Signalisation et implication des phosphoinositides dans la myopathie myotubulaire liée à l'X
Auteur / Autrice : | Melanie Mansat |
Direction : | Julien Viaud, Karim Hnia |
Type : | Thèse de doctorat |
Discipline(s) : | Biologie cellulaire |
Date : | Soutenance le 04/04/2022 |
Etablissement(s) : | Toulouse 3 |
Ecole(s) doctorale(s) : | École doctorale Biologie Santé Biotechnologies (Toulouse) |
Jury : | Président / Présidente : Muriel Laffargue |
Rapporteur / Rapporteuse : Sylvie Friant, Olivier Destaing, Cécile Gauthier-Rouvière |
Mots clés
Mots clés contrôlés
Résumé
Les phosphoinositides (PIs) appartiennent à une famille de lipides membranaires qui jouent un rôle essentiel dans diverses fonctions cellulaires, comme en témoigne l’implication directe de nombreuses enzymes de leur métabolisme dans diverses pathologies humaines telles que des maladies génétiques ou des cancers. Leur métabolisme est extrêmement actif via l’action de PI-kinases et PI-phosphatases spécifiques. Sous l’effet de divers stimuli, la relocalisation de ces enzymes permet une génération ou un appauvrissement rapide et plus ou moins transitoire de certains PIs, permettant une coordination dans le recrutement de protéines impliquées dans divers mécanismes cellulaires tels que la migration, la différentiation, ou encore la prolifération. La protéine MTM1, membre de la famille des myotubularines, est une PI 3-phosphatase qui, in vitro, déphosphoryle le phosphatidylinositol 3-phosphate (PI3P) et le PI(3,5)P2 en PI et PI5P, respectivement. Cette enzyme est mutée dans la myopathie myotubulaire liée à l’X (XLMTM), une maladie rare congénitale grave caractérisée dès la naissance par une hypotonie, une importante faiblesse musculaire et une détresse respiratoire conduisant à la mort précoce des nourrissons. Dans la majorité des cas, une absence de la protéine est constatée. Durant ma thèse, je me suis intéressée à l’étude des rôles des produits et substrats de MTM1, et leurs impacts dans l’étiologie de la pathologie. Pour cela, j’ai utilisé la lignée de myoblastes murins C2C12, lignée ayant la capacité de se différentier en myotubes contractiles et reproduisant les différentes étapes de la myogenèse. Nous avons créé et caractérisé une lignée knockout pour Mtm1 via la technique CRISPR/Cas9 et montré que ces cellules reproduisent les défauts observés dans la pathologie tels que des noyaux mal positionnés, et des myotubes plus fins et petits. A l’aide de ce modèle, nous avons montré que MTM1 est une enzyme majeure pour la production de PI5P, et de façon surprenante (alors que MTM1 s’exprime au cours de la différentiation) mesuré une diminution en PI5P au cours de la différentiation. Nous mettons en évidence un mécanisme original où la coordination entre une PI-phosphatase et PI-kinase est impliquée dans la formation de structures importantes pour la fusion des myoblastes. L’ensemble de ces résultats correspondent à notre premier article. En parallèle, nous avons initié une étude sur les partenaires de MTM1 via l’approche de BioID et les résultats obtenus nous orientent vers un rôle important de MTM1 dans le trafic des intégrines, corrélant avec les défauts observés de localisation de l’intégrine-β1 dans la pathologie. Ces résultats sont intégrés au sein d’un deuxième article qui met en évidence que les altérations épigénétiques sont un mécanisme physiopathologique de la XLMTM, et que l’inhibition des histones désacétylases est une stratégie thérapeutique prometteuse pour cette maladie. En particulier, nous montrons que le traitement des cellules C2C12 knockout pour Mtm1 par l’acide valproïque permet de restaurer un phénotype normal avec un niveau d’expression et une localisation normale de l’intégrine-β1, corrélé avec une restauration des défauts d’adhésion observés. Le détail des protéines identifiées avec l’approche de BioID sont présentés en résultats complémentaires. D’autre part, au vu des rôles décrits de MTM1 et de ses produits et substrats dans le trafic vésiculaire, des travaux ont été réalisés sur sa perturbation en absence de MTM1 notamment via le suivi des protéines Rab et du PI3P et sont également présentés en résultats complémentaires. Ainsi, ce travail de thèse a permis de mettre en place un modèle cellulaire original pour l’étude de MTM1 et de poser les bases moléculaires du rôle de MTM1 et des PIs qu’il métabolise, mais il permet également d’apporter un volet mécanistique à une étude plus large sur la découverte de nouvelles pistes thérapeutiques.