Thèse soutenue

Développement d'un multi-organe sur puce multi-analyse et temps réel dans le contexte de la régulation glycémique et du diabète de type 2

FR  |  
EN
Auteur / Autrice : Marie Monchablon
Direction : Sylvie RenaudMatthieu Raoux
Type : Thèse de doctorat
Discipline(s) : Electronique
Date : Soutenance le 19/12/2023
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de l'intégration du matériau au système (Talence, Gironde)
Jury : Président / Présidente : Guillaume Wantz
Examinateurs / Examinatrices : Karim Bouzakri
Rapporteurs / Rapporteuses : Christel Vanbesien-Mailliot, Thérèse Leblois

Résumé

FR  |  
EN

Depuis 4 décennies, un modèle intermédiaire entre les traditionnelles approches in vivo et in vitro émerge : les Systèmes MicroPhysiologiques (SMP). Ils sont construits pour recréer différents niveaux de physiologie humaine, du simple organe à leurs interactions. Ils améliorent l’environnement de culture grâce à des microstructures accueillant des modèles d’architecture 3D et multicellulaire, et intègrent des microcapteurs monitorant l’activité cellulaire et leur environnement.Ce nouvel outil d’investigation est d’intérêt pour la recherche fondamentale sur les maladies comme le diabète. Dans le cas de cette maladie incurable, la régulation du glucose sanguin, résultant d’interactions complexes entre les îlots pancréatiques, le foie, les adipocytes et les muscles, est altérée. Un Multi-Organe-sur-Puce (MOsP) est un SMP pouvant reproduire ces interactions, et représente donc un modèle pertinent pour la recherche sur le diabète. En effet, la régulation inter-organe n’est pas entièrement reproduite par les modèles in vitro usuels, et requiert de multiples capteurs, ce qui est éthiquement et techniquement impossible in vivo. Dans le contexte du diabète, il n’existe aucun MOsPs reproduisant l’action des îlots sur les muscles, malgré l’importance des muscles squelettiques dans la régulation glycémique.Cette thèse propose une méthodologie pour construire un MOsP étudiant les interactions d’îlot à muscle dans la régulation glycémique. Les 3 objectifs du MOsP étaient : atteindre des concentrations physiologiques d’insuline grâce à des îlots sécrétant en réponse à une élévation physiologique de glucose, induisant une prise de glucose mesurable par les muscles, et monitorer l’expérience en direct. Pour cela, les investigations ont été menées avec une approche interdisciplinaire, utilisant et confrontant des résultats venant d’expériences biologiques in vitro et de simulations modélisant la biologie et la physique.Ce manuscrit détaille les étapes de la méthodologie, et délivre différents designs pour progressivement construire un MOsP comprenant: une puce microfluidique contenant les cellules et un capteur de glucose connecté directement au flux. Les principales découvertes ont été :- Un milieu et procédure de co-culture entre îlots primaires et LHCN-M2 myotubes ont été démontrés.- Un substrat de culture commun de type MicroElectrodes Array a été trouvé.- Des îlots ont été cultivés en puce microfluidique, et ont présenté une sécrétion d’insuline en réponse au glucose durant des expériences en fluidique. Des myotubes ont pu se différentier en puce, et ont présenté une prise de glucose basale (insuline indépendant).- Une stratégie in vitro-in silico pour dimensionner le MOsP a été développée et implémentée. Un modèle in silico simplifié d’îlot a été développé pour rapidement explorer 2 designs de puce. Des expériences in vitro correspondantes, de sécrétion d’insuline, ont été menées et confrontées aux expériences in silico. Les résultats ont soulevé l’hypothèse que les îlots n’avaient pas une fonctionnalité optimale dans nos petits volumes de culture. La même constatation a été faite concernant les myotubes, où la prise de glucose insuline dépendante a été démontrée en macro volumes, mais en micro volumes, la réponse observée (uniquement à concentration physiologique d’insuline) doit être reproduite avec des expériences plus robustes pour démontrer leur présence.- Un capteur de glucose compatible avec le système microfluidique a été caractérisé à l’aide d’expériences in vitro et in silico.- Un multi-potentiostat a été développé dans la perspective de futures mesures électrochimiques multiples et intégrées.Les bases et perspectives présentées ici permettront d’achever le MOsP îlot-muscle par de futurs travaux. La méthodologie peut aussi être réutilisée pour l’ajout de nouveaux organes (foie, adipocytes) complétant le MOsP, qui permettra de mieux comprendre les dérégulations intervenant dans le diabète de type 2.