Conception optimale de systèmes multi-énergies locaux : modèles de programmation linéaire à nombre entier mixte et approches de décomposition à deux niveaux
Auteur / Autrice : | Bingqian Liu |
Direction : | Dominique Quadri, Céline Gicquel, Côme Bissuel, François Courtot |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 02/06/2022 |
Etablissement(s) : | université Paris-Saclay |
Ecole(s) doctorale(s) : | École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire interdisciplinaire des sciences du numérique (Orsay, Essonne ; 2021-....) - Électricité de France. Division Recherches et développement. Département PRISME |
Référent : Faculté des sciences d'Orsay | |
graduate school : Université Paris-Saclay. Graduate School Informatique et sciences du numérique (2020-….) | |
Jury : | Président / Présidente : Safia Kedad Sidhoum |
Examinateurs / Examinatrices : François Clautiaux, Pierre Fouilhoux, Frédéric Babonneau, Guillaume Sandou, Sandra Ulrich Ngueveu | |
Rapporteur / Rapporteuse : François Clautiaux, Pierre Fouilhoux |
Mots clés
Résumé
Au cours des dernières décennies, l'industrie énergétique s'est efforcée d'améliorer l'efficacité de la production d'énergie, de réduire les émissions de gaz à effet de serre liées à la production et à la distribution d'énergie et de mieux intégrer les ressources énergétiques renouvelables. Les systèmes multi-énergies locaux (LMES) constituent une alternative intéressante pour atteindre ces objectifs ambitieux. Fondamentalement, un LMES est un système énergétique décentralisé produisant de l'énergie sous de multiples formes pour satisfaire les besoins énergétiques de clients situés dans son voisinage. Les clients correspondent à un ensemble de bâtiments appartenant, par exemple, à un campus, un complexe hospitalier ou un quartier urbain. Les LMES ont une efficacité de production plus élevée et un coût de maintenance plus faible que les systèmes énergétiques fonctionnant au niveau d'un seul bâtiment. La conception d'un LMES consiste à sélectionner les dispositifs de conversion et de stockage de l'énergie du système. Le LMES obtenu doit être capable de satisfaire à tout moment la demande énergétique fluctuante et de minimiser le coût total de construction et d'opération du système sur sa durée de vie, qui s'étend sur plusieurs décennies. Il existe déjà de nombreux outils numériques pour concevoir des LMES. Cependant, la plupart de ces outils reposent sur des hypothèses et des simplifications importantes. Par exemple, la capacité d'un dispositif de conversion peut prendre des valeurs dans une gamme continue prédéfinie, alors que cette capacité devrait en fait être sélectionnée dans une liste discrète des modèles disponibles produits par les fabricants d'équipements. De plus, ces outils limitent généralement fortement la taille des instances considérées afin de pouvoir proposer des solutions dans un temps de calcul acceptable. Cette thèse de doctorat se concentre sur le problème de la conception optimale d'un LMES impliquant à la fois des dispositifs de conversion et de stockage d'énergie. En termes de modélisation, nous améliorons l'état de l'art dans plusieurs directions. Premièrement, nous choisissons la capacité des dispositifs installés dans une liste de valeurs discrètes prédéfinies. Deuxièmement, nous considérons le fait que la construction d'un LMES est un processus en plusieurs étapes dans lequel les décisions d'investissement sont prises petit à petit pour ajuster le déploiement du système à l'augmentation à long terme de la demande d'énergie. Nous cherchons donc à construire un plan de déploiement en plusieurs phases. Troisièmement, nous incorporons dans la fonction objectif le coût d'opération du système sur sa durée de vie. Pour estimer ce coût précisément, nous construisons des plannings d'opération journaliers aux pas de temps horaires pour un ensemble de jours représentatifs. Ces plannings tiennent compte de plusieurs caractéristiques réalistes compliquées telles que l'efficacité à charge partielle et la charge minimale des dispositifs de conversion. Le problème d'optimisation est formulé comme un très grand programme linéaire à nombres entiers mixtes. Nous développons deux nouveaux algorithmes de décomposition qui exploitent la structure spécifique à deux niveaux du problème. Le premier algorithme étend un algorithme de décomposition hiérarchique précédemment publié, le second est un algorithme de décomposition de Benders généralisé. L'approche de modélisation et de résolution proposée sont appliquées à trois cas d'étude réels situés en Chine. Nos résultats numériques montrent que les algorithmes de décomposition proposés sont plus performants que l'algorithme générique de branch-and-cut intégré à un solveur de programmation mathématique et que l'algorithme original de décomposition hiérarchique pour résoudre le programme linéaire en nombres entiers à l'optimalité. Même si certaines approximations sont effectuées dans la modélisation du problème, les plans de déploiement obtenus sont de très bonne qualité.