Thèse soutenue

RMN 59Co en champ interne pour l'étude de nanostructures de cobalt, analyse des interactions et anisotropies magnétiques

FR  |  
EN
Auteur / Autrice : Pascal Scholzen
Direction : Jean-Baptiste d' Espinose
Type : Thèse de doctorat
Discipline(s) : Physico-chimie
Date : Soutenance le 19/01/2022
Etablissement(s) : Université Paris sciences et lettres
Ecole(s) doctorale(s) : École doctorale Physique et chimie des matériaux (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Sciences et ingénierie de la matière molle (Paris ; 1997-....) - Sciences et ingénierie de la matière molle (Paris ; 1997-....)
établissement opérateur d'inscription : Ecole supérieure de physique et de chimie industrielles de la Ville de Paris (1882-....)
Jury : Président / Présidente : Bradley CHMELKA
Examinateurs / Examinatrices : Jean-Baptiste d' Espinose, Laurent Le Pollès, Laurent Binet, Kai Liu, Sabine WURMEHL
Rapporteurs / Rapporteuses : Laurent Le Pollès, Laurent Binet

Résumé

FR  |  
EN

Contrairement aux techniques classiques de RMN, la RMN du champ interne (IF), également appelée RMN ferromagnétique (FNR), ne nécessite pas l'application d'un champ magnétique externe constant, car le champ interne présent dans les composés ferromagnétiques suffit à polariser les spins nucléaires. Elle permet d'étudier simultanément la structure cristalline, l'environnement local du cobalt et la structure magnétique des matériaux contenant du cobalt. Par conséquent, elle peut être appliquée pour caractériser tous les différents types de matériaux contenant du Co, qui sont des matériaux importants dans de nombreuses applications de la société moderne. Dans ce travail, nous avons étudié une grande variété de structures, avec le but ultime d'évaluer le potentiel de la RMN IF pour étudier le cobalt dans les matériaux de batterie.Le premier système d'intérêt étaient des composites Co-C produits par mécanochimie pour l'hydrogénation du carbone (CHG). La RMN 59Co IF a notamment permis d'analyser l'évolution des différents intermédiaires Co-C (solution solide Co/C & Co3C) présents à l'intérieur de l'échantillon tout au long de la réaction CHG. Une relation directe entre la quantité totale d'intermédiaires Co-C et la vitesse de la réaction CHG a été trouvée, ce qui signifie que la formation de la liaison Co-C est l'étape déterminant la vitesse.Le second système était une structure constituée de nanobâtons de Co parallèles. Outre la détermination de la structure cristalline, une nouveauté de ce travail est la détermination de la structure de la paroi du domaine magnétique à l'intérieur du fil par la variation de l'orientation entre le champ d'excitation RMN et l'axe du fil. L'analyse RMN IF du 59Co a prouvé que ce n'est pas seulement la géométrie du bâton et sa phase cristalline qui sont responsables de la structure magnétique, mais aussi la taille et la qualité des cristallites.Enfin, des assemblages modèles de nanoparticules de Co ont été étudiés. La RMN IF a fourni une vue d'ensemble des structures cristallines des particules à l'intérieur de l'échantillon. En outre, la transition superparamagnétique - ferromagnétique à la température dite de blocage (Tb) permet de déterminer la taille des particules. Au cours de l'analyse des nanoparticules de cobalt dans les matériaux de batteries à réaction de conversion, il a été observé dans certains cas que les nanoparticules de petite taille présentent un signal ferromagnétique au-dessus de leur Tb théorique, ce qui pourrait être expliqué par des interactions entre les particules. Lors de l'étude d'assemblages modèles compacts de nanoparticules de Co, aucune augmentation de la Tb n'a été observée, ce qui met en évidence la différence entre l'effet des interactions faibles et fortes entre les particules.