Traitement automatisés des données acoustiques issues de sondeurs multifaisceaux pour la cartographie des fonds marins
Auteur / Autrice : | Marie Lamouret |
Direction : | Nadège Thirion-Moreau |
Type : | Thèse de doctorat |
Discipline(s) : | Automatique, signal, productique, robotique |
Date : | Soutenance le 23/03/2022 |
Etablissement(s) : | Toulon |
Ecole(s) doctorale(s) : | École doctorale Mer et Sciences (Toulon ; 2012-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d’Informatique et Systèmes (Marseille ; La Garde, Var ; 2018-….) - Laboratoire d'Informatique et Systèmes / LIS |
Entreprise : Seaviews | |
Jury : | Président / Présidente : Jérôme Mars |
Examinateurs / Examinatrices : Christophe Viala, Pierre Boissery, Guillaume Matte | |
Rapporteur / Rapporteuse : Caroline Fossati, Ali Mansour |
Mots clés
Mots clés contrôlés
Résumé
Le sondeur multifaisceaux (SMF) est l'une des technologies d'acoustique sous-marine les plus avancées pour l'étude des fonds et de la colonne d'eau. Il requiert une réelle expertise pour son déploiement sur le terrain ainsi que pour l'élaboration de cartographies à partir des différentes données acquises. Ces traitements sont souvent chronophages en raison de la quantité de données acquises et demandent à être automatisés pour alléger le travail à l'hydrographe. C'est ce sur quoi portent les travaux réalisés durant cette thèse. Après des rappels sur des notions d'acoustique sous-marine, le fonctionnement du SMF est décrit et les types de données manipulées tout au long des traitements sont présentés. Le manuscrit s'articule ensuite autour de deux thématiques ˸ la cartographie bathymétrique et la cartographie biocénotique. Les développements sont intégrés dans les logiciels de l'entreprise Seaviews pour laquelle les travaux sont réalisés. Ils répondent à des besoins particuliers de l'entreprise.En ce qui concerne la cartographie bathymétrique, la donnée bathymétrique doit être préalablement triée pour écarter les sondes aberrantes et éviter qu'elles ne pénalisent la précision topographique. Ce tri d'innombrables sondes est une tâche que réalisent les hydrographes, assistés aujourd'hui d'outils numériques. Nous proposerons une méthode statistique rapide pour trier les sondes tout en réalisant une carte de profondeurs marines. Ce qui amène à se demander si les images de la colonne d'eau acquises également par le sondeur ne seraient pas exploitables pour déduire une bathymétrie exempte d'aberration. Nous testerons cette hypothèse à l'aide de l'apprentissage profond (deep learning) et en particulier par des réseaux de neurones convolutifs qui ont permis des progrès considérables en vision par ordinateur. La cartographie des habitats marins (les biocénoses) est un travail de classification de la nature des fonds à partir des données acoustiques du SMF en concordance avec les espèces vivant sur les lieux. La société Seaviews a développé une méthode de préparation des données SMF pour l'analyse des habitats. Nous nous orientons vers des méthodes de classification des habitats, à partir de ces données, par des techniques d'apprentissage automatique (machine learning). Plusieurs méthodes sont mises en place et testées, puis une zone d'étude est choisie pour évaluer et comparer les résultats des différentes approches.