Thèse soutenue

Caractérisation par RMN de la structure à l'échelle atomique des couches minces de LiPON utilisées comme électrolyte dans les microbatteries

FR  |  
EN
Auteur / Autrice : Racha Bayzou
Direction : Olivier LafonFrédérique Pourpoint
Type : Thèse de doctorat
Discipline(s) : Chimie des matériaux
Date : Soutenance le 19/12/2022
Etablissement(s) : Université de Lille (2022-....)
Ecole(s) doctorale(s) : École doctorale Sciences de la matière, du rayonnement et de l'environnement (Lille ; 1992-....)
Partenaire(s) de recherche : Laboratoire : UCCS - Unité de Catalyse et Chimie du Solide
Jury : Président / Présidente : Frédéric Le Cras
Examinateurs / Examinatrices : Christian Masquelier
Rapporteurs / Rapporteuses : Michaël Deschamps, Dany Carlier-Larregaray

Résumé

FR  |  
EN

Les micro-batteries « tout-solides » sont des dispositifs prometteurs pour de nombreuses applications, telles que la communication, l'électronique pour le grand publique, la traçabilité, la sécurité ainsi que l'internet des objets. Néanmoins, l'une des principales limitations de ces dispositifs est la faible conductivité ionique des électrolytes solides. En particulier, l'oxynitrure de phosphate de lithium (LiPON), qui est l'électrolyte le plus couramment utilisé dans les micro-batteries tout-solides commerciales, a une conductivité trois fois plus faibles que les électrolytes liquides utilisés dans les batteries Li-ion. L'amélioration raisonnée de la conductivité du LiPON et de ses dérivés nécessite de mieux comprendre leur structure et leur dynamique à l'échelle atomique. Dans ce travail de thèse, nous avons exploré comment la spectroscopie RMN des solides peut permettre de caractériser la structure et la dynamique à l'échelle atomique des couches minces à base de LiPON. Les données RMN ont été comparées à celles de spectroscopie d'impédance électrochimique, afin de mieux comprendre les mécanismes de conduction. En particulier, nous avons notamment montré que l'augmentation de la conductivité ionique avec la teneur en azote des LiPON provient de la formation d'azotes pontants, qui interagissent plus faiblement avec les ions Li+ que les azotes apicaux. Cette étude a ensuite été étendue à des couches minces de LiSiPON afin d'étudier l'effet de l'incorporation d'atomes de silicium sur la structure et la dynamique des LiPON. Ces travaux de thèse ont également porté sur le développement de nouvelles séquences d'impulsion pour la détection indirecte des noyaux soumis à des interactions anisotropes élevées via d'autres isotopes soumis à des interactions anisotropes plus faibles. L'objectif était notamment de détecter les noyaux 14N (spin I = 1, soumis à des interactions quadripolaires de quelques megahertz) via les noyaux 31P ou 6,7Li. Pour cela, nous avons démontré la possibilité de détecter avec un faible bruit en t1 les cohérences double-quantum entre les niveaux d'énergie mI = +1 et −1 des noyaux 14N via les protons dans les molécules organiques, telles que L-histidine·HCl, grâce à la séquence HMQC utilisant un recouplage de type TRAPDOR. Nous avons également démontré que cette expérience dite T-HMQC permet la détection indirecte des noyaux de spin-1/2 soumis à des fortes anisotropies de déplacement chimique via les protons. Néanmoins, faute de temps, nous n'avons pu appliquer l'expérience T-HMQC à l'étude des LiPON au cours de cette thèse.