Thèse soutenue

Modélisation guidée par les données des fonctions d'étalement du point des télescopes terrestres et spatiaux

FR  |  
EN
Auteur / Autrice : Tobias Ignacio Liaudat
Direction : Jean-Luc StarckMartin Kilbinger
Type : Thèse de doctorat
Discipline(s) : Astronomie et Astrophysique
Date : Soutenance le 21/10/2022
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Astronomie et astrophysique d'Île-de-France (Meudon, Hauts-de-Seine ; 1992-....)
Partenaire(s) de recherche : Laboratoire : Astrophysique Instrumentation Modélisation (Gif-sur-Yvette, Essonne ; 2005-....)
référent : Faculté des sciences d'Orsay
graduate school : Université Paris-Saclay. Graduate School Physique (2020-....)
Jury : Président / Présidente : Benjamin Wandelt
Examinateurs / Examinatrices : Gabriel Peyré, Jason McEwen, Andrew Taylor, Julie Delon, Laure Blanc-Féraud
Rapporteurs / Rapporteuses : Gabriel Peyré, Jason McEwen

Résumé

FR  |  
EN

L'effet de lentille gravitationnel est la distorsion des images de galaxies lointaines par des objets massifs et constitue une sonde puissante de la structure à grande échelle de notre Univers. Les cosmologistes utilisent la lentille (gravitationnelle) faible pour étudier la nature de la matière noire et sa distribution spatiale. Ces études nécessitent des mesures très précises des formes des galaxies, mais la réponse instrumentale du télescope, ou fonction d'étalement du point (PSF), déforme nos observations. Cette déformation peut être confondue avec des effets de lentille faible dans les images de galaxies, ce qui constitue l'une des principales sources d'erreur systématique. Par conséquent, l'estimation d'un modèle de PSF fiable et précis est cruciale pour le succès de toute mission de lentille faible. Le champ de PSF peut être interprété comme un noyau de convolution qui affecte chacune de nos observations d'intérêt et qui varie spatialement, spectralement et temporellement. Le modèle de PSF doit faire face à ces variations et est contraint par des étoiles spécifiques dans le champ observé. Ces étoiles, considérées comme des sources ponctuelles, nous fournissent des échantillons dégradés du champ de PSF. Les observations subissent différentes dégradations en fonction des propriétés du télescope, notamment un sous-échantillonnage, une intégration sur la bande passante de l'instrument et un bruit additif. Nous construisons finalement le modèle de PSF en utilisant ces observations dégradées, puis nous utilisons le modèle pour déduire les PSFs aux positions des galaxies. Cette procédure constitue le problème inverse mal posé de la modélisation de la PSF. Le cœur de cette thèse a été le développement de nouveaux modèles non-paramétriques pour estimer les PSFs à partir des étoiles observées dans les images acquises. Nous avons développé un nouveau modèle de PSF pour les télescopes terrestres, appelé MCCD, qui peut modéliser simultanément l'ensemble du plan focal. Par conséquent, MCCD dispose de plus d'étoiles pour contraindre un modèle plus complexe. La méthode est basée sur un schéma de factorisation matricielle, les représentations parcimonieuses et une procédure d'optimisation alternée. Nous avons inclus le modèle de PSF dans un pipeline de mesure de forme à haute performance et l'avons utilisé pour traiter ~3500 deg² d'observations en bande r provenant du Canada-France Imaging Survey. Un catalogue de formes a été produit et sera bientôt publié. L'objectif principal de cette thèse a été de développer un modèle de PSF basé sur les données qui puisse répondre aux défis soulevés par l'une des missions les plus ambitieuses en matière de lentille faible, la mission spatiale Euclid. Les principales difficultés liées à la mission Euclid sont que les observations sont sous-échantillonnées et intégrées dans une large bande passante unique. Par conséquent, il est difficile de récupérer et de modéliser les variations chromatiques de la PSF à partir de ces observations. Notre principale contribution est un nouveau cadre pour la modélisation de la PSF basée sur un modèle optique différentiable permettant de construire un modèle de front d'onde basé sur les données. Le nouveau modèle, appelé WaveDiff, est basé sur un schéma de factorisation matricielle et des polynômes de Zernike. Le modèle s'appuie sur des méthodes modernes basées sur le gradient et la différenciation automatique pour l'optimisation, qui n'utilise que des observations dégradées et bruitées. Les résultats montrent que WaveDiff peut modéliser les variations chromatiques des PSF et gérer la super-résolution avec une grande précision.