Thèse soutenue

Transport et localisation sous forçage et dissipation dans des réseaux d’exciton-polaritons

FR  |  
EN
Auteur / Autrice : Bastián Maximiliano Real Elgueda
Direction : Pierre Suret
Type : Thèse de doctorat
Discipline(s) : Milieux dilués et optique fondamentale
Date : Soutenance le 08/06/2022
Etablissement(s) : Université de Lille (2022-....)
Ecole(s) doctorale(s) : École doctorale Sciences de la matière, du rayonnement et de l'environnement (Lille ; 1992-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM)
Jury : Président / Présidente : Yan Pennec
Examinateurs / Examinatrices : Alberto Amo Garcia, Zhigang Chen, Marzena Szymanska
Rapporteurs / Rapporteuses : Jean-Noël Fuchs, Dmitry Krizhanovskii

Résumé

FR  |  
EN

La simulation des Hamiltoniens de réseaux dans les plateformes photoniques a permis de mieux comprendre les nouvelles propriétés de transport et de localisation dans le contexte de la physique de l'état solide. En particulier, les exciton-polaritons constituent un système polyvalent permettant d'étudier ces propriétés dans des réseaux avec des structures de bande intrigantes en présence de pertes et de gains, et d'interactions entre particules. Les polaritons sont des quasi-particules hybrides lumière-matière résultant du couplage fort entre les photons et les excitons dans les microcavités semi-conductrices, dont les propriétés peuvent être directement accessibles dans les expériences de photoluminescence. Dans cette thèse, nous étudions premièrement les caractéristiques des réseaux en nid d'abeille déformés, composés de résonateurs de polaritons couplés, à haut contenu photonique. Dans un réseau déformé de façon critique, nous mettons en évidence à la fois un transport semi-Dirac et une localisation anisotrope des photons. Deuxièmement, nous montrons qu'un forçage judicieux dans des réseaux de résonateurs à pertes permet l'apparition de nouveaux modes localisés. En utilisant des réseaux de polaritons sous un forçage résonant par plusieurs faisceaux optiques, nous démontrons la possibilité de localiser la lumière sur différentes géométries, voir jusqu'à un seul site. Enfin, nous profitons de l'interaction de polaritons dépendant de la polarisation pour démontrer un effet optique de type Zeeman dans un seul micropilier. En combinant le couplage spin-orbite optique, inhérent aux microstructures semi-conductrices, avec l'effet Zeeman, induit par l'interaction, nous montrons l'émission de faisceaux de vortex avec une chiralité bien définie. Cette thèse met en lumière la puissance des plateformes de polaritons pour étudier les Hamiltoniens de réseaux avec des propriétés sans précédent. Elle apporte également un premier pas vers la génération, entièrement optique, de phases topologiques dans les réseaux.