Thèse soutenue

Émissions de CO2 estimées par données satellitaires sur les villes à forte croissance démographique

FR  |  
EN
Auteur / Autrice : Alexandre Danjou
Direction : François-Marie BréonGrégoire BroquetThomas Lauvaux
Type : Thèse de doctorat
Discipline(s) : Instrumentation, télédétection, observation et techniques spatiales pour l'océan, l'atmosphère et le climat
Date : Soutenance le 13/12/2022
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Sciences de l'environnement d'Île-de-France (Paris ; 1992-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire des sciences du climat et de l'environnement (Gif-sur-Yvette, Essonne ; 1998-....)
Référent : Université de Versailles-Saint-Quentin-en-Yvelines (1991-....)
graduate school : Université Paris-Saclay. Graduate School Géosciences, climat, environnement et planètes (2020-….)
Jury : Président / Présidente : Karine Kata Sartelet
Examinateurs / Examinatrices : Trissevgeni Stavrakou, Daniel J. Jacob, Dominik Brunner, Gaëlle Dufour
Rapporteurs / Rapporteuses : Trissevgeni Stavrakou, Daniel J. Jacob

Résumé

FR  |  
EN

Les villes sont responsables de plus de la moitié des émissions de gaz à effet de serre. Alors que de nombreuses villes se sont engagées sur des trajectoires de réduction d'émissions, beaucoup n'ont pas les infrastructures nécessaires à l'élaboration de leur bilan d'émissions. La mesure des panache de CO2 des villes par imagerie satellitaire, couplée à des méthodes d'inversion atmosphérique, pourraient permettre de quantifier les émissions directes de CO2 des villes, ou tout au moins détecter des tendances dans leur évolution.OCO-3, avec son mode Snapshot Area Maps (SAMs), est le premier instrument donnant des images 2D (≈80km*80km) de la colonne totale de CO2 à haute résolution (≈2km*2km). Ces SAMs ciblent notamment les panaches atmosphériques de CO2 provenant de villes et de centrales thermiques, dans le but de quantifier leurs émissions. Les méthodes pour estimer ces émissions doivent être fiables et rapides pour traiter toutes les images disponibles (plusieurs milliers pour OCO-3), dont le nombre va augmenter avec les missions CO2M et GeoCarb. Les méthodes d'inversion par calcul direct de flux (Integrated Mass Enhancement, Cross-Sectionnal et Source Pixel) ou avec un modèle de panache gaussien nécessitent peu de temps de calcul. Cette thèse a pour but d'évaluer la précision de ces méthodes d'inversion de panache de CO2 et d'étudier les cas favorables en terme de cible et de condition d'observation. Ceci est fait dans un cadre théorique (simulations du transport atmosphérique) et en appliquant les méthodes aux SAMs acquis.Nous quantifions et analysons les différentes sources d'erreurs de ces méthodes en détail en utilisant des pseudo-images satellitaires de panaches, d'abord sur Paris puis sur 31 villes dans le monde. L'erreur de ces méthodes est principalement due aux erreurs sur l'estimation de la concentration de fond (concentration en XCO2 qui ne provient pas des émissions de la ville) et sur l'estimation du vent effectif qui a transporté le panache. Nous montrons, avec une méthode d'apprentissage par arbre de décision, la sensibilité de l'erreur sur l'estimation des émissions à la variabilité de la direction du vent dans la PBL et au bilan des émissions de la ville. L'ensemble regroupant les pseudo-images pour lesquelles les émissions sont importantes (>2.1ktCO2/h) et la variabilité de la direction du vent faible (<11°) donne un biais et un IQR théorique inférieur à 10% et 60% des émissions, quant celles-ci sont estimées avec la configuration optimale d'inversion avec un panache gaussien.Nous appliquons enfin nos méthodes aux SAMs d'OCO-3 et montrons que les sensibilités de l'erreur théorique aux 2 paramètres de sélection se retrouvent dans la différence des estimations d'émissions de nos méthodes et d'un inventaire spatialisé (ici ODIAC). Plus de la moitié des SAMs ne sont pas utilisables avec nos méthodes (trop faible nombre de points, faible échantillonnage en aval de la ville,..). Nos estimations d'émissions sont plus faibles que celles de l'inventaire ODIAC (≈-25% avec l'inversion utilisant le panache gaussien). Une source de cette sous-estimation est l'erreur dans le produit de réanalyse de vent utilisé. L'IQR de la différence entre les émissions estimées par nos méthodes et par l'inventaire est aussi plus grand (150%) que l'erreur théorique. 2 raisons importantes sont les incertitudes dans les émissions de l'inventaire et dans les réanalyses du champ de vent utilisées. Ce travail suggère que l'estimation des émissions de CO2 urbaines nécessite plus de développement méthodologique pour notamment réduire l'erreur dans l'estimation des concentrations de fond du panache. Cependant, l'erreur sur les champs de vent reste un problème, quelque soit la méthode d'inversion utilisée. Des pistes sont suggérées pour ajouter une couche de sélection aux pseudo-images. Par ailleurs, des images plus fréquentes seront nécessaires pour espérer détecter des tendances dans les émissions des villes à l'échelle pluri-annuelle.