Optimisation du trafic aérien à l'arrivée dans la zone terminale et dans l'espace aérien étendu
Auteur / Autrice : | Ying Huo |
Direction : | Daniel Delahaye, Mohammed Sbihi |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques et Applications |
Date : | Soutenance le 03/02/2022 |
Etablissement(s) : | Toulouse 3 |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, informatique et télécommunications (Toulouse) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de recherche ENAC (Toulouse ; 2019-....) |
Jury : | Président / Présidente : Marcel Mongeau |
Examinateurs / Examinatrices : Daniel Delahaye, Mohammed Sbihi, Pierre Maréchal, Fulya Aybek Cetek | |
Rapporteurs / Rapporteuses : Juan Manuel López Soler, Weigang Li |
Résumé
Selon les prévisions à long terme du trafic aérien de l'Organisation de l'Aviation Civile Internationale (OACI) en 2018, le trafic mondial de passagers devrait augmenter de 4,2% par an de 2018 à 2038. Bien que l'épidémie de COVID-19 ait eu un impact énorme sur le transport aérien, il se rétablit progressivement. Dès lors, l'efficacité et la sécurité resteront les principales problématiques du trafic aérien, notamment au niveau de la piste qui est le principal goulot d'étranglement du système. Dans le domaine de la gestion du trafic aérien, la zone de manœuvre terminale (TMA) est l'une des zones les plus complexes à gérer. En conséquence, le développement d'outils d'aide à la décision pour gérer l'arrivée des avions est primordial. Dans cette thèse, nous proposons deux approaches d'optimisation qui visent à fournir des solutions de contrôle pour la gestion des arrivées dans la TMA et dans un horizon étendu intégrant la phase en route. Premièrement, nous abordons le problème d'ordonnancement des avions sous incertitude dans la TMA. La quantification et la propagation de l'incertitude le long des routes sont réalisées grâce à un modèle de trajectoire qui représente les informations temporelles sous forme de variables aléatoires. La détection et la résolution des conflits sont effectuées à des points de cheminement d'un réseau prédéfini sur la base des informations temporelles prédites à partir de ce modèle. En minimisant l'espérance du nombre de conflits, les vols peuvent être bien séparés. Outre le modèle proposé, deux autres modèles de la litérrature - un modèle déterministe et un modèle intégrant des marges de séparation - sont présentés comme références. Un recuit simulé (SA) combiné à une fenêtre glissante temporelle est proposé pour résoudre une étude de cas de l'aéroport de Paris Charles de Gaulle (CDG). De plus, un cadre de simulation basé sur l'approche Monte-Carlo est implémenté pour perturber aléatoirement les horaires optimisés des trois modèles afin d'évaluer leurs performances. Les résultats statistiques montrent que le modèle proposé présente des avantages absolus dans l'absorption des conflits en cas d'incertitude. Dans une deuxième partie, nous abordons un problème dynamique basé sur le concept de Gestion des Arrivées Étendue (E-AMAN). L'horizon E-AMAN est étendu jusqu'à 500 NM de l'aéroport de destination permettant ainsi une planification anticipée. Le caractère dynamique est traitée par la mise à jour périodique des informations de trajectoires réelles sur la base de l'approche par horizon glissant. Pour chaque horizon temporel, un sous-problème est établi avec pour objectif une somme pondérée de métriques de sécurité du segment en route et de la TMA. Une approche d'attribution dynamique des poids est proposée pour souligner le fait qu'à mesure qu'un aéronef se rapproche de la TMA, le poids de ses métriques associées à la TMA devrait augmenter. Une étude de cas est réalisée à partir des données réelles de l'aéroport de Paris CDG. Les résultats finaux montrent que grâce à cet ajustement anticipé, les heures d'arrivée des avions sont proches des heures prévues tout en assurant la sécurité et en réduisant les attentes. Dans la troisième partie de cette thèse, on propose un algorithme qui accélère le processus d'optimisation. Au lieu d'évaluer les performances de tous les aéronefs, les performances d'un seul aéronef sont concentrées dans la fonction objectif. Grâce à ce changement, le processus d'optimisation bénéficie d'une évaluation d'objectif rapide et d'une vitesse de convergence élevée. Afin de vérifier l'algorithme proposé, les résultats sont analysés en termes de temps d'exécution et de qualité des résultats par rapport à l'algorithme utilisé à l'origine.