Antennes et métamatériaux textiles pour la récupération de l'énergie électromagnétique ambiante
Auteur / Autrice : | Amine Rami Djouadi |
Direction : | Éric Lheurette |
Type : | Thèse de doctorat |
Discipline(s) : | Electronique, microélectronique, nanoélectronique et micro-ondes |
Date : | Soutenance le 28/03/2022 |
Etablissement(s) : | Université de Lille (2022-....) |
Ecole(s) doctorale(s) : | École graduée Sciences de l’ingénierie et des systèmes (Lille ; 2021-....) |
Partenaire(s) de recherche : | Laboratoire : Institut d'Electronique, de Microélectronique et de Nanotechnologie |
Jury : | Président / Présidente : Tân-Phu Vuong |
Examinateurs / Examinatrices : Ludovic Burgnies, Hervé Aubert, Divitha Seetharamdoo, Cédric Cochrane | |
Rapporteur / Rapporteuse : Tân-Phu Vuong, Hélène Roussel |
Mots clés
Mots clés contrôlés
Résumé
Ce travail de thèse vise à réaliser des structures à base des métamatériaux et de métasurfaces sur des substrats flexibles (Kapton et textile) pour la récupération d’énergie électromagnétique indépendante de la polarisation de l’onde incidente. Des antennes à anneaux fendus (SRRs) et des métasurfaces à dipôles croisés ont été étudiées par la simulation et expérimentalement pour un fonctionnement dans la bande de fréquence ISM-2.4 GHz. Une antenne dipôle rectiligne à SRRs de forme carrée sur substrat Kapton ainsi que des antennes dipôles en forme de S à SRRs circulaires fabriquées sur textile par broderie ont été étudiées. Les antennes ont été conçues en ciblant deux objectifs basés sur la résonance des SRRs : la réduction de la taille de l’antenne et un fonctionnement multifréquence. Pour les antennes en forme de S, les pertes de connexion ont été réduites en utilisant un dipôle en fil de cuivre fixé par broderie sur le textile, alors que les SRRs ont été brodés en utilisant deux fils conducteurs différents. Sur la base de simulations numériques, une bonne adaptation d’impédance d’entrée de l’antenne et un fonctionnement à deux fréquences ont été obtenus en analysant les résonances du dipôle et des SRRs ainsi que leur couplage. Ces résultats ont été confirmés expérimentalement avec deux résonances mesurées à 2,5 GHz et 4,3 GHz pour l’antenne à SRRs carrés sur Kapton et 1,8 et 2,2 GHz pour l’antenne à SRRs circulaires sur textile avec un coefficient de réflexion S11 supérieur à -20 dB et -31 dB, respectivement. Une métasurface qui représente un récupérateur d’énergie électromagnétique basé sur des dipôles symétriques croisés intégrant des circuits de redressement (diodes Schottky) et de filtrage (circuits LC parallèle) pour la rectification RF/DC, est aussi présentée. Une métasurface de 4×4 dipôles croisés sur un substrat de Kapton flexible a été conçue pour fonctionner dans la bande ISM-2.4 GHz. Au niveau de chaque dipôle croisé, une diode de redressement est intégrée dans chacune des branches ainsi qu’un circuit LC parallèle accordé à la fréquence de fonctionnement de 2.45 GHz. Ce circuit de filtrage permet d’isoler chaque cellule élémentaire de la métasurface en RF et de collecter l’ensemble des signaux DC collectés par chaque cellule. La métasurface présente un rendement maximum de conversion RF/DC de l’ordre de 40% en simulation et un rendement de conversion de 22% a été mesuré pour une métasurface chargée par une résistance de 400 Ohms et pour une puissance incidente de 10 dBm. La tension DC collectée s’élève alors à plus de 4 V et diminue à environ 1 V lorsque la métasurface est chargée par une résistance de 50 Ohms.