Thèse soutenue

Problème du Routage Contraint et Assignation Spectrale : Étude Polyédrale et Algorithmes
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Youssouf Hadhbi
Direction : Ali Ridha Mahjoub
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 12/07/2022
Etablissement(s) : Université Clermont Auvergne (2021-...)
Ecole(s) doctorale(s) : École doctorale des sciences pour l'ingénieur (Clermont-Ferrand)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes
Jury : Président / Présidente : Mourad Baïou
Examinateurs / Examinatrices : Nancy Perrot, Ibrahima Diarrassouba
Rapporteurs / Rapporteuses : Hande Yaman Paternotte, Eduardo Uchoa

Résumé

FR  |  
EN

Pour faire face à une croissance continue de la demande de trafic liée à l'augmentation de la bande passante, les opérateurs de réseaux ont dû faire évoluer l'architecture de leurs réseaux. En conséquence, une nouvelle génération de réseau de transport optique flexible appelée "Spectrally Flexible Optical Networks" (SFONs) a été introduite en 2008 comme une technologie prometteuse en raison de sa flexibilité et de son efficacité par rapport à l'ancienne technologie connue sous le nom "Optical Wavelength Division Multiplexing (WDM)". Les SFONs ont suscité un intérêt intense de la part des laboratoires de recherche, ainsi que dans l'industrie.Nous étudions dans cette thèse l'un des problèmes clés lors de dimensionnement et planification des SFONs, le problème du routage contraint et assignation spectrale, connue sous le nom " Constrained-Routing and Spectrum Assignment " (CRSA) selon la terminologie anglaise. Il se compose de deux parties: le routage contraint (sélectionner pour chaque demande en trafic un chemin optique physique qui connecte sa source avec sa destination à travers le réseau sans dépasser une longueur maximale de chemin (en km) fixée pour chaque demande en trafic), et l'assignation d'un spectre (assigner à chaque demande en trafic un seul intervalle de "slot" consécutifs (contrainte de contiguïté) au long de son chemin du routage de sorte que le même intervalle de slots consécutifs doit être utilisé sur tous les liens qui appartiennent à son chemin optique physique (contrainte de continuité), et les intervalles de slots consécutifs alloués par un ensemble de demandes dont les chemins ne sont pas des liens disjoints dans le réseau ne peuvent pas partager aucun slot sur les liens partagés (contrainte de non-chevauchement), tout en optimisant une ou plusieurs fonctions objectives linéaires. Le problème CRSA est bien connu comme un problème NP-difficile et très difficile en pratique aussi que de nombreuses études de recherche ont été menées dans ce contexte depuis sa première apparition en 2010. Certains des algorithmes de résolution proposés dans la littérature sont basés sur des formulations mathématiques utilisant la programmation linéaire (mixte) en nombres entiers qui n'ont pas pu résoudre des instances de grande taille, ainsi que des heuristiques et métaheuristiques qui ne peuvent pas garantir l'optimalité de solutions. Il a été jugé approprié de proposer des nouveaux modèles mathématiques plus souples et efficaces en se basant sur la programmation linéaire en nombres entiers, de concevoir et de développer des algorithmes exacts qui pourraient offrir des améliorations prometteuses par rapport aux méthodes existantes. À notre connaissance, l'étude polyédrale n'a pas encore fait l'objet de recherches récentes pour ce problème.Nous fournissons donc une analyse théorique approfondie et concevons des algorithmes exacts de type coupes, branchements et génération de colonnes pour résoudre le problème CRSA en considérant des réseaux de taille réaliste. Pour ce faire, notre contribution consiste à introduire un programme linéaire en nombres entiers basée sur des coupes, où le nombre de variables n'augmente que de manière polynomiale avec la taille de l'instance traitée. En outre, nous étudions la structure polyédrale du polyèdre associé, et dérivons plusieurs classes d'inégalités valides. Nous donnons quelques conditions nécessaires et suffisantes pour que certaines inégalités valides soient des facettes pour le polyèdre associé. Nous élaborons ensuite des procédures de séparation pour ces inégalités valides. Ces inégalités sont ensuite utilisées dans la relaxation linéaire afin d'obtenir des bornes duales plus serrées. En se basant sur ça, nous développons un algorithme de coupes et branchements pour le problème CRSA. (...)