Graduate also leave the market.
However, in the absence of initial information asymmetry, the market can avoid
collapse and allow for efficient trades, as long as search costs are not extremely high.
Unlike in cases where high-type Graduate avoids entering the market and low-type
Graduate receives offers based on her poor signals, both types of Graduate have an
incentive to search and learn about their true type when they share the same prior
belief with Employers. The level of information asymmetry is not significant enough
to create adverse selection. Thus, a surplus can be shared between Employers and
Graduate, leading to mutually beneficial trades.

As search costs decrease to some level, Graduate has the option to reject low
offers after receiving a bad signal and continue searching for a higher offer. This
leads sampled Employers to consider whether Graduate has received bad signals
and rejected previous low offers, reducing their expected value from the trade and
resulting in a lower offer. This is known as the adverse selection effect, which
lowers the average deal price and prolongs the search time for a trade. The effect
is particularly significant in small markets with a low number of Employers and
negligible search costs, leading to market inefficiency.
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Nevertheless, in a large market with negligible search costs, efficiency recovers.
As Graduate searches many times and receives bad signals, she is almost certain
that she is of low type. However, she still believes that there is an extremely small
probability that she is of high type, and sampled Employers are aware of the market
being filled with this almost low-type Graduate. Therefore, giving the lowest possi-
ble offer, the outside option, is not an equilibrium, because sampled Employers can
deviate by slightly sharing some surplus to largely increase the possibility of accep-
tance. This triggers competition among Employers, and eventually, the surplus of a
low-type Graduate is totally shared, leading to increased market efficiency.

The result obtained in this study is qualitatively distinct from the scenario
where Graduate has complete information about her type prior to searching. This
disparity arises due to the presence of noise in the market. As a consequence of this
uncertainty, after bad signals, high-type Graduate is inclined to continue searching
under the belief that better opportunities may arise. In other words, the adverse
selection effect never reaches the level in the complete information case. This, in
turn, incentivizes Employers to compete with each other to offer more attractive
deals.

The rest of the article is organized as follows: Section 2.2 presents the search
model. Section 2.3 and 2.4 solve the equilibrium and discuss market efficiency.
Section 2.5 concludes the study and provides scope for future research. All proofs
are in appendix 2.6.5.

2.1.1 Related Literature

This study contributes to the literature on dynamic information asymmetry in the
analysis of evolving information asymmetry.

Several existing studies of dynamic adverse selection have a similar model struc-
ture, Jovanovic [1979], Stern [1990], Kaya and Kim [2018], Moreno and Wooders
[2016], Zhu [2012], Lauermann and Wolinsky [2016]. Among them, Jovanovic [1979]
and Stern [1990] assumes that workers’ type is complete information but the id-
iosyncratic matching is unknown. Kaya and Kim [2018] assumes that Employers
arrive following a Poisson distribution and receive a noisy signal, while Graduate
knows the state ex ante. If the prior probability of Graduate being of the high type
is high enough, all Employers offer a high offer cH which is the cost of Graduate with
high type regardless of the signals they receive. If it is low enough, all Employers
offer the continuation payoff of Graduate of the low type regardless of the signals
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they receive. Neither strategy is optimal when Graduate does not know the state ex
ante. Zhu [2012], Moreno and Wooders [2016] and Lauermann and Wolinsky [2016]
present the search model where the side with information disadvantage is sampled
and receives noisy signals about the state. The difference with the model in this
study is information asymmetry evolves as time goes on. Its insignificance in the
early periods plays a major role.

Hwang [2018] studies a case where Graduate and Employers have the same
prior information in the beginning. At some time, Graduate is informed of the
state. Martel et al. [2018] considers that Graduate of the good type receives a good
signal with some probability as time goes on and Graduate of the bad type never
receives a good signal. In both models, Employers receive no information about
the state. Their offers form a "U-shape": at the early stages, Employers offer an
average price; in the middle, the price decreases due to the adverse selection effect;
and finally, the price increases because Graduate who is left is more likely to be of
the good type. This study assumes that both Employers and Graduate observe the
signal, and Graduate keeps a record. Employer offers a price based on the signal
he receives. Sampled Employer realizes that Graduate is less likely to be high type
because otherwise, she would have received good signals and made a trade.

Wolinsky [1986] and Anderson and Renault [1999] study the hold-up problem
by introducing heterogeneity or differentiation across products. They find that con-
sumers have incentives to search not only because they are looking for a better price
but also a product they like. In this study, Graduate’s value is identical across
all Employers although she does not know it perfectly. Moreover, the noise in the
information system plays a key role in deterring the hold-up problem.

2.2 The Model

In this model, Graduate (referred to as "she") sequentially searches among N Em-
ployers (referred to as "he"), with Graduate’s type θ (state) being either high (H)
or low (L). High-type Graduate brings Employers a higher value vH than a low-type
graduate brings (vL).

At the beginning of the search process, Graduate and all Employers have the
same prior belief that Graduate is of type H with Probability q0 ∈ (0, 1). In each
round of the search, Graduate meets one randomly selected Employer and both
observe a signal m that can take two values, g or b. We use µm

θ to denote the
probability that the signal m occurs when Graduate’s type is θ. We assume that
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µg
H > µg

L, meaning that the high type is more likely to generate the high signal.
After observing the signal, Employer proposes a wage offer p, and Graduate

has three choices: i) accept the offer, and the search process ends; ii) reject the
offer and continue to search for another Employer; or iii) reject the offer and exit
the labor market. During the search process, Graduate updates her belief about
her type based on past signals using Bayes’ rule. Each Employer only observes the
signal from the current round and knows neither how many Employers Graduate
has already sampled nor the past signals.

If Graduate accepts an offer from an Employer, Employer’s utility is vH − p if
Graduate’s type is H, and vL − p otherwise. If Graduate rejects all offers and exits
the labor market or reaches the end of the search process, Employers’ utilities are
0. Graduate receives her outside option (by starting her own business), cH if her
type is H, and cL otherwise. The search process is costly for Graduate, with a cost
of s > 0 for each Employer she samples. Therefore, Graduate’s terminal payoff is
p − ns if she samples n Employers and accepts the last offer, and cθ − ns if she
samples n Employers and exits the labor market.

It is assumed that cL < vL < cH < vH , which means that high-type Graduate
brings high value to Employer, the trade is always beneficial to social welfare (work-
ing in a firm is less risky than starting one’s own business), and there is no price to
ensure the trade (otherwise, the result is trivial).

Strategy
Each Employer’s strategy is a probability distribution function σE : {g, b} ×

R+ → [0, 1], where σE(m, p) means that the probability that Employer receiving the
signal m offers a price p.2 M = (m1,m2, ...) denotes Graduate’s record of signals.
Let M be the set of all possible histories. The strategy of Graduate is a probability
distribution function σG : M × R+ → ∆2, where ∆2 is a unit 2-simplex and
σG(M, p) = (σG

1 , σ
G
2 , σ

G
3 ) means that the probability that Graduate accepts the offer

p after receiving a series of signals M is σG
1 (M, p), stops searching σG

2 (M, p), and
continues searching σG

3 (M, p).

Belief
When an Employer is sampled, he develops a belief about Graduate’s history

ϕ : M → [0, 1], where ϕ(M) represents the probability that Graduate has a record
of signals M . Denote q(M) the posterior probability that the state is H conditional
on the history M (q(∅) = q0).

2The focus is on the symmetric case where all Employers play the same strategy.
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Other Notations

Let Mg be the set of histories where the last signal is g and Mb be the set of
histories where the last signal is b. A history M = bmgn means that Graduate has
received m bad signals and n good signals. M = ∅ means that Graduate has not
started searching yet.

Denote v(M) as the expected value conditional on the history M , that is,
v(M) = vH · q(M) + vL · (1 − q(M)). Denote c(M) = cH · q(M) + cL · (1 − q(M))

the expected payoff from stopping searching conditional on the history M . Let
x(M) be the probability of a good signal appearing in the next sampling, that is,
x(M) = µg

H · q(M) + µg
L · (1− q(M)).

Let U(M) be Graduate’s continuation payoff given the history M . It should be
the largest one among the offer, the outside option, and the continuation payoff in
the next period minus search costs.

U(M) = x(M)EσE(g,p)

[
max{p, c(M, g), U(M, g)}

]
+ (1− x(M))EσE(b,p)

[
max{p, c(M, b), U(M, b)}

]
− s

If |M | = N , which corresponds to the case of the last sampling, U(M) = 0.

Denote the threshold R(M) := max{c(M), U(M)} as the higher value between
the outside option and the continuation payoff.

Equilibrium

The perfect Bayesian equilibrium concept is used. A tuple (σE, σG, ϕ) is a
perfect Bayesian equilibrium if

1. Given σG and ϕ, σE(m, p) > 0 only if p maximizes Employer’s (VNM-)expected
utility upon receiving the signal m.

p ∈ argmax
p′

Eϕ(Mm)[(v(Mm)− p′)σG
1 (Mm, p

′)]

2. Given σE, σG
1 (M, p) > 0 only if the offer is weakly higher than the larger of the

outside option and the continuation payoff. That is p ≥ R(M). σG
1 (M, p) = 1

if the inequality is strict. Similarly, σG
2 (M, p) > 0 only if R(M) = c(M) ≥ p.

σG
3 (M, p) > 0 only if R(M) = U(M) ≥ p.

3. Given σG and σE, ϕ is derived through Bayes’ rule.
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2.2.1 Preliminary Observation

Given σG and ϕ, it is not wise to offer a price except from R(M) := {R(M) : M ∈
M}. If that is not the case, Employer chooses a price p /∈ R(M). He could choose
R(M ′) = max{R(M) : R(M) < p,M ∈ M} instead, such that the probability that
Graduate accepts the offer is not changed while the payoff increases.

However, the threshold R(M) is determined by the price which causes a loop.
The following lemma shows that, given Employers’ strategy, the thresholds R(M)

are well-defined.

Lemma 8. Given σE, there is a unique value for each R(M). Moreover, σE(g, p) >

0 only if p ∈ R(Mg) and σE(b, p) > 0 only if p ∈ R(Mb).

The above analysis restricts Employers’ strategy space to R(M). Moreover, if
Employer’s surplus is positive by offering p, p = R(M) < Eϕ(M ′)[v(M

′)], Graduate
with history M should accept it with Probability 1, σG

1 (M, p) = 1 because otherwise
Employer could slightly increase the offer. Then, given σE and σG, the explicit
expression of ϕ is obtained through Bayes’ rule. That is, after receiving a signal
m, the probability that Employer faces Graduate with history M is ϕ(M). First,
denote L(M) as the likelihood that M is reached. L(∅) = 1. Then,

L(M, g) = L(M)x(M)
∑

M ′∈M

σE(m,R(M ′))σG
3 (M,R(M ′))

L(M, b) = L(M)(1− x(M))
∑

M ′∈M

σE(m,R(M ′))σG
3 (M,R(M ′))

where m is the last signal in M . The likelihood that Graduate reaches the node
(M, g) ((M, b)) equals the likelihood that history M is reached times the probability
a good (bad) signal occurs times the probability that Graduate continues searching.

Since Employers are sampled randomly by Bayes’ rule, if m = g,

ϕ(Mg) =
L(Mg) · 1

N∑
M ′

g∈Mg
L(M ′

g) · 1
N

=
L(Mg)∑

M ′
g∈Mg

L(M ′
g)

If m = b,

ϕ(Mb) =
L(Mb)∑

M ′
b∈Mb

L(M ′
b)
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2.3 Two-Employer Equilibrium

This section analyzes the equilibrium of the search model proposed in this study.

In the conventional case where Graduate knows her type ex ante, the market
collapses due to the combination of Akerlof’s lemons (Akerlof [1970]) and the Dia-
mond paradox (Diamond [1971]). High-type Graduate anticipates that Employers
will not offer a price higher than her outside option cH , so she opts out of the mar-
ket. Consequently, only low-type Graduate remains, who takes a chance on the
occurrence of good signals. However, Employers are aware of this and offer her the
outside option cL, leading to low-type Graduate also leaving the market.

In contrast, without perfect knowledge of the state initially, when search costs
are not extremely high and the value generated by the market is sufficiently high,
there could be trades. The adverse selection effect diminishes, and Graduate has
an incentive to learn her value by searching in the market because she does not
know it ex ante. In turn, Employers are willing to share some surplus because the
information asymmetry is not that significant when the trade is made. Specifically,
they can make the trade once Employer offers a price equal to Graduate’s contin-
uation payoff, provided it is lower than Employer’s expected value from the trade,
and Graduate’s gain from the trade can compensate for search costs.

In this market, sampled Employer believes that Graduate has not sampled
many Employers before him because the trade would have already been made. This
suggests that the adverse selection effect is not significant, and Employer’s expected
value from the trade is high. Therefore, Employer has an incentive to offer a high
enough price to induce Graduate to accept the offer and make the trade.

To provide a clearer illustration of this property, let us consider the case of two
Employers where a good signal only occurs when Graduate is of high type, that is,
µg
H > µg

L = 0.3 An example is Graduate obtaining a good assessment if he passes
all the tests set by Employer, which only Graduate of high quality can achieve.
However, he could make mistakes and fail some tests, and obtain a bad assessment.
Under this case, the focus is on the strategy of Employer receiving a bad signal
because if Employer receives a good signal, he knows that Graduate is of high type,
and offers cH .

To find the equilibrium, I first study Employers’ behavior by varying the search
costs from high to low. Then, given Employers’ strategy, Graduate searches the
market if and only if the continuation payoff is higher than the outside option. The

3I put the complete analysis of the general case µg
H > µg

L > 0 in Appendix 2.6.1.
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following lemmas show that high search costs mitigates the adverse selection effect,
and Employers are willing to give a high offer. However, this effect is exacerbated
when search costs are low, and Employers’ offer decreases.

Lemma 9. (Employers’ behavior) Given N = 2, q0, µg
H > µg

L = 0, cH and cL,
Employer offers a price pg = cH when he receives a good signal and

1. If s ≥ s̄1 := x(b)(cH−v(b)), Employer offers a price pb = R(b) = max{c(b), cH−
s

x(b)
} when he receives a bad signal. He believes Graduate history is (b) with

Probability 1.

2. If s̄1 > s ≥ s̄2 := x(b)cH + (1 − x(b))c(b) − v(b), Employer mixes between
R(b) = v(b)+s−x(b)cH

1−x(b)
and R(b2) = c(b2) when he receives a bad signal. He offers

R(b) with Probability y,

y =
R(b)− c(b) + s

(1− x(b))(R(b)− c(b2))

The likelihood ratio of his belief ϕ(b2)/ϕ(b) = (1− x(b))(1− y) and ϕ(gb) = 0.

3. If s < s̄2, Employer mixes between R(b) = c(b) and R(b2) = c(b2) when he
receives a bad signal. He offers R(b) with Probability y,

y =
s

(1− x(b))(R(b)− c(b2))

He believes that Graduate continues searching with Probability z after first
sampling with an offer R(b2) and stops with Probability 1 − z. The likelihood
ratio of his belief ϕ(b2)/ϕ(b) = (1− x(b))z(1− y) and ϕ(gb) = 0.

z =
v(b)− c(b)

[c(b)− c(b2)](1− x(b))(1− y)

When search costs are high, Employers are willing to share some of their surplus
by offering R(b) as long as the expected value from the trade is high enough (v(b) >
R(b)). In the first round of sampling, there is no information asymmetry. Although
sampled Employer does not know ex ante Graduate’s order of sampling, he knows
he ranks in the first position after being selected if he believes others offer the same
prices.

However, if search costs decrease to some value s̄1, Graduate’s continuation
payoff increases to a level that U(b) = R(b) = v(b), which means that Employer
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receiving the bad signal gets a negative payoff if he offers R(b). Therefore, the
equilibrium falls into the second case where Employers mix between a high offer
R(b) and a low offer R(b2). Graduate with the history (b) accepts only the high
offer R(b), and rejects the low one R(b2) because she believes that she could receive
a better offer by sampling another Employer. This exacerbates the adverse selection
effect. Sampled Employer receiving a bad signal wonders whether the history is (b)

or (b2), which further reduces the probability of offering the high price (y decreases
as s decreases).

If search costs decrease even further to some value s̄2, Graduate’s continuation
payoff decreases to her outside option, U(b) = R(b) = c(b). In this case, she becomes
indifferent between continuing or stopping after receiving an offer R(b2).

Lemma 10. (Graduate’s behavior) Given N = 2, q0, µg
H > µg

L = 0, cH and cL,

1. If s̄1 ≤ s < s1 :=
(cH−c(∅))x(b)
1−x(∅)+x(b)

, Graduate searches once. She accepts Employer’s
offers R(b) after receiving a bad signal and offer cH after a good signal.

2. If min{s̄1, s1, s2} > s ≥ s̄2,

s2 :=
1− x(∅)

x(∅)− x(b)
[v(b)− (1− x(b))c(b)− x(b)cH ]

Graduate searches at least once. She accepts the offers cH after a good signal
and R(b) after a bad signal only in her first sampling, but accepts the offers
cH , R(b) and R(b2) in her second sampling.

3. For other cases, Graduate does not search.

For Graduate, if the continuation payoff at the beginning U(∅) is higher than
her outside option c(∅), which is true if the search cost is not too high (s < s1), then
she has an incentive to search. If search costs are too large, she will not search.

As search costs decrease and Employers start to mix (s < s̄1), the continuation
payoff U(∅) becomes lower than c(∅) again. She does not search. However, as search
costs become negligible, the continuation payoff increases. She searches as long as
Employers offer something higher than her outside option.

By taking into account both the behavior of Employers and Graduate, we can
determine the equilibrium in the relationship between market value and search costs.
There exist two critical thresholds for the market value. If the market value exceeds
the first threshold, adverse selection is not a concern, and all trade occurs during the
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initial search. If the market value falls between the two thresholds, adverse selection
may still be present, but trade is still possible. However, if the market value is below
the second threshold, then no trade occurs.

Proposition 9. Given N = 2, q0, µg
H > µg

L = 0, cH , cL, and s < s1 =
[cH−c(∅)]x(b)
1−x(∅)+x(b)

,
let

f1(s) := cH − s

x(b)

and
f2(s) :=

x(∅)− x(b)

1− x(∅)
s+ (1− x(b))c(b) + x(b)cH

1. If v(b) ≥ f1(s), Employer offers a price cH when he receives a good signal, and
R(b) when he receives a bad signal. Graduate accepts the offers under both
circumstances and all trades are made in the first sampling.

2. If f2(s) < v(b) < f1(s), Employer offers a price cH when he receives a good
signal, and mixes between R(b) and R(b2) = c(b2) when he receives a bad
signal. Graduate only accepts the offers cH and R(b) in her first sampling, but
accepts the offers cH , R(b) and R(b2) in her second sampling.

3. If v(b) ≤ f2(s), there is no trade.

Example 4. Consider a two-Employer case (N = 2). The probability that a good
signal occurs under the state H is µg

H = 0.5. µg
L = 0. The outside option is as

follows: cH = 2 and cL = 1. The prior q0 = 0.5.
Figure 2.1 depicts the impact of search costs on equilibria. The red area in the

figure corresponds to the equilibrium where Employers offer R(b) after receiving the
bad signal, while the blue area represents the mixed-strategy equilibrium. The yellow
area indicates that Graduate opts not to search for a job.

As search costs decrease, the blue area expands, indicating that Employers start
to reduce their offers due to adverse selection effects. Panel (d) shows how Employ-
ers’ average bidding price changes in response to changes in search costs. When
search costs exceed 0.028, Employers offer R(b), which is equal to Graduate’s con-
tinuation payoff U(b). If the cost decreases below 0.028, Employers mix between
R(b) and R(b2), causing the average bidding price to decrease. Additionally, the
adverse selection effect increases the likelihood of Employers offering a lower price,
which widens the gap between the average bidding price and Graduate’s continuation
payoff. □
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Figure 2.1: A two-period search process with different search costs.

Negligible search costs

In the limit where search costs approach zero, the offers made under both good and
bad signals should converge, as Graduate would reject any lower offer until a good
signal emerges. The following lemma is a good tool, which shows that it is indeed
the case when the offer under the bad signal is not too low.

Lemma 11. Let pg (pb) be Employers’ optimal price under a good (bad) signal.

1. If the equilibrium is of pure-strategy, when pb ≥ R(bN−1), pg − pb → 0 as
s → 0.

2. If the equilibrium is of mixed-strategy, when all prices pb supported are higher
than R(bN−1), E[pg]− E[pb] → 0 as s → 0.
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2.4 Discussion

This section analyzes how market efficiency is affected by the number of Employers
and the informativeness of signals.

2.4.1 Number of Employers

When there are more Employers in the market, their presence has a twofold effect
on market efficiency. First, Graduate’s bargaining power increases, prompting her
to sample more Employers and wait for a good signal. This, in turn, increases her
continuation payoff and threshold, which requires Employers to offer higher prices.
However, because Graduate receiving bad signals prefers to sample more Employers,
the adverse selection effect is exacerbated, leading to a decrease in the average offer
made by Employers as they correct the selection bias.

To verify these points, we revisit the simplified case µg
H > µg

L = 0. We use an
algorithm that is a generalization of Lemma 9 and Lemma 10 to find the equilibrium.
In general, we use the thresholds from high to low ranking to find the equilibrium. If
Employer find that their utility is negative by offering the high-ranking thresholds,
they mix them with the low-ranking thresholds. After obtaining a candidate, Grad-
uate’s continuation payoff is checked to determine if it is higher than the outside
option given any history.

Algorithm 1. We start from Employers’ side with a decreasing trend of search
costs.

1. Add R(b) in Employers’ strategy support.

Graduate’s threshold R(b) is

R(b) = max{c(b), U(b)} = max{c(b), x(b)cH+(1−x(b))max{R(b), c(b2), U(b2)}−s}

It is easy to verify that R(b) is decreasing with s. If s is higher than s̄1 defined
previously, v(b) > R(b). Then, it is optimal for Employers to offer R(b). Otherwise,
Employer gets a negative payoff by offering R(b). He adds a lower price.

Suppose that Employers’ strategy support is {R(bn1), R(bn2), ..., R(bnk)}.

2. Add R(bnk+1) in Employers’ strategy support if any R(bni) = v(bni), i ∈ {n1, ..., nk}.

nk+1 = min{n : R(bn) < v(bn), nk < n ≤ N}
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Employer mixes between these prices and the probability allocated to each of them is
determined by the indifference condition.

3. Graduate searches as long as continuation payoff is higher than outside option.
Given Employers’ strategy and search costs, Graduate’s continuation payoff of

each history U(bi) (i < nk) is computed. It should be guaranteed that U(bi) > c(bi).
If U(bi) = c(bi), Graduate mixes between continuing and stopping if the offer is
lower than U(bi). Graduate searches at the beginning as long as U(∅) ≥ c(∅). ■

Example 5. Consider a searching process where the good signal occurs only under
the state H with Probability µg

H = 0.5. The outside option is as follows: cH = 2 and
cL = 1. The prior q0 = 0.5. Search costs s approach 0.
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Figure 2.2: The left graph shows the equilibria with three Employers. The right is
the average offer under two or three Employers given vL = 1.2.

Employers tend to decrease their offers due to the adverse selection effect. Com-
paring the left graph of Figure 2.2 and panel (c) of Figure 2.1, when there are three
Employers, the offer R(b3) is included in their strategy. Then, Graduate could sam-
ple all three Employers where the searching period for trade is longer. The right
graph shows that, if the value from the market is high enough, Employers offer a
high price R(b). Then, according to lemma 11, the deal price is just pg = cH regard-
less of the number of Employers. If the value is not that high, the average offer is
lower when there are more Employers. □

2.4.2 Large Market with Negligible Friction

This section considers the asymptotic case where the number of employers N ap-
proaches infinity and search costs s approach zero. According to lemma 11, if R(bN)
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is not in Employers’ strategy set, pb converges to pg = cH . They find it optimal to
offer cH even after receiving a bad signal if the value from trade is sufficiently high
(v(b) > cH). Otherwise, Employer should offer R(bN) (which converges to cL as
N → +∞) with some probability, but not with Probability 14. As Employers mix
between R(bN−1) and R(bN), this increment raises Graduate’s continuation payoff
and it triggers the competition among Employers by sharing more surplus, which
further raises Graduate’s continuation payoff. Finally, this competition ends at a
point when they give out all the surplus.

Proposition 10. Given q0, µg
H > µg

L = 0 and s ∼ o(1/NlogN), even if vH−cH → 0,
as N → +∞, Graduate of low type secures a payoff vL almost surely, and Graduate
of high type secures a payoff cH almost surely.

Remark:

This finding is qualitatively different from the observation of the hold-up situ-
ation. The key reason is the noise in the market. For Graduate, although no good
signal shows up, she still believes that she is of high type with extremely small prob-
ability. It creates the small increment between R(bN−1) and R(bN), which eventually
accumulates to be the whole surplus. However, if the market is left with low-type
Graduate knowing her type perfectly, R(bN−1) and R(bN) are both her outside op-
tion cL. Thus, no surplus will be shared. The following study shows that without
any noise in the information system, the market collapses again.

2.4.3 Informativeness of Signals

The informativeness of signals is a crucial factor that affects market efficiency. Let
µ := µg

H − µg
L, where µ represents the degree of informativeness, where µ = 1

means that the signals are completely informative, and µ = 0 means that they are
completely uninformative.

In the case of completely informative signals, there is no information asymmetry
between Employers and Graduate. Sampled Employer sets prices pg = R(g) = cH

when receiving a good signal and pb = R(b) = cL when receiving a bad signal, which
is Graduate’s outside option. Graduate would prefer to choose the outside option at
the beginning rather than enter the market. Similarly, for completely uninformative

4If this is not the case, Graduate will search until the last Employer if the good signal never
occurs. Then, sample Employer can deviate from offering R(bN ) to R(bN−1) (the increment is
positive but small as N → +∞), to capture Graduate in her second to last search period.
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signals, sampled Employer sets prices pg = pb = q0cH + (1 − q0)cL, which is the
expected outside option ex ante. Similarly, Graduate would not enter the market.

As the signals become more informative—in other words—µ increases from 0 to
1, there are two effects. First, Graduate wants to take advantage of the information
asymmetry by prolonging the search process. If Employers are willing to share some
surplus by offering a price higher than Graduate’s outside option, they can make a
mutually beneficial trade that improves market efficiency. However, the second effect
is that information asymmetry diminishes as the signals become more informative.
When µ is close to 0, the first effect dominates, and when µ is close to 1, the second
effect dominates.

Example 6. In the case of a two-Employer case (N = 2) with µg
L = 0, the outside

options are cH = 2 and cL = 1.
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Figure 2.3: The relation between s1 and µg
H .

From lemma 10, we know that Graduate does search only if search costs s < s1.
In Figure 2.3, s1 increases as µg

H increases from 0, which means that Graduate gains
from information asymmetry to compensate for her search costs. Thus, she is more
willing to enter the market. However, as µg

H is close to 1, Graduate can not profit
by information asymmetry any more. She has less willingness to search.

2.5 Conclusion and Further Discussion

This study contributes to the literature of dynamic information asymmetry in the
aspect of the evolving information asymmetry. The key assumption different from
current literature is that Graduate does not know the state ex ante, and the major
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finding is that, when search costs are sufficiently low, the market can be efficient.
These findings are robust if the offering protocol is changed (appendix 2.6.3).

2.5.1 Further Discussion

In addition, this study also considers the case where Employer comes to Graduate,
instead of Graduate sampling Employers, in appendix 2.6.4. When information
asymmetry is not significant, arriving Employer believes that they are the first
Employer Graduate has ever met, and so they are willing to offer a high price
(Graduate’s continuation payoff) as long as it is lower than their reservation value.
However, as the number of Employers increases or Employers arrive more frequently,
Graduate’s continuation payoff will exceed Employer’s reservation value, causing
Graduate to reject Employer’s offer and bringing the adverse selection problem to
Employers arriving later. As a result, Employer who arrives later decreases his offer,
which in turn decreases Graduate’s payoff from continuation. This pull-push effect
becomes stable until a new equilibrium is reached. For Employers who arrive early,
they offer their reservation value and Graduate accepts with some probability. For
those who arrive later, they either mix between a high and a low offer when the
adverse selection effect is not so significant, or they only offer a low offer.

If Employers arrive with Probability 1 in each period, the only difference from
the searching model is that Employers know when they arrive. This additional
information weakens Graduate’s bargaining power because Employer knows how
much time is left to Graduate, enabling their offer to be accepted with a higher
probability and benefiting market efficiency.

Finally, this study assumes that Graduate only receives information from the
search process. However, in reality, Graduate may receive additional information
about the state before the search process. For instance, Graduate received a private
signal mS ∈ {G,B} before the search process. Let µmS

θ denote the probability that
the signal mS shows up when the state is θ. Then, when µG

H = µG
L , it is just the case

discussed in this study. When µG
H = 1 and µG

L = 0, it corresponds to the case that
Graduate knows the state ex ante. The general cases are just lying between the two
extreme ones. Most findings in the current model should hold (appendix 2.6.2).
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2.6 Appendix

2.6.1 General Case: N = 2

Section 2.3 focuses on the case µg
H > µg

L = 0, and solves the equilibria of the general
case. More precisely, the conditions under which each possible equilibrium could
exist are provided.

1. pg = R(g), pb = R(b)

In this equilibrium, there should be three conditions. First, pb = R(b) should
be lower than v(b) to let Employer’s payoff be positive.

v(b) ≥ R(b) ≥ c(b) (1.1)

Secondly, pg = R(g) should be lower than v(g).

v(g) ≥ R(g) ≥ c(g) (1.2)

Thirdly, Graduate should have incentives to search at the beginning.

c(∅) ≤ U(∅) = x(∅)R(g) + (1− x(∅))R(b)− s (1.3)

To compute the value of R(g) and R(b), the following equations are used:

R(g) = max{c(g), U(g)}

= max{c(g), x(g)max{c(g2), R(g)}+ (1− x(g))max{c(gb), R(b)} − s}

R(b) = max{c(b), U(b)}

= max{c(b), x(b)max{c(bg), R(g)}+ (1− x(b))max{c(b2), R(b)} − s}

2. pg = R(g), pb : R(b) mix R(b2)

Suppose that Employer receiving the bad signal offers R(b) with Probability
y ∈ (0, 1) and R(b2) = c(b2) with Probability 1−y. There should be four conditions.
First, he finds it indifferent between offering R(b) and R(b2).

[v(b)−R(b)]ϕ(b) + [v(b2)−R(b)]ϕ(b2) = [v(b2)− c(b2)]ϕ(b2) (2.1)

where ϕ(b) : ϕ(b2) = 1 : (1− x(b))(1− y).
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Secondly, U(b) should be higher than c(b) to maintain Graduate’s incentive to
search.

c(b) ≤ U(b) = x(b)R(g) + (1− x(b))[yR(b) + (1− y)c(b2)]− s (2.2)

Thirdly, Employer receiving the good signal should have higher payoff by offer-
ing R(g) rather than R(bg) = c(bg).

[v(g)−R(g)]ϕ(g) + [v(bg)−R(g)]ϕ(bg) ≥ [v(bg)− c(bg)]ϕ(bg) (2.3)

where ϕ(g) : ϕ(bg) = x(∅) : (1− x(∅))x(b)(1− y).

Fourthly, Graduate should have incentives to search at the beginning.

c(∅) ≤ U(∅) = x(∅)R(g) + (1− x(∅))R(b)− s (2.4)

To compute the value of y, R(g) and R(b), the following equations along with
(2.1) are used.

R(g) = max{c(g), x(g)max{c(g2), R(g)}+(1−x(g))[ymax{c(gb), R(b)}+(1−y)c(gb)]−s}

R(b) = max{c(b), x(b)R(g) + (1− x(b))[yR(b) + (1− y)c(b2)]− s}

3. pg = R(g) = c(g), pb = R(b2) = c(b2)

There should be four conditions. First, Employer receiving the good signal
should have higher payoff by offering R(g) rather than R(bg) = c(bg).

[v(g)−R(g)]ϕ(g) + [v(bg)−R(g)]ϕ(bg) ≥ [v(bg)− c(bg)]ϕ(bg) (3.1)

where ϕ(g) : ϕ(bg) = x(∅) : (1− x(∅))x(b).

Secondly, Employer receiving the bad signal should have higher payoff by offer-
ing R(b2) rather than R(b).

[v(b)−R(b)]ϕ(b) + [v(b2)−R(b)]ϕ(b2) ≤ [v(b2)− c(b2)]ϕ(b2) (3.2)

where ϕ(b) : ϕ(b2) = 1 : (1− x(b)).

Thirdly, U(b) should be higher than c(b) to maintain Graduate’s incentive to
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search.

c(b) ≤ U(b) = x(b)R(g) + (1− x(b))c(b2)− s (3.3)

Fourthly, Graduate should have an incentive to search at the beginning.

c(∅) ≤ U(∅) = x(∅)R(g) + (1− x(∅))R(b)− s (3.4)

To compute the value of R(b), one just uses the following equation.

R(b) = max{c(b), x(b)R(g) + (1− x(b))c(b2)− s}

4. pg : R(g) mix R(bg), pb : R(b) mix R(b2)

Suppose that Employer receiving the bad signal offers R(b) with Probability
y ∈ (0, 1) and R(b2) = c(b2) with Probability 1−y, and Employer receiving the good
signal offers R(g) with Probability z ∈ (0, 1) and R(bg) = c(bg) with Probability
1−z. There should be four conditions. First, he finds it indifferent between offering
R(b) and R(b2).

[v(b)−R(b)]ϕ(b) + [v(b2)−R(b)]ϕ(b2) = [v(b2)− c(b2)]ϕ(b2) (4.1)

where ϕ(b) : ϕ(b2) = 1 : (1− x(b))(1− y).

Secondly, he finds it indifferent between offering R(g) and R(bg).

[v(g)−R(g)]ϕ(g) + [v(bg)−R(g)]ϕ(bg) = [v(bg)− c(bg)]ϕ(bg) (4.2)

where ϕ(g) : ϕ(bg) = x(∅) : (1− x(∅))x(b)(1− y).

Thirdly, U(b) should be higher than c(b) and U(g) should be higher than c(g)

to maintain Graduate’s incentive to search.

c(b) ≤ U(b) = x(b)[zR(g) + (1− z)c(bg)]

+ (1− x(b))[yR(b) + (1− y)c(b2)]− s
(4.3)

c(g) ≤ U(g) = x(g)[zmax{c(g2), R(g)}+ (1− z)c(g2)]

+ (1− x(g))[ymax{c(gb), R(b)}+ (1− y)c(gb)]− s
(4.4)
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Fourthly, Graduate should have incentives to search at the beginning.

c(∅) ≤ U(∅) = x(∅)R(g) + (1− x(∅))R(b)− s (4.5)

To compute the value of y, z, R(g) and R(b), the following equations along with
(4.1) and (4.2) are used.

R(g) = max{c(g), x(g)[zmax{c(g2), R(g)}+ (1− z)c(g2)]

+ (1− x(g))[ymax{c(gb), R(b)}+ (1− y)c(gb)]− s}

R(b) = max{c(b), x(b)[zR(g) + (1− z)c(bg)] + (1− x(b))[yR(b) + (1− y)c(b2)]− s}

5. pg = R(bg), pb : R(b) mix R(b2)

Suppose that Employer receiving the bad signal offers R(b) with Probability
y ∈ (0, 1) and R(b2) = c(b2) with Probability 1−y. There should be four conditions.
First, he finds it indifferent between offering R(b) and R(b2).

[v(b)−R(b)]ϕ(b) + [v(b2)−R(b)]ϕ(b2) = [v(b2)− c(b2)]ϕ(b2) (5.1)

where ϕ(b) : ϕ(b2) = 1 : (1− x(b))(1− y).

Secondly, U(b) should be higher than c(b) to maintain Graduate’s incentive to
search.

c(b) ≤ U(b) = x(b)c(bg) + (1− x(b))[yR(b) + (1− y)c(b2)]− s (5.2)

Thirdly, Employer receiving the good signal should have higher payoff by offer-
ing R(bg) = c(bg) rather than R(g).

[v(g)−R(g)]ϕ(g) + [v(bg)−R(g)]ϕ(bg) ≤ [v(bg)− c(bg)]ϕ(bg) (5.3)

where ϕ(g) : ϕ(bg) = x(∅) : (1− x(∅))x(b)(1− y).

Fourthly, Graduate should have incentives to search at the beginning.

c(∅) ≤ U(∅) = x(∅)R(g) + (1− x(∅))R(b)− s (5.4)

To compute the value of y, R(g) and R(b), the following equations along with
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(5.1) are used.

R(g) = max{c(g), x(g)c(g2) + (1− x(g))[ymax{c(gb), R(b)}+ (1− y)c(gb)]− s}

R(b) = max{c(b), x(b)c(bg) + (1− x(b))[yR(b) + (1− y)c(b2)]− s}

Example 7. Consider a two-Employer case (N = 2). The probability that a good
signal occurs under the state H is µg

H = 0.8. The probability that a good signal
occurs under the state L is µg

L = 0.2. The outside option is as follows: cH = 3

and cL = 1. The prior q0 = 0.5. Figure 2.4 shows the equilibrium under different
combinations of vL and vH .

Figure 2.4: A two-period searching process with different search costs.

2.6.2 Continuous Signal Structure and Graduate’s Heteroge-

neous Prior Belief

The search model is extended in two directions: i) Graduate has some private infor-
mation q about her type θ. q ∈ [0, 1] is the probability that she believes her type is
H; all Employers just know the prior distribution of q, γ(q) before the search starts,
and ii) Employer observes one signal s ∈ [0, 1] conditional on Graduate’s type θ with
continuous probability f(s|θ). F (s|H) first-order stochastic dominates F (s|L). He
chooses any offer between cL and vH based on the signal they receive. Thus, his
strategy is a mapping from the signal to an offer, p(s).

Example 8. In a two-Employer case (N = 2), the outside options are: cH = 1 and
cL = 0; the values are: vH = 1.5 and vL = 0.5; the signal structure: f(s|H) = 2s,
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f(s|L) = 2(1−s); the prior distribution γ(q) is a truncated normal distribution with
mean 0.8 and standard deviation 0.1.

Figure 2.5 illustrates Employer’s strategy in the equilibrium. There is a jump in
p(s). When s is low, selected Employer believes he meets Graduate having been given
a lower offer in her last sampling with high probability. Thus, he gives a relatively
low offer targeting this kind of Graduate. When s is high, it is less likely that this
signal is from Graduate on her second search. Thus, Employer can target Graduate
who searches for the first time with a high offer.

When search costs are large, Graduate quits more often after receiving a bad
signal. Employers are willing to give a higher offer. So from the graph, larger
search costs make the jump come earlier.

Besides the jump, the red curve is overall above the blue one. This is because
lower search costs increase Graduate’s continuation payoff. Thus, targeting Gradu-
ate with the same history, Employer should raise his offer.

The jump come earlier compared with the four-Employer case. The reason is
that Employer is more likely to meet Graduate having sampled more times when
there are more Employers in the market. When s is low where Employers target
Graduate in her last sampling, her expected outside option is lower when the market
is large. Therefore, the blue curve is above the red one. Given a high s where
Employers target Graduate in her first sampling, more Employers in the market
make Graduate’s continuation payoff high. Employer should raise his offer. □
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Figure 2.5: Employers’ strategy.
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2.6.3 Random Proposals

This study assumes that Employers propose the offer. All the bargaining power is
with Employers. This section introduces the random proposal protocol to generate
the offers (Wilson [2001]), and Graduate and Employer make the trade if they both
accept the offer.

More specifically, the settings of the model are unchanged except that Employer
offers a price after observing the signal. Instead, nature draws a price p ∈ [cL, vH ]

according to some continuous density function f strictly positive on [cL, vH ]. Gradu-
ate and Employer simultaneously decide whether to accept p. If both of them accept
p, they make the trade. Otherwise, Graduate either continues searching or leaves
the market.

Then, the strategy of Employer is a probability distribution function σ̃E :

{g, b} × R+ → [0, 1], where σ̃E(m, p) means that the probability that Employer
receiving the signal m accepts the offer p. Let Ũ(M) be Graduate’s continuation
payoff given the history M . It should be the larger one between the offer, the outside
option, and the continuation payoff in the next round minus search costs. Denote
the threshold R̃(M) := max{c(M), Ũ(M)} as the larger one between the outside
option and the continuation payoff. Then,

Ũ(M) =x(M)

∫ vH

cL

[max{p, R̃(M, g)}σ̃E(g, p) + R̃(M, g)(1− σ̃E(g, p))]f(p)dp

+ (1− x(M))

∫ vH

cL

[max{p, R̃(M, b)}σ̃E(b, p) + R̃(M, b)(1− σ̃E(b, p))]f(p)dp− s

If |M | = N , which corresponds to the case of the last sampling, Ũ(M) = 0.

The strategy of Graduate is a probability distribution function σ̃G : M×R+ →
[0, 1]× [0, 1]. σ̃G(M, p) = (σ̃G

1 , σ̃
G
2 ) means that the probability that Graduate accepts

the offer p after receiving a series of signals M is σ̃G
1 (M, p). If the trade is not

made (either Graduate or Employer rejects the offer), Graduate stops searching
with Probability σ̃G

2 (M, p), or continues with Probability 1− σ̃G
2 (M, p).

Equilibrium

The perfect Bayesian equilibrium concept is used. A tuple (σ̃E, σ̃G, ϕ̃) is a
perfect Bayesian equilibrium if

1. Given σ̃G and ϕ̃, σ̃E(m, p) > 0 only if Employer’s (VNM-)expected utility
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upon receiving the signal m and accepting the offer p is positive.

Eϕ̃(Mm)[(v(Mm)− p)σ̃G
1 (Mm, p)] ≥ 0

σ̃E(m, p) = 1 if it is strictly positive.

2. Given σ̃E, σ̃G
1 (M, p) > 0 only if the offer is weakly higher than the threshold

R̃(M). That is p ≥ R̃(M). σ̃G
1 (M, p) = 1 if the inequality is strict. σ̃G

2 (M, p) >

0 only if Ũ(M) ≤ c(M). σ̃G
2 (M, p) = 1 if the inequality is strict.

3. Given σ̃E and σ̃G, ϕ̃ is derived through Bayes’ rule.

Given σ̃E and σ̃G, the explicit expression of ϕ̃ is obtained through Bayes’ rule.
That is, after receiving a signal m, the probability that Employer faces Graduate
with history M is ϕ̃(M). First, denote L̃(M) as the likelihood that M is reached.
L̃(∅) = 1. Then,

L̃(M, g) = L̃(M)x(M)

∫ vH

cL

[1− σ̃E(m, p)σ̃G
1 (M, p)][1− σ̃G

2 (M, p)]f(p)dp

L̃(M, b) = L̃(M)(1− x(M))

∫ vH

cL

[1− σ̃E(m, p)σ̃G
1 (M, p)][1− σ̃G

2 (M, p)]f(p)dp

where m is the last signal in M . The likelihood that Graduate reaches the node
(M,m) equals the likelihood that history M is reached times the probability a signal
m occurs times the probability that Graduate continues searching.

Since Employers are sampled randomly, by Bayes’ rule, if m = g,

ϕ̃(Mg) =
L̃(Mg)∑

M ′
g∈Mg

L̃(M ′
g)

If m = b,

ϕ̃(Mb) =
L̃(Mb)∑

M ′
b∈Mb

L̃(M ′
b)

Under the random proposal protocol, Employer will not capture all the surplus.
The minimal value he could receive from the market is vL. Therefore, he accepts any
price lower than vL because he receives a non-negative payoff by doing that. This
is true even when Graduate knows the state ex ante. There is no hold-up problem
under this protocol. The focus is on how the adverse selection affects the agents’
behavior.
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Lower search costs or a larger number of Employers exacerbates the adverse se-
lection effect. As search costs decrease or the number of Employers increases, Grad-
uate’s continuation payoff increases and she prefers to continue searching rather than
accept the offer, especially after receiving a bad signal. Then, sampled Employer
rejects the high offer to avoid trading with Graduate who has a bad history.
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Figure 2.6: The parameter is set as: vH = 2.5, vL = 1.5, cH = 2, cL = 1, µg
H = 0.5,

µg
L = 0, q0 = 0.5.

The simplified case is considered: µg
H > µg

L = 0 such that Employer receiving
the good signal will accept any offer because he knows Graduate is of high type
and any price lower than vH brings him a positive payoff. Then, the focus is on
the strategy of Employer receiving the bad signal. Figure 2.6 shows that, as search
costs decrease or the number of Employers increases, Employer tends to reject the
high offers.

As shown in Section 2.3, Graduate is willing to enter the market when search
costs are low enough, s < s1. Graduate’s gain from the market decreases as Employer
rejects the high offer. Combining the analysis above, Graduate is less willing to enter
the market when the number of Employers is large, or in other words, the adverse
selection effect is significant. In Figure 2.7, the threshold s1 first increases and then
decreases. There are two effects: i) Graduate is more likely to make the trade as
there are more Employers; thus, her gain from the market increases which gives her
incentives to enter, and ii) the adverse selection effect, which lets Employer reject
the low offer and decreases Graduate’s gain from the market.
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Figure 2.7: The parameter is set as: vH = 2.5, vL = 1.5, cH = 2, cL = 1, µg
H = 0.5,

µg
L = 0, q0 = 0.5.

2.6.4 Employers Arrive Randomly

This study assumes that Graduate can always sample another Employer after she
rejects an offer whilst in real cases, she needs to wait for some time until another
Employer comes along. This section considers a finite discrete-time situation t =

1, 2, ...N where Employers arrive with some probability.
The basic settings are the same as those in Section 2.2, except that now one

Employer comes to Graduate with Probability λ in each time interval t. Once they
meet, they observe a signal. Employer offers a price, and Graduate has three choices:
i) Graduate accepts the offer and the process is over, ii) she rejects the offer and
waits for another Employer, and iii) she rejects the offer and stops waiting. It is
assumed that Employer knows the Time t when he arrives but he knows neither how
many Employers Graduate has met nor the past signals she has observed. Once the
trade is made in Time t, Employer’s utility is vH − p if the state is H, and vL − p

otherwise. The utility of Graduate is p. If Graduate chooses to stop searching or no
trade is made after Graduate samples all Employers, Employers’ utilities are 0, and
Graduate’s utility is cH if she is of type H, and cL otherwise, which is her outside
option.

Strategy
The strategy of Employers is a probability distribution function σE : {g, b} ×

N+ × R+ → [0, 1], where σE(m, t, p) means that the probability that Employer
receiving the signal m offers a price p in Time t. Denote M t = (m1,m2, ...,mt)

Graduate’s record of signals in Time t. mi ∈ {g, b, o}, o means that no Employer
comes. Let Mt be the set of all possible histories in Time t. The strategy of
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Graduate is a probability distribution function σG : Mt × R+ → ∆2, where ∆2

is a unit 2-simplex and σG(M t, p) = (σG
1 , σ

G
2 , σ

G
3 ) means that the probability that

Graduate accepts the offer p (if no Employer comes, p = 0) after receiving a series
of signals M t in Time t is σG

1 (M
t, p), stops waiting σG

2 (M
t, p), and continues waiting

σG
3 (M

t, p).

Belief
When Employer comes in Time t, he forms a belief about Graduate’s history

ϕ : Mt → [0, 1], where ϕ(M t) is the probability that Graduate has a history M t in
Time t.

Graduate’s continuation payoff
Let U(M t) be Graduate’s continuation payoff given the history M t. It should

be the largest one among the offer, the outside option, and the continuation payoff
in the next round.

U(M t) =λx(M t)EσE(g,t+1,p)[max{p, c(M t, g), U(M t, g)}]

+ λ(1− x(M t))EσE(b,t+1,p)[max{p, c(M t, b), U(M t, b)}]

+ (1− λ)max{c(M t, o), U(M t, o)}

U(MN) = 0 for any history MN . Denote R(M t) := max{c(M t), U(M t)}.

Equilibrium
A tuple (σE, σG, ϕ) is a perfect Bayesian equilibrium if

1. Given σG and ϕ, σE(m, t, p) > 0 only if p maximizes Employer’s (VNM-
)expected utility upon receiving the signal m in Time t.

p ∈ argmax
p′

Eϕ(Mt
m)[(v(M

t
m)− p′)σG

1 (M
t
m, t, p

′)]

2. Given σE, σG
1 (M

t, p) > 0 only if the offer is weakly higher than the threshold
R. That is p ≥ R(M t). σG

1 (M
t, p) = 1 if the inequality is strict. Similarly,

σG
2 (M

t, p) > 0 only if R(M t) = c(M t) ≥ p. σG
3 (M

t, p) > 0 only if R(M t) =

U(M t) ≥ p.

3. Given σG and σE, ϕ is derived through Bayes’ rule.

Given σG and ϕ, it is weakly dominated to offer a price except from {0, R(Mt)}
in Time t. The threshold R(Mt) can be well defined. Then, given σE and σG, the
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explicit expression of ϕ is obtained through Bayes’ rule. Define L(M t) to be the
likelihood that M t is reached in Time t. L(∅) = 1. Then5,

L(M t, g) = λL(M t)x(M t)
∑

M̃t∈Mt

σE(mt, t, R(M̃ t))σG
3 (M

t, R(M̃ t))

L(M t, b) = λL(M t)(1− x(M t))
∑

M̃t∈Mt

σE(mt, t, R(M̃ t))σG
3 (M

t, R(M̃ t))

L(M t, o) = (1− λ)L(M t)

By Bayes’ rule, if m = g,

ϕ(M t
g) =

L(M t
g)∑

M̃t
g∈Mt

g
L(M̃ t

g)

If m = b,

ϕ(M t
b) =

L(M t
b)∑

M̃t
b∈M

t
b
L(M̃ t

b)

The continuation payoff U(M t) is always higher than the expected outside op-
tion c(M t) if t < N . Therefore, Graduate will wait until the end.

Equilibrium Deduced from Evolving λ

An algorithm can be followed to find an equilibrium. Two-period case is used to
illustrate the intuition. When λ → 0, Graduate seldom meets Employer. Therefore,
Employer can set prices R(g) = R(o, g) = c(g) and R(b) = R(o, b) = c(b) after
receiving g and b respectively. As λ increases, Graduate has incentives to reject the
offer under the bad signal price in Time 1 because he can wait for a good signal
in Time 2 and receive a higher offer. This effect increases her continuation payoff.
Therefore, R(b) increases.

Until λ reaches some point λ1, R(b) equals v(b), in which case Employer who
arrives in Time 1 (B[1]) and receives b gets 0 if he offers R(b). As λ continues to
increase, if Employer who arrives in Time 2 (B[2]) still offers R(o,m) = c(m), he
knows that besides Graduate who has not met a Employer in Time 1, he may also
face Graduate with a bad signal from Time 1 because B[1] receiving b does not offer
any price higher than v(b) in which case Graduate will reject him. Then, offering

5Just for notation, σE(∅, t, p) = 0.
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R(o,m) is still optimal if ∀m ∈ {g, b},

ϕ(o,m)(v(m)− c(m)) + ϕ(b,m)(v(b,m)− c(m)) ≥ ϕ(b,m)(v(b,m)− c(b,m))

⇔ ϕ(o,m)(v(m)− c(m)) ≥ ϕ(b,m)(c(m)− c(b,m))

(2.1)

The left hand side is the payoff from offering R(o,m). The right hand side is the
payoff from offering R(b,m). The inequality means that he has no incentive to
deviate. If that is not the case, either B[2] receiving g or b will mix between R(o,m)

and R(b,m).

Lemma 12. If λ > λ1 and (2.1) is not satisfied, there exists a threshold of prior q̄

such that when q0 < q̄, B[2] receiving g mixes between R(o, g) and R(b, g) while B[2]
receiving b offers R(o, b). When q0 ≥ q̄, B[2] receiving b mixes between R(o, b) and
R(b2) while B[2] receiving g offers R(o, g).

The reason that the initial prior affects who mixes is because if B[2] thinks
the state is less likely to be H ex ante, then he will be reluctant to offer a high
price R(o, g) even if he receives a good signal because he may face Graduate with a
bad signal. If q0 is high, then B[2] with a bad signal believes that he is in a worse
condition. Graduate would trade in Time 1 if the state was H where a good signal
was more likely to occur. If she does not, he may face Graduate with a bad signal.

Focusing on the second case where B[2] with a bad signal mixes according to
z1R(o, b) ⊕ (1 − z1)R(b2), the mixing will lower Graduate’s continuation payoff in
Time 1 and keeps her threshold equal to v(b). It can be written as

R(b) = U(b) = λ{x(b)c(g) + (1− x(b))[z1c(b) + (1− z1)c(b
2)]}+ (1− λ)c(b) = v(b)

Then, B[1] receiving b offers R(b) = v(b) and his utility is 0 if Graduate accepts. To
keep B[2] with b indifferent between R(o, b) and R(b2), B[1] with b offers R(b) with
Probability y1 and 0 with Probability 1 − y1. Then, the indifference condition for
B[2] with b is

ϕ(o, b)[v(b)− c(b)] + ϕ(b, b)[v(b2)− c(b)] = ϕ(b, b)[v(b2)− c(b2)]

where ϕ(o, b) : ϕ(b, b) = (1 − λ)λ(1 − x(∅)) : λ(1 − x(∅))(1 − y1)λ(1 − x(b)). The
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indifference condition is equivalent to

(1− λ)[v(b)− c(b)] = λ(1− y1)(1− x(b))[c(b)− c(b2)]

The equilibrium holds until λ reaches some point λ2 where z1 becomes 0. As λ
continues to increase, B[2] receiving b offers R(b2) optimally. If (2.1) is not satisfied
for B[2] receiving g, he has incentives to mix.

Lemma 13. If λ > λ2, q0 < q̄ and (2.1) is not satisfied for m = b, B[2] receiving
b mixes between R(o, b) and R(b2) while B[2] receiving g offers R(b, g). If λ > λ2,
q0 > q̄ and (2.1) is not satisfied for m = g, B[2] receiving g mixes between R(o, g)

and R(b, g) while B[2] receiving b offers R(b2).

To obtain the algorithm for the general case N ≥ 2, Individual Rationality
constraint and Incentive Compatibility constraint are defined.

Individual Rationality constraint (IR)
Given the equilibrium strategy σG∗ and ϕ∗,

max
p∈{R(Mt)}

Eϕ∗(Mt)[(v(M
t)− p)σG

1
∗(M t, p)] ≥ 0

Incentive Compatibility constraint (IC)
Given the equilibrium strategy σG∗ and ϕ∗, ∀p′ ∈ {R(M t)},

max
p∈{R(Mt)}

Eϕ∗(Mt)[(v(M
t)− p)σG

1
∗(M t, p)] ≥ Eϕ∗(Mt)[(v(M

t)− p′)σG
1
∗(M t, p′)]

The constraint is binding if it is a equality.

Algorithm 2. An equilibrium can be deduced from increasing λ by following such
a process.

1. After setting λ = 0, where Employer who arrives in Time t and receives a
signal m offers R(o, ..., o,m), Graduate accepts the offer with Probability 1.
Then, λ increases continuously.

2. λ stops increasing until the IR constraint of Employer who arrives in Time
1 (B[1]) and receives a signal b is binding. He decreases the probability of
offering R(b) and mixes it with offering 0 until either of the two cases happen:
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Case 1: A sequential Employer’s IC constraint is binding. Then, λ continues
to increase and Employer whose IC constraint is binding mixes the correspond-
ing strategies to keep the B[1] with b’s IR constraint binding. λ continues to
increase.

Case 2: A sequential Employer’s IR constraint is binding. He decreases the
probability of offering R(b) and mixes it with offering 0 to keep the B[1] with
b’s IR constraint binding. λ continues to increase.

3. As λ increases, four cases could happen.

Case 1: The binding IR constraint is not binding. The corresponding Employer
who mixes turns to a pure optimal strategy. λ continues to increase.

Case 2: Another IR constraint is binding. Then, go to Step 2.

Case 3: The binding IC constraint is not binding. The corresponding Employer
who mixes turns to a pure optimal strategy.

Case 4: Another IC constraint is binding. The corresponding Employer mixes
such that the current binding constraints keep binding. λ continues to increase
until either of the four cases happen.

IR constraint of Employer who arrives in Time 1 and receives a signal b is
always first binding. It is because the threshold R(M t

b) is decreasing in t where
M t

b = (o, ..., o, b). R(MN
b ) = c(b). R(M t

g) = c(g).

R(MN−1
b ) =λ[x(b)c(g) + (1− x(b))R(MN

b )] + (1− λ)c(MN−1
b )

>c(b) = R(MN
b )

R(MN−2
b ) =λ[x(b)c(g) + (1− x(b))R(MN−1

b )]

+ (1− λ)λ[x(b)c(g) + (1− x(b))R(MN
b )] + (1− λ)2c(MN−2

b )

>λ[x(b)c(g) + (1− x(b))R(MN
b )] + (1− λ)c(MN−1

b )

=R(MN−1
b )

Then, by applying the mathematical induction, we have R(M t
b) > R(M t+1

b ).

Example 9. Consider a three-period searching process (N = 3). The probability
that a good signal occurs under the state H is µg

H = 0.5. The probability that a
good signal occurs under the state L is µg

L = 0. The value and cost from trading
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is as follows: vH = 3.2, vL = 1.1, cH = 3 and cL = 1. The prior q0 = 0.5. In
this example, once Employer receives the good signal, he is sure that the state is H.
Thus, he offers cH .

Phase 1: when λ is low, λ ∈ (0, 0.31), Employer in Time 1 (B[1]) receiving the
bad signal offers R(b). B[2] offers R(o, b) and B[3] offers R(o, o, b).

Phase 2: as λ increases, λ ∈ [0.31, 0.38), B[1]’s IR condition is binding. Then,
he mixes between offering R(b) and 0. B[2]’s IR condition is binding and he mixes
between offering R(o, b) and 0.

Phase 3: as λ continues increasing, λ ∈ [0.38, 0.44), B[3]’s IC condition is
binding. Then, he mixes between offering R(o, o, b) and R(o, b, b).

Phase 4: when λ ∈ [0.44, 0.6), B[2]’s IR condition is not binding. Then, he
plays the pure strategy by offering R(o, b).

Phase 5: when λ ∈ [0.6, 0.75), B[3]’s IC condition is not binding. Then, he
plays the pure strategy by offering R(b, o, b). B[1] lowers the probability on R(b).
Then, B[2]’s IC condition is binding. Then, he mixes between offering R(o, b) and
R(b2).

Phase 6: when λ ∈ [0.75, 0.82), B[2]’s IR condition is binding. Then, he mixes
between offering R(o, b) and 0.

Phase 7: when λ ∈ [0.82, 1], B[3]’s IC condition is binding. Then, he mixes
between offering R(o, b, b) and R(b, b, b). □

Comparison With Graduate Knows the State ex ante

If Graduate knows the state ex ante, an equilibrium similar to Kaya and Kim [2018]
is obtained. If the prior q0 is high enough, all Employers offer cH regardless of the
signals they receive because Graduate with type H only accepts offers higher than
cH , and if Employer offers the threshold of Graduate of the low type, he can trade
only with the low type. When the threshold is higher than vL, it is dominant to
offer cH . If the prior q0 is low enough, all Employers offer the threshold of Graduate
of the low type regardless of the signals they receive.

Neither strategy is optimal when Graduate does not know the state ex ante.
One reason is the adverse selection effect. It lets Employer arriving in each period
to shade his offer. This effect is accumulated backwards. Thus, in the early stages,
Graduate’s threshold is far lower than Employer’s reservation value. Therefore, even
if Graduate’s type is of high probability to be H, it is optimal for Employer receiving
a bad signal to offer a price equal to Graduate’s threshold. The second reason is
information asymmetry becomes significant as time goes. In the early stages, when
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information asymmetry is not significant, Employer who arrives and receives a good
signal can trade with an offer far lower than cH . That is why even when the prior
is low, the trade can be done once a good signal occurs.

2.6.5 Proofs

Proof of lemma 8:

Since any price p /∈ R(M) is dominated, σE(m, p) > 0 only if p ∈ R(Mm).
Then, for any σE, we can define a mapping T on the value of the threshold R(M).
For any R(M) ∈ [cL, cH ]

|M|, T [R(M)] is defined by the larger one between Gradu-
ate’s expected outside option and the continuation payoff.

T [R](M) = max{c(M), U(M)}

where U(M) is determined backwards

U(M) = x(M)EσE(g,p)[max{p, c(M, g), U(M, g)}]

+ (1− x(M))EσE(b,p)[max{p, c(M, b), U(M, b)}]− s

and if |M | = N , U(M) = 0.

We define a distance d on the space {R(M)} as the Euclidean distance. Then,
({R(M)}, d) is a non-empty complete metric space. To prove the uniqueness of
the threshold, we shall apply the Banach fixed-point theorem, which requires the
mapping T to be a contraction mapping. We have

U(M) ≤ cH − s

cH

(
x(M)EσE(g,p)[max{p, c(M, g), U(M, g)}]

+ (1− x(M))EσE(b,p)[max{p, c(M, b), U(M, b)}]
)

Let δ = cH−s
cH

< 1. Then, for any two thresholds R1 and R2, d
(
T [R1], T [R2]

)
≤

δd
(
R1, R2

)
, which means that the mapping T is a contraction mapping. ■

Proof of lemma 9:

If Employer offers pg = cH and pb = R(b),

R(b) = max{c(b), U(b)} = max{c(b), x(b)cH+(1−x(b))R(b)−s} ⇒ R(b) = cH−
s

x(b)
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Employer finds it optimal to offer pb = R(b) only if v(b) ≥ R(b). That is

v(b) ≥ cH − s

x(b)
⇔ s ≥ x(b)(cH − v(b)) =: s̄1

Otherwise, he mixes between R(b) and R(b2) = c(b2). He offers R(b) with
Probability y, and R(b2) with Probability 1 − y. Graduate with history (b) only
accepts the offers R(b), but accepts both with history (b, b). Then, the value U(b) is

U(b) = x(b)cH + (1− x(b))[yR(b) + (1− y)R(b2)]− s

If U(b) > c(b), then R(b) = U(b). And Employer is indifferent between offering R(b)

and R(b2). That is

(v(b)−R(b))(1− x(∅)) + (v(b2)−R(b))(1− x(∅))(1− x(b))(1− y)

= (v(b2)−R(b2))(1− x(∅))(1− x(b))(1− y)

With the above two equations,

R(b) =
v(b) + s− x(b)cH

1− x(b)

and
y =

R(b)− c(b) + s

(1− x(b))(R(b)− c(b2))

If U(b) reaches c(b), then R(b) = U(b) = c(b). One gets

y =
s

(1− x(b))(R(b)− c(b2))

And Graduate with history (b) receiving offer R(b2) finds it indifferent between con-
tinuing or stopping. She continues with Probability z. Then, Employer is indifferent
between offering R(b) and R(b2). That is

(v(b)− c(b))(1− x(∅)) + (v(b2)− c(b))(1− x(∅))(1− x(b))(1− y)

= (v(b2)− c(b2))(1− x(∅))(1− x(b))(1− y)z

So,

z =
v(b)− c(b)

[c(b)− c(b2)](1− x(b))(1− y)

■
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Proof of lemma 10:

If Employer gives the highest offer pg = cH and pb = R(b), Graduate will search
only if

U(∅) = x(∅)cH + (1− x(∅))R(b)− s > c(∅)

That is
s <

(cH − c(∅))x(b)
1− x(∅) + x(b)

=: s1

If s < s1 and Employer mixes between R(b) and R(b2), Graduate will search at
the beginning only if

U(∅) = x(∅)cH + (1− x(∅))[yR(b) + (1− y)U(b)]− s > c(∅)

Since R(b) = U(b) in this case, the above inequality is equivalent to

v(b) >
x(∅)− x(b)

1− x(∅)
s+ (1− x(b))c(b) + x(b)cH

where one can get s2.

We still need to prove U(b) > c(b), which is

R(b) > c(b) ⇔ v(b) > (1− x(b))c(b) + x(b)cH − s

It is obvious that this inequality holds if the previous one holds.

Finally, if Employer offers only R(b) = c(b) and R(b2) = c(b2), Graduate gets
nothing but the expected outside option. Then, she does not search. ■

Proof of proposition 9:

According to lemma 10, Graduate does not searches if s > s1. According to
lemma 9, Employers offer R(b) if s ≥ s̄1. This gives the first boundary f1(s). Then,
v(b) > f1(s) is corresponding to the first case of lemma 9 and lemma 10.

The definition of s2 forms the second boundary f2(s). Note that if s2 > 0,
s̄2 < 0. If s < s1, f1(s) > f2(s). Then, v(b) ∈ (f2(s), f1(s)) is corresponding to the
second case of lemma 9 and lemma 10.

If v(b) < f2(s), s2 < 0, s̄2 > 0. According to lemma 10, Graduate does not
search and there is no trade. ■

Proof of lemma 11:
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If the equilibrium is of pure-strategy and pb ≥ R(bN−1),

pb ≥ R(bN−1) = max{c(bN−1), U(bN−1)} ≥ x(bN−1)pg + (1− x(bN−1))pb − s

⇔ pg − pb ≤
s

x(bN−1)

As s ∼ o(1/NlogN), the right hand side converges to 0.

If all prices pb supported are higher than R(bN−1),

E[pb] ≥ R(bN−1) = x(bN−1)E[pg] + (1− x(bN−1))E[pb]− s

⇔ E[pg]− E[pb] <
s

x(bN−1)

As s ∼ o(1/NlogN), the right hand side converges to 0. ■

Proof of proposition 10:

We first prove that there is no pure strategy equilibrium where Employer offers
R(bN) after receiving a bad signal. If it is not the case, we prove that offering
R(bN−1) is better than R(bN). We compare the expected payoff of offering R(bN−1)

ϕ(bN−1)[v(bN−1)−R(bN−1)] + ϕ(bN)[v(bN)−R(bN−1)]

and offering R(bN)

ϕ(bN)[v(bN)−R(bN)]

where ϕ(bN)/ϕ(bN−1) = 1− x(bN−1).

As N → +∞ and s ∼ o(1/NlogN), R(bN−1) → cL, R(bN) → cL, x(bN−1) → 0,
v(bN−1) → vL and v(bN) → vL. It is easy to verify that the expected payoff of
offering R(bN−1) is higher than offering R(bN).

Then, we prove that the mixed-strategy equilibrium where Employer mixing
between R(bN−1) and R(bN) exists as vH − cH → 0. Assume that he offers R(bN−1)

with Probability y. The value of R(bN−1) is

R(bN−1) = x(bN−1)cH + (1− x(bN−1))[yR(bN−1) + (1− y)R(bN)]− s

The indifference condition claims that the expected payoff of offering R(bN−1) and
offering R(bN) should be the same.

[v(bN−1)−R(bN−1)]ϕ(bN−1) + [v(bN)−R(bN−1)]ϕ(bN) = [v(bN)−R(bN)]ϕ(bN)



Chapter 2. Adverse Selection with Dynamic Learning 83

where ϕ(bN)/ϕ(bN−1) = [1− x(bN−1)](1− y).
With these two equations, we get

R(bN−1) =
v(bN−1)− x(bN−1)cH

1− x(bN−1)
+ s

and
y = 1− x(bN−1)

1− x(bN−1)

cH − v(bN−1)

v(bN−1)− c(bN−1)

As N → +∞, R(bN−1) → vL and y → 1.
Next, we need to prove Employer has no incentive to offer R(bi), i = 1, 2, ..., N−

2. We prove that it is not optimal to offer R(bN−2) and one can use the same
procedure to prove the rest.

First, the value of R(bN−2) is

R(bN−2) = x(bN−2)cH + [1− x(bN−2)]R(bN−1)− s

Then, the expected payoff of offering R(bN−2) is

[v(bN−2)−R(bN−2)]ϕ(bN−2)+ [v(bN−1)−R(bN−2)]ϕ(bN−1)+ [v(bN)−R(bN−2)]ϕ(bN)

Compare it with the expected payoff of offering R(bN−1). The difference is

[v(bN−2)−R(bN−2)]ϕ(bN−2)− [R(bN−2)−R(bN−1)][ϕ(bN−1) + ϕ(bN)]

where ϕ(bN−2) : ϕ(bN−1) : ϕ(bN) = 1 : [1−x(bN−2)] : [1−x(bN−2)][1−x(bN−1)](1−y).
As N → +∞, s ∼ o(1/NlogN) and y → 1. So, ϕ(bN) is negligible compared to

ϕ(bN−1) and ϕ(bN−2). Along with v(bN−2) = x(bN−2)vH + [1− x(bN−2)]v(bN−1), the
difference becomes

x(bN−2)(vH − cH) + (cH − vL)[x(b
N−1)− x(bN−2)]

We have x(bi) = µg
Hq(b

i) and

q(bi+1) =
(1− µg

H)q(b
i)

(1− µg
H)q(b

i) + (1− q(bi))

The difference being lower than 0 is equivalent to vH − cH < µg
H(cH − vL), which is

satisfied when vH − cH → 0.
Since s ∼ o(1/NlogN), without an offer cH , Graduate searches to the last two
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Employers whatever her type. For a high-type Graduate, with Probability 1, she
receives a good signal as N → +∞. For low-type Graduate, she accepts the offer
vL in the last two rounds of searching. Since y → 1, vL is given with Probability 1
after a bad signal.

Finally, we need to verify that Graduate searches until the final Employer. It
is obvious that R(bi) = U(bi) > c(bi), ß = 1, .., N − 1, and

U(∅) > q0 · cH + (1− q0) · vL −N · s > c(∅) ■

Proof of lemma 12:

If (2.1) is not satisfied, then two cases could occur.

Case 1: there exists a y > 0 such that

ϕ(o, b)(v(b)− c(b)) = ϕ(b, b)(1− y)(c(b)− c(b2))

and
ϕ(o, g)(v(g)− c(g)) > ϕ(b, g)(1− y)(c(g)− c(b, g))

where the B[2] receiving b mixes.

Case 2: there exists a y > 0 such that

ϕ(o, g)(v(g)− c(g)) = ϕ(b, g)(1− y)(c(g)− c(b, g))

and
ϕ(o, b)(v(b)− c(b)) > ϕ(b, b)(1− y)(c(b)− c(b2))

where the B[2] receiving g mixes.

Which case happens depends on:

d1 − d2 =
ϕ(o, b)(v(b)− c(b))

ϕ(b, b)(c(b)− c(b2))
− ϕ(o, g)(v(g)− c(g))

ϕ(b, g)(c(g)− c(b, g))
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If it is negative, it leads to case 1. Otherwise, it leads to case 2.

d1 − d2 =
ϕ(o, b)(v(b)− c(b))

ϕ(b, b)(c(b)− c(b2))
− ϕ(o, g)(v(g)− c(g))

ϕ(b, g)(c(g)− c(b, g))

=
(1− λ)λ(1− x(∅))(v(b)− c(b))

λ2(1− x(∅))(1− x(b))(c(b)− c(b2))
− (1− λ)λx(∅)(v(g)− c(g))

λ2(1− x(∅))x(b)(c(g)− c(b, g))

=
(1− λ)[(vH − cH)q(b) + (vL − cL)(1− q(b))]

λ(1− x(b))(cH − cL)(q(b)− q(b, b))

− (1− λ)x(∅)[(vH − cH)q(g) + (vL − cL)(1− q(g))]

λ(1− x(∅))x(b)(cH − cL)(q(g)− q(b, g))

With

q(b)− q(b, b) = q(b)− q(b)µb
H

q(b)µb
H + (1− q(b))µb

L

=
q(b)(1− q(b))(µb

L − µb
H)

1− x(b)

q(g)− q(b, g) = q(g)− q(g)µb
H

q(g)µb
H + (1− q(g))µb

L

=
q(g)(1− q(g))(µb

L − µb
H)

1− x(g)

x(b) = q(b)µg
H + (1− q(b))µg

L

x(g) = q(g)µg
H + (1− q(g))µg

L

q(b) =
q0µ

b
H

q0µb
H + (1− q0)µb

L

q(g) =
q0µ

g
H

q0µ
g
H + (1− q0)µ

g
L

Then

d1 − d2 < 0

⇔ (vH − cH)q(b) + (vL − cL)(1− q(b))

(1− x(b))(q(b)− q(b, b))
− x(∅)[(vH − cH)q(g) + (vL − cL)(1− q(g))]

(1− x(∅))x(b)(q(g)− q(b, g))
< 0

⇔ q0 > q̄ =
(vL − cL)µ

g
Lµ

b
L(µ

g
H − µb

H)

(vL − cL)(µ
g
Hµ

g
L − µb

Hµ
b
L)(µ

g
H − µb

L) + kµb
Hµ

g
H(µ

b
L − µg

L)
■

Proof of lemma 13:

As δ > δ2, case 1 in the proof of lemma 12 becomes

ϕ(o, b)(v(b)− c(b)) < ϕ(b, b)(1− y)(c(b)− c(b2))

and
ϕ(o, g)(v(g)− c(g)) = ϕ(b, g)(1− y)(c(g)− c(b, g))
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while case 2 becomes

ϕ(o, g)(v(g)− c(g)) < ϕ(b, g)(1− y)(c(g)− c(b, g))

and
ϕ(o, b)(v(b)− c(b)) = ϕ(b, b)(1− y)(c(b)− c(b2)) ■



Chapter 3

Markets with Behavioral Agents

3.1 Introduction

Markets are not perfect, and one of the reasons for this is the agents with bounded
rationality. Bounded rationality is the idea that people’s decision-making abilities
are limited by their cognitive abilities and the information available to them, which
can lead to suboptimal decisions. Cognitive limitations refer to the fact that people’s
cognitive abilities are finite, which can result in biases and errors in decision-making.
The complexity of the information environment can also make it difficult for indi-
viduals to process all of the available information and make optimal decisions. This
chapter revisits the models discussed in the previous chapters in these two ways.

Section 3.2 revisits the market for talent, the "author-paper-journal" market.
As the information disadvantage side, publishing qualified papers requires editors
to avoid cognitive errors, which is different because the only information they can
rely on is the signal they observe. First, editors should recognize that receiving a
paper is an additional signal: the paper might have been rejected. He should correct
this selection bias effect by only accepting papers with better signals. Otherwise, he
overestimates the quality of the paper and sets a lower threshold of the signal than
a rational editor. Secondly, editors should be aware that the author’s decision to
(re)submit or quit is based on her type, not randomizing. If the editor is unaware
of the fact that the paper comes from a high-type author probably, he tends to set
a higher threshold.

Moreover, if the incumbents deviate from setting optimal thresholds due to
some cognitive errors, it reduces the level of selection bias effect in the market, as
papers rejected by the incumbents are either of too low quality to be published
elsewhere, or of sufficient quality to be published. This offers entrants the chance

87
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to challenge the incumbents’ status.

Section 3.3 revisits the Graduate-Employer market. Compared to Graduate,
selected Employers need to make a much more complicated decision, let alone the
only information they have the feedback from interview. Thus, Employers sometimes
rely on previous experiences to determine optimal strategies. However, misusing
information could lead to irrational action. The objective is to find which pieces
of information are essential for the agents to make an optimal decision and how it
affects agents’ behavior if they misuse them.

Before entering the market, Employer learns how to bid from the historical
document which records previous Employers’ offers, corresponding signals, corre-
sponding Graduates’ types, and acceptance outcomes. These are things Employer
should know to make an optimal decision, from which he determines: i) the prob-
ability of Graduate’s type given a particular signal; ii) the probability of his offer
being accepted conditional on the signal and Graduate’s type.

Then, I introduce a type of Employer who lacks sophistication and does not
consider Graduate’s type when determining the second probability. This unsophis-
ticated Employer fails to recognize that low-type Graduates are more likely to accept
his offer than high-type Graduates. Consequently, he tends to overbid due to his
overexpectation of the value from trading. Furthermore, the adverse selection effect
exacerbates this overbidding tendency. This finding can be applied to explain over-
bidding in corporate acquisitions, where the value of the target is difficult to observe
and bidding firms may be influenced by hubris (Coff [2002], Hayward and Hambrick
[1997], Roll [1986]).

Secondly, I consider another type of unsophisticated Employer who does not
take the signal into account when determining the second probability. This Em-
ployer assumes that Graduates behave in a stationary manner conditional on her
type, and expects that high-type or low-type Graduate plays a mixed-strategy where
she accepts the offer with some probability. He may underbid compared to rational
Employers because he can not differentiate between higher prices offered to Em-
ployers who received good signals and lower prices offered to those who received
bad signals since he groups the data together. If the latter were accepted with high
probability, unsophisticated Employer observes from the data that he can still make
the trade by offering a lower price. Thus, he mistakenly believes that he can increase
his payoff by underbidding. It decreases the deal prices in the market, which further
weakens the willingness of Employer to offer a high price because of the adverse
selection effect.
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3.1.1 Related Literature

This study uses the analogy-class approach (Jehiel [2005]) to characterize bounded
rational Employers, where they bundle the nodes into the analogy-classes. A real
situation is presented to show how Employers form different kinds of coarse analogy-
classes. In one case, Employer forms an expectation of the value from the trade,
which is unconditional on whether Graduate will accept their offer. Eyster and Rabin
[2005] applies this approach in the static adverse selection model, and Esponda [2008]
modifies this approach by allowing Employers to adjust their behavior to correct the
bias between the experience and the belief. In the other case, Employer has access
only to how the behavior of Graduate depends on their type which corresponds to
the payoff-relevant analogy partition (Jehiel and Koessler [2008]). They reason that
the behavior of Graduate is stationary conditional on their type.

3.2 Bounded Rational Editor

This section discusses possible mistakes that an editor could make due to their
bounded rationality. The first type of naive editor does not realize that "being
sampled" contains some information, while the second type of bounded rational
editor does not know that the author has private information (i.e., their type) and
takes action based on probabilities given each history.

Editor with "Sampling Curse"

To illustrate the result, the following simplified case is illustrated: the type of the
author θ is either high (H) or low (L). There are two journals. Table 3.1 lists
the likelihood l(θ, h) of the combination of the author’s type θ and his history h,
where µθ is the prior distribution of type and PR

θ is probability that the paper of
the type-θ author is reject. PR

H < PR
L , which means that the high-type author is less

likely to get rejection. It is assumed that the submission costs are negligible so that
the author will try again regardless of his type.

θ\h ∅ (A)
H µH µH · PR

H

L µL µL · PR
L

Table 3.1: Likelihood of the combination of the author’s type θ and his history h.

The naive editor knows the prior distribution of the authors’ type and the
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conditional probability of the author’s history given her type,1 but does not realize
that "receiving a paper" itself is an extra signal. He computes the probability,

Pr [θ = H, h = ∅] = Pr [θ = H]Pr
[
h = ∅

∣∣θ = H
]
=

µH

1 + PR
H

and
Pr [θ = L, h = ∅] = Pr [θ = L]Pr

[
h = ∅

∣∣θ = L
]
=

µL

1 + PR
L

However, for the sophisticated editor being aware of "sampling curse", he com-
putes the conditional probability

Pr
[
θ = H, h = ∅

∣∣sampled
]

=
1
2
l(H, ∅)

1
2
l(H, ∅) + 1

2
l(L, ∅) + 1

2
l(H, (A)) + 1

2
l(L, (A))

=
µH

1 + µHPR
H + µLPR

L

and

Pr
[
θ = L, h = ∅

∣∣sampled
]

=
1
2
l(L, ∅)

1
2
l(H, ∅) + 1

2
l(L, ∅) + 1

2
l(H, (A)) + 1

2
l(L, (A))

=
µL

1 + µHPR
H + µLPR

L

It is easy to verify that Pr [θ = H, h = ∅] > Pr [θ = H, h = ∅|sampled] and
Pr [θ = L, h = ∅] < Pr [θ = L, h = ∅|sampled] and it is also true for history h =

(A). The naive editor overestimates the author’s type, and furthermore, the paper’s
quality. Thus, compared to the sophisticated editor, he tends to set a lower threshold
of the signal.

Proposition 11. When search costs are negligible c → 0, the naive editor sets a
threshold s̃A < s∗A.

Editor with Analogy-based Expectation

Another kind of bounded rational editor who does not know that the author has
private information (her type) is considered. He only observes that a proportion of
the authors quit after being rejected, without realizing that the author takes action
according to her type (the high-type author resubmits but the low-type quits). Then,
he believes that the author rejected mixes between resubmitting and stopping. The

1In a real situation, the naive editor perceives that from asking his colleagues how many times
their papers have been rejected and whether they will submit again.
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analogy-based approach (Jehiel [2005]) is used to characterize the solution concept.
More specifically, the naive editor bundles authors with the same history (whatever
her type) into analogy classes, and he only tries to learn their average behavior in
each analogy class.

Analogy-based Expectation Equilibrium (ABEE)

A tuple (γ, τ̂ , η̂A, β̂A, ξ, α) is an ABEE if

1. Bounded rational editors put the authors with the same history h but different
types into the same analogy class α(h), and form an analogy-based expectation
that the author (re)submits with Probability ξ(h), and stops with Probability
1− ξ(h).

ξ(h) =

∫
τ̂(θ,h)=A

µ(θ|h)dθ

µ(θ|h) is the distribution of authors’ type conditional on their history h.

2. Given signal s and belief β̂A, class-A journals accept a paper (η̂A(s) = Ac) if
and only if the expected quality is higher than qA,

Eβ̂A
[q|s] ≥ qA

3. Given her history h, the author calculates the expected payoff of submitting
her paper to a class-A journal. That is,

π̂A(θ, h) = v

∫
γ(q|θ, h)

∫
η̂A(s)=Ac

ϕ(s, q, σs)dsdq − c

If π̂A(θ, h) ≥ 0 and the author has not tried all journals, she submits her paper
to a journal of class-A she has not tried before (τ̂(θ, h) = A). Otherwise, she
stops (τ̂(θ, h) = stop).

4. Given ξ and η̂A, γ(q|θ, h) and β̂A(q) are derived by Bayes’ rule.

β̂A(q) =
m−1∑
i=0

L̂(q, h = Ai)

/
m−1∑
i=0

∫
L̂(q, h = Ai)dq

L̂(q, h = Ai) =
1

m
·
∫

µ(θ)f(q|θ)dθ ·

(
i∏

j=0

ξ(Aj)

)
·
(∫

η̂A(s)=Rj

ϕ(s, q, σs)ds

)i
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In this case, the bounded rational editor is unaware of the fact that the paper in
hand probably comes from a high-type author. Thus, compared to the sophisticated
editor, he tends to set a higher threshold of the signal.

Proposition 12. The bounded rational editor with analogy-based expectation sets a
threshold ŝA > s∗A.

3.2.1 Bounded Rational Incumbents

The previous sections show that the editor’s decision can be biased by different
mistakes he makes. In this section, I study the impact of such biases on entry
barriers when the incumbents are not fully rational. I find that entry barriers are
reduced regardless of the direction of the bias. This is because, under both types of
biases, the selection bias effect is less significant, making receiving rejected papers
less disadvantageous.
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Figure 3.1: The quality follows a normal distribution: f(q) = ϕ(q, 0, σq). The signal
conditional on quality follows a normal distribution ϕ(s, q, σs). The value function
is linear, v(Q) = max{0, Q}/Q0

I . The parameters are: σq = 1, σs = 0.1.

If the incumbents are of the first kind of naivety (neglecting the selection bias
effect) and set lower thresholds, the rejected papers are of poor quality and are
harder to be republished by the entrant. Figure 3.1 shows the shaded area where
the entrant’s threshold lies, which makes it the first option for authors. If the
incumbents set a threshold s′I lower than the optimal threshold s0I , the entrant
can challenge them by setting a slightly higher threshold, ensuring that most papers
published have not been rejected previously. This results in both the average quality
and acceptance rate being competitive with the incumbents.



Chapter 3. Markets with Behavioral Agents 93

On the other hand, if the incumbents are of the second kind of naivety (igno-
rance about the authors’ private information) and set higher thresholds, rejected
papers are not necessarily of low quality, and receiving them is also not unaccept-
able. In this case, the entrant can challenge the incumbents by setting a slightly
lower threshold, keeping the average quality similar to the incumbents but bringing
a higher acceptance rate.

3.3 Bounded Rational Employers

Determining the probability of the history ϕ(M) and calculating the Graduate’s
threshold R(M) for each history M is an arduous task for Employers, especially when
they only receive a single signal m. Furthermore, comprehending the relationship
between their offer, the probability of the trade, and the conditional expectation
of the trade’s value adds an additional layer of complexity. To assist agents in
decision-making, providing access to historical data allows them to learn from the
data. This section presents a scenario in which agents can make optimal decisions
given sufficiently complete historical data. Additionally, it analyzes how agents
behave when they misuse the data.

Before entering the market, Employers review historical data comprising former
Employers’ offers, the signal they received, the corresponding state, and whether the
offer was accepted. They do not know which Graduate met which Employer or in
which round Employer was sampled. Here is an example.

Offer Price ... 1 1 1 2 2 2 2 2 3 3 ...
Signal ... b g g b g b g b g b ...
State ... H H H L H H L L L H ...

Accept or Not ... NA NA A A NA A NA A A A ...

After collecting the information, Employer wants to find the answers of two
questions: i) what is the probability that Graduate is of high type; ii) what is the
probability she will accept the offer p. Therefore, first, he calculates the probability
of state H if signal g or b occurs by utilizing data. For instance, suppose that there
were mg good signals among all records, and ng of them were linked to state H. In
that case, the posterior probability that the state is H given a good signal Pr[H|g]
is ng/mg. The probability Pr[H|b] is defined similarly. For example, suppose there
are eleven records as follows, with the upper line indicating the signals and the lower
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line indicating the corresponding types:

Signal g g b b g b g g b b g
State H H L L H H H L L L L

Employer observes that once a good signal occurs, there is 4/6 probability that the
state is H, and once a bad signal occurs, the probability is 1/5.

Secondly, he calculates the probability that an offer p was accepted given the
signal m and the state θ, denoted as β(p|θ,m). There exists some perturbation in
Employers’ offer. The perturbation is sufficiently small such that it does not affect
Graduate’s behavior but it gives Employer β(p|θ,m) on each price p.

Offer Price 2 2 2 2 2 2 2 2 2 2
Signal b g g b g b g b g b
State H H H L H H L L L H

Accept or Not NA NA A A NA A NA A A A

In the above case, Employer observes that, once a good signal occurs and the state
is H, Graduate accepts Offer 2 with Probability 1/3. Therefore, β(2|H, g) = 1/3.
Additionally, β(2|L, g) = 1/2, β(2|H, b) = 2/3, β(2|L, b) = 1.

Given these two probabilities, Employer chooses a price p such that

πR(p|m) = (vH − p)Pr[H|m]β(p|H,m) + (vL − p)Pr[L|m]β(p|L,m)

is maximized after receiving a signal m.

This information structure is sufficient for Employers to make an optimal de-
cision. Knowing the function β(p|θ,m) enables Employers to find an optimal offer
along with the Pr[θ|m] because now the function β(p|θ,m) can select Graduate
with different histories under both states θ = H and θ = L. Thus, as the document
includes sufficiently big data, Employer behaves in the same way as the one in the
rational model.

Proposition 13. πR(p|m) converges in probability to rational Employer’s payoff
Eϕ(Mm)[(v(Mm)− p)σG

1 (Mm, p)].

The idea of the proof is demonstrated by rewriting Eϕ(Mm)[(v(Mm)−p)σG
1 (Mm, p)]
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as follows:

Eϕ(Mm)[(v(Mm)− p)σG
1 (Mm, p)] =

∑
Mm∈Mm

(v(Mm)− p)σG
1 (Mm, p)ϕ(Mm)

= (vH − p)

( ∑
Mm∈Mm

q(Mm)ϕ(Mm)

)∑
Mm∈Mm

q(Mm)ϕ(Mm)σ
G
1 (Mm, p)∑

Mm∈Mm
q(Mm)ϕ(Mm)

+ (vL − p)

( ∑
Mm∈Mm

(1− q(Mm))ϕ(Mm)

)∑
Mm∈Mm

(1− q(Mm))ϕ(Mm)σ
G
1 (Mm, p)∑

Mm∈Mm
(1− q(Mm))ϕ(Mm)

Then, the empirical perception Pr[H|m] converges to
∑

Mm∈Mm
q(Mm)ϕ(Mm), and

β(p|H,m) to
∑

Mm∈Mm
q(Mm)ϕ(Mm)σG

1 (Mm,p)∑
Mm∈Mm

q(Mm)ϕ(Mm)
.

The next two subsections discuss how Employers’ behavior changes when Em-
ployers misuse the data.

3.3.1 Employers with Private-Information Analogy Classes

This section assumes that when calculating the probability of an offer p being ac-
cepted by Graduate, Employer only refers to the signal m, denoted as βI(p|m).

Offer Price 2 2 2 2 2 2 2 2 2 2
Signal b g g b g b g b g b

Accept or Not NA NA A A NA A NA A A A

Employer observes that once a good signal occurs, Graduate accepts Offer 2 with
Probability 2/5. Once a bad signal occurs, Graduate accepts Offer 2 with Probability
4/5.

This coarse Employer chooses a price p such that

πI(p|m) = (vH − p)Pr[H|m]βI(p|m) + (vL − p)Pr[L|m]βI(p|m)

is maximized after receiving a signal m. To observe how this differs from the rational
case, one can notice the equivalency that irrational Employer forms an expectation
of the value from trading,

EI [v|m] = vH · Pr[H|m] + vL · Pr[L|m],

which is unconditional on whether his offer will be accepted by Graduate.
He faces a supply function βI(p|m), and maximizes πI(p|m) = (EI [v|m]−p)βI(p|m).
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In contrast, for a rational Employer, if he offers p, the conditional expected
value of the trade is

ER[v|m] =
vH · Pr[H|m]β(p|m,H) + vL · Pr[L|m]β(p|m,L)

Pr[H|m]β(p|m,H) + Pr[L|m]β(p|m,L)

He maximizes the payoff πR(p|m) = (ER[v|m]− p)βI(p|m).

In general, β(p|m,L) ̸= β(p|m,H) because low-type Graduate is more likely
to generate bad signals and underrates her expectation of offers from the market.
Consequently, she accepts offers with higher probability, which makes the difference
between the expected value of the trade for rational and coarse Employers. Rational
Employers realize this fact and update their belief in their expectation when making
offers. They know that, in some sense, their offers screen Graduate’s history. In
contrast, coarse Employers do not, leading them to overvalue the gain from the
trade.

To formalize the analysis, the analogy-based approach is used to formally model
this kind of defection of the agents’ ability and this study terms them Employers
with private-information analogy classes.2 Bounded rational Employers, who bundle
all the nodes (histories) Mg into an analogy-class αg and all the nodes Mb into the
other analogy-class αb, are considered. This grouping allows Employers to use the
information contained in the signal m to form expectations regarding Graduate’s
acceptance probabilities, which are now represented as mixed strategies. Specifically,
after receiving a signal m, Employer expects that Graduate will accept an offer p

with Probability β(p|m) =
∑

Mm∈αm
ϕ(Mm)σ

G
1 (Mm, p). Employer then chooses a

price p that maximizes the expected profit:

Eϕ(Mm)[(v(Mm)− p)βI(p|m)] = (Eϕ(Mm)[v(Mm)]− p)βI(p|m)

As the data set grows larger, it can be shown that the expression (EI [v|m] −
p)βI(p|m) converges to the above expression.

Analogy-based Expectation Equilibrium (ABEE)

A tuple (σE, σG, ϕ, {αg, αb}, {βI(·|g), βI(·|b)}) is an ABEE of Employer with
private-information analogy classes if

1. Employers form an analogy-based expectation that Graduate accepts the offer

2This part is technical and skipping it does not affect the understanding of the result.
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p upon receiving the signal m. That is3

βI(p|m) =
∑

Mm∈αm

ϕ(Mm)σ
G
1 (Mm, p)

2. Given β and ϕ, σE(m, p) > 0 only if p maximizes Employer’s expected utility
upon receiving the signal m.

p ∈ argmax
p′

(Eϕ(Mm)[v(Mm)]− p′)βI(p′|m)

3. Given σE, σG
1 (M, p) > 0 only if the offer is weakly higher than the larger one

between the outside option and the continuation payoff, that is, the threshold
R. That is p ≥ R(M). σG

1 (M, p) = 1 if the inequality is strict. Similarly,
σG
2 (M, p) > 0 only if R(M) = c(M) ≥ p. σG

3 (M, p) > 0 only if R(M) =

U(M) ≥ p.

4. Given σG and σE, ϕ is derived through Bayes’ rule.

Due to bounded rationality, coarse Employer may not realize that a higher
offer can attract Graduates with both good and bad histories. As a result, when
the average value Eϕ(Mm)[v(Mm)] or EI [v|m] is sufficiently high, coarse Employers
tend to overbid, particularly when adverse selection effects are significant, such as
when search costs are low. Rational Employers shade their offers to avoid trading
with Graduate who receives bad signals and waits for a high offer, which makes
Graduate of the high type who often receives good signals unable to accept. In
contrast, coarse Employer perceives an increase in the average value of trades as
such type of Graduate is more adverse selected.

To investigate the tendency of coarse Employer to overbid when faced with
significant adverse selection effects, we revisit the scenario where a good signal is
received only by high-type Graduates, that is, µg

H > µg
L = 0. If p∗b = R(b) is

a rational equilibrium, the sampled Employer knows he is the first one Graduate
meets and E[v|b] = v(b). Graduate’s threshold R(b) is the same as those under the
rational case. In other words, there is no adverse selection, and coarse Employers

3There exists some perturbation in Employers’ strategy. σE
ϵ (m, p) is a perturbation of σE(m, p).

That is, ∀p, σE
ϵ (m, p) > 0 and σE

ϵ (m, p) → σE(m, p) as ϵ → 0. Then,

βI(p|m) =

∑
Mm∈αm

ϕ(Mm)σE
ϵ (m, p)σG

1 (Mm, p)∑
Mm∈αm

ϕ(Mm)σE
ϵ (m, p)

=
∑

Mm∈αm

ϕ(Mm)σG
1 (Mm, p)
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behave in the same way as rational Employers. In case this assumption does not
hold, Algorithm 1 can be utilized to obtain the ABEE.

It is worth noting that coarse Employers may deem it optimal to offer high-
ranking thresholds, even if rational Employers do not. Specifically, rational Em-
ployers consider it individually rational to offer R(bn) when v(bn)−R(bn) ≥ 0. For
coarse Employers, however, the condition becomes EI [v|b]−R(bn) ≥ 0. In the event
that offering R(bn) is a pure strategy equilibrium for rational Employers, coarse
Employers also find it profitable to offer R(bn) as EI [v|b] ≥ v(bn).

Moreover, as the adverse selection effect becomes more significant and EI [v|b]
increases sufficiently, coarse Employers tend to overbid. This phenomenon is evident
when the following condition holds:

(EI [v|b]−R(bn−1))ϕ(bn−1) + (EI [v|b]−R(bn−1))ϕ(bn) > (EI [v|b]−R(bn))ϕ(bn)

⇔ (EI [v|b]−R(bn−1))ϕ(bn−1) > (R(bn−1)−R(bn))ϕ(bn)

Coarse Employers find it optimal to increase their offers, which indicates that they
tend to overbid.

Proposition 14. Suppose µg
L = 0 and pb is the minimal offer from rational Em-

ployer receiving the bad signal in the equilibrium deduced by algorithm 1, then there
exists an ABEE for coarse Employer with private-information analogy classes where
his minimal offer after receiving the bad signal is weakly higher than pb.

Example 10. (A case where the adverse selection effect is not significant) Consider
a rational equilibrium where pg = R(g) and pb = R(b2).

∅

g

g,g

g,b

b

b,g

b,b

Figure 3.2: The equilibrium where rational Employers’ strategy is pg = R(g) and
pb = R(b2).
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When receiving a bad signal, coarse Employers find it profitable to offer R(b)

when

[EI [v|b]−R(b)]ϕ∗(b) + [EI [v|b]−R(b)]ϕ∗(b2) > [EI [v|b]−R(b2)]ϕ∗(b2)

⇔ [EI [v|b]−R(b)]ϕ∗(b) > [R(b)−R(b2)]ϕ∗(b2)

However, since v(b) > EI [v|b] and rational Employer does not deviate by choos-
ing R(b),

[v(b)−R(b)]ϕ∗(b) + [v(b)−R(b)]ϕ∗(b2) < [v(b)−R(b2)]ϕ∗(b2)

⇔ [v(b)−R(b)]ϕ∗(b) < [R(b)−R(b2)]ϕ∗(b2)

Offering R(b) yields less payoff than R(b2) for coarse Employer also. So, coarse
Employer receiving a bad signal does not increase his offer because the average value
is not high enough. □

3.3.2 Employers with Payoff-Relevant Analogy Classes

This section assumes that when calculating the probability of an offer p being ac-
cepted by Graduate, Employer only refer to the state θ, denoted as βP (p|θ).

Offer Price 2 2 2 2 2 2 2 2 2 2
State H H H L H H L L L H

Accept or Not NA NA A A NA A NA A A A

In the above example, Employer observes that if the state is H, Graduate accepts
Offer 2 with Probability 1/2. If the state is L, Graduate accepts Offer 2 with
Probability 3/4.

This coarse Employer chooses a price p such that

πP (p|m) = (vH − p)Pr[H|m]βP (p|H) + (vL − p)Pr[L|m]βP (p|L)

is maximized after receiving a signal m. Specifically4, he bundles all the nodes
(histories) (H,M) into an analogy-class αH and all the nodes (L,M) into the other
analogy-class αL. He expects that the Graduate plays a mixed-strategy where they
accept an offer p with Probability βP (p|θ). He reasons that Graduate’s behavior
is stationary conditional on the state. In this model, the state is related to the

4This part is technical and skipping it does not affect the understanding of the result.
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ex post payoff from the trade. Therefore, this study terms them Employers with
payoff-relevant analogy classes.

Analogy-based Expectation Equilibrium (ABEE)
A tuple (σE, σG, ϕ, {αH , αL}, {βP (·|H), βP (·|L)}) is an ABEE of Employers

with payoff-relevant analogy classes if

1. Employers form an analogy-based expectation that Graduate accepts the offer
p conditional on the state

βP (p|θ) =
∑

m∈{b,g}
∑

(θ,Mm)∈αθ
ϕ(θ,Mm)σ

E
ϵ (m, p)σG

1 (Mm, p)∑
m∈{b,g}

∑
(θ,Mm)∈αθ

ϕ(θ,Mm)σE
ϵ (m, p)

where ϕ(θ,Mm) is the probability that the node (θ,Mm) is reached.5 σE
ϵ (m, p)

is a perturbation of σE(m, p). That is, ∀p, σE
ϵ (m, p) > 0 and σE

ϵ (m, p) →
σE(m, p) as ϵ → 0.

2. Given β and ϕ, σE(m, p) > 0 only if p maximizes Employer’s expected utility
upon receiving the signal m.

p ∈ argmax
p′

(vH − p′)Pr[H|m]βP (p′|H) + (vL − p′)Pr[L|m]βP (p′|L)

where Pr[θ|m] is the conditional probability of the state upon receiving the
signal m. That is

Pr[θ|m] =

∑
Mm∈Mm

ϕ(θ,Mm)∑
Mm∈Mm

[ϕ(H,Mm) + ϕ(L,Mm)]

3. Given σE, σG
1 (M, p) > 0 only if the offer is weakly higher than the larger one

between the outside option and the continuation payoff, that is, the threshold
R. That is p ≥ R(M). σG

1 (M, p) = 1 if the inequality is strict. Similarly,
σG
2 (M, p) > 0 only if R(M) = c(M) ≥ p. σG

3 (M, p) > 0 only if R(M) =

U(M) ≥ p.

4. Given σG and σE, ϕ is derived through Bayes’ rule.

In the simplified case where µg
H > µg

L = 0, coarse Employer tends to offer a
lower price after receiving a bad signal compared to rational Employer. A two-
period searching case is used to illustrate intuition. Suppose, in the pure strategy

5ϕ(Mm) = ϕ(H,Mm) + ϕ(L,Mm).
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equilibrium, rational Employer offers pb = R(b) after receiving the bad signal. He
offers pg = cH after receiving the good signal, as shown in Figure 3.3.

θ

L b R(b)

H

b R(b)

g cH

Figure 3.3: The signal structure of the two-Employer case.

We can focus on the state H and obtain the supply functions. Graduate with
history (b) is offered R(b) and accepts it with Probability 1, while Graduate with
history (g) is offered cH and also accepts it with Probability 1.

β(R(b)|H, b) = 1, β(cH |H, g) = 1

However, coarse Employer can not know that R(b) and cH are offered by Em-
ployers with different signals since the data is bundled in the same category. There-
fore, he learns that high-type Graduate not only accepts cH with Probability 1 but
also accepts R(b) with Probability 16,

βP (R(b)|H) = 1, βP (cH |H) = 1

As a result, he mistakenly believes he could still trade with Graduate even if he
offers a low price.

Proposition 15. Suppose µg
L = 0 and pb is the maximal offer from rational Em-

ployer receiving the bad signal in the equilibrium deduced by algorithm 1, then there
exists an ABEE for coarse Employer with payoff-relevant analogy classes where his
maximal offer after receiving the bad signal is weakly lower than pb, and he could
offer a price other than cH after receiving the good signal.

6More specifically, there is perturbation in Employer’s strategy, so we have the supply function
β on each price. A negligible proportion of Graduate with history (g) was offered R(b) and rejected
it. A negligible proportion of Graduate with history (b) was offered cH and accepted it.

β(R(b)|H, g) = 0, β(cH |H, b) = 1

Then,
βP (R(b)|H) → 1, βP (cH |H) = 1
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This proposition demonstrates that coarse Employer lowers his offer compared
to the rational one. This finding holds true even in the general case. For instance,
as coarse Employer receiving the good signal starts to mix between pg = R(g) and
pb = R(b), βP (pb|H) and βP (pb|L) decrease because Graduate receiving a good signal
rejects the offer pb regardless of the state. Moreover, the good signal is more likely
to occur when the state is H. Therefore, βP (pb|H) decreases in a greater extent
than βP (pb|L) does. This change further decreases the offer from coarse Employer
receiving a bad signal. Lower deal prices exacerbate the adverse selection effect,
which further makes Employer lower their offer.

An example to show the difference between the behavior of rational and coarse
Employer is used. In comparison to rational Employers, coarse Employers tend to be
too pessimistic because they underestimate the probability of trading with high-type
Graduates.

Example 11. In a two-period searching process (N = 2), the probability that a
good signal occurs under the state H is µg

H = 0.6. The probability that a good signal
occurs under the state L is µg

L = 0.2. The value and cost from trading are as follows:
vH = 2.4, vL = 1.2, cH = 2 and cL = 1. The prior of the state being H is q0 = 0.5,
and search costs are s = 0.01.

The equilibrium with rational Employers is he offers p∗g = R(g) = 1.75 after
receiving the good signal, and mixes between p∗b1 = R(b) = 1.54 and p∗b2 = R(b2) =

c(b2) = 1.2 after receiving the bad signal, where the probability y allocated on p∗b1 is
0.74.

With β(p|θ,m) =
∑

R(Mm)≤p ϕ(θ,Mm)∑
Mm

ϕ(θ,Mm)
,7

β(p∗b2|H, b) =
ϕ(H, b2)

ϕ(H, b) + ϕ(H, b2)
= 0.096

β(p∗b2|L, b) =
ϕ(L, b2)

ϕ(L, b) + ϕ(L, b2)
= 0.175

If Employer wants to increase the possibility for trade, he offers a higher price
p∗b1 after receiving a bad signal. Then,

β(p∗b1|H, b) =
ϕ(H, b) + ϕ(H, b2)

ϕ(H, b) + ϕ(H, b2)
= 1

7Refer to the proof of proposition 13.
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β(p∗b1|L, b) =
ϕ(L, b) + ϕ(L, b2)

ϕ(L, b) + ϕ(L, b2)
= 1

Employers with payoff-relevant analogy classes perceive the probability that the
offer was accepted.

βP (p∗b1|L) = βP (p∗b1|H) = 1

They have no incentive to offer the higher price p∗g because they believe offering p∗b1
gives the same probability of trading. However, Graduate receiving the good signal
rejects the offer p∗b1. βP (p∗b1|L) and βP (p∗b1|H) decrease. Then, after receiving the bad
signal, coarse Employer lowers his offer by allocating more probability to p∗b2, which
further leads βP (p∗b1|L) and βP (p∗b1|H) to decrease. Coarse Employer receiving the
good signal finds it not optimal to offer p∗b1.

Finally, the ABEE for them is p∗∗g = R(g) = 1.75 and p∗∗b = R(b2) = c(b2) = 1.2.
If Employer wants to raise his offer to p′b = R(b) = 1.54 after receiving a bad signal,
he calculates

βP (p∗∗b |H) = 0.29, βP (p∗∗b |L) = 0.44

βP (p′b|H) = 0.4, βP (p′b|L) = 0.8

βP (p′b|L)− βP (p∗∗b |L) is larger than βP (p′b|H)− βP (p∗∗b |H). It can be compared with
the difference between β(p∗b1|L, b)−β(p∗b2|L, b) and β(p∗b1|H, b)−β(p∗b2|H, b). It means
that Employer with payoff-relevant analogy classes believes a higher offer p′b is more
likely to attract those Graduates of low type, which leads to πP (p

′
b|b) = −0.1 <

πP (p
∗∗
b |b) = 0.096. □

3.3.3 Efficiency comparison

This section compares the market efficiency of three types of employers - Employers
with private-information analogy classes, rational Employers, and Employers with
payoff-relevant analogy classes - based on the ranking of offers in the market from
high to low. Generally, higher offers increase trade and improve market efficiency.
I use a simplified search model where the good signal only occurs when a graduate
is of high type (µg

H > µg
L = 0). The model assumes negligible search costs so that

Graduate would prefer to search rather than choose the outside option. The study
also considers the possibility of an inefficient market where Employer only offers the
lowest possible price pb = R(bN) = c(bN).

In Figure 3.4, the red area corresponds to the case in which the market is
inefficient with rational Employer. The blue area corresponds to Employer with
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Figure 3.4: Market efficiency comparison among three kinds of Employers. The
parameter is set as: q0 = 0.5, µg

H = 0.7, cL = 1 and cH = 2. The red, yellow and
blue areas are overlapping.

private-information analogy classes. The yellow area corresponds to Employers with
payoff-relevant analogy classes. Comparing the three areas, the blue one is the small-
est, which means that the market with Employer with private-information analogy
classes is the most efficient because he tends to overbid. In contrast, the yellow area
is the largest, which coincides with the finding that the offer from Employers with
payoff-relevant analogy classes is the lowest. Thus, the market with this kind of
coarse Employer is the most inefficient.

3.4 Conclusion

This study contributes to the literature of markets with noise and information asym-
metry by the introduction of bounded rational agents. I find that by making different
mistakes, unsophisticated agents’ behavior can deviate in different directions. These
deviations can reduce the entry barrier of the market and can affect the market ef-
ficiency.

3.5 Appendix

3.5.1 Proofs

Proof of proposition 11:
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Given sA, the naive editor computes the probability,

Pr
[
θ, h = Ai

]
= Pr [θ]Pr

[
h = Ai

∣∣θ]
= µ(θ) ·

∫
f(q|θ)Φi(sA, q, σs)dq

/
m−1∑
j=0

∫
f(q|θ)Φj(sA, q, σs)dq

The sophisticated editor computes the probability,

Pr
[
θ, h = Ai

∣∣sampled
]
=

∫
µ(θ)f(q|θ)Φi(sA, q, σs)dq

m−1∑
j=0

∫∫
µ(θ′)f(q|θ′)Φj(sA, q, σs)dqdθ′

We have

Pr
[
θ, h = Ai

∣∣sampled
]

Pr [θ, h = Ai]
= Y

m−1∑
j=0

∫
f(q|θ)Φj(sA, q, σs)dq, ∀i

Y is a constant. Since f(q|θ) satisfies MLRP and Φj(sA, q, σs) is decreasing in q, the
right hand side is decreasing in θ. Since

1 =
m−1∑
j=0

∫
Pr
[
θ, h = Ai

∣∣sampled
]
dθ =

m−1∑
j=0

∫
Pr
[
θ, h = Ai

]
dθ,

Pr [θ, h = Ai
∣∣sampled] and Pr [θ, h = Ai] are single-crossing in θ.

The naive editor forms a belief on the quality β̃A(q)

β̃A(q) =

m−1∑
i=0

∫
γ(q|θ, h = Ai)Pr [θ, h = Ai] dθ

m−1∑
i=0

∫∫
γ(q|θ, h = Ai)Pr [θ, h = Ai] dθdq

,

while the sophisticated editor forms the unbiased belief βA(q),

βA(q) =

m−1∑
i=0

∫
γ(q|θ, h = Ai)Pr [θ, h = Ai|sampled] dθ

m−1∑
i=0

∫∫
γ(q|θ, h = Ai)Pr [θ, h = Ai|sampled] dθdq

,

which is equivalent to (1.4). Since Pr
[
θ, h = Ai

∣∣sampled
]

and Pr [θ, h = Ai] are
single-crossing in θ, β̃A(q) FOSDs βA(q). The naive editor’s optimal threshold is
lower than the sophisticated’s, ω̃(sA) < ω(sA) (ω̃ and ω are defined in the same way
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as in the proof of proposition 1). Thus, in equilibrium, the naive editor sets a lower
threshold s̃A < s∗A. ■

Proof of proposition 12:

β̂A(q|h = Ai) = f(q|h = Ai) ∝
∫ +∞

−∞
µ(θ)f(q|θ)dθ · Φi(sA, q, σs)

while

βA(q|h = Ai) = f(q|h = Ai, θ > θ∗A(h)) ∝
∫ +∞

θ∗A(Ai)

µ(θ)f(q|θ)dθ · Φi(sA, q, σs)

Thus, βA(q|h = Ai) FOSDs β̂A(q|h = Ai) for any i.

Secondly,

Pr[h = Ai] ∝
∫∫ +∞

θ∗A(Ai)

µ(θ)f(q|θ)dθ · Φi(sA, q, σs)dq

P̂ r[h = Ai] ∝

(
i∏

j=0

ξ(Aj)

)∫∫ +∞

−∞
µ(θ)f(q|θ)dθ · Φi(sA, q, σs)dq

ξ(Aj) =

∫∫ +∞
θ∗A(Aj)

µ(θ)f(q|θ)dθ · Φj(sA, q, σs)dq∫∫ +∞
θ∗A(Aj−1)

µ(θ)f(q|θ)dθ · Φj−1(sA, q, σs)dq

Then,

P̂ r[h = Ai+1]

Pr[h = Ai+1]

/
P̂ r[h = Ai]

Pr[h = Ai]

=

∫∫ +∞
θ∗A(Ai)

µ(θ)f(q|θ)dθ · Φi−1(sA, q, σs)dq∫∫ +∞
−∞ µ(θ)f(q|θ)dθ · Φi−1(sA, q, σs)dq

∫∫ +∞
−∞ µ(θ)f(q|θ)dθ · Φi(sA, q, σs)dq∫∫ +∞

θ∗A(Ai)
µ(θ)f(q|θ)dθ · Φi(sA, q, σs)dq

=
Pr[θ > θ∗A(A

i)|h = Ai−1]

Pr[θ > θ∗A(A
i)|h = Ai]

> 1

Therefore, P̂ r[h=Ai]
Pr[h=Ai]

is increasing in i. In other words, P̂ r[h = Ai] and Pr[h = Ai]

are single-crossing.

Since

β̂A(q) =
m−1∑
i=0

β̂A(q|h = Ai)P̂ r[h = Ai], βA(q) =
m−1∑
i=0

βA(q|h = Ai)Pr[h = Ai],
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βA(q) FOSDs β̂A(q). The naive editor’s optimal threshold is lower than the sophis-
ticated’s, ω̂(sA) > ω(sA) (ω̂ and ω are defined in the same way as in the proof
of proposition 1). Thus, in equilibrium, the naive editor sets a higher threshold
ŝA > s∗A. ■

Proof of proposition 13:

First, let s ∈ S be the possible record of signals Graduate could have. Let lH(s)
(lL(s)) be the number of historical samples where the record of signals is s and the
state is H (L). Without loss of generality, suppose we are calculating Pr[H|b].

Pr[H|b] =
∑

s∈S nb(s)l
H(s)∑

s∈S nb(s)lH(s) +
∑

s∈S nb(s)lL(s)

where nb(s) is the number of bad signals in the record s.

Then, for those records with the most number of signals, they must show up
in pairs, which means that if (M, b) ∈ S, then (M, g) ∈ S and vice versa. That is
because once Graduate rejects when the history M , both (M, b) and (M, g) could
happen. Moreover, we have lH(M, g) = lH(M)µg

H and lH(M, b) = lH(M)µb
H . So,

lH(M, g) + lH(M, b) = lH(M). Similarly, lL(M, g) + lL(M, b) = lL(M). Then, we
have

nb(M, b)lH(M, b) + nb(M, g)lH(M, g) = (nb(M) + 1)lH(M, b) + nb(M)lH(M, g)

= nb(M)lH(M) + lH(M, b)

and

nb(M, b)lL(M, b) + nb(M, g)lL(M, g) = nb(M)lL(M) + lL(M, b)

Repeat the above process to those records with the second most signals. Repeat
until all records with a good signal at the end are eliminated. After that, we obtain

Pr[H|b] =
∑

Mb∈Mb
lH(Mb)∑

Mb∈Mb
lH(Mb) +

∑
Mb∈Mb

lL(Mb)

When the population of the sampling is infinity,

Pr[H|b] →
∑

Mb∈Mb
ϕ(θ,Mb)∑

Mb∈Mb
ϕ(H,Mb) +

∑
Mb∈Mb

ϕ(L,Mb)

where ϕ(H,Mm) is probability that the node (H,Mm) is reached. In general, we can
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write

Pr[θ|m] →
∑

Mm
ϕ(θ,Mm)∑

Mm
ϕ(H,Mm) +

∑
Mm

ϕ(L,Mm)

Secondly, When the data set gets big, the empirical acceptance rate approaches
to:

β(p|θ,m) →
∑

R(Mm)≤p ϕ(θ,Mm)∑
Mm

ϕ(θ,Mm)

There, the optimization problem for rational Employer can be written as follows:

Eϕ(Mm)[(v(Mm)− p)σG
1 (Mm, p)]

= (vH − p)

∑
R(Mm)≤p ϕ(H,Mm)∑

Mm
ϕ(H,Mm) +

∑
Mm

ϕ(L,Mm)

+ (vL − p)

∑
R(Mm)≤p ϕ(L,Mm)∑

Mm
ϕ(H,Mm) +

∑
Mm

ϕ(L,Mm)

= (vH − p)

∑
Mm

ϕ(H,Mm)∑
Mm

ϕ(H,Mm) +
∑

Mm
ϕ(L,Mm)

∑
R(Mm)≤p ϕ(H,Mm)∑

Mm
ϕ(H,Mm)

+ (vL − p)

∑
Mm

ϕ(L,Mm)∑
Mm

ϕ(H,Mm) +
∑

Mm
ϕ(L,Mm)

∑
R(Mm)≤p ϕ(L,Mm)∑

Mm
ϕ(L,Mm)

= (vH − p)Pr[H|m]β(p|H,m) + (vL − p)Pr[L|m]β(p|L,m) = πR(p|m)

■

Proof of proposition 14:

If pb = R(b), then the equilibrium of the rational agents is also the coarse
agents’.

If pb = R(bn) where n > 1, then the IR constraint for the rational agents holds,
which is

v(bn)−R(bn) ≥ 0

Additionally, if p is the pure strategy or the minimum price in the mixed-strategy,
we have

Eϕ(Mb)[v(Mb)] > v(bn)

which means that the IR constraint for the coarse agents holds. We could enumerate
R(bi) for i < n to check if there exists any ABEE with a higher offer. ■

Proof of proposition 15:

Suppose the maximal price offered by rational Employer receiving the bad signal
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is p̄b = R(bn). If coarse Employer receiving the good signal offers cH , then coarse
Employer’s strategy is the same as that of rational Employer because in this case,

β(p̄b|H, b) = βP (p̄b|H) and β(p̄b|L, b) = βP (p̄b|L)

Otherwise, coarse Employer receiving the good signal allocates some probability
to R(bm). If m < n, offering R(bm) is not optimal for coarse Employer receiving the
bad signal because R(bm) would be rejected by Graduate receiving the good signal
and

β(R(bm)|H, b) > βP (R(bm)|H)

Since offering R(bm) is not optimal for rational Employer (following the algorithm
1), it is also not optimal for coarse Employer. Then, coarse Employer receiving the
good signal would not offer R(bm) because βP (R(bm)|H) = 0, which means that it
could not be an ABEE.

Then, let σE
ϵ (g, p) be the perturbation of Employer’s strategy after receiving

the good signal satisfying

σE
ϵ (g,R(bk)) = ϵ, ∀k < n

And let σE
ϵ (b, p) be the perturbation of Employer’s strategy after receiving the bad

signal satisfying
σE
ϵ (b, R(bk)) = ϵ2, ∀k < n

Then, we have
βP (R(bk)|H) = 0, ∀k < n

which makes Employer receiving the bad signal have no incentive to offer a price
higher than p̄b. ■
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