Analyse de stabilité de systèmes linéaires EDO-EDP interconnectés
Auteur / Autrice : | Mathieu Bajodek |
Direction : | Alexandre Seuret, Frédéric Gouaisbaut |
Type : | Thèse de doctorat |
Discipline(s) : | Automatique |
Date : | Soutenance le 08/07/2022 |
Etablissement(s) : | Toulouse 3 |
Ecole(s) doctorale(s) : | École doctorale Systèmes (Toulouse ; 1999-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'Analyse et d'Architecture des Systèmes (Toulouse ; 1968-....) |
Jury : | Président / Présidente : Dimitri Peaucelle |
Examinateurs / Examinatrices : Alexandre Seuret, Frédéric Gouaisbaut, Dimitri Peaucelle, Michaël Di Loreto | |
Rapporteur / Rapporteuse : Sabine Mondie, Wim Michiels |
Mots clés
Résumé
Les systèmes de dimension infinie permettent de modéliser un large spectre de phénomènes physiques pour lesquels les variables d'états évoluent temporellement et spatialement. Ce manuscrit s'intéresse à l'évaluation de la stabilité de leur point d'équilibre. Deux études de cas seront en particulier traitées : l'analyse de stabilité des systèmes interconnectés à une équation de transport, et à une équation de réaction-diffusion. Des outils théoriques existent pour l'analyse de stabilité de ces systèmes linéaires de dimension infinie et s'appuient sur une algèbre d'opérateurs plutôt que matricielle. Cependant, ces résultats d'existence soulèvent un problème de constructibilité numérique. Lors de l'implémentation, une approximation est réalisée et les résultats sont conservatifs. La conception d'outils numériques menant à des garanties de stabilité pour lesquelles le degré de conservatisme est évalué et maîtrisé est alors un enjeu majeur. Comment développer des critères numériques fiables permettant de statuer sur la stabilité ou l'instabilité des systèmes linéaires de dimension infinie ? Afin de répondre à cette question, nous proposons ici une nouvelle méthode générique qui se décompose en deux temps. D'abord, sous l'angle de l'approximation sur les polynômes de Legendre, des modèles augmentés sont construits et découpent le système original en deux blocs : d'une part, un système de dimension finie approximant est isolé, d'autre part, l'erreur de troncature de dimension infinie est conservée et modélisée. Ensuite, des outils fréquentiels et temporels de dimension finie sont déployés afin de proposer des critères de stabilité plus ou moins coûteux numériquement en fonction de l'ordre d'approximation choisi. En fréquentiel, à l'aide du théorème du petit gain, des conditions suffisantes de stabilité sont obtenues. En temporel, à l'aide du théorème de Lyapunov, une sous-estimation des régions de stabilité est proposée sous forme d'inégalité matricielle linéaire et une sur-estimation sous forme de test de positivité. Nos deux études de cas ont ainsi été traitées à l'aide de cette méthodologie générale. Le principal résultat obtenu concerne le cas des systèmes EDO-transport interconnectés, pour lequel l'approximation et l'analyse de stabilité à l'aide des polynômes de Legendre mène à des estimations des régions de stabilité qui convergent exponentiellement vite. La méthode développée dans ce manuscrit peut être adaptée à d'autres types d'approximations et exportée à d'autres systèmes linéaires de dimension infinie. Ce travail ouvre ainsi la voie à l'obtention de conditions nécessaires et suffisantes de stabilité de dimension finie pour les systèmes de dimension infinie.