Thèse soutenue

Cryptographie malléable : avancés et ses applications en technologies pour l'amélioration de la confidentialité

FR  |  
EN
Auteur / Autrice : Octavio Pérez Kempner
Direction : David NaccachePascal Lafourcade
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 26/10/2022
Etablissement(s) : Université Paris sciences et lettres
Ecole(s) doctorale(s) : École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : École normale supérieure (Paris ; 1985-....). Département d'informatique
Equipe de recherche : Équipe Sécurité (Paris)
Établissement de préparation de la thèse : École normale supérieure (Paris ; 1985-....)
Jury : Président / Présidente : Olivier Blazy
Examinateurs / Examinatrices : David Naccache, Pascal Lafourcade, Olivier Blazy, Jean-Sébastien Coron, Sébastien Canard, Anna Lysyanskaya, Carla Ràfols, Daniel Slamanig
Rapporteurs / Rapporteuses : Jean-Sébastien Coron, Sébastien Canard

Résumé

FR  |  
EN

Cette thèse étudie la malléabilité dans le contexte du chiffrement à clé publique et des signatures numériques, en présentant les avancées et les applications des technologies améliorant la confidentialité. La première partie aborde le problème de l'égalité générique des textes en clair et les preuves d'inégalité. Étant donné deux textes chiffrés générés par un schéma de chiffrement à clé publique, le problème de l'égalité des textes chiffrés consiste à déterminer si les textes chiffrés contiennent la même valeur. Parallèlement, le problème de l'inégalité du texte clair consiste à déterminer s'ils contiennent une valeur différente. Les travaux précédents se sont concentrés sur la construction de nouveaux schémas ou sur l'extension de schémas existants afin d'inclure le support de l'égalité/inégalité du texte en clair. Nous proposons des preuves génériques et simples à connaissance zéro pour les deux problèmes, qui peuvent être instanciées avec divers schémas de chiffrement. Pour ce faire, nous formalisons les notions liées à la malléabilité dans le contexte du chiffrement à clé publique et proposons un cadre de définition pour le chiffrement générique aléatoire, que nous utilisons pour construire nos protocoles. La partie suivante est consacrée aux signatures préservant la structure sur les classes d'équivalences, le principal élément constitutif des parties suivantes. Initialement, nous proposons des constructions nouvelles et plus efficaces sous des hypothèses standard. Ensuite, nous construisons un schéma d'accréditation établi sur les attributs sous des hypothèses standard, qui étend les travaux précédents de plusieurs façons. Nous améliorons notamment l'expressivité, les compromis d'efficacité et proposons une notion de dissimulation de l'émetteur qui permet aux détenteurs de système d'accréditations anonymes de cacher l'identité de l'émetteur pendant les utilisations. La dernière partie est consacrée à la présentation de Protego, un nouveau schéma d'accréditation pour les blockchains à autorisation. Il s'appuie sur les contributions précédentes et bien qu'il soit discuté dans le contexte des blockchains à autorisation, il peut également être utilisé dans d'autres contextes. Pour démontrer l'aspect pratique de Protego, nous fournissons un prototype et des benchmarks montrant que Protego est plus de deux fois plus rapide que les approches de l'état de l'art basées sur Idemix, le schéma d'accréditation le plus largement utilisé pour les blockchains à autorisation.