Thèse soutenue

Etude et développement de micro-oscillateurs fluidiques pour le refroidissement de systèmes électroniques embarqués

FR  |  
EN
Auteur / Autrice : Georges Saliba
Direction : Lucien BaldasVincent Raimbault
Type : Thèse de doctorat
Discipline(s) : Dynamique des fluides
Date : Soutenance le 31/05/2022
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Aéronautique-Astronautique (Toulouse)
Partenaire(s) de recherche : Laboratoire : Institut Clément Ader (Toulouse ; 2009-....)
Jury : Président / Présidente : Nicolas Mazellier
Examinateurs / Examinatrices : Christine Barrot Lattes, Sandrine Bernardini, Thierry Camps
Rapporteurs / Rapporteuses : Gian Luca Morini, Laurent Keirsbulck

Résumé

FR  |  
EN

Dans le domaine aéronautique, les contraintes sur le refroidissement sont multiples. L'efficacité d'un système de refroidissement ne se résume plus au simple taux de chaleur dissipée, mais englobe d'autres facteurs comme la compacité, le poids, la robustesse, le coût de maintenance ainsi que la durabilité. Une conception du système de refroidissement qui intègre ces aspects pourrait diminuer les coûts de fonctionnement, notamment la consommation de kérosène, et donc réduire l'impact environnemental du vol. La multiplication de systèmes embarqués dans l'aéronautique amène des contraintes supplémentaires pour leur refroidissement. Dans ce contexte, les actionneurs fluidiques présentent un fort potentiel. Ces travaux portent plus précisément, sur l'utilisation de jets pulsés produits par des oscillateurs fluidiques pour refroidir une surface chauffée. Plusieurs travaux sur les jets d'impact ont montré qu'il était possible d'améliorer la dissipation thermique en introduisant des pulsations dans l'écoulement. Il manque cependant un consensus dans la littérature autour de l'ensemble des conditions opératoires propices à l'amélioration des performances. D'où la nécessité de mener une étude sur l'écoulement produit par ces dispositifs fluidiques et le refroidissement qui en résulte. En amont de cela, il est nécessaire de se pencher sur l'effet de certains paramètres liés à la géométrie du l'oscillateur sur son mode de fonctionnement, en commençant par la caractérisation de l'écoulement pulsé produit par l'oscillateur. AK cette fin, un prototype d'oscillateur est réalisé en fabrication additive puis caractérisé via une reconstruction spatiale 2D et 3D du champ de vitesse à l'aide d'un seul fil-chaud et d'une sonde de pression placée au niveau des canaux de retours. Cette méthode de mesure nous permet de mettre en évidence des structures cohérentes et suivre leur évolution. En marge de cette étude, un réseau de neurones artificiels profond, ayant des fonctions d'activations sinusoïdales atypiques, est utilisé pour créer une représentation implicite du champ de vitesse. L'oscillateur ainsi caractérisé a alors été utilisé pour refroidir une plaque en verre chauffé. Des tests sont pratiqués sur des jets stationnaires et des jets pulsés de même débit massique moyen. Une amélioration considérable des performances est observée pour des faibles distances d'impact et des hautes fréquences de pulsation. Des simulations numériques sont ensuite réalisées en utilisant des méthodes statistiques en un point (dites RANS) et des modèles hybrides LES/RANS. En vue de concevoir un système de refroidissement compact et capable de cibler des composants de tailles submillimétriques, des versions micrométriques de ces mêmes oscillateurs ont été conçues et fabriquées ainsi qu'une instrumentation électronique à même de les caractériser. Rares sont les études menées sur les microjets d'impact alors qu'aucune étude n'a pu être recensée à ce jour sur les microjets d'impact pulsés ni sur les micro-oscillateurs fluidiques gazeux. Le défi est donc double : de montrer que les micro-oscillateurs à gaz peuvent fonctionner à cette échelle et de les utiliser pour refroidir des composants dissipateurs de chaleur. À cela vient s'ajouter un problème non moins ambitieux, celui d'instrumenter l'oscillateur ainsi que la surface d'impact chauffée. Étant donné que la fréquence d'oscillation à cette échelle-là se mesure en kilohertz et que les fluctuations de température sont relativement faibles, des capteurs thermiques à base de couches de polysilicium fortement dopé ont donc été produits. Bien que leur haute sensibilité thermique ait été déjà démontrée, il est question ici d'améliorer leur temps de réponse. Pour ce faire, les capteurs ont été partiellement désolidarisés du substrat en silicium. Cette amélioration de la dynamique du capteur a été obtenue au prix d'une structure fragilisée qu'il a fallu prendre en compte dans les étapes technologiques suivantes.