Identifier et analyser les comportements dynamiques à long terme des réseaux de régulation génétique à l’aide de modélisation hybride
Auteur / Autrice : | Honglu Sun |
Direction : | Morgan Magnin, Maxime Folschette |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 18/12/2023 |
Etablissement(s) : | Ecole centrale de Nantes |
Ecole(s) doctorale(s) : | École doctorale Mathématiques et Sciences et Technologies du numérique, de l’Information et de la Communication (Nantes ; 2022-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire des Sciences du Numérique de Nantes |
Jury : | Président / Présidente : Jean-Luc Gouzé |
Examinateurs / Examinatrices : Hélène Collavizza | |
Rapporteur / Rapporteuse : Ovidiu Radulescu, Thao Dang |
Mots clés
Résumé
Utiliser des modèles dynamiques pour révéler les propriétés dynamiques des réseaux de régulation des gènes peut nous aider à mieux comprendre la nature de ces systèmes biologiques et à développer nouveaux traitements médicaux. Dans cette thèse, nous nous concentrons sur une classe de systèmes dynamiques hybrides appelés réseaux de régulation des gènes hybrides (HGRN) et visons à analyser les propriétés dynamiques à long terme. Nous proposons des méthodes pour trouver des cycles limites et analyser leur stabilité, et pour analyser l’accessibilité dans HGRNs. Ceci est suivi d’une étude plus approfondie de certains réseaux d’intérêt pour la biologie des systèmes : Les répressilateurs, et nous trouvons des conditions pour l’existence d’oscillations soutenues dans le répressilateur canonique en dimension 3, et des conditions, décrites par les caractéristiques topologiques des réseaux, pour l’existence d’un attracteur périodique dans les répressilateurs discrets en dimension 4. En résumé, cette thèse propose de nouvelles méthodes pour analyser certaines propriétés des HGRNs qui n’ont pas été étudiées auparavant, par exemple la stabilité des cycles limites à N dimensions, l’accessibilité, etc. Les résultats pourront être développés à l’avenir pour étudier d’autres grands réseaux complexes.