
UNIVERSITÉ DE STRASBOURG

ÉCOLE DOCTORALE MATHÉMATIQUES, SCIENCES DE

L’INFORMATION ET DE L’INGÉNIEUR (MSII)

Laboratoire Icube - UMR7357

THÈSE présentée par :

Jean-Philippe ABEGG
soutenue le : 21 octobre 2022

pour obtenir le grade de : Docteur de l’université de Strasbourg

Discipline/ Spécialité : Informatique

Security and efficiency of
blockchain technologies applied to

Internet-of-Things application

THÈSE dirigée par :
M. NOËL Thomas Professeur, Université de Strasbourg

THÈSE co-encadrée par :
M. BRAMAS Quentin Maître de conférences, Université de Strasbourg

RAPPORTEURS :
M. LAFOURCADE Pascal Maître de conférences, Université Clermont-Auvergne
Mme POTOP-BUTUCARU Maria Professeure, Sorbonne Université

AUTRES MEMBRES DU JURY :
Mme CAILLOUET Christelle Maître de conférences, Université de Côte d’Azur
M. LUDINARD Romaric Maître de conférences, IMT Atlantique
Mme MITTON Nathalie Directrice de recherche, INRIA Lille
M. VALOIS Fabrice Professeur, INSA Lyon

Abstracts

Résumé

Cette thèse traite de l’utilisation de la Blockchain dans les applications liées à l’Internet des Objets (IoT).

L’IoT est un domaine présent dans notre quotidien et les applications IoT reposent sur l’utilisation d’objets

contraints, des appareils informatiques beaucoup moins puissants qu’un ordinateur. L’utilisation de ces

objets contraints force la définition de nouveaux protocoles et l’utilisation de nouveaux outils pour assurer

les communications et la sécurité des applications. Dans cette optique, nous nous posons la question de

savoir si la blockchain, une technologie de registre distribuée, peut être un outil permettant de répondre à ce

problème de sécurité.

Pour répondre à cette question, nous avons réalisé deux contributions: un algorithme de consensus réduisant

la consommation énergétique des nœuds blockchain, et un protocole publish/subscribe fournissant des

garanties de livraison des données.

Mots clés : blockchain, internet des objets, publish/subscribe, algorithme de consensus, paiement des

données

Abstract

This thesis presents how the blockchain technology is used in Internet-of-Things (IoT) applications. IoT is

something present in our everyday life and the IoT applications rely on constrained devices, devices far less

powerful than a computer. Using these constrained devices forces us to define new protocols and use new

tools to ensure security in these applications. In this thesis, we ask ourselves if the blockchain, a distributed

ledger technology, can be a tool used to increase security in IoT applications.

To answer this question, we propose two contributions : a consensus algorithm reducing the energy

consumption of the blockchain nodes, and a publish/subscribe protocol presenting data delivery guarantees.

Keywords : blockchain, internet-of-things, publish/subscribe, consensus algorithm, data payment protocol

Acknowledgments

This manuscript is the result of three years of work and, over those years, I had the chance to have many

encounters. In this section, I will take my time, and do my best, to thank all the people who supported me

and worked with me.

First, I want to thank the jury who evaluates my work: Christelle Caillouet, Pascal Lafourcarde,Romaric

Ludinard, Nathalie Mitton, Maria Potop-Butucaru, and Fabrice Valois. I thank them for accepting to judge my

work.

Next, I want to thank my supervisors. Thank you to Quentin Bramas. I know that I am your first supervised

PhD and, from my point of view, you did a terrific job. I will miss our discussions over blockchain problems.

Also, from now on, I will try my best to write "cannot" instead of "can not". Thank you Thomas Noël. You are

the perfect counterpart for Quentin, canalizing his enthusiasm and always looking at the bigger picture to

orientate our efforts in the best direction. Aside from a global pandemic and a company liquidation, working

with you both was pleasant. I hope that it was the same for you.

I want to thank Transchain. It seems weird to thank a closed company but I would never have started a PhD

if Timothée Brugière and Pierre Banzet did not give me this opportunity. For this, I want to thank them.

Also, I would like to thank all my former coworkers at Transchain. In particular, I thank Alexandre Hag, Lisa

Heindrich, Jonathan Langlois, and Robin Turon-Lagot.

Thanks to all the permanent members of the Network Research team: Stéphane Cateloin, Pierre David, Anissa

Lamani, Pascal Mérindol, Julien Montavont, Cristel Pelsser, Guillame Schreiner and Fabrice Theoleyre. The

discussions shared with you during coffee breaks or book clubs are priceless for me because, aside from

discovering topics outside the subject of my PhD, I observe different visions on how to question and present

things.

Also, I thank the many PhD students on the team. Thank you Jean-Romain. What a journey since the

internship in L3 ! I hope that we will make one day this publication on B2GB. Also thanks to finding the

acronym "SUPRA". Thank you Thomas A., for those breaks where we just talked about animes with you and

JR. Thank you Amaury and Farzad, I wish you the best of luck for your last years of PhD. Thank you Thomas

H. and keep practicing dancing.

Thanks as well to the former PhD students. Thank you Amine for bringing the chessmania to the PhD student

room. By the way, if you are reading these words, Amine, your chess board is still in the PhD room. Thank

you, Loic for all the discussions about football. Maybe this year Liverpool will win. Thanks as well to Renato,

you are the chilliest guy I have met. Thanks as well to Sebi and Julian. Always there to explain me how to

make a good Mate and correct my Spanish.

Lastly, I want to thank my sisters, Adeline and Marie-Céline, and my friends for their support during this 3

years journey.

Resumé

1 Introduction

La blockchain est une technologie de registres distribués présentés par Satoshi Nakamoto en 2008 dans le

papier Bitcoin [1]. L’objectif de Nakamoto était de créer un système de paiement électronique entretenu par

un réseau de nœuds sans utiliser d’autorité centrale. Les nœuds résolvent un consensus pour avoir la même

copie locale du registre (les mêmes transactions, dans le même ordre). En appliquant les mêmes transactions,

les noeuds possèdent les mêmes valeurs pour les comptes des utilisateurs, mais veci n’est en réalité qu’un cas

d’utilisation de la blockchain.

Très vite, un cas d’utilisation plus général de la blockchain est apparu. En effet, il est possible d’utiliser une

blockchain comme d’un environnement d’exécution transparent d’un programme, les smart-contracts. Les

transactions du registre deviennet alors des déclarations de codes sources et des appels de fonctions. En

appliquant les transactions dans le même ordre, les noeuds exécutent le code de la même manière et possède

les mêmes valeurs pour les variables du programme. Ce cas d’utilisation plus général de la blockchain crée

une nouvelle manière de créer de la confiance, et donc d’augmenter la sécurité, entre les utilisateurs dans des

environnements distribués.

Cette confiance dans le contenu de la blockchain repose sur deux propriétés. La première, le contenu de la

blockchain est public. Il est impossible pour un noeud du réseau de cacher une transaction dans un bloc aux

autres noeuds du réseau. Ils ont tous la même copie du registre. La deuxième, la donnée ne peut pas être

modifiées. Tant que certaines conditions sont respectées sur la quantité de noeuds honnêtes dans le réseau, il

est impossible pour un noeud malveillant de modifier une transaction dans un bloc, une fois que ce dernier

est ajouté dans le registre. On dit que la donnée est immuable. Grâce à ces propriétés, les utilisateurs de la

blockchain peuvent avoir confiance dans le contenu du registre.

Dans cette thèse, nous nous posons la question de savoir si la blockchain peut être un outil intéressant

pour augmenter la sécurité dans un environment distribué en particulié, l’Internet des Objets (IoT). L’IoT

est un domaine présent dans notre quotidien. Il peut être utilisé dans un cadre personnel avec par exemple

l’utilisation de montres connectées ou de maisons connectées, mais aussi dans un cadre industriel avec par

exemple les usines connectées. Les applications IoT reposent sur l’utilisation d’objets contraints, des appareils

informatiques beaucoup moins puissants qu’un ordinateur, pour mesurer un environnement réel.

La difficulté de faire cohabiter l’IoT et la blockchain vient de la différence de puissance entre les objets

IoT et la puissance nécessaire pour être un membre du réseau blockchain. Les objets contraints ne sont

pas assez puissants pour être directement intégrés dans le réseau blockchain. Il est donc impossible de

simplement ajouter tous les objets connectés dans le réseau blockchain pour bénéficier des avantages du

registre distribué. Ce problème peut être résolu de deux manières. La première est de réduire les ressources

nécessaires pour être un nœud blockchain pour sur le long terme envisager d’ajouter des objets contraints en

nœuds blockchain. La deuxième solution est d’utiliser plus intelligemment la blockchain, en se basant sur

des architectures d’applications IoT existantes et en observant où peut être utilisé la blockchain et comment

elle peut améliorer la sécurité des systèmes.

Pour répondre à notre question sur l’utilité de la blockchain dans le domaine de l’IoT, nous avons réalisé

deux propositions. La première est un protocole publish/subscribe utilisant la blockchain, SUPRA. Le

paradigme publish/subscribe est un modèle de communication utilisé en IoT. Notre deuxième proposition

est un algorithme de consensus demandant moins de puissance de calcul pour les participants, la Preuve

d’Interaction.

2 SUPRA

Le modèle publish-subscribe est un paradigme de communication. Dans ce modèle, il existe trois entités:

▶ le publisher, qui génère des événements, dans notre cas, des données.

▶ le subscriber, qui souhaite recevoir des événements.

▶ le broker, qui est un intermédiaire entre les publishers et les subscribers.

Les pubishers et les subscribers ne se connaissant pas directement. Ils n’ont pas besoin d’être connectés en

même temps pour partager de l’information. Ce modèle est alors plus économe en ressources et s’adapte

mieux à des communications entre de nombreux noeuds que le modèle request-reply [2]. Pour ces raisons, ce

modèle est utilisé dans des applications IoT.

Il y a différents types de protocoles publish-subscribe et nous allons nous concentrer sur les protocoles

publish-subscribe utilisant les topics. Un topic est un identifiant, representé par une chaîne de caractères, associé

à la donnée crée par le publisher. Dans ces protocoles, le subscriber annonce son intérêt pour les données

associées à un topic. Lorsqu’une nouvelle donnée de ce topic est générée par le publisher, alors la donnée

est envoyée au subscriber. Les communications de ce modèle sont unidirectionnelles, du publisher vers les

subscribers.

Le broker est l’entité centrale de ce modèle, car elle est chargée de transférer les messages du publisher vers les

subscribers. Ce tier de confiance crée des problèmes de sécurité dans le modèle et il existe plusieurs protocoles

remplaçant ce broker par une blockchain [3, 4].

Travaux connexes. Trinity [3] est, à notre connaissance, le premier protocole distribué publish-subscribe
utilisant la blockchain. Dans cette proposition, il y a plusieurs brokers chacun étant un nœud d’un réseau

blockchain. Le publisher signe les données qu’il crée, et il les envoie à son broker (en lequel il a toute confiance).

Les données seront par la suite ajoutées dans un bloc de la chaîne. Une fois le bloc crée, les autres brokers
envoient les données à leurs subscribers locaux abonnés à ces données. La blockchain permet ici d’avoir une

confiance complète dans la donnée et la communication. Les données sont signées par le publisher pour

confirmer leur origine, le broker ne possède pas la clé privée du publisher. La blockchain fournie aussi un

ordonnancement total et immuable pour les données.

Le problème de cette solution est l’usage intensif de la blockchain. Chaque donnée est envoyée sur la

blockchain par le biais d’une transaction. Cette dernière possède un coût en jetons spécifique à la blockchain

utilisée. Envoyer un grand nombre de données augmente ce coût en jetons qui doit être payé par le publisher
ou le broker associé. De plus, les données sur la blockchain sont conservées durant toute la durée de vie de la

blockchain. Au fur et à mesure des publications, la taille de la blockchain va croître, ce qui va augmenter les

ressources de stockage nécessaires pour les noeuds.

Première version de SUPRA

SUPRA est un protocole distribué publish/subscribe utilisant la blockchain. À l’inverse des autres propositions,

ce protocole essaie de réduire au maximum le nombre de messages envoyés sur la blockchain, qu’on appelle

on-chain. Ceci afin de réduire le coût des frais de transaction et l’impact du temps de validation des transactions

sur les performances du protocole. De plus, le protocole souhaite garantir, pour le publisher, la livraison des

messages avant un délai T depuis le premier envoi et, pour le subscriber, l’ordre et l’origine des messages.

L’intégralité des messages est horodatée et signée par la source. De plus, les clés publiques pour vérifier les

signatures sont enregistrées dans la blockchain.

Pour les communications unidirectionnelles entre le publisher et le subscriber, le protocole utilise deux

canaux de communication: un lien off-chain, qui est une connexion non-fiable entre le publisher et le subscriber

(ne passant pas par la blockchain), et un lien on-chain qui est une connexion fiable à travers une blockchain

(c’est-à-dire que le publisher, resp. le subscriber, est soit connecté de manière fiable à un nœud blockchain,

soit est lui-même un nœud blockchain). Pour envoyer un message, le publisher utilise en premier lieu le lien

off-chain et attend de recevoir un acquittement de la part du subscriber. L’acquittement du message est une

preuve pour le publisher que le message a été reçu dans les temps. En cas de conflit, cette preuve peut être

Abonnement
1

Abonnement
N

N abonnements avec N
chaîne de signatures

N abonnements mais 1 chaîne
de signatures

Figure 1: Le publisher possède plusieurs abonnement actifs, possédant chacun une chaîne de signature, et il fusionne ces chaînes en une

seule.

Pub SN-1 SN

MN

TN APub EncK(D)

Pub SNTN+1 APubSub S0 SN+1

Pub S0 S1

M1

T1 APub EncK(D)

Signature overwrite

Figure 2: Le publisher utilise le message SigOver pour choisir la valeur de P rei

envoyée à un tiers qui sera alors capable de vérifier la bonne réception du message en utilisant uniquement

des données publiques. En l’occurrence, les clés publiques utilisées pour signer les messages sont dans la

blockchain, et l’acquittement contient la signature du message acquitté.

Si, après l’envoie d’une donnée au subscriber, l’acquittement ou le message d’origine sont perdus, le publisher

utilise alors le canal on-chain, c’est-à-dire, envoie le message dans la blockchain pour qu’il soit inclu dans un

bloc avant l’écoulement du délai T . La présence du message dans un bloc est une preuve de sa réception

par le subscriber, car le protocole suppose que les utilisateurs sont connectés au réseau blockchain. Avec ce

système, on réduit le nombre de messages envoyé dans la blockchain par rapport aux autres propositions de

protocole.

Pour détecter les messages perdus, ou désordonnés, chaque message envoyé par le publisher aux subscribers

est chaîné au précédent en répétant sa signature. Si le message répète une signature inconnue, le subscriber

détecte alors une perte. À cause du réseau, le message manquant peut être retardé, mais si le subscriber attend

un délai T et n’est toujours pas capable de trouver le message manquant, alors il sait que le publisher n’a pas

respecté le protocole. En effet, le message manquant devrait au minimum être présent dans la blockchain.

En montrant à un tiers (ou même un smart-contract) le message utilisé pour détecter l’erreur et le dernier

message correct envoyé par le publisher, le subscriber peut prouver que le publisher n’a pas respecté le

protocole. Le tiers peut vérifier que les signatures ne correspondent pas, et que les messages manquants ne

sont pas dans la blockchain. Pour éviter les fausses accusations, le tiers doit accorder un délai au publisher

pour présenter une preuve de réception des messages manquants : un acquittement venant du subscriber. Pour

que ce processus de détection fonctionne, il est important pour le subscriber de ne pas envoyer d’acquittement

avant la réception de l’intégralité des messages précédents.

Cette version du protocole possède un défaut pour partager les données à un grand nombre de subscribers.

Le chaînage des messages force le publisher à réaliser N signatures si il souhaite partager la même donnée à

N subscribers. Ceci va à l’encontre du modèle publish/subscribe où l’on souhaite avoir une faible quantité de

travail pour partager l’information. Nous allons présenter une méthode pour réduire ce nombre d’opérations

à 1 pour N subscriber.

Réduction du nombre de signatures

Subscription 1

N subscriber with N chains of
signatures

N subscribers with 1 chain of signaturesN signature overwritting

Pub S0 S1T1 Pub S1T2 APubSub1 S3 S2

Pub S3 S4T3

Pub S1'T2 APubSubN S3 S2'

APub EncK(D1)

Subscription N

Pub S0' S1'T1 APub EncK(D1)

APub EncK(D2)

Figure 3: Le publisher unifie les signatures de publishers abonnements.

Le problème du nombre de signatures réalisées par le publisher vient du format de messages et des

fonctionnalités du protocole. Sur la Figure 1 est représentée une version graphique de notre solution à

ce problème. Nous voulons que le publisher soit capable à partir de plusieurs connexions avec plusieurs

subscribers pour un même topic TN de créer une seule chaîne de signatures commune entre toutes les

connexions. Pour ce faire, nous devons vérifier les deux règles suivantes:

▶ R1: après avoir unifié les chaînes de signatures, le message Mi est identique pour tous les subscribers.
▶ R2: Si le message Mi est identique pour tous les subscribers, alors le message Mi+1 l’est aussi.

De ce double objectif, découle un nouveau format de message qui ne contient plus d’informations désignant

un subscriber en particulier. Dans la version précédente du protocole, le message contenait par exemple

l’identifiant du subscriber. Cette information est unique par subscriber et force le publisher à réaliser une

signature par subscriber. Nous proposons ce nouveau format:

Mi = Ti||Pub||AP ub||EncK(D)||Prei||Si.

Ti est l’horodatage du message Mi. Pub est l’identifiant du publisher. AP ub est l’alias choisi par le publisher

(l’équivalent d’un numéro de port). EncK(D), la donnée chiffrée par une clé symetrique. Si est la signature

du message et Prei est la signature du message précédent, Prei = Si−1.

Ce nouveau format ne contient pas d’information identifiant un subscriber en particulier, ce qui signifie qu’en

l’utilisant, si nous sommes capables de faire un message Mi identique pour tous les subscribers, alors le

message Mi+1 sera lui aussi identique (R2).

Pour résoudre le problème de signatures, nous devons maintenant faire en sorte de créer une version unique

du message Mi pour tous les subscribers du même topic. Dans SUPRA, chaque message Mi répète la signature

du message précédent dans le champ Prei = Si−1. La première valeur de Prei est la signature du dernier

message de la poignée de mains utilisée pour mettre en place l’abonnement. Cette signature est réalisée par

le subscriber, il y a donc N versions de Prei quand les connexions entre le publisher et les subscribers sont

mises en place.

SUPRA ne fait aucune supposition sur l’algorithme de signature. Il peut engendrer ou non des collisions.

Si les collisions sont impossibles, alors il devient impossible d’unifier la valeur de Prei, mais, même si

l’algorithme réalise des collisions, unifier la valeur de Prei reste une opération aléatoire et difficile.

Pour parvenir à unifier la valeur de Prei, quelle que soit l’hypothèse sur l’algorithme de signature utilisé,

nous ajoutons un nouveau message de contrôle, et nous avons représenté son fonctionnement sur la Figure 2.

Ce message se nomme Signature Overwrite et il possède le format suivant:

SigOver = TSigOver||Sub||Pub||AP ub||SOver||PreSigOver−1||SSigOver

En utilisant ce message, le publisher peut partager une valeur SOver à tous les subscribers. Comme représentée

sur la Figure 3, cette valeur va être utilisée dans le message suivant Mi où Prei = SOver. Si le publisher

partage la même valeur SigOver à tous les subscribers d’un même topic, il est alors certains d’avoir transformé

les chaînes de signatures de chaque subscriber en une seule chaîne unique pour tous les subscribers.

Grâce à nos modifications dans le format de message et à ce nouveau message de contrôle, le publisher est

capable de réduire le nombre d’opérations de signature et de chiffrement de N à 1 pour partager la même

donnée à N subscribers.

Securité

SUPRA est un protocole qui assure une traçabilité des données. Il est toujours possible pour un utilisateur de

prouver la provenance d’un message et sa destination. Cette traçabilité permet d’utiliser un smart-contract

pour résoudre les possibles conflits entre les utilisateurs. C’est-à-dire, si un message du publisher n’est pas

délivré après un délai T depuis son premier envoi. Avec notre nouveau format de message, notamment avec

l’absence de l’identifiant du subscriber, on peut se demander si cette traçabilité est toujours garantie.

Pour assurer la résolution des conflits, SUPRA demande à ses utilisateurs de conserver la poignée de main en

trois temps utilisée pour mettre en place la connexion entre le subscriber et le publisher. Dans cette poignée

de main, sont échangés le nom du topic et l’alias. Dans ces messages, les identifiants du subscriber et du

publisher apparaissent. En présentant cette poignée de main, il est toujours possible de prouver l’existence

d’une connexion entre le subscriber et le publisher.

Pour prouver la réception d’un message, le publisher doit posséder un acquittement pour ce message ou le

message doit être présent dans la blockchain. L’acquittement du message Mi par le subscriber n’est que la

signature, par le subscriber, de Si. Si on considère S′
i la signature acquittée par un ancien acquittement, un

publisher malveillant peut essayer de modifier Prei pour que Si = S′
i. En réalité, on peut montrer que cette

opération est impossible, grâce à l’horodatage des messages. Le protocole présume que si Mi et Mj sont

deux messages, avec i ̸= j, alors Ti ̸= Tj . Ce qui signifie si Si = S′
i alors Ti = T ′

i et donc i = i′
. Si ce n’est

pas le cas, les horodatages de l’acquittement et du faux message ne correspondent pas, et un tiers (ou un

smart-contrat) peut facilement détecter cette tentative de fraude.

Vente des données

Pour l’IoT, nous avons étendu SUPRA pour permettre la vente de données en les partageant de manière

publish/subscribe. Cette opération est possible en ajoutant le prix des communications dans les acquittements

et en modifiant le handshake pour mettre en place la connexion et le smart-contract.

Avant de débuter le partage des données, le subscriber verrouille une quantité de tokens dans le smart-contract.

Grâce aux acquittements, le publisher est capable de récupérer une partie de ces tokens et d’être rémunéré

pour le service rendu au subscriber. Le smart-contract garanti que le publisher est l’unique entité capable de

récupérer une partie des tokens.

Conclusion

SUPRA est un protocole publish/subscribe utilisant la blockchain pour ajouter des garanties sur l’origine et la

livraison des données. La blockchain est ici un médium neutre permettant le partage public d’information

non-critique pour mettre en place des garanties de sécurité aux utilisateurs.

La première version du protocole souffre d’un problème de passage à l’échelle, et force le publisher à réaliser

un nombre d’opérations ne respectant pas le modèle publish/subscribe. Nous avons présenté le protocole

SUPRA ainsi qu’une amélioration permettant de corriger ce problème, tout en gardant la sécurité de la

version d’origine. Grâce à cette extension, le nombre de messages envoyés dans la blockchain est réduit au

minimum. Peut importe le nombre de subscriber pour un même topic, le publisher devra envoyer uniquement

un unique message dans la blockchain, si il doit envoyer un message dans le registre pour le livrer dans les

temps.

3 Preuve d’interaction

Introduction La Blockchain est un protocole permettant de maintenir un livre de comptes de manière

distribuée entre plusieurs participants. Les transactions sont ajoutées sous la forme de blocs liés entre eux

pour former une chaîne. Comme tous les nœuds du réseau ont le même rôle, un système d’élection de leader

est utilisé pour élire le nœud responsable de l’ajout du prochain bloc. Le protocole Blockchain le plus connu,

Bitcoin, utilise la preuve de travail (PoW) comme système d’élection [bitcoin]. Avec la PoW, la probabilité

qu’un nœud soit élu est proportionnelle à sa puissance de calcul. Cela incite donc les participants à dépenser

beaucoup d’énergie afin d’augmenter leur chance d’être élu.

Nous proposons une alternative à la preuve de travail appelée preuve d’interaction. Puis nous montrons

comment utiliser ce système de preuve pour construire un protocole Blockchain, similaire à Bitcoin, mais qui

ne nécessite presque aucun travail. De plus, notre Blockchain offre une meilleure résistance aux attaques par

minage égoïste.

La preuve de travail (PoW) est à l’origine une technique anti-spam proposée en 1999 et adaptée en 2008 par

le protocole Bitcoin [1]. La PoW peut être vue comme un système d’élection de leader, pour sélectionner le

nœud responsable de l’ajout du prochain bloc dans la chaine de blocs. La PoW permet de se protéger contre

les attaques Sybil, les dénis de service et a un faible coût en communication, mais elle est énergivore.

Plusieurs alternatives à la PoW existent, par exemple la preuve d’enjeu (PoS) et la preuve de temps écoulé

(PoET). Ces alternatives posent cependant des contraintes sur le réseau sous-jacent, ou introduisent de

nouvelles failles de sécurité.

M. Abliz et T. Znati [5] ont présenté un système de protection anti-spam qui n’a pas, à notre connaissance, été

utilisé dans le contexte des Blockchains. L’idée de ce système est la suivante: quand un serveur de ressources

reçoit un grand nombre de requêtes, il demande au client de faire un tour dans le réseau i. e., visiter un

ensemble de serveurs ayant le même propriétaire que le serveur de ressources. Une fois ce tour réalisé, le

client peut prouver au serveur de ressources la réalisation de ce tour pour obtenir l’accès à la ressource. La

preuve d’interaction étend ce schéma pour être utilisé au sein d’une Blockchain.

Modèle

On considère un réseau N constitué de n nœuds, dont le graphe de communication est complet. Les nœuds

sont identifiés de manière unique par leur clé publique (l’association clé publique – nœud est connue pour

l’ensemble du réseau). Chaque message envoyé est signé par l’émetteur et ne peut pas être modifié ou falsifié

par un autre nœud. Les communications sont supposées partiellement synchrones, comme dans le protocole

Bitcoin. Le temps maximum d’attente avant la réception d’un message est borné par une valeur inconnue.

L’opérateur · désigne la concaténation. La fonction H est une fonction cryptographique de hachage. Nous

écrirons signu(m) la signature par le nœud u du message m. Nous supposons que la fonction de signature

est déterministe et ne dépend que du message et de la clé privée de u. Cette hypothèse peut sembler forte car

avec les schémas de signatures habituels, un message peut avoir plusieurs signatures différentes valides.

Cependant, nous pensons qu’elle peut être levée en pratique, et nous traiterons ce problème dans des travaux

futurs.

Nous allons par la suite présenter les algorithmes permettant la génération et la vérification d’une preuve

d’interaction et montrer comment ces algorithmes sont utilisés pour construire un protocole Blockchain.

La Preuve d’Interaction (PoI)

On note d la dépendance de la preuve (dans notre cas, elle correspond au hash du bloc précédent) et m le

message prouvé (dans notre cas, il correspond à la racine de l’arbre de Merkle qui stocke les transactions du

bloc en cours). On note D la distribution de probabilité utilisée pour tirer au hasard la longueur des tours

dans le réseau de chacun des nœuds. D représente la difficulté de la preuve.

Figure 4: u0 interagit avec un sous ensemble S de N

Calculs Préliminaires Un nœud u0 qui veut générer une PoI doit connaître (i) le sous-ensemble S de

nœuds du réseau avec qui il va interagir et (ii) la taille du tour L qu’il doit réaliser. Ces deux informations

sont calculées de manière pseudo-aléatoire avec comme graine s0, la signature par u0 de la dépendance d

(s0 = signu0
(d)).

On a S = {S0, S2, . . . , SnS−1}, un sous-ensemble de N pseudo-aléatoire de taille nS = min(20, n/2), généré

de manière déterministe à partir de s0. De même, L est un nombre pseudo-aléatoire qui suit la distribution

D, générée de manière déterministe à partir de s0. Le nœud u0 n’a donc aucun moyen de modifier S et L, et

chaque nœud du réseau qui génère une PoI a son propre ensemble S et sa propre longueur L, supposés

aléatoires. On voit sur la Figure Figure 4 que le nœud u0 interagit avec une suite de nœuds u1, u2, . . . dans le

sous-ensemble S.

Génération de la Preuve Pour un nœud u0, le tour dans le réseau se réalise en L phases séquentielles.

Chaque phase j ∈ [1, L] consiste en la création d’un hash hj , à partir du hash hj−1 de la phase précédente,

avec h0 = H(s0 ·m). A chaque phase j ∈ [1, L], u0 réalise les étapes suivantes: (i) calculer le nœud uj de S

avec qui il va interagir. On a uj = Si où l’indice i est le hash précédent modulo nS , i ≡ hj−1 mod nS ; (ii)
envoyer à uj le tuple (d, m, hj−1). Le nœud uj répond en envoyant sj = signuj

(d ·m · hj−1); (iii) signer sj

pour obtenir s′
j = signu0

(sj); (iv) calculer hj = H(s′
j).

Les phases sont exécutées de manière séquentielle jusqu’à trouver sL et s′
L = signu0

(sL). La Figure Figure 5

montre un exemple de tour complet pour L = 3, avec pour d le hash du bloc précédent.

Definition 3.1 En utilisant les notations précédentes, la preuve d’interaction de dépendance d, du message m par le
nœud u0, avec la difficulté D est la suite (s0, s1, s′

1, s2, s′
2, . . . , sL, s′

L).

Vérification de la Preuve Pour qu’un nœud u vérifie une preuve (s0, s1, s′
1, s2, s′

2, . . . , sL, s′
L) venant de u0

de dépendance d, message m et difficulté D, il doit d’abord vérifier que s0 est bien la signature par u0 de d,

puis recalculer S, L et h0 à partir de s0, D et m. Par ailleurs, u peut calculer la suite des hashs hj = H(s′
j),

1 ≤ j ≤ L.

Puis u doit vérifier que chaque s′
j (1 ≤ j ≤ L) est bien une signature valide par u0 de sj . Pour finir, u doit

vérifier que chaque sj (1 ≤ j ≤ L) est bien une signature valide de d ·m ·hj−1 par Si, où i ≡ hj−1 mod nS .

Protocole Blockchain Utilisant la Preuve d’Interaction

Figure 5: u0 interagit de manière séquentielle avec les différents nœuds.

Dans cette partie, nous présentons le protocole Blockchain qui utilise notre Preuve d’interaction et en listons

plusieurs propriétés intéressantes.

Génération de blocs On construit une Blockchain similaire à la Blockchain Bitcoin. Un bloc contient la

liste des transactions (stockées dans un arbre de Merkle), le hash du bloc précédent, la difficulté (on suppose

que la distribution D est caractérisée par un nombre, qui peut être la moyenne par exemple) et d’autres

méta-données (e.g., version, horodatage). Dans Bitcoin, la preuve de travail est stockée sous forme de nonce.

Dans notre cas, chaque bloc contient la preuve d’interaction dont la dépendance est le hash du bloc précédent

et le message est la racine de l’arbre de Merkle contenant les transactions du bloc.

Quand un bloc, de hash d, vient juste d’être ajouté à la Blockchain, chaque nœud du réseau regroupe les

transactions valides non encore présentes dans un bloc, les stocke dans un arbre de Merkle de racine m, et

commence à générer une PoI de dépendance d et message m. Le premier nœud qui termine sa PoI ajoute son

bloc à sa chaîne de blocs et diffuse son bloc dans tout le réseau. Quand un nœud reçoit un bloc contenant une

preuve valide, il ajoute ce bloc à sa chaîne de blocs. Si ce bloc augmente une branche qui devient la branche la

plus longue, alors ce nœud arrête sa PoI en cours et en commence une nouvelle en utilisant ce nouveau bloc

comme dépendance.

Ajustement de la difficulté La difficulté peut être ajustée comme dans le protocole Bitcoin, c’est-à-dire

en utilisant les horodatages inscrits dans les blocs, de manière à ce que la durée entre deux blocs soit en

moyenne une constante B. Ici, cette difficulté peut être paramétrée précisément en utilisant la distribution

D. Par exemple, supposons que la durée moyenne d’une communication dans le réseau soit notée Com.

Si chaque tour a une longueur choisie aléatoirement de manière uniforme entre 1 et ⌈B/Com⌉(n + 1)− 1,

alors on peut montrer que la longueur du plus petit tour, parmi les PoI de tous les nœuds, sera en moyenne

⌈B/Com⌉ (soit une durée ⌈B/Com⌉ × Com entre deux blocs).

Récompenses et Pénalités Chaque bloc rapporte une récompense à tous les nœuds ayant participé à la

PoI. Cette récompense peut être définie comme dans le protocole Bitcoin i. e., le nombre de tokens offerts aux

nœuds récompensés contient les frais de transaction plus une certaine quantité, qui décroît après un certain

nombre de blocs.

On suppose aussi que tous les noeuds du réseau ont verrouillé une certaine quantité de tokens dans la

Blockchain. Ils peuvent ainsi être pénalisés s’ils ont certains comportements. Par exemple, si un nœud crée

deux blocs différents, ayant la même dépendance d, alors il peut être pénalisé, comme le détaille le paragraphe

suivant.

Non parallélisable Un nœud u0 ne peut pas calculer en parallèle une PoI pour un message m et une

dépendance d donnés. En effet, pour contacter le i-ème nœud ui, u0 doit avoir demandé une signature, qu’il

ne peut pas prévoir, au nœud ui−1. Cela implique que le calcul de la preuve ne peut être réalisé que de

manière séquentielle en commençant par le calcul de s0.

Pour effectuer plusieurs preuves en parallèle, un nœud u0 doit créer plusieurs blocs (avec des valeurs

m différentes). Cela permet d’augmenter ses chances d’obtenir la récompense, mais il risque alors d’être

fortement pénalisé si un autre nœud s’en rend compte. Or, l’ensemble S des participants et la longueur L

ne dépendent pas de m. Donc, si le nœud u0 crée deux blocs, avec deux valeurs m1 et m2, il y a une forte

probabilité qu’un même nœud v participe aux deux PoI du nœud u0. Ce nœud v va recevoir deux demandes

de signature, une avec la valeur m1 et l’autre avec la valeur m2, émanant du même nœud u0, pour la même

dépendance d. Dans ce cas, v pourra donc lancer l’alerte et à son tour gagner une récompense.

Attaque par recherche d’un tour avantageux On suppose pour cette attaque qu’un sous-ensemble du

réseau est malicieux, dont u0. Ils partagent leur clé privée dans le but d’accélérer la génération de la PoI.

Comme la suite des nœuds de S avec qui u0 doit interagir dépend du bloc en cours, u0 pourrait, en théorie,

créer plusieurs blocs afin de choisir celui dont tous des noeuds à contacter sont malicieux. S’il trouve un tel

bloc, u0 pourrait générer la PoI sans envoyer un seul message (il connaît les clés privées des autres noeuds

malicieux). Cependant, comme l’ensemble S ne dépend pas du bloc en cours, u0 ne peut pas le modifier.

Comme S est supposé être un sous-ensemble aléatoire de N , il contient la même proportion de nœuds

malicieux que dans le réseau tout entier. Supposons que cette fraction soit de 10% et que u0 doive effectuer

un tour de longueur 100, alors il lui faudra en moyenne générer 10100
blocs avant de trouver un tour qui ne

contienne que des nœuds malicieux.

Minage égoïste Le minage égoïste est un comportement bien connu dans les Blockchains utilisant la preuve

de travail. Elle consiste en un groupe de mineurs malicieux qui collaborent pour maximiser leurs gains.

Quand un nœud du groupe trouve un bloc il le partage uniquement avec ses collaborateurs. Le groupe

de mineurs commence alors à travailler secrètement sur le prochain bloc pendant que les nœuds honnêtes

gaspillent leur énergie dans la recherche d’un bloc sur une branche obsolète.

Notre protocole permet de limiter ce genre de comportement. En effet, lorsqu’un nœud u0 effectue sa PoI,

chaque demande de signature envoyée à ui contient la dépendance d utilisée par u0. Si u0 trouve un bloc, il est

obligé de le révéler au moins au membre de S avec qui il interagit pour le bloc suivant (on a vu au paragraphe

précédent, que la recherche d’un tour ne contenant que des noeuds malicieux n’était pas raisonnable en

pratique). Un nœud honnête ui refusera de signer un bloc qu’il ne connaît pas. Cette collaboration entre les

différents nœuds pour générer les preuves impose une bonne propagation des blocs dans le réseau.

Conclusion

Nous avons présenté une alternative à la PoW demandant une faible puissance de calcul pour les participants.

De plus, on peut montrer que le protocole Blockchain basé sur la PoI a une complexité en nombre de

messages par unité de temps linéaire en fonction de la taille du réseau. Notre protocole fait l’hypothèse que

les nœuds du réseau sont connus, mais nous pensons que les techniques existantes qui permettent de lever

cette hypothèse sont particulièrement adaptées à la PoI.

4 Conclusion

En conclusion, la blockchain est un outil intéressant pour améliorer la sécurité dans les applications liées à

l’Internet des Objets. La transparence dans le contenu du registre et la non modification de son contenu par

un utilisateur malveillant permet de partager des informations entre les utilisateurs de l’application IoT pour

améliorer la sécurité. Cepedant, pour utiliser de manière réaliste la blockchain, il faut prendre en compte

des propriétés importantes de la blockchain. En l’occurence, les ressources nécessaire pour être un noeud

blockchain et le coût d’utilisation de la blockchain pour ajouter une transaction. C’est ce que nous avons

réalisé avec nos deux propositions: SUPRA et la Preuve d’Interaction.

Avec SUPRA, nous avons travailé sur la paradigme publish/subscribe utilisé notament par certaines

applications IoT pour réduire le nombre de message envoyé dans la blockchain et présenter des garanties de

livraison des données. La réduction du nombre de message sur la blockchain permet de réduire le coût des

communications et améliorer leurs performances.

Avec la Preuve d’Interaction, nous avons crée un nouveau algorithme de consensus qui ne se base pas sur la

puissance de calcul. Ainsi, les noeuds blockchain n’ont plus besoin d’investir dans des ressources de calculs

pour gagner un avantage sur la création du bloc. Grâce à cet algorithme, on peut réduire la consommation

énergetique des réseaux blockchain et envisager l’ajout d’objet IoT directement dans le réseau blockchain, si

on laisse de coté les ressources de stockage nécessaires pour être un noeud.

Futurs travaux

Nous avons des futurs travaux pour nos deux propositions. Pour SUPRA, une idée d’extension est de rendre

le protocole compatible avec les systèmes publish/subscribe content-based. Il existe deux grandes familles de

protocole pubish/subscribe, les topics-based et les content-based. SUPRA fait partie de la première catégorie, mais

si on le change directement les topics de SUPRA par des conditions sur le contenu de la donnée, SUPRA

forcerait les utilisateurs à envoyer plusieurs messages dans la blockchain pour partager la même donnée, un

scénario que l’on veut éviter. En appliquant certaines modifications, il serait possble de le rendre compatible

avec des systèmes content-based. Une deuxième idée d’extension de SUPRA est de retirer une hypothèse

sur la taille des transactions de la blockchain utilisée. On suppose que les utilisateurs de SUPRA utilisent

une blockchain ayant des transactions capable d’encapsuler entièrement un message SUPRA. Ceci implique

que la donnée partagée est directement ajoutée dans le registre, peu importe sa taille. En pratique, plus

un message est volumineux et plus les frais de transactions sont élevés. Pour réduire ce problème, l’idée

serait de ne plus partager la donnée dans le message SUPRA, mais l’empreinte de cette donnée. Ainsi, le

message serait de taille fixe. Le problème est alors de prouver sur la blokchain que la donnée est disponible

dans un espace de stockage en dehors de la blockchain, car les smart-contracts ne peuvent que vérifier des

informations présentes dans le registre.

Pour la Preuve d’Interaction, notre premier objectif est de retirer notre supposition sur la taille fixe du réseau.

En retirant cette hypothèse, nous ferrons un premier pas vers un autre futur travail: la réalisaiton d’une

implémentation blockchain utilisant le protocole. Grâce à une implémentation, il serait possible de faire des

mesures sur les performances du protocole et de le comparer avec d’autres algorithme de consensus.

Contents

Abstracts i

Acknowledgments iii

Resumé v

1 Introduction . v

2 SUPRA . vi

3 Preuve d’interaction . x

4 Conclusion . xiv

Contents xv

1 Introduction 1

1.1 Contributions . 2

1.2 List of publications . 3

State of the art 5

2 Blockchain 7

2.1 General concepts . 7

2.2 Consensus . 8

2.2.1 Consensus problem . 8

2.2.2 Permissionless consensus . 9

2.3 Applications . 12

2.4 Challenges . 14

2.4.1 Resources usage . 14

2.4.2 Transaction rate . 16

3 Off-chain solutions 17

3.1 Commit-chains . 17

3.1.1 General idea . 17

3.1.2 Smart-contract . 18

3.1.3 Pros/Cons . 19

3.2 State channels . 20

3.2.1 Lightning Network . 20

3.2.2 Hashed Timelocked Contract . 22

3.2.3 Pros/cons . 23

3.2.4 Usage . 24

4 Blockchain and IoT 25

4.1 Blockchain nodes on constrained devices . 25

4.2 Blockchain nodes on unconstrained devices . 26

4.3 Blockchain usage . 27

4.3.1 Database . 27

4.3.2 Resource access management . 28

4.3.3 Reputation system . 30

4.3.4 Conclusion . 31

5 Publish/subscribe 33

5.1 General concept . 33

5.2 Without DLT . 34

5.2.1 End-to-end encryption . 34

5.2.2 Distributed publish/subscribe . 35

5.3 With DLT . 36

5.4 Conclusion . 37

6 Data payment protocol 39

6.1 SDPP . 39

6.2 Publish/subscribe propositions . 41

6.3 Conclusion . 42

SUPRA 43

7 General concepts 45

7.1 Architecture . 45

7.1.1 Distributed publish/subscribe . 45

7.1.2 Blockchain network . 46

7.1.3 Trust between the brokers . 46

7.2 The use of Unidirectional Channels in Distributed Publish/Subscribe Architectures 47

7.3 Unidirectional Channel with On-Off Chain Proof of Delivery 47

7.4 Conclusion . 51

8 First version of SUPRA 53

8.1 Communication example . 53

8.2 Generic message format . 55

8.3 Public key module . 57

8.4 Subscription module . 57

8.4.1 Subscription demand . 57

8.4.2 Subscription stoppage . 58

8.5 Publishing module . 59

8.6 Trial module . 61

8.6.1 Message conservation . 61

8.6.2 Trial process . 62

8.7 Network issue and fail-over . 64

8.8 Comparison with existing solutions . 65

8.9 Proof of concept . 67

8.10 Conclusion . 68

9 Signature reduction 69

9.1 Scalability issue . 69

9.2 Signature synchronisation . 71

9.2.1 Solution Details . 71

9.3 Security . 73

9.3.1 Reuse acknowledgements . 73

9.3.2 Data access on-chain . 74

9.4 Conclusion . 76

10 Data payment extension 77

10.1 Secret-less secured payment system . 77

10.1.1 Setup the communication . 78

10.1.2 Data payment . 79

10.1.3 Closure . 81

10.2 Security . 83

10.3 Reputation system . 85

10.4 Comparison with other solutions . 86

10.5 Conclusion . 86

Proof of interaction 89

11 Proof of Interaction 91

11.1 Preliminaries . 92

11.1.1 Model . 92

11.1.2 Guided Tour . 92

11.1.3 Naive Approach . 93

11.2 The Proof-of-Interaction . 94

11.2.1 Algorithm Overview . 94

11.2.2 Algorithm Details . 95

11.3 Blockchain Consensus Using PoI . 98

11.4 Security . 100

11.4.1 Crash Faults . 100

11.4.2 Selfish mining . 101

11.4.3 Shared Mining . 101

11.5 Conclusion and Possible Extensions . 102

12 Conclusion 105

12.1 Summary of our works . 105

12.1.1 SUPRA . 105

12.1.2 Proof-of-Interaction . 106

12.2 Futur work and perspectives . 107

Appendix 109

Bibliography 111

List of Terms 117

List of Figures

1 Le publisher possède plusieurs abonnement actifs, possédant chacun une chaîne de signature, et il

fusionne ces chaînes en une seule. vii

2 Le publisher utilise le message SigOver pour choisir la valeur de Prei vii

3 Le publisher unifie les signatures de publishers abonnements. viii

4 u0 interagit avec un sous ensemble S de N . xi

5 u0 interagit de manière séquentielle avec les différents nœuds. xii

2.1 Chain of blocks . 7

2.2 Proof-of-work . 10

2.3 Fork in a chain of block . 11

2.4 Simple smart contract . 13

3.1 Tree of commit-chains . 17

3.2 Commit-chains . 18

3.3 Lightning channel . 21

3.4 Hashed Timelocked Contract . 22

4.1 Blockchan node positioning in IoT topology . 27

4.2 Resource access management with smart-contracts . 29

5.1 Publish/subscribe architecture . 33

5.2 Trinity . 36

6.1 Sending of a data window in SDPP . 40

6.2 Data publication with PPSP . 41

7.1 Architecture used by SUPRA with 3 brokers . 45

7.2 The two modes of communication of our unidirectional on/off-chain channel protocol 48

8.1 Message exchanges between two broker . 54

8.2 SUPRA message format . 56

8.3 The triple handshake used to setup a subscription. 57

8.4 Chained messages in the subscription module messages. 59

8.5 Chained messages in the publishing module . 59

8.6 Declaring a misbehaving broker. 62

8.7 Defending against a wrong accusation. 63

8.8 Message exchange for crash recovery. 64

8.9 Architecture of our proof of concept . 67

9.1 Data publication for the subscriber i . 70

9.2 Symmetric key sharing message in SUPRA . 71

9.3 Schematic representation of signature synchronisation. 72

9.4 Example of signature overwriting . 73

9.5 Synchronisation between several subscriptions. 73

10.1 The publisher and the subscriber open a channel . 78

10.2 Payment promises through acknowledgments . 80

10.3 The publisher claims two times tokens from the contract . 80

10.4 The subscriber reclaims its remaining tokens . 82

11.1 u0 interacts randomly with a subset S of the nodes . 95

11.2 u0 interacts with a sequence of nodes to construct a PoI. In this example, the dependency is the

hash of the previous block. 95

List of Tables

1.1 List of publications . 3

3.1 Pros and cons for commit-chains . 19

3.2 Pros and cons for state channels . 23

4.1 Classes of constrained devices . 25

4.2 Requirements for distributed ledger clients . 26

10.1 Comparison between our solution and SDPP in terms of on-chain messages and payment guarantees 83

[6]: Szabo (1998), ‘Secure property titles

with owner authority’

[7]: Buterin et al. (2013), ‘Ethereum white

paper’

Introduction 1

1.1 Contributions 2

1.2 List of publications 3

In 2008, Satoshi Nakamoto presented Bitcoin, a distributed ledger tech-

nology [1]. An application where a network of nodes maintains an

append-only database without a central authority. Nakamoto’s moti-

vation was at that time to create a digital currency that does not rely

on banks. The author presented how a network of nodes can maintain

identical copies of a ledger, meaning the same list of validated transac-

tions in the same order. The network has an important property: nodes

can join or leave whenever they want. It means that the application is

completely decentralized, and so not owned by a central authority. Also,

because of reasons presented later in this manuscript, data in the ledger

is immutable. Once added to the ledger, it is impossible to change a

transaction, under certain assumptions that we will also present later.

There are different kinds of distributed ledgers, but we will focus in this

manuscript on blockchains, distributed ledgers where new transactions

are added by block and where each block is linked to the previous block.

Bitcoin is one such distributed ledger.

After the publication of this paper, the Bitcoin crypto-currencies was live,

which is the first-ever distributed ledger application. This application,

and crypto-currencies in general, are just a specific use case for distributed

ledgers. In the general case, distributed ledgers allow nodes from the

same network to eventually agree on a state, a list of values. In the late

’90s, Nick Szabo presented the smart-contracts [6], representations of

human contracts into programs. To work, these programs need a trustable

execution environment so that all users agree on the current value for

the programs’ variables. The blockchain can be used as one of such

execution environments. Transactions can represent the source code of a

program and function calls. By having the same order of transactions,

the blockchain nodes will have the same execution for the program. In

2015, Ethereum, the first blockchain implementing smart-contracts was

live [7]. Smart-contracts change how to generate trust between users in

distributed applications because they allow users to create a program

specific for each use case where all users can verify the state of the

program.

Blockchain and smart-contracts are used for different kinds of distributed

applications but, in this thesis, we will focus Internet of Things appli-

cations. Applications where small devices catch information from their

local environment and share this data over the Internet or in another

communication network. Our purpose is to use blockchains to realisti-

cally increase security in IoT. To do so, we first present in Chapter 2 a

history of blockchains and explain in further detail how they work. After

that, we present in Chapter 3 off-chain solutions, propositions increasing

the throughput of blockchain networks, which can be interesting to

support the large amount of data generated by IoT applications. Finally,

we observe how IoT applications use blockchains in Chapter 4. In our

observations, we will see the benefits of the blockchain in IoT, but also

two recurring issues:

2 1 Introduction

[2]: Eugster et al. (2003), ‘The Many Faces

of Publish/Subscribe’

▶ some propositions are unrealistic because they do not take into

consideration the requirement for using the blockchain.

▶ some other propositions do not need the blockchain and could use

an ordinary database instead.

Based on these observations, we choose to focus ourselves on one specific

aspect of IoT, the publish/subscribe paradigm. It is a communication

model where a broker acts as an intermediaries between publishers who

create events and subscribers who are interested in specific events. This

paradigm offers a loose coupling between the publishers and the sub-

scribers [2]. The publishers and the subscribers do not need to know each

other to share information, which makes this communication paradigm

interesting for IoT or large scale communications in general. In Chapter

5, we present in further detail the properties of this communication

paradigm and solutions using the blockchain.

1.1 Contributions

In this thesis, we have two main contributions The first one is a publish/-

subscribe protocol using the blockchain named Secured Update Protocol

with Righterous Accusations (SUPRA). After presenting the publish/-

subscribe paradigm in Chapter 5, we observe that using a blockchain

can increase the security of publish/subscribe systems, by ensuring data

delivery and adding traceability, but the current state-of-the-art solutions

have two majors issue: they extensively use the blockchain or they are

specific to one blockchain implementation. The extensive usage of the

blockchain creates delays for published data and also increases the cost of

communications because users have to pay fees to add information to the

ledger. On the other hand, having a protocol specific to one blockchain

implementation reduces the scenarios where it can be used. With our

first contribution, we correct these two problems. We reduce as much

as possible the usage of the blockchain and we use generic blockchain

functions. We define the environment using the protocol in Chapter 7

and the first version of this protocol in Chapter 8. After that,in Chapter 9

and Chapter 10, we present two extensions for this work: one to correct a

scalability problem and the other to add a payment system. Using the

blockchain has a cost for users, because they have to pay fees to add data

in the ledger. Adding a payment system creates an incentive for using

the protocol. In Chapter 6, we present data payment protocols using the

blockchain and we will inspire ourselves from these works to define this

second extension.

Our second contribution is the Proof of Interaction (PoI), a consensus

algorithm. This contribution is presented in Chapter 11. In the Bitcoin

Paper, Satoshi Nakamoto presented the first consensus algorithm for

blockchain, the Proof of Work (PoW). This specific algorithm is presented

in more detail in Chapter 2. Because of reasons also explained in this

chapter, nodes invest in computational resources to increase their chance

of profit. The result is that today, the energy consumption of the Bitcoin

network is comparable to a country
∗
. With our second contribution,

∗
As of July 2022, the energy consumption of the Bitcoin network is equal to the energy

consumption of Argentina

https://digiconomist.net/bitcoin-energy-consumption/

1.2 List of publications 3

the PoI, we present a consensus algorithm that does not require nodes

to invest in computational resources. In our proposition, nodes have to

sequentially interact with other nodes in the network to add a new block.

This consensus algorithm reduces the energy consumption of blockchain

networks and also reduces the risk from a well-known attack on PoW

systems: selfish mining.

1.2 List of publications

The propositions presented in this manuscript were published during

the thesis in several papers. In Table 1.1 are listed all the conferences and

journals in which these works are published.

Table 1.1: List of publications

Authors Title Conference

Jean-Philippe ABEGG

Quentin BRAMAS

Thomas NOEL

Comment gagner de l’argent sans travailler ? ALGOTEL 2020

Jean-Philippe ABEGG

Quentin BRAMAS

Timothée BRUGIERE

Thomas NOEL

SUPRA, a distributed publish/subscribe protocol

with blockchain as a conflict resolver

BRAINS 2021

Jean-Philippe ABEGG

Quentin BRAMAS

Thomas NOEL

Blockchain using Proof-of-Interaction

NETYS 2021

(best paper award)

Jean-Philippe ABEGG

Quentin BRAMAS

Timothée BRUGIERE

Thomas NOEL

Distributed Publish/Subscribe

Protocol with Minimum Number of Encryption

ICDCN 2022

Jean-Philippe ABEGG

Quentin BRAMAS

Thomas NOEL

SUPRA un protocole publish/subscribe distribué ALGOTEL 2022

Jean-Philippe ABEGG

Quentin BRAMAS

Thomas NOEL

Secret-less secured payment system

for inter-broker communications

WiOpt 2022

Authors Title Journal

Jean-Philippe ABEGG

Quentin BRAMAS

Timothée BRUGIERE

Thomas NOEL

SUPRA, a distributed publish/subscribe protocol

with blockchain as a conflict resolver

PeerJ

(in submission)

State of the art

[1]: Nakamoto (2008), Bitcoin: A Peer-to-
Peer Electronic Cash System

[8]: (2020), ‘Trade-offs between Dis-

tributed Ledger Technology Characteris-

tics’

Blockchain 2

2.1 General concepts 7

2.2 Consensus 8

2.2.1 Consensus problem 8

2.2.2 Permissionless consensus 9

2.3 Applications 12

2.4 Challenges 14

2.4.1 Resources usage 14

2.4.2 Transaction rate 16

In this section, we explain how runs a blockchain and what are the

current challenges with this technology.

2.1 General concepts

Blockchain is a distributed ledger technology presented in 2008 in the

Bitcoin Paper by Satoshi Nakamoto [1]. Distributed Ledger Technologies

(DLT) are data storage methods that create an append-only database in a

network of untrusted nodes [8]. Each node is controlled by an individual

or an organization and stores a full copy or a part of the ledger, which

makes the ledger highly available. The lack of trust between the nodes

is the main difficulty to handle because there is no central authority to

update the ledger. To resolve this trust issue and have the same copy of

the ledger (i. e. same transactions in the same order) among the nodes ,

the nodes run a consensus algorithm. For blockchains, this consensus

algorithm is a leader election.

block 0
(genesis block) block 2block 1

hash(block 1)

transaction A

transaction B

transaction C

transaction D

transaction E

transaction F

transaction G

transaction H

transaction I

hash(block 0)

Figure 2.1: Chain of blocks

The ledger contains transactions and, in the case of blockchains, these

transactions are stored in blocks, where each block has a reference to the

previous block. It creates a chain of blocks, hence the name blockchain.

In Figure 2.1, we can observe a representation of this notion of chains of

blocks. Also, we can notice in the figure that the first block, sometimes

named the genesis block in the literature, is the only block with no pointer

to a previous block.

With this chaining, nodes can detect unwanted updates on the ledger.

Indeed, if a transaction is modified in block i, it will change the fingerprint

of block i, and so the fingerprint of block i+1 since the pointer to the block

i is stored in i+1. So these unwanted updates in block i will have a chain

reaction until block n, the last known block by the nodes. Combined

with the consensus algorithm that only selects one node to add a new

block, once a transaction is added to the ledger, the probability that a

modification can be made decreases exponentially fast over time. That

8 2 Blockchain

[9]: Lamport et al. (1982), ‘The Byzantine

Generals Problem’

is why data on the blockchain is considered immutable. We explain in

Section 2.2 under which assumptions this property remains true.

The author of a transaction is identified with a pair of public/private

cryptographic keys. Each transaction is signed by its author using the

private key and nodes verify the signature using the author’s public key.

Some transactions can have multiple authors, in that case, the signature

of all the authors is required to consider the transaction valid.

Once a node receives a transaction, it broadcasts it over the network.

The whole network will eventually be aware of this transaction. Each

node saves incoming transactions in a pool used to build the next blocks.

Once a new block is validated, transactions integrated into this block are

removed from the pool.

The challenge of DLT is for the nodes to keep the same copy of the ledger,

which means having the same transactions and applying them in the

same order among all nodes, without a central authority. To do so, the

nodes must execute a consensus algorithm between them.

2.2 Consensus

2.2.1 Consensus problem

The consensus problem is a well known problem in distributed computing.

The most famous presentation of this problem is The Byzantine Generals

Problem by Lamport [9]. In this example, a set of generals besieges a

city and they must decide if they will attack or not tomorrow. Generals

cannot talk directly with one another. Each one stays in a camp and

they send messengers to exchange information. The trick is that some

Generals are loyal to the cause and some other are traitors, they are

named Byzantines.

A special General, the Commander, share an order with all the other

Generals, called Lieutenants. While a loyal General will share the same

order with all the other generals, a Byzantine General can lie and share

contradictory orders to the other Generals. The purpose of the problem

is for the loyal Generals to agree on the order from the Commander

and applying it. To resolve this problem, the Generals must reach a

consensus.

We can easily make the analogy between this problem and computer

science: the Generals are nodes and the Byzantine Generals are faulty

or malicious nodes, the messengers are messages exchanged over the

network, and the decision is just a value for a data. In blockchain, the

consensus is used to ensure that all nodes have the same new block. This

means, that all nodes select the same transactions to update their ledger

with and order them the same way. So each time nodes reach a consensus,

they agree on the same new block, so nodes maintain the same copy of

the ledger.

Formally, if we want to achieve the consensus between nodes with

correct nodes (e.g. nodes following the protocol) and faulty nodes (either

crashing or Byzantine nodes), these 2 guarantees must be verified:

2.2 Consensus 9

[10]: Dolev et al. (1983), ‘Authenticated

algorithms for Byzantine agreement’

[11]: Dwork et al. (1988), ‘Consensus in

the presence of partial synchrony’

[12]: Fischer et al. (1985), ‘Impossibility

of distributed consensus with one faulty

process’

[13]: Douceur (2002), ‘The sybil attack’

▶ Liveness: all correct nodes eventually decide on a value.

▶ Safety: all correct nodes that decide should decide on the same

value. If all nodes are correct and have the same initial input, that

value should be the only possible decision value.

There exist algorithms verifying these properties in different kind of

models. The models differ on the message format and the network

delay. With the usage of a Public Key Infrastructure (PKI), using a

communication model where messages are signed by the authors and

cannot be tampered with is common. Lastly, there are 3 communication

models in which is considered the consensus:

▶ Synchronous model: messages will reach the destination before a

known delay ∆.

▶ Partially synchronous model: after an unknown global stabilization

time, messages will reach the destination before a known delay ∆.

▶ Asynchronous model: message delivery delay is not bounded.

In these models, there exist several propositions. For instance, Dolev

et all. [10] presented a consensus algorithm that works no matter the

number of Byzantine nodes in the system in a synchronous model. On

the other hand, in a partially synchronous model, it has been proved

that the consensus cannot be reached if more than 1/3 of the nodes are

Byzantine [11]. Lastly, in an asynchronous model, it has been proved that

the consensus cannot be reached if just one node is Byzantine [12].

As we can see, the consensus problem is a well-known problem already

solved or proved unsolvable in several types of models. From this

observation, we can ask ourselves what is the novelty introduced by

Satoshi Nakamoto? All the examples mentioned above share a common

assumption: the number of nodes is known in the network. It is what we

called a permissioned network. This type of network makes sense to solve

consensus among a fixed set of participants, for instance, in distributed

databases. The novelty of the blockchain presented by Nakamoto is to

solve the consensus problem in a dynamic network where nodes can join

or leave at any time during the election process, and where nodes do not

know the total number of nodes in the network. This is what we called a

permissionless network.

2.2.2 Permissionless consensus

In permissioned environments, since you know the number of nodes in

the system, the consensus algorithms used in this setup can be summed

up as one node equals one vote. The consensus can be solved with a

voting system where the most represented decision among honest nodes

will be the decision taken by all the honest nodes. Unfortunately, this kind

of system cannot be applied in a permissionless network for two reasons.

First, nodes do not know the number of nodes, and so the number of

votes necessary to have a winning majority. Second, since nodes can join

or leave at any time, a voting system could not handle a Sybil attack [13].

In this kind of attack, a malicious entity generates several new identities

in the network to increase its voting power. For the rest of the nodes, the

votes came from several users and may be legit, while in fact, they all

came from the same user.

10 2 Blockchain

transaction X

transaction Y

hash(block n-1)

nonce = 0

transaction X

transaction Y

hash(block n-1)

nonce = 1

difficulty = 000 difficulty = 000 ...
transaction X

transaction Y

hash(block n-1)

nonce = 35 569

difficulty = 000

First try Second try Try N

hash(First try)
=

125 678

hash(Second try)
=

876 491

hash(Try N)
=

000 451

Figure 2.2: Simplify representation of the Proof of Work to propose the block n

[14]: Back (2002), ‘Hashcash - A Denial

of Service Counter-Measure’

From a denial of service protection technique [14], Satashi Nakamoto

finds a solution to both issues and presents an algorithm that resolves the

consensus problem in a permissionless environment, in a synchronous

model, called the Proof of Work (PoW) [1]. In this algorithm, to be

selected as the leader, a node needs to answer a problem: finding a

correct fingerprint for a possible new block.

In Figure 2.2, we have a representation of the proof-of-work from a node’s

point of view. To be allowed to propose a new block, a node must find a

value for a field of the block called the nonce such that the fingerprint

of the block is smaller than the target value. The target depends on the

difficulty. The higher the difficulty, the smaller the target. Fingerprints

cannot be predicted, one must compute them to know if they are correct

or not. From this property, there is only one strategy for the nodes: trying

values as fast as possible.

If a node finds a correct nonce, it broadcasts its block in the network. The

other nodes check if the nonce is correct and, if the nonce and all the

transactions inside the block are correct, add the block to their local copy

of the ledger. The node that finds a new block receives a reward, and the

network starts searching for a new block. This reward system encourages

the nodes to stay in the network and keep alive the ledger. The reward

for finding the block is the sum of all transaction fees inside the block if

transactions have fees, and a flat bonus.

The computational power of the node is linked with its chance to find the

new block, because the more values a node can try, the more chance it has

to find a correct nonce before the other nodes. Using this resource is what

allows this consensus algorithm to resolve the absence of knowledge

on the number of nodes in the network, because all the computations

made by the node are done locally, without caring about the other nodes.

Also, computational power is what handles Sybil attacks [13]. In this kind

of attack, a malicious entity increases its voting power by registering

itself several time in the network with different identities. With the PoW,

to increase the chance of finding a new block, an entity must invest in

2.2 Consensus 11

[15]: Pass et al. (2017), ‘Analysis of the

blockchain protocol in asynchronous net-

works’

computational resources, because the more values you can try the more

chances you have to find a correct nonce. This means that this entity can

be registered under one or N identities in the network, its computational

power will remain the same, and so its voting power.

The difficulty that the block must match with its proposition represents

roughly the number of 0 in front of the fingerprint. This value is periodi-

cally updated to take into account the computing power of the network.

In the case of Bitcoin, the first-ever blockchain, the difficulty is readjusted

every 2 weeks so finding a new block takes 10 minutes on average for the

current computational power of the network.

block 0 block 1 block 2 block 3

block 1' block 4

block 4'

Figure 2.3: Chain of blocks with a fork on the last block

It is possible for the chain of blocks to fork periodically. Meaning, that

there are two, or more, valid propositions for the new block. This kind of

event is represented in Figure 2.3. We can observe on the figure that for

the last block, block 4, there are two possible blocks. The origin of this

event is linked with how the network is notified by a new block. Nodes

broadcast to the rest of the network new blocks when they are aware of

their existence. This notification can take time to reach the whole network

and, during this delay, another valid proposition for the current block

can be found in an unnotified part of the network. The result is that the

network has two valid propositions and must find which one will remain

in the ledger. We can notice that these two possible blocks may have

exactly the same transactions in them, but they are proposed by different

nodes, and so reward different nodes.

To know which proposition will remain in the ledger, nodes follow one

specific rule: the branch with the biggest total difficulty will be selected.

Each node will choose a proposition as the previous block and try to find

a new block, which will split the computational power of the network

between the two branches. The proposition linked by the next block will

be the one added to the ledger, making it the main branch. In case of

tie with the total difficulty, the first known block will be selected by the

node. Pass et all.[15] proved that we need a known upper bound on

message delay to ensure the consensus in a PoW system. For forks, it

means that the honest nodes eventually chose the same branch between

all forks for the ledger. It also means that, in a PoW system, a block B is

not considered immutable once it is added to the ledger but once enough

new blocks where found after B so that no forks can change B.

With the PoW, it is necessary that at least 1/2 or more of the total

computational power of the network has to be owned by honest users.

Otherwise we cannot guarantee that data is immutable, so the integrity of

the ledger can be attacked. Let’s say that a Byzantine changes a transaction

in a block i. This modification will change the fingerprints of all the

12 2 Blockchain

[16]: Tschorsch et al. (2016), ‘Bitcoin and

beyond: A technical survey on decentral-

ized digital currencies’

[17]: King et al. (2012), ‘Ppcoin: Peer-

to-peer crypto-currency with proof-of-

stake’

[18]: Gaži et al. (2018), ‘Stake-bleeding

attacks on proof-of-stake blockchains’

[19]: Bonnet et al. (2020), ‘Stateless Dis-

tributed Ledgers’

blocks from i to the last know block j, so it invalidates the nonces in them.

The Byzantine must recompute all the nonces, but once it recomputes all

the nonces, j is no longer the last known block. Indeed, honest nodes kept

working and have now found k as the last known block. The Byzantine

must now also computes the nonces for the blocks from j to k if it wants

its modification to be considered in the main branch. If it owns more

than 1/2 of the total computational power of the network, the Byzantine

node will catch up with the main branch and so modify a transaction in

an old block. They can rewrite the ledger.

Still, by using the fork mechanism, it is possible to attack the PoW

ledger with a computational power between 1/3 and 1/2 of the total

computational power with an attack named selfish mining. This attack can

increase the profit of the attacker and allow it to choose the transactions

in the ledger. It can be done by a malicious node, or a set of malicious

nodes, finding the next valid block i. Instead of sharing the block, the

malicious node keeps the block for itself and begins the PoW for the block

i +1. When a correct node finds a proposition for block i, the selfish node

shares its stored proposition for block i, creating a fork. Based on the rule

previously explained, the network will split itself between the two valid

propositions for block i, and the block i + 1 will decide which version

of block i will remain in the ledger. While the selfish node stored its

valid proposition for block i, the network wastes energy because it was

computing the PoW of a block already found and while the malicious

node tried some values for the block i + 1’s nonce. Meaning that its

proposition for block i+1 has more chance to be added to the ledger, and

so the node has more chance to win the reward. These attacks increase

the transaction validation time and allow malicious nodes to increase

their profit [16].

After the PoW, S. King and S. Nadal [17] proposed an alternative called

the Proof of Stake (PoS). In this consensus algorithm, each node taking

part in the consensus locks tokens. Then a node with locked funds is

randomly selected to propose the next block. The biggest the stack, the

higher the chance of being selected. To prevent the node with the biggest

number of tokens from always being selected, each token has an age. The

stake of a node is the sum of the age of all its locked tokens. With each

block token’s age increases, and so does the node’s stake. Once a node

has been selected and has proposed a new block, the age of all its locked

tokens is set to 0. This election mechanism requires less computational

power but has security issues [18, 19] (e.g., Long-range attack and DoS).

Still, by resolving the consensus in a permissionless environment, the

blockchain opens new applications.

2.3 Applications

In the previous sections, we explained that a distributed ledger contains

signed transactions and that nodes use a consensus algorithm to add new

content to the ledger, we focused on a specific type of ledger: blockchains.

In this section, we explain in which case distributed ledger technologies

are interesting.

2.3 Applications 13

[20]: Silvano et al. (2020), ‘Iota Tangle: A

cryptocurrency to communicate Internet-

of-Things data’

[6]: Szabo (1998), ‘Secure property titles

with owner authority’

[7]: Buterin et al. (2013), ‘Ethereum white

paper’

When Satoshi Nakamoto published the Bitcoin paper, his purpose was

to create a decentralized payment system without a trusted third party.

This means a payment system that does not rely on banks. In 2009, he

reaches his objective, and the first-ever blockchain application was live:

Bitcoin crypto-currencies.

A crypto-currency is an application using a distributed ledger technology

to create a peer-to-peer payment system. They can use a blockchain, like

Bitcoin, or some use other kinds of distributed ledgers. For instance,

Iota [20] uses a distributed ledger-based on a directed acyclic graph,

the Tangle. The distributed ledger is here to prevent double-spending

attacks. This means preventing a malicious user from spending two times

the same coins to pay two different users. Since a transaction cannot be

modified once added to a block, this type of attack is impossible with

blockchains, as long as more than 1/2 of the computational power of the

network remains honest. Also, since users are identified by a public key,

and not a name, they are anonymous while usaly remaining traceable.

Crypto-currencies are the first-ever blockchain applications, and the most

famous ones, but they are only a specific use case. In fact, based on the

content allowed in the transaction, distributed ledger technology can

be used in several other use cases. Each distributed ledger protocol has

its own rules on the content of the transactions. The nodes are aware of

these rules when they join the network and they check the validity of

each transaction inside the block to know if the block is valid, on top of

the consensus algorithm.

In the general case, transactions inside a distributed ledger can contain

any type of data. If transactions can contain generic data, the ledger

became some kind of decentralized non-repudiation database. Since

transactions are signed by their author, once information is added to the

ledger, its author cannot deny the existence of the event. This usage is

interesting but limited.

block 0
(genesis block) block 1

hash(block 0)

 var sum = 0

 func add(int c):
 sum+=c
 if sum < 0: sum = 0

transaction A
transaction B

add(5)

transaction C

add(-2)

block 2

hash(block 1)

transaction D

add(1)

Figure 2.4: Declaration of a simple smart contract, and calls to its function. Function calls are executed in the order indicated in the

blocks. The final value of sum is 4 in this example.

In the nineties, Nick Szabo [6] presents a technology called smart con-

tracts. The objective was to translate human contracts into programs

having secured and trustable executions. These properties needed by

the smart contract can be given by a distributed ledger, because the

nodes can verify the correct execution of the contract and the consensus

ensure that all the nodes have the same execution. Based on this observa-

tion, Ethereum [7] was launched as the first blockchain that includes a

programming language allowing users to create smart contracts.

14 2 Blockchain

In Figure 2.4, we can observe how a smart contract can run in a blockchain.

In the example, a smart contract is declared in the genesis block. This

contract has only one function, which increments a variable stored by the

contract, and verifies that the variable is always positive or nill. In the

next blocks, the function is called three times. With this simple example,

we can observe that blockchains allow global ordering of function calls

between the nodes. This is very important, because in our example, with

three function calls, the final value of sum can be 4 or 6, based on how the

transactions are ordered in the second block. The nodes execute function

call like they are ordered in the blocks from the genesis block to the last

known block. This allows nodes to share a global state for the variables.

Honest nodes will eventually have the same states, which makes the

program execution secured. This example is very simple, but we will see

later smart contracts that execute more complex tasks.

Notice that once a smart contract is added to the ledger, since the

transaction cannot be modified, the contract cannot change. This is why

it is important to check the code of the contract before deploying it. Also,

based on the complexity of the function called in the transaction, the user

has to pay fees.

To summarize, blockchains are trustable and transparent decentralized

execution environments. This environment was at first used to generate

new electronic payment systems and was then used to run smart contracts,

which opens new possibilities to generate trust among users in distributed

environments.

2.4 Challenges

In this section, we present some of the current known challenges in

distributed ledgers.

2.4.1 Resources usage

Being a node uses resources: computational resources to verify blocks,

transactions, and executing the consensus algorithm, but also storage

resources to store the ledger.

For the computational resource, the biggest concerns are from the Proof

of Work (PoW). Indeed, this consensus algorithm is a computational race

between nodes. The first node that finds the next block will get a reward.

This incentive encourages nodes to invest in computational resources

because the higher the computational power, the more chance you have of

finding a next bloc. This investment in computational resources increases

the energy consumption of Blockchain networks using PoW. Today, the

energy consumption of these networks is equal to the energy consumption

of developed nations
∗
. Which is a concern for environmental questions.

We talked about the Proof of Stake (PoS), which reduces the computational

power needed to execute a consensus, but this proposition has security

∗
As of July 2022, the energy consumption of the Bitcoin network is equal to the energy

consumption of Argentina

https://digiconomist.net/bitcoin-energy-consumption/

2.4 Challenges 15

[21]: (), PoET 1.0 Specification

[22]: Chen et al. (), ‘On Security Analysis

of Proof-of-Elapsed-Time (PoET)’

[23]: Alsunaidi et al. (2019), ‘A survey

of consensus algorithms for blockchain

technology’

[24]: Palai et al. (2018), ‘Empowering

Light Nodes in Blockchains with Block

Summarization’

[25]: Palm et al. (2018), ‘Selective

blockchain transaction pruning and state

derivability’

[26]: Matzutt et al. (2020), ‘How to Se-

curely Prune Bitcoin’s Blockchain’

[27]: Matzutt et al. (2021), ‘CoinPrune:

Shrinking Bitcoin’s Blockchain Retro-

spectively’

[28]: Kim et al. (2019), ‘SCC: Storage Com-

pression Consensus for Blockchain in

Lightweight IoT Network’

[29]: (2018), ‘Recycling Smart Con-

tracts: Compression of the Ethereum

Blockchain’

[30]: Chen et al. (2019), ‘Bitcoin

Blockchain Compression Algorithm for

Blank Node Synchronization’

[31]: Zheng et al. (2019), ‘An Inno-

vative IPFS-Based Storage Model for

Blockchain’

[32]: Kumar et al. (2019), ‘Implemen-

tation of Distributed File Storage and

Access Framework using IPFS and

Blockchain’

[33]: Sliwinski et al. (), ‘Asynchronous

Proof-of-Stake’

[34]: Sliwinski et al. (2019), ‘ABC: Proof-

of-Stake without Consensus’

issues. Intel proposed another alternative to the PoW, the Proof-of-

Elapsed-Time (PoET) [21]. This solution requires Intel SGX as a trusted

execution environment. Thus, Intel becomes a required trusted party to

make the consensus work, which might imply security concerns [22] and

is against the idea of removing third parties. Other mechanisms were

proposed such as Proof-of-Activity and Proof-of-Importance [23], which

are hybrid protocols or protocols using properties from the network itself.

To recap, currently, there is no consensus algorithm for a permissionless

network having the same security properties as the PoW without using

as many computational resources.

The second issue with the resource consumption of the blockchains is

the usage of storage resources. The blockchain is an append-only ledger.

This means that the size of the ledger just grows overtime, since no

transaction or block can be deleted. This means that the nodes will have

to invest indefinitely in storage resources. To resolve this problem, we

find two types of propositions in the literature: locally change the ledger

or globally change the ledger.

By reducing locally the size of the blockchain, a node can lose the ability

to verify new blocks and transactions and be part of the consensus or

check the validity of old blocks and transactions. In this case, we can call

this node a Light Node. By opposition with Full nodes, nodes storing a

full copy of the ledger. Light nodes need to be connected to a trusted full

node to get the ledger’s last update and verify information not stored by

the light node.

To reduce locally the size of the ledger, each node chooses local parame-

ters. These parameters can be a maximum amount of complete stored

blocks [24], or a subset of accounts that the light node wants to follow [25].

Based on these parameters, the light node executes local changes to the

ledger. This is a one-way transformation, if the node wants to get back

the full ledger, it must download it from a full node.

In fact, reducing locally the size of the blockchain does not resolve the

storage resource consumption problem, because the ledger’s size still

grows on the full nodes, the nodes taking part in the consensus and

keeping alive the ledger. These nodes will eventually reach their storage

limit, and when all nodes have reached it, no more blocks will be added.

That is why, we need to reduce globally the size of the ledger.

Several works propose methods to reduce globally the size of the

blockchain. In these propositions, some introduce a maximal size for

the blockchain [26–28], while others reduce the blockchain’s growth by

changing some fields in the block or the transaction format [29–32]. Some

propositions present how to create a new genesis block in the ledger that

sum up all the balances in the ledger [33, 34].

The difficulty in this exercise is to reduce the size of the blockchain,

without reducing its security. Users must have guarantees that they can

still retrieve the current state of the ledger: the balance on each account

or the variables inside smart contracts. Otherwise, users will lose trust in

the protocol, and the ledger will be useless. There is a lot of proposition to

spare storage resources but, in the most popular blockchains, like Bitcoin

or Ethereum, none of them are implemented.

16 2 Blockchain

[35]: Castro et al. (1999), ‘Practical byzan-

tine fault tolerance’

2.4.2 Transaction rate

The nodes follow a blockchain protocol that they trust. This protocol

contains the blocks and transaction formats, and the consensus algorithm

that the nodes must execute. Since blocks have a maximal size, and the

consensus algorithm ensures that new blocks are added at a constant rate,

on average, the blockchain network has a maximal rate of transactions

added to the ledger. This rate cannot be changed, unless we update

the protocol. For instance, in Bitcoin, the network adds, on average, 6

transactions per second with one block every 10 minutes.

This transaction rate is shared between all the applications using the

blockchain, and the more the blockchain become popular the more

users want to add transactions to the ledger. Unfortunately, since the

maximal rate will not change, blockchains have a scaling issue between

the transaction rate and the popularity of the network.

To resolve this issue, there are several propositions. For instance, changing

the block format to have more transactions in the block. That is what

Bitcoin Cash does. It is a blockchain protocol based on Bitcoin with a

different block format that allows more transactions. Another solution

is to use a faster consensus algorithm. Consensus algorithms used in

permisionless network are slow. Since we do not know the number of

nodes, creating new blocks takes time to ensure that the maximum

number of nodes are aware of the last block before the creation of a new

one. By using a permisionned network, the nodes can use consensus

algorithm based on vote like PBFT [35]. This kind of consensus algorithm

is faster than permissionless consensus algorithms, but they remove one

interesting property of the blockchain network.

In fact, changing the block format or the consensus algorithm does not

resolve the transaction rate problem, it only postpone it. It will take more

time for the blockchain network to be overwhelmed by transactions but, if

the popularity of the blockchain network keeps increasing, the maximal

transaction rate will be reached. In the next section, we will present what

we call off-chain solutions, or Layer-2 solutions. Solutions that allow the

blockchain users to securely exchange transactions without adding them

in blocks.

[36]: Poon et al. (2017), ‘Plasma: Scalable

Autonomous Smart Contracts’

[37]: Khalil et al. (2018), ‘Commit-Chains

: Secure , Scalable Off-Chain Payments’

Off-chain solutions 3

3.1 Commit-chains 17

3.1.1 General idea 17

3.1.2 Smart-contract 18

3.1.3 Pros/Cons 19

3.2 State channels 20

3.2.1 Lightning Network 20

3.2.2 Hashed Timelocked

Contract 22

3.2.3 Pros/cons 23

3.2.4 Usage 24

Nodes can only add a limited number of transactions in each block and

the delay between blocks is constant, thus there is a limit on the rate of

new transactions that the blockchain network can handle. This limit can

prevent the usage of blockchain in large-scale applications. For instance,

using cryptocurrencies as legal tenders in a country is impossible, because

the blockchain network as it is will not be fast enough for the population’s

everyday transactions.

In this section, we discuss off-chain solutions, solutions that resolve

the scaling problem of the blockchain. These kinds of propositions are

sometimes referred to as Layer-2 protocols because they work under

Layer-1 protocols: the distributed ledgers. We will present in detail two

solutions: the commit-chains, and the state channels.

3.1 Commit-chains

3.1.1 General idea

Commit-chains are introduced in 2017 by Poon et al [36] in the Plasma

white paper. The idea is to create nested blockchains, each handled by a

designated user called the operator, and secure these chains with smart-

contracts [37]. The blockchain on which is added the smart contract is

called the parent chain, and a chain managed by an operator is a commit-

chain. By creating nested chains, the parent chain virtually increases its

transaction rate, because while the parent chain manages transaction

as explained in the previous section, the commit-chains manages the

transactions between a subset of users. Each commit-chain has a parent

chain and this parent chain can also be a commit-chain. The parent chain

with no parent is called the root chain. It creates a tree of chains like in

Figure 3.1.

root chain

commit chain 1 commit chain 2

commit chain 3 commit chain 4 commit chain 5
Figure 3.1: Each node represents a whole

chain. The nest of commit-chains forms

a tree.

Each commit-chain is managed by a smart-contract deployed in the

parent chain. To join the commit-chain, users from the parent chain

register them-selves by calling a function of the smart-contract. Once

they are registered, they can deposit tokens in the commit-chains. After

that, users registered in the commit-chains can exchange tokens between

them without sending transactions to a node from the parent chain.

Instead, they broadcast the transaction in the commit-chains network

18 3 Off-chain solutions

indicated in the smart-contract. The transaction is added to a block of

the commit-chain. Periodically, the operator has to indicate to the parent

chain the current state of the commit-chains. For instance, on Figure 3.2,

we can observe that the operators report new blocks at the same rate

as the parent chain. The period between each state report in the parent

chain, and the consensus used to create new blocks in the commit-chains

are defined in the smart-contract.

Layer-1 parent chain
block 1

Layer-2 commit chain A
block 1

parent chain
block 2

commit chain A
block 2

parent chain
block 3

commit chain A
block 3

commit chain B
block 1

commit chain B
block 2

commit chain B
block 3

commit chain C
block 1

commit chain C
block 2

commit chain C
block 3

header
commit chain A

block 1

header
commit chain B

block 1

header
commit chain C

block 1

header
commit chain A

block 2

header
commit chain B

block 2

header
commit chain C

block 2

header
commit chain A

block 3

header
commit chain B

block 3

header
commit chain C

block 3

Figure 3.2: A blockchain with three commit-chains

The operator looks like a trusted third party in the commit-chain, because

it is the only entity that updates the state of the commit-chain, but the

operator can be malicious. Malicious operators cannot cheat on honest

commit-chain users, thanks to the smart-contract, as explained next.

3.1.2 Smart-contract

The smart-contract ensures security in the commit-chain, because it

defines the rules of the commit-chain. Commit-chain users must verify

the smart-contract before joining the chain. The contract describes how

the blocks are added to the commit-chains, how often the operator has to

share the state of the commit-chain to the parent chain, and how conflicts

are resolved.

Describing how to add blocks means defining the consensus algorithm

used in the commit-chains. In this case, we will name validators the

entities being part of the consensus algorithm. Notice that it is possible

that not all the commit-chains users are validators or even that there is

only one validator. The commit-chains network is a permisioned network.

Since members have to register themselves in the contract, it is possible

to use the consensus algorithm faster than the Proof of Work between

the validators. When new blocks are made, they are broadcasted to the

members of the commit-chain, and not added to the parent chain.

The operator has to periodically report to the parent chain the state of the

commit-chain. This periodicity is indicated in the smart-contract. If the

periodicity is not respected, the operator is penalized by the contract. We

observe that this report process works because it assumes that there is an

3.1 Commit-chains 19

upper bound on the time to add a transaction to the ledger. Otherwise,

we cannot ensure that honest operators can report in time to the parent

chain.

Reports are used to detect conflicts between the members of the commit-

chains. A conflict happens when a member of the commit-chain thinks

that the report of the operator is incorrect. To prove the error, an honest

user must present a fraud proof. The format of the proof is described

in the contract and depends on the consensus algorithm used in the

commit-chain. If the smart-contract accepts the proof, the last report

is invalidated. The commit-chain switches to the state indicated in the

previous report, and the operator is penalized.

The penalty received by a malicious operator are indicated in the smart-

contract. They can be different on each commit-chains but, at least, the

contract selects a new operator. Otherwise, the commit-chain could be

blocked, if the operator decide to not send new reports. Also, conflict

resolution can happen during a certain delay after adding the report to

the parent chain. When the delay is over, it is not possible anymore to

report possible fraud. That is why the members of the commit-chains

must periodically check the parent chain to check each new report.

If the operator wants to maximize its revenue, it has no interest in having

malicious behaviors since it receives some of the transaction fees in the

commit-chain network as payment for its service and it will get penalized

if honest users can detect the incorrect behavior.

3.1.3 Pros/Cons

Table 3.1: Pros and cons for commit-chains

Pros Cons

- commit-chains reduce the number of transactions

stored in the root chain.

- users have to periodically

check the blockchain.

- commit-chains increase the transaction validation

rate of the blockchain network.

- leaving a commit-chain takes time.

- commit-chain transactions have smaller fees.

We summarize the pros and cons of commit-chains in Table 3.1. As a

layer-2 solution, the first advantage of commit-chains is to increase the

scalability of the root chain with the number of transactions. Transactions

occurring between users of the commit-chain are added to a block in the

commit-chain. These transactions will not be added to the root chain,

which spares storage resources for the root chain’s nodes. Also, the

transaction throughput of the whole blockchain network increases. The

total throughout became the sum of the throughput of each commit-

chain and the root chain. Also, since commit-chains can use permisioned

consensus algorithm, transactions can be added more quickly in blocks.

There is also a financial advantage for commit-chain users. The through-

put of the blockchain is limited but the more the blockchain has users,

the more new transactions are made. Since the number of transactions in

a block is limited and the nodes wants to maximize their profit, nodes

select the transactions with the most fees in their block. So to be selected

in blocks, users increase the fees in transaction, the more there is new

20 3 Off-chain solutions

[38]: Poon et al. (2015), ‘The bitcoin light-

ning network’

transactions. In commit-chains, since there are fewer users, there are

fewer new transactions and the transaction fees can be reduced.

It also means that it is possible to deploy more complex smart-contracts.

We said earlier that, based on the complexity of the function called

in a smart-contract, the user has to pay fees. With commit-chain, it

is technically possible to split a complex smart contract into smaller

smart-contracts into several commit-chains. Instead of doing the whole

computation on a single blockchain, smaller functions in commit-chains

are called and the result is shared in the parent chain and used in the

smart contract on this chain.

The main issue with commit-chains is the time required for users to

unlock its tokens from a commit-chain. To withdraw tokens, a user must

indicate to the smart-contract the number of tokens it wants to remove

and prove that it has these tokens in the current commit-chain states.

When it is done, the smart-contract waits for a delay before transferring

the tokens to the users in the parent chain. During this delay, honest users

have time to present to the smart-contract a proof that the user leaving

the chain is malicious and does not own the tokens. This property can be

an issue for users with a small number of tokens who need to use tokens

on the root chain. Especially if users have to unlock funds on several

layers of commit-chain before reaching the root chain.

Also, the users have to check the validity of the state presented by the

operator to the smart-contract, and so users have to periodically check

the blockchain. Otherwise, a malicious operator can present an invalid

state to the parent chain without receiving a penalty.

3.2 State channels

State channels are another layer-2 protocol used to scale the blockchain

transaction validation rate with a large number of incoming transactions.

Where commit-chains create smaller blockchain networks to exchange

transactions between a subset of users, state channels are focused on

communication between two users. Once the state channel is up, these

two users can exchange an unlimited amount of transactions, and confirm

them instantly, and without paying fees. To present this method, we

will explain Lightning, the protocol that introduced the concept of state

channels, and we will present how it can be used.

3.2.1 Lightning Network

Lightning Network was presented by Poon et al [38], the same author as

commit-chains. The motivation of this proposition is to make the Bitcoin

network as fast as, or even faster than, the Visa payment network. Bitcoin

validates 6 transactions per second, whereas Visa had a peak at 47 000

transactions per second in 2013 [38]. To scale up, the idea is to create a

Lightning Channel between two users A and B.

Before explaining how the channel is created and used, we must explain

in which case it is interesting to open a channel. The Lightning channel

aims for situations where two users, we will name them A and B, often

3.2 State channels 21

Layer-1 block 1 block 2 block 3

Open channel
A: 5 tokens
B: 3 tokens

...

...
Close channel

A: 1 token
B: 7 tokens

...

...

Layer-2

T1

A->1 tokens->B

State 1
A: 5 tokens
B: 3 tokens

State 2
A: 4 tokens
B: 4 tokens

State N
A: 1 token

B: 7 tokensTN

B->3 tokens->B

Figure 3.3: Opening and closing of a Lightning channel between A and B.

have to exchange a small number of tokens. For instance, A can be a

regular customer of a shop owned by B. With the classic Bitcoin payment

system, if A wants to buy something, B has to wait several hours before

being sure that the payment is confirmed. On top of this, A has to pay

fees. If the payment is regular, the cost of the payment system became

unneglieable. We observe that the Bitcoin network is not an interesting

solution for micro-payment, the Lightning Network wants to propose a

solution to this exact situation. It allows A and B to directly confirm the

transactions exchanged between them without paying fees.

In Figure 3.3, we represent the opening, the usage, and the closing of a

Lightning channel. To open the channel, A and B must add a transaction

in the ledger where they both lock some tokens. This commitment

transaction is signed by both users to prove the agreement between the

two users. When this transaction is added to the ledger, the channel is

open and A and B can exchange an unlimited amount of transactions

involving those tokens between them. With each transaction, we create

a new state between A and B, meaning a new distribution of the token

locked in the commitment transaction. Whenever they want, A and B

can stop the channel and leave the system with the last valid distribution

of tokens. If both users want to stop the channel, they can sign a final

transaction with the last distribution, and, when this transaction is added

to a block, the channel is stopped. Otherwise, the channel is stopped

after a known delay, to prevent malicious users to leave the system with

an old distribution.

How can we detect a malicious user trying to stop the channel with an

incorrect token distribution? For instance, a token distribution where

the malicious user has more tokens than what it is supposed to have. To

make the system secure, the Lightning network uses a Hashed Timelock

Contract (HTLC).

22 3 Off-chain solutions

3.2.2 Hashed Timelocked Contract

The HTLC is a transaction that has two outcomes, one based on a secret

revelation and one based on a timelock. To explain HTLC, we represent

an example of usage between two users in Figure 3.4.

Figure 3.4: Creation of a new state be-

tween A and B with a HTLC.

A's secret = SA B's secret = SB

HA=hash(SA)

HB=hash(SB)

B's contract

After 10 blocks then:
 A gets 5 tokens
 B gets 3 tokens
else if B presents S and
 Hash(S) = HA then:
 B gets 8 tokens

A's contract

After 10 blocks then:
 A gets 5 tokens
 B gets 3 tokens
else if A presents S and
 Hash(S) = HB then:
 A gets 8 tokens

A's contract

B's contract

Let’s assume that A and B have opened a Lightning channel. When

A and B want to exchange tokens, each user generates a secret value

and shares the fingerprint of the secret with the other user. With the

fingerprint, A and B generate each one a HTLC. In the contract, they

put a condition on a delay. If the contract is added to the blockchain, A

and B will receive the token distribution indicated in the contract at the

end of the delay. Otherwise, during this delay, if the secret is revealed,

the other user will obtain all the tokens locked in the channel. A and B

then exchange the contract. With this, A’s contract own by B became

useless for B as soon as SB is revealed. In other words each transaction

is revocable.

If A and B want to exchange again tokens, they have to generate new

secrets to generate new contracts and reveal the secrets of the previous

contracts. This secret revelation scheme prevents malicious users from

stopping the channel using an old token distribution because if a malicious

user presents an old contract in the ledger to stop the channel, an honest

user will use the secret previously revealed and get all the tokens. To

work, honest users must periodically check the blockchain to detect

malicious behaviors, just like in commit-chains. Also, the system assumes

that there is a maximal delay under which we are sure that a transaction

is validated by the blockchain network. Otherwise, an honest user cannot

prove that a malicious user is closing the channel with an invalid state.

To speed up the channel closing, A and B can agree on a final contract

signed by both users without conditions. Once this transaction is added

to the ledger, the token distribution is immediately applied.

3.2 State channels 23

[39]: Herlihy (2018), ‘Atomic cross-chain

swaps’

[40]: Dziembowski et al. (2018), ‘General

state channel networks’

[41]: Dziembowski et al. (2019), Multi-
party virtual state channels

[40]: Dziembowski et al. (2018), ‘General

state channel networks’

Hashed Timelock Contract (HTLC) are a special kind of smart-contracts

that allows users to execute an atomic swap [39]. Atomic swaps are a kind

of exchange where if all users conform to the protocol, then all exchanges

take place, and if a user deviates from the protocol, then no conforming

user ends up worse off, even against a coalition of malicious users.

The secret sharing scheme used by HTLC can be extended to allow tokens

exchange through several channels. For instance, when A wants to pay

C, but A only has a channel with B, and C only has a channel with

B. In this case, it is possible to create a virtual channel between A and

B. Channels opened with a common transaction with two ends of the

channel, as we presented earlier, are called ledger channels. The virtual

channel is a sequence of ledger channels that connects two users without

a common ledger channel [40, 41]. The ledger channels create a network

of virtual channels that helps the transaction exchanges between users

and increases the scalability of the blockchain network.

3.2.3 Pros/cons

Table 3.2: Pros and cons for state channels

Pros Cons

- state channels reduce the number

of transaction stored in the ledger.

- stopping the channel and

retrieving the locked tokens can take time.

- transactions are instantly

validated in the channel.

- it is possible that there is no virtual

channel to interconnect two users.

- transactions have almost no fees.

- honest users have to periodically check

the blockchain to detect malicious

users closing the channel with an invalid state.

In this presentation of state channels, we focus on Lightning Network,

but the concept used in this proposition has been generalized to exchange

any kind of transactions [40]. When the channel is used to pay users,

the channel is sometimes referred to as a payment channel, and in the

general case, it is referred to as a state channel.

We summarize the pros and cons of commit-chains in Table 3.2. Just like

commit-chains, state channels increase the transaction throughput of the

blockchain network. The transactions exchanges in the state channel are

immediately applied in the state channel. Also, it reduces the number of

transactions stored in the ledger. The ledger will only register the first

state, when the channel is open, and the last state, when the channel is

closed, and not a history of all the intermediary states.

There is also a financial interest in state channels. If channel users exchange

frequently transactions between them, they will apply no fees on the

transactions exchanged between them. In the case of virtual channels,

the intermediaries used to interconnect two users can claim some fees,

but the total number of fees cannot exceed the fees for a transaction in

the ledger. Otherwise, the transaction will be performed directly in the

ledger.

An issue with state channels is the possible delay required to stop the

channel. If both users did not agree on a final transaction, when a user

closes the channel by presenting the last exchanged contract, users have

24 3 Off-chain solutions

[42]: Alvarez et al. (2022), Are Cryptocur-
rencies Currencies? Bitcoin as Legal Tender
in El Salvador

to wait for the timeout before retrieving their tokens on the ledger. This

can be an issue for users with a small number of tokens who quickly

need to use their tokens in the ledger.

Also, in the case of virtual channels, there is an issue with the availability

of the channel. If A and B want to exchange tokens by going through

several intermediary channels, because there is no direct channel between

them, they have to check first if there are enough tokens available on all

the intermediary. If even one intermediary does not have enough tokens,

the transaction cannot take place. Thus forcing A and B to open a direct

channel between them if they frequently exchange transactions or share

the transaction directly in the distributed ledger.

3.2.4 Usage

In the case of Lightning Network, it truly increases the throughput of

Bitcoin. For instance, in 2021, El Salvador declared Bitcoin as a legal tender

in the country [42]. To help the citizens in using this new currency, the

government used a state application called Chivo and created Lightning

channels. Thus allowing the citizens to use Bitcoin in their everyday

transactions. We will not develop the legal questions that this adoption

raises, but we will underline the fact that state channels allowed the

Bitcoin network to handle the everyday transactions of a whole country.

Allowing the blockchain network to handle a large throughput of trans-

actions could be useful in Internet of Things (IoT) environments where

devices generate a lot of new data. From this observation, we can ask

ourselves if the blockchain can be used to improve security in IoT. We

are going to observe this in the next chapter.

[43]: Montenegro et al. (2007), ‘Transmis-

sion of IPv6 packets over IEEE 802.15. 4

networks’

[44]: Bormann et al. (2014), ‘Terminology

for constrained-node networks’

[45]: Bitcoin Project (2022), Bitcoin Core
requirements
[46]: Ethereum Foundation (2022), Geth
requirements
[47]: IOTA Foundation (2022), Hornet
requirements

Blockchain and IoT 4

4.1 Blockchain nodes on

constrained devices 25

4.2 Blockchain nodes on

unconstrained devices . . 26

4.3 Blockchain usage 27

4.3.1 Database 27

4.3.2 Resource access manage-

ment 28

4.3.3 Reputation system 30

4.3.4 Conclusion 31

The Internet of Things (IoT) includes all the applications where physical

objects share data on the Internet or in other communication networks.

These objects catch data from their environments and share it with an

application. For instance, they can be sensors monitoring the temperature

of a specific environment. The application will then use these data to

adapt itself to the environment.

These objects can be constrained devices and they can be part of con-

strained networks. By constrained, we mean that some characteristics

that are otherwise pretty common are not present anymore. For instance,

the reliability and the bandwidth of the network is low , the storage and

computing resources are small, or we cannot use a complete TCP/IP

stack on the device. Thus making it difficult to directly use well-known

Internet protocols in IoT and force the creation of new protocols. For

instance, IEEE 802.15.4 and 6LowPan [43] explain how to exchange IP

messages in a Low Rate Wireless Personal Area Network (LR-WPAN),

networks where members have a battery, low wireless range, and low

bandwidth.

Since the devices monitor the environment, data can be sensitive, hence

must be transported and used securely. For instance, if a thief hacks the

devices or the application monitoring a house, he can know when the

house is empty and execute a burglary. To add security in those appli-

cations, several propositions are using Distributed Ledger Technologies

(DLT). In this chapter, we review some of these propositions and find

out when blockchain can breally help IoT applications.

4.1 Blockchain nodes on constrained devices

In Chapter 2, we explain that some of the current challenges in blockchains

are the size of the complete ledger and the high use of computational

power to execute the Proof of Work (PoW). With constrained devices,

these challenges add even more difficulty. To underline this fact, we will

use the RFC 7228 [44] that defines different classes of constraint devices

based on their memory resources. These classes are summarized in Table

4.1.

RAM Flash

Class 0 <10.24 KB <102.4 KB

Class 1 ∼10.24 KB ∼102.4 KB

Class 2 ∼51.2 KB ∼256 KB

No class >51.2 KB >256 KB

Table 4.1: Classes of constrained devices

We can observe that the 3 classes of constrained devices have very few

memory resources. To compare this classes with the resources required

to be a distributed ledger node, we indicate in Table 4.2 the required

configurations for 3 DLT clients. We selected Bitcoin with Bitcoin Core [45],

Ethereum with Geth [46], and IOTA with Hornet [47].

26 4 Blockchain and IoT

Table 4.2: Requirements for distributed

ledger clients

Hard drive RAM

Bitcoin Core 350GB 1GB

Geth (Ethereum)

light node

400GB

4GB with SSD

8GB with HDD

Geth

full node

6TB ’

Hornet (IOTA) not specified 8GB

[48]: Gupta et al. (2018), ‘The applicability

of blockchain in the Internet of Things’

[49]: Singh et al. (2018), ‘Blockchain: A

game changer for securing IoT data’

[50]: Pinno et al. (2018), ‘ControlChain:

Blockchain as a Central Enabler for Ac-

cess Control Authorizations in the IoT’

[51]: Devi et al. (2019), ‘Integration of

Blockchain and IoT in Satellite Monitor-

ing Process’

[52]: Sharma et al. (2017), ‘Block-VN: A

distributed blockchain based vehicular

network architecture in smart city’

Bitcoin and Ethereum are the two most popular blockchain networks,

Bitcoin because it is the first-ever blockchain, and Ethereum since it is the

first blockchain implementing smart-contracts writable with a Turing-

complete language. We choose to add these two blockchains because

they appear in many propositions. On the other hand, IOTA is not a

blockchain. It is a DLT that does not rely on a chain of blocks but relies

on a Directed Acyclic Graph (DAG) of transactions. We will not discuss

in detail how this DLT works, but we add it because the purpose of IOTA

is to be used by IoT devices.

We can observe that there is a severe difference between the requirements

of DLT clients and the constrained classes presented in RFC 7228. No

constrained classes is having the requirements for at least one client. The

least demanding client in RAM, Bitcoin Core, demands 105
the RAM

of the least constrained class, Class 2. The difference is the same if we

compare them with the flash memory required.

From this observation, adding IoT devices directly in the distributed

ledger network became an unrealistic assumption. Still, there are several

works doing so [48–52]. For instance, in [50], the blockchain is used as a

common database between the device of the same network. In this case,

the benefit from the blockchain is limited compared to the cost of being a

blockchain node for constrained devices. At one point in time, the device

will not have the capacity to store the ledger and it will be impossible to

add new information to it.

Based on the storage resource required, being a node in a distributed

ledger network and being a constrained device seems unrealistic with

the current requirements for the distributed ledger. If we want to use

blockchain, or in general DLT, to improve security in IoT applications,

we need to put the node elsewhere in the topology.

4.2 Blockchain nodes on unconstrained devices

It is unrealistic to add constrained devices directly to the blockchain

network because they do not have the minimal requirements, so we need

to define where it seems possible to add blockchain nodes. In Figure 4.1,

we represent the two positions that seems realistic.

The first solution is to add the gateway of the IoT network in the blockchain

network. The gateway is the connector between the IoT network and the

Internet. All messages coming in or out of the IoT network go through

it. Because of this responsibility, the gateway is usually more powerful

than the member of the IoT network. It can be an unconstrained device

that could match the requirement for joining the blockchain network. If

4.3 Blockchain usage 27

InternetGateway
A

IoT network
B

Gateway
B

IoT network
A

InternetGateway
A

IoT network
B

Gateway
B

IoT network
A

Server

Blockchain
node

Blockchain
node

Blockchain
node

Figure 4.1: Blockchan node positioning in IoT topology

[53]: Huang et al. (2019), ‘B-IoT:

Blockchain driven internet of things with

credit-based consensus mechanism’

[54]: Lin et al. (2017), ‘Using blockchain to

build trusted LoRaWAN sharing server’

[55]: Niya et al. (2019), ‘Adaptation of

Proof-of-Stake-based Blockchains for IoT

Data Streams’

[56]: Liu et al. (2017), ‘Blockchain Based

Data Integrity Service Framework for IoT

Data’

[57]: Dorri et al. (2017), ‘Blockchain for

IoT security and privacy: The case study

of a smart home’

[58]: Huh et al. (2017), ‘Managing IoT

devices using blockchain platform’

the gateway is a blockchain node, the constrained devices can directly

contact the blockchain by reaching the gateway.

The second solution is to use a server as a blockchain node. Having a

server with the requirements for the blockchain network is a realistic

assumption. In this case, if the constrained device wants to interact with

the blockchain network, the gateway will act as an intermediary. The

gateway will contact the blockchain node on the behalf of the constrained

device and forward the result to the constrained device if necessary.

These two node positionings are present in the literature and we will see

how they are used.

4.3 Blockchain usage

There is several propositions using DLTs in IoTs, and they respond to

different problems. In this section, we will group the propositions based

on how they use DTLs and on the problem they want to solve.

4.3.1 Database

In several propositions, the blockchain is used like a common storage

space for IoT data [53–58]. In [54, 55], data generated in LoraWAN

networks are stored in a blockchain. Each data is sent to the blockchain

network by the gateway. By storing data in the ledger, these propositions

ensure that data cannot be modified and can be trusted. From the same

idea, in [56], the authors present a solution where data are stored in a cloud

storage system and the data fingerprints are stored in a smart-contract

to prove data authenticity. In [58], devices send data to a smart-contract

and, based on this data, the contract tells if some devices have to execute

a specific command. In this case, putting a light on or off.

28 4 Blockchain and IoT

[59]: Novo (2019), ‘Scalable access man-

agement in IoT using blockchain: A per-

formance evaluation’

[60]: Novo (2018), ‘Blockchain Meets IoT:

An Architecture for Scalable Access Man-

agement in IoT’

[61]: Zhang et al. (2019), ‘Smart contract-

based access control for the internet of

things’

[62]: (2018), ‘IoTChain: A blockchain

security architecture for the Internet of

Things’

[63]: Steichen et al. (2018), ‘Blockchain-

Based, Decentralized Access Control for

IPFS’

In all these solutions, each new data generated in the IoT network creates

at least one transaction in the ledger. This usage of the blockchain raises

several questions on the utility of blockchain in IoT. First, in large-scale

adaptation, this kind of proposition will face scalability problems with

storage resources and network’s throughputs presented in Chapter 2.

Adapting these propositions with off-chain protocols like the one in

Chapter 3 can be a solution. Second, are the transactions useful in the

long term? As we said, in DLT, data cannot be updated. The nodes will

store the whole ledger as long as they are part of the network. So, data

lifetime in the ledger has to be compared with IoT data utility in the

application. Most of the time, IoT data are useful in the moment for

the application, and maybe sometime later to have an overview of the

application execution, but are they useful after that? For instance, is

it important to keep the temperature catch by a sensor 10 years after

the measurement? If the answer is no, then storing all IoT data, or data

fingerprint, in the ledger seems not like a good idea.

Also, this usage of the blockchain can create privacy problems. For

instance, in [58], data sent by the devices are used by the contract to

give orders to other devices. This decision is visible to all blockchain

users. For instance, if the decision is to cut the lights off and shut down

radiators in a house, we can assume that the house is empty. Which is

useful information for burglars. When designing a protocol relying on a

blockchain, it is important to assume constant eavesdropping to resolve

this privacy issue because transactions are public, so malicious users can

read them. Sensitive data have to be encrypted. Otherwise, they can be

used by malicious users.

4.3.2 Resource access management

DLT are used in many propositions for resource access management in

IoT [59–63]. The resource can be writing or reading accesses to an IoT

device or network. For instance, to retrieve some measurements or to

execute a command on the device. In fact, the user can also be an IoT

device. In this case, the resource can be a cloud storage system on which

the device wants to store data.

Without using a DLT, this kind of problem is resolved with an authoriza-

tion authority. The user asks the authority for a token, and the authority

shares a token with the user if the access is granted. The user will then

present the token to the resource gateway and, after checking the validity

of the token, will have access to the resource. The issue with this model

is the authorization authority. What if this authorization authority is

malicious and does not respect the access rules for the resource? By

giving tokens to an unauthorized user, for instance. The authorization

authority lacks transparency, and that is why some propositions replace

it with a blockchain.

These propositions share a common process on how to access the resource.

This process is represented in Figure 4.1. Instead of using a server as

an authorization authority, a smart-contract is used to generate access

tokens. The contract is written by the resource owner. It describes the

access rules of the resource. Once a user requests a token, the contract

checks if the request matches the rules. If it is the case, the token is

4.3 Blockchain usage 29

Resource
gateway User

Smart contract

4.
toke

n ve
rif

ica
tio

n 1. token request

3. token presentation

5. resource access

2. token generation

Figure 4.2: Resource access management with smart-contracts

created in the smart-contract. The user presents the token to the resource

gateway, and once the verification is complete, the resource access is

granted to the user.

To verify the token’s validity, the gateway has to execute a double

verification. First, it has to verify that the token was created by the smart-

contract, and so is present in the blockchain. Second, since tokens are

visible to all users with access to the blockchain, the resource gateway

has to verify the identity of the entity presenting the tokens. To do so,

it checks if the public key used for the token request is the same as the

public key of the user presenting the token.

Removing the central authorization has several benefits. One is the

availability of the authorization authority. With a central server, you can

handle crashes with replication and high-availability solutions, but what

if the server leaves the system and goes offline? In this case, access to the

resource is blocked because it is impossible to generate new tokens. On

the other hand, the smart-contract is added to a blockchain. As long as

the user and the resource gateway can reach one node of the blockchain

network, tokens can be requested and verified. The token generation can

only be stopped if there is no node executing the consensus algorithm,

but this assumption seems unrealistic because nodes have an incentive

for being part of the consensus.

The second benefit is the transparency of the token generation process.

Since the access rules are written in the smart-contract, it is impossible

to bypass them when requesting a token, because invalid transactions

will not generate a token and the blockchain nodes verify the transaction

validity. For this reason, it is impossible to have a malicious authorization

authority when using a smart-contract, under the assumption that the

blockchain network is trustable. Also, in some propositions, it is possible

to update the access rules [59, 61]. For these propositions, the blockchain

also ensures that only the correct users can update the access rules. The

code of a smart-contract cannot be changed, but the variables inside the

30 4 Blockchain and IoT

[64]: Zhou et al. (2019), ‘A Blockchain

based Witness Model for Trustworthy

Cloud Service Level Agreement Enforce-

ment’

contract can. If the rules are stored in variables, then they can be updated

with contract functions.

The transparency of the token generation process also simplifies conflict

resolution, because it adds audibility to the token creation. If the resource

owner detects incorrect resource access, it knows that the gateway behaves

incorrectly, because an incorrect request will not have generated tokens, if

we assume that the access rules in the contract are correct. Also, if a user

presenting a token for a given resource can prove that it receives another

resource from the gateway, or the gateway denied the access, then the

presence of the token in the blockchain is proof that the gateway should

have granted the access to the correct resource, proving an incorrect

behavior from the gateway.

Notice that if the resource gateway, the authorization authority, and the

users have the same administrator having access to the private key of

each user, this usage of the blockchain lacks utility, because it will add

trust between entities managed by the same person.

4.3.3 Reputation system

Blockchain users generate transactions, and these transactions are even-

tually added to a block by the nodes. Like we said earlier, all these

transactions are public, they can be read by every blockchain user, and

cannot be modified. In some situations, by analyzing these transactions,

we can have an overview of the user’s behaviors in the application and

we can create a reputation system based on auditable behaviors, and not

on other users’ feedback.

Having a reputation system means that there are possible conflicts

between users. This means that some users can disagree on a specific

event. For instance, when the sender shares data fingerprints in the

ledger, like in [56], if the receiver can prove in the ledger that the received

data have a different fingerprint, then it proves that the sender made an

error. From the same idea, in access resource management, if the user

can prove that it did not receive access to the resource with a correct

token, or receive access to another resource, it can prove that the gateway

behaves incorrectly. So resource owners will not put resources behind

the incorrect gateway. In other words, having a good reputation means

that new users will most likely interact with you.

In [64], the authors present a witness model for service level agreements.

To ensure that the service has the correct quality, the service provider

asks for a sorting smart-contract to create a witness committee. The

committee is created by randomly selecting users willing to be part of a

committee.

The service provider presents the committee, the service requirements,

and payment to another smart-contract. Once the contract has checked

the committee and once the service user agrees on the requirements, the

service is available. During the service’s execution, the committee verifies

if the requirements are respected. If a witness detects an issue, it reports

it to the smart-contract. If the number of error reports reaches a certain

threshold, the smart-contract considers that the service provider did not

respect the requirements, and the service user receives compensation

4.3 Blockchain usage 31

from the service provider’s initial payment. No matter the result of the

service, the witnesses receive also a payment.

Based on their behaviors, witnesses have a reputation in the sorting

smart-contract. For instance, lazy witnesses who never declare a violation

of the service requirement will lose some reputation if the service is

considered violated. The process also applies to witnesses who always

declare a service violation, even when the service is considered correct.

When this reputation reaches 0, the lowest score possible, the witness

cannot be selected anymore by the smart-contract. The issue is that this

malicious witness can register itself back in the sorting smart-contract

with a new key, and a new reputation score.

In DLT, users are identified with a public key, so malicious users can

generate an infinite amount of keys to create new identities and reset

the reputation score. To be effective, reputation systems using DLT must

counter Sybil attacks by forcing the user to invest resources, just like

the PoW. For instance, in the case of the witness committee, witnesses

could lock some money in the sorting smart-contract to be eligible for a

committee. If a user’s reputation reaches 0, the locked money will not

be retrievable by the user. This money could pay other members of the

committee, forcing them to cooperate to detect malicious witnesses. Here,

the money is a counter to Sybil attacks, because it is a finite resource.

Each user owns a certain quantity of money, but no user has an unlimited

amount.

4.3.4 Conclusion

DLT can be used to add security in IoT applications, but the application

must take into consideration several points. First, since being a node

is too demanding for IoT devices, it is impossible to add constrained

devices as full nodes. The nodes must be placed elsewhere in the system,

and constrained devices can go through a trusted intermediary to contact

the ledger if they need to. Second, all data in the ledger are publicly

auditable and unmodifiable. It can be interesting to track users’ behavior

and create a reputation system, but sensitive information must not be

shared this way because malicious users could use them. In the rest of

the thesis, we will focus on one specific part of IoT: publish/subscribe

communications.

[2]: Eugster et al. (2003), ‘The Many Faces

of Publish/Subscribe’

[65]: Sun et al. (2013), ‘A low-delay,

lightweight publish/subscribe architec-

ture for delay-sensitive IOT services’

[66]: Amoretti et al. (2020), ‘A scal-

able and secure publish/subscribe-based

framework for industrial IoT’

Publish/subscribe 5

5.1 General concept 33

5.2 Without DLT 34

5.2.1 End-to-end encryption . . 34

5.2.2 Distributed publish/sub-

scribe 35

5.3 With DLT 36

5.4 Conclusion 37

5.1 General concept

The publish/subscribe paradigm is a communication model used to ex-

change information. In this model, there are 3 kind of entities: publishers

sharing events; subscribers receiving events; the broker is an interme-

diary, a central entity in a star topology. In Figure 5.1, we represent a

publish/subscribe topology.

Broker
2. publish event

Publisher Subscriber

1. send filters

4. forward matching events

3. check filters

Figure 5.1: Publish/subscribe architecture

To notify the broker of its interest in specific events, a subscriber sends

filters to the broker. The set {subscriber,filters} is called a subscription.

When the broker receives events from a publisher, it checks all the

subscriptions to see if events match the filters. The broker will then

forward events to all matching subscribers. Events can represent any

kind of data.

The interest of this model for IoT scenarios, or large-scale one-to-many

communications, is the loose coupling between the publishers and the

subscribers [2]. This loose coupling takes place on 3 levels:

▶ Space decoupling: the publisher and the subscriber do not need to

know each other.

▶ Time decoupling: the publisher and the subscriber do not need to

be online at the same time.

▶ Synchronization decoupling: the publisher is not blocked by the

subscriber, it can always produce events. The subscriber is asyn-

chronously notified by the broker.

This loose coupling property is interesting in IoT environments for the

constrained devices. For instance, the time decoupling property is useful

to spare constrained device batteries. The constrained device periodically

calls the broker to check if there is any new event, or share new events,

without knowing the states of other devices. The space decoupling and

synchronization decoupling properties increase the scalability of the

network: users can join or leave by just notifying the broker and not every

publisher and subscriber with whom it interacts.

The publish/subscribe paradigm can be used to connect constrained

devices with IoT services or other devices [65, 66]. This communication

34 5 Publish/subscribe

[67]: Antonić et al. (2016), ‘A mobile

crowd sensing ecosystem enabled by

CUPUS: Cloud-based publish/subscribe

middleware for the Internet of Things’

[68]: Andrew Banks et al. (2019), MQTT
Version 5.0

[69]: Dahlmanns et al. (2021), Transparent
End-to-End Security for Publish/Subscribe
Communication in Cyber-Physical Systems
[70]: Kumar et al. (2019), ‘Jedi: Many-

to-many end-to-end encryption and key

delegation for IoT’

[71]: Borcea et al. (2017), ‘PICADOR: End-

to-end encrypted Publish–Subscribe in-

formation distribution with proxy re-

encryption’

[72]: Pallickara et al. (2006), ‘A Frame-

work for Secure End-to-End Delivery of

Messages in Publish/Subscribe Systems’

model can also be adapted for static or moving devices. For instance, in

[67], data from mobile devices are collected by a broker host on a cloud

system.

As we said, the subscriber presents filters to the broker. There are two

kinds of publish/subscribe protocol, depending on the kind of filter they

use: topic-based protocols and content-based protocols. In topic-based

protocols, each event from the publisher is linked with a topic, a logical

name. In this case, the filters given by the subscriber are the names of the

interesting topics. For instance, "building/6th-floor/temp" can represent

the temperature catched by sensors in the 6th floor of a building. On

the other hand, in content-based protocols, the filters are on the content

properties. For instance, values in a specific interval.

The most famous topic-based publish/subscribe protocol is MQTT [68]

(Message Queuing Telemetry Transport). The purpose of this protocol

is to be easily implementable on the client’s side with the minimum

resource consumption possible when used. To do so, the protocol has a

short message format and the computation complexity is located on the

broker.

In the rest of this chapter, we will observe how security is added to this

communication paradigm with and without using DLT.

5.2 Without DLT

5.2.1 End-to-end encryption

End-to-end security is a method used in several propositions [69–72]

to resolve security issues in publish/subscribe environments. These

propositions present how the publisher and the subscriber can pro-

tect the payload from unwanted accesses and alterations by malicious

entities eavesdropping on the links between the broker and the publish-

ers/subscribers. To achieve this, these propositions rely on encryption

mechanisms. By encrypting data, security is achieved between the pub-

lisher and the subscribers because the subscribers are the only entities

in the system capable of reading published data. In some solutions, the

payload can also be signed to prove message integrity, like in [72].

Sometimes, these propositions broke the loose coupling property of

publish/subscribe communication. In [71], a policy authority has to

create for the broker a re-encryption key derived from the publisher’s

private key and the subscriber’s public key. Since the derived key uses

the publisher’s private key, in a real application, the publisher will be the

only entity capable of creating this key. It seems unrealistic that a third

party will create the derived key because the private key is a secret that

the publisher does not want to share. To generate the key, the publisher

needs the public key of the subscriber, so it needs to know the identity of

the subscriber. This breaks the space decoupling property stating that

the publisher and the subscriber do not need to know each other. To

prevent this issue, a symmetric key can be created for each topic, like

in [69, 72]. The publisher and the subscriber do not need to know each

other identity, but they only need the key to exchange data.

5.2 Without DLT 35

[73]: Cao et al. (2004), ‘Efficient

event routing in content-based publish-

subscribe service networks’

[74]: Bianchi et al. (2010), ‘Stabilizing dis-

tributed R-trees for peer-to-peer content

routing’

[75]: Shah et al. (2004), ‘Efficient dissemi-

nation of personalized information using

content-based multicast’

[76]: Voulgaris et al. (2005), ‘S UB -2-S UB

: Self-Organizing Content-Based Publish

and Subscribe for Dynamic and Large

Scale’

[77]: De Araujo et al. (2017), ‘A Publish/-

Subscribe System Using Causal Broad-

cast over Dynamically Built Spanning

Trees’

[78]: Pallickara et al. (2003), ‘A security

framework for distributed brokering sys-

tems’

[79]: Srivatsa et al. (2011), ‘Eventguard: A

system architecture for securing publish-

subscribe networks’

[80]: Dini et al. (2009), ‘On securing

publish-subscribe systems with security

groups’

The critical part of end-to-end security methods is the key sharing

process. From an initial phase where the publisher and the subscriber

have no common key, we need to create a common key between the

two users. To execute this operation, these propositions introduce a key

managing authority, but these processes still have an issue: they are

broker-dependent.

In publish/subscribe environment, all exchanged messages go through

the broker, because it is in the middle of a star-topology, as represented

in Figure 5.1. This means that the publisher and the subscriber must trust

the broker to which they are connected. If the broker cannot be trusted,

it means that the broker will drop or indefinitely delay messages from or

for the connected user. For end-to-end encryption, it means that in this

case, the key sharing process could not finish. We cannot guarantee that

the key can be shared.

If the publisher or the subscriber does not trust the broker, they have to

connect themselves to another broker. In the example presented above,

the publishers and the subscribers are connected to the same broker.

This broker can be load balanced and high available by being executed

on a set of servers but, on a application level, it is only one broker.

In fact, it is possible to have an publish/subscribe architecture where

several brokers have to cooperate to share data. If the publisher and the

subscriber are connected to two different brokers, we have a peer-to-peer,

or a distributed system, where we need to introduce security between

the brokers. This is what we are going to see in the next section.

5.2.2 Distributed publish/subscribe

In this section, we discuss distributed publish/subscribe propositions,

propositions where several brokers have to cooperate to share data

between publishers and subscribers. There is an extensive part of the

community answering how the interconnections between the brokers

should look like and how to route events through the network of brokers in

the most optimal way [73–77]. Each proposition answers these questions

in different kinds of networks. We consider these works out of our

scope and we focus ourselves on propositions looking at adding security

in distributed publish/subscribe because we think that DLT can add

something in those propositions.

There are several works answering security issues in distributed publish/-

subscribe [78–80]. Those works resolve authorization issues, message

privacy, integrity concerns, and other security problems. To do so, they

exchange encryption and signature keys between the publishers, the

subscribers, and the brokers.

For instance, Srovatsa et al. [79] presents a solution called Eventguard.

It explains how to secure the publish/subscribe system from unwanted

actions, like flooding the network with incorrect subscriptions or pub-

lications, by using a trusted meta-service. This meta-service generates

keys linked with each topic and certificates used by users to identify

themselves in the system. To handle dropped messages from potential

malicious nodes and keep connectivity, the protocol assumes that a sig-

nificant fraction of nodes are nonmalicious and uses multi-path sending.

The solution is interesting but is, on a logically level, centralized. The

36 5 Publish/subscribe

[3]: Ramachandran et al. (2019), ‘Trinity:

A byzantine fault-tolerant distributed

publish-subscribe system with im-

mutable blockchain-based persistence’

[4]: Ramachandran et al. (2018), ‘Trinity:

A Distributed Publish/Subscribe Broker

with Blockchain-based Immutability’

[81]: Lv et al. (2019), ‘An IOT-oriented

privacy-preserving publish/subscribe

model over blockchains’

meta-service creating all the cryptography keys used in the system must

be trusted, hence its name.

Pallickara et al. [78] propose a security framework to ensure authentication

and maintenance of identity, scalable topic security, and message security

in a peer-to-peer publish/subscribe system with topics. To handle the

security, a central authority called the Key Management Center (KMC)

shares the topic keys. For instance, if a publisher wants to share data on

a certain topic, it requests the topic key to the KMC. If the publisher is

authorized to do so, the topic key is encrypted with the public key of

the publisher and sent to it. If a malicious user tries to share data on a

topic without authorization, it will be eventually detected by an honest

broker. Each broker checks if the publisher is authorized to share data

when they route messages in the peer-to-peer network.

These solutions rely on a central authority to generate the security

mechanism used in the network of brokers. The integrity of this entity

is key. For this reason, DLT can be interesting to support this central

authority, since it is transparent and tamper-proof. It can add trust in this

authority, just like in the resource access management use case presented

in Chapter 4.

5.3 With DLT

Blockchains, or DLT in generals, are used in different publish/subscribe

propositions [3, 4, 81].

Trinity [3, 4] is to our knowledge, the first publish/subscribe protocol

using blockchain. The architecture of the proposition is represented in

Figure 5.2. In this solution, brokers are nodes in a blockchain network.

They use the blockchain to replicate data and store them in an immutable

way. When a client publishes data by sending it to its broker, the broker

forwards it in the blockchain network. The data eventually appears in

a block so that other brokers retrieve this information by reading the

blockchain and forward the published data to their local subscribers.

Blockchain

Broker A Broker B

Broker C

Publisher Subscriber

Subscriber

Figure 5.2: Trinity

This interaction between a publish/subscribe protocol and a blockchain

creates a secured system where we can trust the brokers because each

received data can be linked to the entity that published it. However, this

5.4 Conclusion 37

[82]: Bu et al. (2019), ‘HyperPubSub:

Blockchain based publish/subscribe’

[83]: Androulaki et al. (2018), ‘Hyper-

ledger fabric: a distributed operating sys-

tem for permissioned blockchains’

approach does not scale for the same reasons as some IoT propositions

presented in Chapter 4.

First, writing on the blockchain is not free. Each new transaction has a

cost. With this price, the network can stay alive by paying blockchain

nodes for their work. Over time, if a lot of data are published, this kind

of solution could become expensive for the brokers or the clients.

Second, this approach does not scale well with the number of users.

Indeed, since blocks have a maximum number of transactions and are

generated at a constant rate with the consensus algorithm, blockchain

networks can process a limited amount of transactions per second.

This value depends on the implementation and cannot be changed. For

instance, the Bitcoin network processes 7 transactions per second, which

is far from enough for sharing IoT data, where you have millions of

sensors. On top of this, since transaction validation takes time, it adds

delay in data delivery. The other brokers have to wait for the data to be

added to the ledger before forwarding it to the local subscribers.

After Trinity, other variants were presented [81], but keeping this extensive

use of blockchain for each newly published data. Trinity proves that it is

possible to implement a publish/subscribe protocol using the blockchain,

but it shows the limitation of overusing the blockchain. To create a

scalable protocol, we need to reduce as much as possible the number of

transactions added to the ledger during the communication and, to do

so, we can inspire ourselves from a data payment protocol.

Bo et all. [82] also present a publish/subscribe application using blockchain

named HyperPubSub. They select an online photo trading system as a use

case for the proposition. The photos are stored in a data base and the meta

data are stored in the ledger. The publishers are the photographers and

the subscribers are customers. The blockchain acts as a broker between

them where the trade between the customers and the photographers

happen. This proposition uses a private blockchain and functions specific

at Hyperledger Fabric [83], a blockchain implementation. It reduces the

scope of applications of the proposition.

5.4 Conclusion

The publish/subscribe paradigm can benefit from the blockchain. The

current solutions using the blockchain prove the utility of the technology

but they suffer from the same limitation as other IoT solutions using

the blockchain. We focused on publish/subscribe solution using the

blockchain to share data but in some cases, like in HyperPubSub, the

blockchain is also used to sell data. In the next chapter, we will have a

closer look at those propositions.

[84]: Radhakrishnan et al. (2018), ‘Stream-

ing Data Payment Protocol (SDPP) for

the Internet of Things’

Data payment protocol 6

6.1 SDPP 39

6.2 Publish/subscribe proposi-

tions 41

6.3 Conclusion 42

The goal of a data payment protocol is to ensure that the buyer receives

the data and that the vendor receives the payment. To do so, the protocol

has to execute an atomic swap [39] between the data and the payment. As

presented in Chapter 3, an atomic swap is an exchange between two or

more users where, if all users are honest, the exchange is made correctly,

but if one user is malicious and tries to deviate from the protocol, then

all honest users cannot end up in a situation worse than the one before

executing the swap.

Blockchain and cryptocurrencies can be used for creating a secure data

payment protocol. Indeed, crypto-currencies have a smaller granularity

than classic currencies. This means that it is possible to buy something

for less than 0.01$ (or £,
=C, ...) if we put aside the transaction fees. So, with

the help of the blockchain, we can put a price on IoT data individually.

In contrast, with a classic currency, we have to round the price if it is not

a multiple of the currency’s smallest denomination.

On top of this, blockchain can add the security properties needed for

this kind of protocol to be used safely by users, because transactions are

visible for all blockchain users, which means that anyone can verify the

data payments, or let an automated application like a smart-contract do

it. In this chapter, we take a closer look at some data payment protocol

propositions using blockchain.

6.1 SDPP

Streaming Data Payment Protocol (SDPP) [84] is a data exchange protocol

that allows a data provider to receive monetary payments from consumers.

To set up the data stream, the consumer and the provider exchange an

order that contains the topic selected by the consumer and the quantity

of data awaited. This order is stored in a blockchain, but the data stream

then occurs through a TCP session. In this order, the provider and the

consumer agree on two important parameters: the total amount of data

D and the granularity of payment K.

Once the order is added to the blockchain, the data stream can begin,

and the provider will share data in windows of size K . We represent the

process for one window in Figure 6.1. Each data is sent through the TCP

session by the provider and is acknowledged by the consumer. During

the exchange, between each window of size K, the provider sends an

invoice, stored on the blockchain, to the consumer. Before sending the

next K data, the provider waits for the payment in crypto-currencies by

the consumer. After the provider sent D data by windows of size K and

the consumer paid the final window, the session is closed. The consumer

can stop earlier the session if needed by notifying the provider. In this

case, the consumer will only pay for the data already received.

40 6 Data payment protocol

DATA

K

INVOICE

INVOICE
PAYMENT

PAYMENT ACK

BlockchainData provider Data consumer

Figure 6.1: Sending of a data window in SDPP

[85]: Chen et al. (2019), ‘PayFlow: Micro-

payments for bandwidth reservations in

software defined networks’

[86]: Nakada et al. (2021), ‘Implementa-

tion of Micropayment System Using IoT

Devices’

SDPP has two interesting aspects. The first one is auditability. The orders,

the invoices, and the payments are stored on the blockchain, which allows

any third party to check the evolution of the sessions. Also, the protocol

reduces the number of messages sent to the blockchain, since the data

stream is exchanged in a TCP session. Also, the protocol is not specific to

one blockchain, it can run on many blockchains since it does not require

smart-contracts. The crypto-currencies used to pay can be on the same

blockchain as the invoices or the users can use two different ledgers.

On the other hand, the protocol has two major downsides. First, nothing

prevents the data consumer to leave the system without paying. At the

end of the window, the provider sends an invoice to the consumer, and a

copy of this invoice is also sent to the ledger. The consumer can go offline

at this moment and never pay the K data. To reduce the loss from an

unpaid window, the provider can reduce the size of the window but it will

increase the impact of the second downside of the proposition. Indeed,

between each window, the consumer has to pay in cryptocurrencies to

the data provider. Cryptocurrencies are blockchain applications and

they inherit from this blockchain property: a transaction takes time to be

added to the ledger. The time needed depends on the blockchain. For

instance, in Bitcoin, since the chain can fork, once the transaction is in

a block you have to wait around one hour before being sure that the

transaction is in the main branch of the chain. Applying this property on

SDPP means that between windows, the system is on hold for one hour

because the provider waits for the confirmed payment before sending

the next window. This issue can prevent the usage of SDPP for real-time

data.

D. Chen et al. [85] adapts the idea of SDPP in QoS management environ-

ments. In this version, the buyer pays before receiving the service. This

time, nothing prevents the vendor to leave the system without sending

data. Also, R. Nakada et al. [86] proposed an implementation of SDPP

on a Raspberry Pi, but it keeps the payment issue of the protocol with

6.2 Publish/subscribe propositions 41

[87]: Ramachandran et al. (2019),

‘Publish-pay-subscribe protocol for

payment-driven edge computing’

[82]: Bu et al. (2019), ‘HyperPubSub:

Blockchain based publish/subscribe’

[83]: Androulaki et al. (2018), ‘Hyper-

ledger fabric: a distributed operating sys-

tem for permissioned blockchains’

the data window.

6.2 Publish/subscribe propositions

Ramachandran et all. [87] authors present a system of payment for pub-

lish/subscribe protocol called PPSP (Publish-Pay-Subscribe Protocol). In

this protocol, the publisher delegates the payment handling functionality

to the broker.

Publisher SubscriberBroker

Blockchain

1. Publish data D
price = P

2. Request P tokens

3. Send P tokens to
the publisher's wallet

4. Forward data D

Figure 6.2: Data publication with PPSP

In Figure 6.2, we represent the data publication process with PPSP.

The protocol used topics to filter data from the publisher. To open a

subscription, the subscriber sends a topic to the broker. Once this process

is complete, data can be sold.

Compared to the presentation of the publish/subscribe paradigm in

Chapter 5, in this proposition, when the publisher sends data D to the

broker, it will also share a price P . Then the broker will request this

price from the subscribers. To pay, the subscriber sends the tokens to the

publisher’s wallet. When the payment is confirmed, the broker forwards

the data to the subscriber.

Just like SDPP, the issue of this proposition is that the payment verification

adds a delay before delivering each data. Instead of having a delay for

each window, like in SDPP, in this protocol, each data is delayed. This

delay can prevent the usage of this proposition for real-time data, where

the subscriber needs to receive the data as fast as possible.

On the other hand, the subscriber cannot get data for free. The broker only

forwards data when the payment is confirmed. Instead, the subscriber

could pay for nothing. There is no guarantee that the subscriber will

receive its data. Furthermore, this proposition is not blockchain specific.

It does not use functions specific to one blockchain. For instance, Bu

et all. [82] also present a payment protocol with publish/subscribe

communication for digital assets but the proposition uses functions

specific to Hyperledger Fabric [83].

PPSP highlights the trust needed by the subscriber and the publisher to

the broker. Nothing prevents the broker from requesting an incorrect

price from the subscriber or even sharing data for free. This means that

we have to assume that the broker is not malicious.

42 6 Data payment protocol

6.3 Conclusion

Crypto-currencies can give a precise financial value to small digital assets.

It can be used to design data payment protocol and can be implemented

with a publish/subscribe protocol. The issue is that the current solutions

lack security or are specific to one blockchain implementation. There is

no data payment protocol for publish/subscribe exchange that presents

the security guarantees for the vendor and the buyer, reduces the delay

implied by the blockchain, and is not specific to one DLT implementation.

One of the propositions of this thesis is to propose one such protocol. We

will present it in the next chapters.

SUPRA

General concepts 7

7.1 Architecture 45

7.1.1 Distributed publish/sub-

scribe 45

7.1.2 Blockchain network 46

7.1.3 Trust between the brokers 46

7.2 The use of Unidirectional

Channels in Distributed

Publish/Subscribe Archi-

tectures 47

7.3 Unidirectional Channel

with On-Off Chain Proof

of Delivery 47

7.4 Conclusion 51

In the next chapters, we will present the first version of the main proposi-

tion of the thesis: Secured Update Protocol with Righterous Accusations.

Before presenting in detail the protocol, we will explain the architecture

in which we describe our protocol and a communication pattern used by

the protocol.

7.1 Architecture

In this section, we explain the architecture in which our protocol will run.

Figure 7.1 shows an example of architecture with 3 brokers, 2 publishers,

and 2 subscribers. We will explain in more detail the figure in the next

sections.

7.1.1 Distributed publish/subscribe

We place ourselves in a distributed publish/subscribe architecture. This

means that there are several brokers, subscribers and publishers. Each

publisher and subscriber connects itself to only one broker. We assume

that publishers and subscribers trust the broker to which they are

connected. It implies that, by assumption, if the broker receives an event

for its subscriber, it will forward this event to it, and if it receives an

event from its publisher it will forward this event to the local subscribers

and to the other brokers interested in this event. If the publisher or the

subscriber does not trust the broker anymore, it can connect itself to

another broker.

There is no specific requirement for the publisher and the subscriber, aside

from being capable of contacting its broker. They can be constrained or

unconstrained devices. We will specify the requirements for the brokers

later.

Broker B

Blockchain

Broker C

Broker A

Blockchain
node

Publisher
C

Subscriber
B

Publisher
B

Subscriber
A

Figure 7.1: Architecture used by SUPRA with 3 brokers

46 7 General concepts

[36]: Poon et al. (2017), ‘Plasma: Scalable

Autonomous Smart Contracts’

[38]: Poon et al. (2015), ‘The bitcoin light-

ning network’

[39]: Herlihy (2018), ‘Atomic cross-chain

swaps’

7.1.2 Blockchain network

We assume that the brokers are reliably connected to the same blockchain

network. This means that they are either nodes of this blockchain network

or are reliably connected to a node or several nodes of this blockchain

network. For instance, in Figure 7.1, Broker A and C are blockchain nodes

and Broker B is connected to a blockchain node.

Like we said in Chapter 4, constrained devices cannot be blockchain

nodes, with the current requirements for blockchain clients. This implies

that the brokers of our architecture either have the requirements for being

a blockchain node or have a reliable connection to a trusted blockchain

node.

We make several assumptions about the blockchain used by the nodes:

▶ it takes at most a known delay ∆on−chain to add a transaction in

the ledger.

▶ transactions can be large enough to contain any messages of SUPRA.

▶ smart-contracts can be stored on the blockchain.

The assumption on the known delay ∆on−chain also implies that the link

between the broker and the blockchain node is synchronous. ∆on−chain
can be defined as the maximal time needed by the blockchain network to

add a transaction to the ledger or as the sum of this delay and the maximal

time needed to send a message from the broker to the blockchain node.

It may seem like a strong assumption, but it is a known assumption used

in off-chain solutions [36, 38] and multi-blockchain swap [39].

On the other hand, there are no assumptions about the consensus protocol

used by the blockchain network and about the authorizations required to

add new nodes to the network. This means that if the blockchain used a

permissionless protocol like the PoW, new nodes and so new brokers can

easily join the system. On the other hand, if the network is permissioned,

adding new brokers can be more difficult because you need authorization

from a superior authority.

If we put aside the assumption of the transaction size, blockchains like

Ethereum or Hyperledger Fabric can be used in our architecture. On

the other hand, Bitcoin cannot be used, since the language used to code

smart-contract is not Turing-complete. It will be difficult to implement

the smart-contract on this platform.

7.1.3 Trust between the brokers

We assume that the brokers do not trust each other. If brokers cannot

trust each other, then using publish/subscribe protocol is impossible

between them for applications where data delivery is important. Indeed,

because both brokers cannot know if the other broker is purposefully

ignoring the messages or if the link between the brokers is too noisy.

If we have a communication protocol that ensures data delivery and

generates proof of these events, then we can create communication

between untrusted brokers, since it will be impossible for malicious users

to deny the messages. In case of conflict, the proofs of delivery can be

presented to an third-party to detect which broker is wrong.

7.2 The use of Unidirectional Channels in Distributed Publish/Subscribe Architectures 47

[38]: Poon et al. (2015), ‘The bitcoin light-

ning network’

The blockchain can be an interesting tool to create such a type of commu-

nication protocol. Data immutability combined with public auditability

can prevent malicious users from denying an event. For instance, by send-

ing directly the message to the blockchain, a malicious user cannot deny

the existence of the message. Also, the third-party can be implemented

in a smart contract and have a code auditable for the users.

7.2 The use of Unidirectional Channels in

Distributed Publish/Subscribe Architectures

In a distributed publish/subscribe architecture, without a central server/bro-

ker, each broker sends data from their local publishers directly to the

brokers to which the subscriber are connected. The communication be-

tween one broker to another for each topic is unidirectional and is totally

independent of the other communications between the other broker.

Indeed, if there is a problem between a broker A and a broker B that

breaks up their relationship, the communication between A and another

broker should not be impacted. Since we are interested in having secure,

reliable, and auditable communications, we have to make sure that each

unidirectional channel has those properties, independently from the

other channels.

This observation implies that the design of a distributed publish/sub-

scribe architecture, and so of SUPRA, can be decomposed into two

main parts. The first part is to define a unidirectional channel protocol

that allows one broker to send messages to another broker, with strong

guarantees. This protocol is defined independently from our global ar-

chitecture but requires several assumptions. The second part is to define

a global protocol, that allows a set of brokers to set up unidirectional

channels on the fly, allowing brokers with subscribers to request data

from brokers with publishers. Setting up a channel requires, among other

things, verifying the condition of the unidirectional channel.

SUPRA is the combination of those two parts. In the rest of this chapter,

we define the first part of our architecture, which is a unidirectional

channel protocol. Then, in the next chapters, we define SUPRA, which

dictates how brokers should interact to set up secure subscriptions and

use our unidirectional channel for all data communications.

7.3 Unidirectional Channel with On-Off Chain

Proof of Delivery

In this section, we present a new communication protocol, used by

SUPRA, but can be of independent interest. The purpose of this protocol

is to allow one broker to send messages to another one, with delivery

guarantees, and such that each broker obtains proof for each of those

guarantees. The communication protocol is a unidirectional channel, but

the goal is similar to the bidirectional channels defined in the Lightning

network [38].

48 7 General concepts

Figure 7.2: The two modes of communi-

cation of our unidirectional on/off-chain

channel protocol

A B

Off-chain
data channel

Ack

A B

Off-chain
data channel

On-chain
data channel Receives

EventsBlockchain

[84]: Radhakrishnan et al. (2018), ‘Stream-

ing Data Payment Protocol (SDPP) for

the Internet of Things’

Informally, the broker with a publisher sends its messages to the broker

with a subscriber using two methods, as illustrated by Figure 7.2. With

the first method, the messages are sent like any other messages on the

internet, directly to the broker with a subscriber, using its IP address,

such messages are said to be sent off-chain because the blockchain is not

used by this method. With the second method, the messages are sent

on the blockchain, included in a block, and the broker with a subscriber

indirectly receives the message by reading the blockchain. In this case,

the messages are said to be sent on-chain.

Choosing which method to use depends on several parameters. By

default, messages are sent off-chain, and if a broker tries to deviate from

the protocol, or if there is a connectivity issue, messages will go on-chain.

We now present what are the initial assumptions for our protocol to be

used, how it works in more detail, and what guarantees it provides.

Combining off-chain and on-chain channels is an idea presented in

SDPP [84], but with one major difference. In SDPP, the on-chain channel

is only used to record invoices and orders for data, and exchange crypto-

currencies between users, but not as a backup link. Using the blockchain

as a backup link makes the publisher pay to deliver, by assumption, the

message.

Assumptions

A Unidirectional Channel with On-Off Chain Proof of Delivery between

a broker A and a broker B requires the following assumptions. Those

assumptions should be verified to consider the channel open, and the way

the two entities agree on those assumptions is not part of the protocol. In

our architecture, this is done by SUPRA.

▶ Each broker has a pair of private-public cryptographic keys. Each

broker is aware of the public key of the other broker. A broker can

update its pair of keys, but if it does, the other broker has to be

aware of it.

▶ Both entities have to be connected to the same blockchain, either

by being part of it (i. e., being a full node) or by being connected

to another trusted full node (or set of full nodes) reliably. In other

7.3 Unidirectional Channel with On-Off Chain Proof of Delivery 49

words, we assume that each broker can receive events from the

blockchain, for instance, every time a transaction associated with a

specific ID or address is included in a block.

▶ Each broker can receive messages, of any type, on the blockchain.

Here, we assume that each broker has a unique ID on the blockchain

and there is a specific kind of transaction that can contain data of

any type and is associated with a specific ID. So that when sending

on-chain messages, a sender can create a transaction with the data

and the corresponding broker ID. This message will be received

by the broker eventually as it is supposed to be connected to the

blockchain. In practice, this can also be implemented using a smart

contract.

▶ The size of the messages is smaller than the maximum transaction

size of the blockchain. This assumption can easily be removed by

considering that only a fingerprint of the message is included in

the transactions on the blockchain and that a publicly available

distributed cloud storage is used to store the message. Doing so

the messages are public and auditable, exactly like they are if they

were included in the blockchain.

▶ Messages are weakly timestamped. This means that messages

include the timestamp of the sender, but brokers will ignore a

received message if the timestamp is in the future compared to its

local clock or if the timestamps of consecutive messages are not

increasing.

▶ The brokers agree on a value Tacknowledged , which represents the

maximum acceptable duration between the first transmission of a

message and its acknowledgment.

▶ ∆on−chain is the maximum amount of time used by the blockchain

network to add a transaction in a block. This strong assumption is

common in blockchain-related works [39].

The Two Modes of Communication

Let m be the message broker A wants to send to broker B. The first

mode of communication used by A is the off-chain transmission. A

signs the concatenation of m with the signature of the previous message

sprevious to obtain s = signA(m||sprevious). Then, A sends the message and

the signatures m||sprevious||s directly to B. When B receives the message

m||sprevious||s, it signs an acknowledgment Ackm and sends it to A. The

acknowledgment is basically, the signature from B of the signature of

the received message signB(s). A is allowed to send a new message

before receiving the acknowledgment, but it has to store all the non-

acknowledged messages in order to re-transmit them if needed. Each

new message from A follows the same procedure.

From the way messages are linked by signature, an acknowledgment

implicitly acknowledges all the previous messages. So if B receives several

messages from A that are correctly linked together (i. e., no message is

missing), B can send an acknowledgment only for the last received

message.

If A does not receive the acknowledgment from B before a certain amount

of time has passed (due to a connectivity issue or because B does not

50 7 General concepts

send it), A can send again the same message to ask B to send an acknowl-

edgment again. A is free to decide when it re-transmits the message,

however, it needs a proof of delivery before Tacknowledged after the first

transmission. To ensure B receives the message before Tacknowledged , A

can use the second transmission mode: the on-chain method, described

later. The second method may take a time ∆on−chain before a message

is confirmed (where ∆on−chain is the time for a transaction to be in-

cluded in the blockchain used by the brokers). Hence, after a delay

Toff −ack = Tacknowledged − ∆on−chain from the first transmission of a

message, if no acknowledgment is received, A uses the second method

of transmission to ensure the correct delivery before Tacknowledged .

For an on-chain transmission, A sends the message and its signature

m||sprevious||s to the blockchain associated with the ID of destination B.

Doing so, as soon as the message is included in a block in the blockchain,

A knows that B is aware of the message, by assumption.

In the case, B does not receive a message m from A, and A does not

send it on-chain, then B has no way to know that it missed the message

until A sends another message. When B finally receives the next message

m′||sm||s from A, it can verify whether the signature sm equals the

signature of the last received message. If it is not equal, then B knows

that message m is missing. B knows that A is supposed to send the

message again off-chain or on-chain, so it just waits. If B does not receive

the message m after Tacknowledged , it knows that A did not follow the

protocol.

Delivery Guarantees

Our protocol offers several delivery guarantees and generates proofs that

can be shown publicly to prove to anyone that a broker did follow the

protocol.

Proof of integrity and origin of data: In the case where an off-chain

message is correctly received, the message

m||sprevious||s is a proof for B that A sent the message. If there is a

connectivity issue and B does not receive the message directly from A,

then A sent the message on-chain, so the proof is the same. Hence, our

protocol verifies the non-repudiation property.

Proof of delivery: In the case where an off-chain message and its ac-

knowledgment are correctly received, the acknowledgment from B is

a proof, for A, that B correctly received the message. If there is a con-

nectivity issue and A does not receive an acknowledgment from B, then

the on-chain message of A containing the data is a proof that B received

correctly the message, by assumption.

Proof of non-delivery: If B detects that a message is missing, and does

not receive it (off-chain or on-chain) before a delay Tacknowledged , then

the signature of the missing message can be used to prove that A did not

deliver correctly the message. Indeed, the signature proves that A sent a

message, and if B did not receive this message, A cannot provide a proof

of delivery.

7.4 Conclusion 51

7.4 Conclusion

In this chapter, we have presented the distributed publish/subscribe

architecture in which we will run our unidirectional channel with on-off

chain proof of delivery. In the next chapters, we will explain how SUPRA

sets up and use this channel between the brokers, and how it uses the

proof to detect malicious brokers.

First version of SUPRA 8

8.1 Communication example 53

8.2 Generic message format . 55

8.3 Public key module 57

8.4 Subscription module . . . 57

8.4.1 Subscription demand . . . 57

8.4.2 Subscription stoppage . . 58

8.5 Publishing module 59

8.6 Trial module 61

8.6.1 Message conservation . . . 61

8.6.2 Trial process 62

8.7 Network issue and fail-

over 64

8.8 Comparison with existing

solutions 65

8.9 Proof of concept 67

8.10 Conclusion 68

SUPRA is a distributed publish/subscribe protocol between brokers

using the unidirectional channels with on-off chain proof of delivery.

Brokers share data from their local publishers to other brokers having

subscribers, and they use topics as a filter for data. The protocol describes

how brokers can set up subscriptions and exchange chained messages.

There is no restriction on which protocol brokers use between them and

local subscribers and publishers.

We are using Universal Unique Identifiers (UUID) to identify brokers. The

link between a UUID and the public key of a broker is made in a smart-

contract. Each transaction is associated with a source and a destination

UUID, and each broker (being either connected to a blockchain node

or a blockchain node itself) can listen to given UUIDs and receive the

associated transactions when they are included in a block.

SUPRA is divided into five modules:

1. Public key module: managing the public identities of entities.

2. Subscription module: handling subscriptions.

3. Publishing module: publishing data using our previously defined

communication channel.

4. Trial module: detecting malicious brokers using the blockchain.

5. Fail-over module: retrieving connection state after a crash from a

broker.

We assume that messages are transferred between the brokers in a

partially synchronous model on unreliable links. In this chapter, we will

explain how the first version of the protocol defines each module.

8.1 Communication example

In Figure 8.1, we present a communication example between two brokers.

In this example, A is the broker to which a subscriber is directly connected

and B is the broker to which the publisher is directly connected. After

declaring their public keys on the blockchain, broker A retrieves the

public key of B and sends a subscription demand to B. At the reception

of the demand, B retrieves A’s key on-chain and checks the signature

of the message. Thereafter, signature checking is performed by A and

B at each message reception. In this example, the first data published

by B is received and acknowledged directly by A using the off-chain

channel. The message containing the second data publication is lost but

the message disappearance is detected only at the reception of the third

data publication because A detects a missing signature in the chained

messages. This missing message detection is explained in Chapter 7.

Hence, A warns B of a missing message, the message is resent, and A

acknowledges it. Notice that A acknowledges the third data and not the

second one because acknowledging a message implicitly acknowledges

all the previous messages. Another way to retrieve a missing message is

54 8 First version of SUPRA

A B

A's public key declaration

B's public key declaration

Subscription demand*

Subscription acceptation*

ACK

First data publication *

ACK for the third data publication*

Fourth data publication (Message lost)

B has not received an acknowledgmeent,
so it sends on-chain the fourth data

publication*

* : the receiver checks if the signature is correct

A periodically checks the blockchain or
receives events from the blockchain

A retrieves the fourth data publication

A retrieves B's last declared public key

B retrieves A's last declared public key

Second data publication (message lost)

ACK for the first data publication*

Third data publication*

A detects a missing message. It sends a missing message request*

Re-emission: second data publication*

Blockchain

Figure 8.1: Message exchanges between two broker

8.2 Generic message format 55

shown in the fourth data publication. B resends the fourth publication

on-chain because it does not receive the acknowledgment in time. A

retrieves the message from the blockchain directly (either it receives the

event from the blockchain node, or A requests periodically the blockchain

for new messages). Observe that A does not acknowledge the last message.

Indeed, an on-chain message is assumed to be always acknowledged (see

Chapter 7). We will now provide in the next sections further details for

this exchange between A and B.

8.2 Generic message format

All the messages of SUPRA are represented in Figure 8.2. They all have

in common the following specifications. They start with two hexadecimal

digits coded on one byte. The first digit is for the module and the second

digit is for the type of message inside the module. We will write the

message codes in this format: X − Y . Each code is associated with a

specific action and format. Next to it, there is a timestamp. We use the

UNIX timestamp format, which is an 8 bytes long unsigned integer

with milliseconds precision. This timestamp adds unpredictability to

messages. This property is important in a secure environment based on

signatures. Indeed, if you have every possible output signed by someone,

you can say everything you want on his behalf without his consent (e.g.,
replay attacks). The timestamp prevents this type of behavior by creating

a chronology between messages. This property is explained in further

detail in Section 8.6. We will assume that two messages cannot have the

same timestamp. Next to the timestamp, the message has the UUID of

the destination. The last part of the message is a signature to prove the

identity of the author. We use ED25519 as a signature protocol, where

signatures are 64 bytes long and public keys are 32 bytes long.

56 8 First version of SUPRA

topic's size signature (S2)

1-1 - subscription acceptation

1-0 topic's
name

signature
(S1)

1-0 - subscription demand

alias

1 8 37 64 2 1-65535 64

8 4 37 64

1-3 - subscription stoppage

UUID
dest

37

1-2- subscription refusal

1

2

 timestamp UUID
src

6464

0-1

0-1 - public key update

0-0 public key

0-0 - public key annoncement

1 8 37 64

UUIDv4
(U1) timestamp signature

32

 timestamp U1 timeout old public
key

new public
key

signature with old
key

32 32 6481 37 4

1

2-1 - Missing message request

2-2 - Missing ACK request

3-1 - history request

6464

3-0 - fail-over announcement

4-4 - proof of further state

4-3 - accusation 4-2 - proof of fork

8 37 641 X X X37

4-1 - proof of stoppage

4-0 - proof of subscription

public part private part

1-1 timestamp S1 signature (S3)UUID
dest

UUID
src S2

S21-2 aliasUUID
dest timestamp UUID

src S1 signature

1 8 37 6437 64 642

previous message
signature1-3 aliasUUID

dest timestamp UUID
src S3 signature

8 2 6437 64 641 37

1-4 signature of the
acknowledged message

UUID
dest timestamp UUID

src signature

1-4 - ACK

alias

641 378 37 642

2-0 data
length

UUID
dest timestamp UUID

src alias encrypted
data

previous message
signature signature

2-0 - Data publication

8 2 2 1-65535 6437 37 64

2-1 missing message's
signature

UUID
dest timestamp UUID

src signaturealias

1 8 6437 37 642

2-2 unacknowledged
message's signature

UUID
dest timestamp UUID

src signaturealias

1 8 6437 37 642

3-0 UUID
dest timestamp signature

(S4)
1 8 37 64

3-1 UUID
dest timestamp UUID

src
1 8 37 37

block ID S4 signature

X
3-2 - history refusal

3-3 UUID
dest timestamp UUID

src S4 signature

3-3 - history begin

8 37 6437 641

3-4 UUID
dest timestamp UUID

src S4 signature

3-4 - history end

8 37 6437 641

4-0 UUID
judge timestamp UUID

src signature

8 37 37 X1

subscription demand
without topic name

subscription
acceptation ACK

X X 64

4-4 UUID
judge timestamp UUID

src signature

8 37 37 X1

last off-chain
message acknowledged acknowledgement

X 64

4-1 UUID
judge timestamp UUID

src
subscription stoppage

proof of delivery
8 37 37 X1

subscription demand
without topic name

subscription
acceptation ACK

X X 64

subscription
stoppage signature

X X

4-2 UUID
judge timestamp UUID

src signatureprevious
message message A message B

8 371 X37

4-2 UUID
judge timestamp UUID

src signatureproof of missing
message

64

6464

3-2 UUID
dest timestamp UUID

src
1 8 37 37

S4 signature

Figure 8.2: SUPRA message format

8.3 Public key module 57

8.3 Public key module

In this part, we explain how the public key module works and the

message format it uses. The purpose of this module is to begin the setup

of a channel described in Chapter 7 by sharing public keys between

brokers. Messages in the public key modules are sent directly on the

blockchain.

The first message of this module, code 0-0, is used to link the first public

key with a specific UUID. This message is signed with the private key

associated with the public key declared in the message to prove the

ownership of the key pair.

Once a key is declared, it can be updated with the second message of the

module, code 0-1. This message is useful for brokers when the integrity

of the private key is at risk. This message contains a new public key, but

it is signed with the old private key, to prove the ownership of the UUID.

The key switch takes effect immediately after reaching a timeout, which

is a timestamp on 4 bytes inside the update message.

By doing the key declaration and the key update on-chain, all brokers

can retrieve the history of public keys linked with a specific UUID. Since

all SUPRA’s messages are timestamped, this history allows anybody to

select the right public key to verify the message’s signature. It creates

traceability on the author’s identity and it is further used by the trial

module in Section 8.6.

8.4 Subscription module

We now explain how the subscriptions are done by explaining the two

parts of subscriptions, the subscription demand, and the subscription

stoppage.

8.4.1 Subscription demand

Brokers set up the subscription between brokers with a subscription

demand. This demand is a triple handshake done off-chain between the

two brokers. Figure 8.3 gives an overview of this handshake.

Indeed, as assumed earlier, the subscriber and the publisher are connected

to two different brokers. This means that the subscriber cannot subscribe

Broker with
subscribers

Broker with
publishers

Demand: give a topic name and
an alias

Accept: accept the request

Acknowledgement

Figure 8.3: The triple handshake used to

setup a subscription.

58 8 First version of SUPRA

[88]: Hunkeler et al. (2008), ‘MQTT-S—A

publish/subscribe protocol for Wireless

Sensor Networks’

directly to the broker connected to the publisher. In that case, the broker

connected to the subscriber has to subscribe itself, on the behalf of

its subscriber, to the broker directly connected to the publisher. It is

important to notice that if the broker has several subscribers interested

in the same topic, it only has to subscribe once to the broker connected

to the publisher. Once it retrieves the published data from the broker, it

will forward it to its local subscribers.

The broker connected to the subscriber starts the handshake with a

message with the code 1-0. In this message, it declares the topic name

and an alias. The message is split into two parts. In the public part, the

subscriber declares the alias and, in the private part, it declares the topic

name. A second signature is used to link the topic name with the chosen

alias.

Using an alias has two advantages. The first one is to identify each

subscription by using less space than the topic name. If the broker has

several subscriptions to the same broker at the same time, it needs

information to know from which subscription a new data is. Adding the

alias with the published data allows the users to identify the subscription

by using a 2 bytes long value, instead of a topic name, which can be

65 535 bytes long. This optimization reduces the size of the exchanged

messages. Notice that the same optimization is done in MQTT-SN [88], a

version of the protocol aiming networks with no TCP/IP support. The

second advantage is to prevent information leaks. Topic names can reveal

private information on someone (Names, addresses), and to resolve issues

between brokers we need to publicly reveal on-chain some messages.

The public part of the message, with only the alias, is enough to prove

the existence of a subscription, and it is better to reveal only a small

random alias, instead of the whole topic name. This revealing process is

explained in Section 8.6.

The second message of the handshake is the confirmation by the broker

connected to the publisher. The message has the code 1-1. The third, and

last, message of the handshake is an acknowledgment from the broker

who started the handshake. To acknowledge off-chain a message, the

receiver signs the signature of the acknowledged message. Once the

handshake is done, data from the publisher can be shared between the

brokers for the specified topic.

8.4.2 Subscription stoppage

To stop the subscription, either broker can send a stoppage message,

because, for one broker, this method can be used because the subscriber

is not interested anymore in the topic and, for the other broker, it can be

used because the publisher stops the topic. One last reason can be, for the

broker connected to the publisher, to stop the channel the other broker

does not send enough acknowledgments. Indeed, the broker connected

to the subscriber is not forced to send acknowledgments and it could

wait that the other broker sends all the messages on-chain, and also pay

fees. To prevent this behavior, the broker connected to the publisher can

stop the subscription with the other broker at any time.

8.5 Publishing module 59

Signature
S0

demand

topic alias

 S0

accept

on-chain
message limit

Signature
S2

 S2

ACK

Signature
S3

Signature
S1

 S1

 S3

stoppage

Sprevious-message Sstoppage
Figure 8.4: Chained messages in the sub-

scription module messages.

The stoppage message, with the code 1-3, has to be acknowledged. When

the message is explicitly acknowledged, or when the message is added

in a block, the subscription is considered as ended.

As presented in Figure 8.2, which presents every message in SUPRA,

each message of the handshake repeats the signature of the previous

message. Figure 8.4 presents a simplified representation of these signature

repetitions in the subscription module (i. e. timestamps, source UUID,

and destination UUID are removed from the picture). The message used

to stop the subscription repeats the signature of the last message of the

triple handshake. So, regardless of how many messages are exchanged,

once the channel is set up, it is always possible to link the stoppage

message to a specific triple handshake.

8.5 Publishing module

 S2

ACK (from the handshake)

Signature
S3

 S3

stoppage

S6 Sstoppage

Data publication

 S3
Signature

S4
data

Data publication

S4
Signature

S5
data

Data publication

 S5
Signature

S6
data

Figure 8.5: Chained messages in the pub-

lishing module

60 8 First version of SUPRA

With the public key module, the brokers share public keys through the

blockchain, and with the subscription module, they set up the channel by

sharing a topic name, and an identifier for the subscription, the alias. Once

the subscription is created, the publishing module describes how data

from the publisher can be shared between the brokers, while respecting

the properties of the unidirectional channel described in Chapter 7.

In a publish/subscribe protocol, the publisher wants to share information

with the subscribers. To do so with SUPRA, the broker uses the message

called data publication. This message has the code 2-0 and contains the

data that the publisher wants to share. The broker will then share it

with the other broker. Just like the messages in the hand-shake, the data

publication repeats the signature of the previous message. The first data

publication repeats the signature of the last message from the hand-shake.

This repetition chains the messages together and can be observed in

Figure 8.5. Chaining the messages allows the broker connected to the

subscriber to detect missing messages, and to order messages if they

arrive disordered because of network delay.

Messages from the publishing module go through a unidirectional

channel with on-off chain proof of delivery, so the broker sending

the message has to make sure that it is delivered before a timeout

Tacknowledged, from the first message emission. This is possible because

either the message is explicitly acknowledged by the other broker or

because the message is sent in the blockchain network. To reduce the

number of fees and to deliver as fast as possible messages, the broker

connected to the publisher will first try to send the messages directly

to the other broker. If the message is not acknowledged in time by the

other broker, the message will be sent to the blockchain network. We

assume that brokers are reliably connected to the blockchain network

and that a transaction is added in a block in a maximum delay ∆on−chain ,

so a message is always available if it is sent to the blockchain network.

The blockchain is used in this module as a backup channel with a full

guarantee of delivery.

When the broker connected to the subscriber receives a new message

from the other broker, it can detect whether there is a missing message,

or if the chain of signature is broken. In case a message is missing, it can

notify the broker connected to the publisher by sending the signature

of the missing message using a warning message with code 2-1. This

warning is not mandatory since messages have to be delivered before

Tacknowledged, therefore missing messages will be sent in the ledger. We

explain in Section 8.6 why is it important not to acknowledge a message

before receiving all the previous messages and also how to detect brokers

that do not respect the properties of the channel.

Also, brokers can ask to resent an acknowledgment to avoid sending a

message on-chain. For the same reason as the previous warning, it is not

mandatory to send this warning.

A message has to be acknowledged before Tacknowledged and a transaction

is added in a block, at most, in ∆on−chain , which means that if the

acknowledgment is not received before Tacknowledged −∆on−chain , the

broker will send the message on-chain to ensure that the message is

available before Tacknowledged. In that case, Tacknowledged and ∆on−chain
have to be set based on the blockchain used in the system but also based on

8.6 Trial module 61

the delay in the network, because we want to avoid the acknowledgment

of the broker connected to the subscriber reaches the other broker after

Tacknowledged −∆on−chain .

Published data is asymmetrically encrypted inside the message. The

broker connected to the publisher uses the public key declared on-chain

by the broker connected to the subscriber. This method avoids third

parties to read published data, but it forces the broker to encrypt data

for each broker. It means that if there are N brokers interested in the

same topic, the broker connected to the publisher has to encrypt data N

times. This problem can be resolved by adding in the protocol a message

for the brokers to share a symmetric key, linked to the topic, through a

Diffie-Hellman procedure with each other broker.

8.6 Trial module

The purpose of SUPRA is to have a publish/subscribe protocol that

respects the properties of the channel presented in Chapter 7. The trial

module allows brokers to detect brokers who do not respect the properties

of the channel. To do so, they present exchanged messages to a smart

contract. To prevent brokers from storing all the exchanged messages,

before explaining how messages are compared, we will explain how they

can store the right amount of messages.

8.6.1 Message conservation

The trial is based on comparisons between exchanged messages, so

brokers need to retain messages for a certain amount of time. Not storing

messages removes the chance for a broker to defend itself in case of a

false accusation.

The triple handshake exchanged to set up the subscription has to be kept

during the whole lifetime of the subscription, because the broker can

prove the existence of the subscription with these messages.

With SUPRA, the broker connected to the publisher sent chained messages

to a broker having subscribers. These messages can be acknowledged

explicitly, with an acknowledgment from the brokers having subscribers,

or implicitly when the message is sent on-chain. While a message is

unacknowledged, it has to be stored, because the message may have to

be resent. When messages are acknowledged, the two brokers just have

to store the last messages explicitly acknowledged by the broker having

subscribers and the acknowledgment. This message represents the last

valid signature that the broker connected to the subscribers is explicitly

informed.

After the stoppage of a subscription, messages can be deleted after a

timeout Tlimit. We will see how this timeout is defined in the next

sub-section.

62 8 First version of SUPRA

Judge
(smart-contract)

The subscriber receives a message M0,
and detect a missing message M-1

After Tack, the subscriber is
unable to find M-1: the publisher
did something wrong

The subscriber
presents the triple
hand-shake and M0

Broker with
subscribers

Broker with
publishers

Figure 8.6: Declaring a misbehaving broker.

8.6.2 Trial process

To resolve issues between brokers, we will use a program with a trusted

execution called the judge. To do so, the judge can be a smart contract

inside the blockchain, because the execution of a smart contract can

be verified by every user. Tlimit, Tacknowledged, and ∆on−chain can be

declared inside the smart contract, and be available to all brokers before

starting a subscription. We will assume that the judge is already running

and that every broker knows how to contact it.

By detecting malicious brokers, honest brokers can reduce the risk of

sending on-chain messages and paying fees. Also, since we use a smart

contract, all accusations can be checked by all brokers. This accusation

history can be used to compare two brokers who provide the same data,

for instance, brokers could subscribe to the brokers who always deliver

in time the messages, and one should avoid interacting with a broker

that is known to send wrong accusations.

If a broker did not respect the specification of the channel, it means

that a message was not delivered to a broker with subscribers before

Tacknowledged. Messages are supposed to be delivered by off-chain or

on-chain means before this timeout.

Figure 8.6 sums up the steps to detect a misbehaving broker in the system.

When the broker connected to the subscribers receives a message, through

the on-chain or the off-chain channel, it can detect a missing message,

because there is a signature missing in the chain of signatures. The

off-chain channel is unreliable and messages can be lost or disordered, so

sometimes a message is considered missing while it is actually delayed.

That is why the broker has to wait for Tacknowledged before contacting

the judge. If the broker connected to the publisher is honest, the missing

message is delivered before Tacknowledged, because the broker resends

the missing message off-chain or directly on-chain.

At the expiration of the timeout Tacknowledged, if the broker connected to

the subscribers still cannot find the missing message, it means that the

other broker did not respect the specification of the channel, since the

message should, at least, be available on-chain. When the broker detects

this misbehavior, it can present to the judge the triple-handshake used

8.6 Trial module 63

Judge
(smart-contract)

The subscriber
presents the triple
hand-shake and M0

The publisher sends the
messages M0 and M1

The subscriber sends AckM1
(acknowledgements are cumulative)

The publisher presents
M1 and AckM1

Broker with
subscribers

Broker with
publishers

Figure 8.7: Defending against a wrong accusation.

to set up the subscription and the message used to detect the missing

message (M0 on Figure 8.6). The judge can check the validity of the

accusation by checking the signatures in the messages and by observing

that the missing message is not in a previous block. In this case, the

broker connected to the publisher will be unable to present a proof of

delivery for the missing message, because the missing message is not in

any block and was never acknowledged by the other broker.

We can see why it is important for the broker connected to the subscribers

to not acknowledge the message used to detect a missing message until

the missing message is retrieved. Since acknowledgments are cumulative,

if it acknowledges this message, it also acknowledges the missing message.

Thus creating a proof of delivery for the broker connected to the publisher

for a message that is never delivered.

If the broker connected to the subscribers wrongly accuses the other

broker of not respecting the specifications of the channel, the other

broker is always able to defend itself, as long as it respects the message

conservation rules presented in Section 8.6.1. This process is explained in

Figure 8.7. Wrong accusations can only be done for messages exchanged

off-chain, because the smart contract can easily verify if an on-chain

message was added in time in a block. If the broker connected to

the publisher respects the specifications of the channel, all messages

are acknowledged explicitly, by the other broker, or by assumption,

by sending the message on-chain. Since a wrong accusation can only

target a message exchanged off-chain, then, if the broker connected

to the publisher can present the last message acknowledged off-chain,

it is enough to prove that the accusation is wrong. By comparing the

timestamp inside the message used by the accusation and the one inside

the message presented by the broker connected to the publisher, the judge

can deduce that the message presented by the broker, and acknowledged

by the other broker, was sent after the message inside the accusation. Since

acknowledgments are cumulative, presenting a most recent message

proves to the judge that the broker connected to the subscribers received

the presumed missing message.

The broker connected to the publisher can also break the specifications of

the channel by creating two different messages with the same previous

64 8 First version of SUPRA

message (recall that the chain of signatures should not have forks). If

the other broker detects this error, it can present the two messages to

the judge. It is impossible for the broker connected to the publisher to

defend itself against such accusations.

8.7 Network issue and fail-over

The off-chain channel between brokers is unreliable, which means that

messages that go through this link can be delayed or dropped. These

issues are handled by SUPRA with the timeout defined in the protocol

and the on-chain channel. Indeed, we assume that the brokers are reliably

connected to the blockchain network and that ∆on−chain is the maximum

amount of time to add a transaction in a block. This means that no matter

the quality of the link between the broker, the broker connected to the

publisher can always make the data available for the broker connected to

the subscribers by sending it on-chain. If the quality of the link between

the brokers is not sufficient to do the triple hand-shake, then brokers

have to retry the setup phase of the subscription.

SUPRA has a fail-over module to allow brokers to retrieve the aliases and

the last sequence signatures of their current subscriptions when they crash.

This process is presented in Figure 8.8. After a broker crashes, Broker A

on Figure 8.8, when it is back online, it needs first to declare the crash

on-chain. This is done with a message called fail-over announcement,

with the code 3-0. Then, it can notify the other brokers of the crash, Broker

B on Figure 8.8, and request them to resend every stored message related

to subscriptions between them. The request indicates the block where

we can find the fail-over announcement. When the requested broker

has checked if the announcement is present on-chain, it can accept or

refuse the request. As presented in Section 8.6.1, brokers have to store, at

least, the triple handshake, and the last messages acknowledged off-chain

for every active subscription to defend themselves in case of delivery

issues.

If the request is refused by the broker, then all the active subscriptions

between the two brokers are stopped, because the crashed broker is not

Figure 8.8: Message exchange for crash

recovery.

Broker A Broker Bblockchain

B checks the public
crash annonce of A

A publicly announce
a crash

A warns B of the crash + share the
public annonce

A acknowledges every resent
messages from B

B signals that all the messages are resent,
and acknowledged by A.

B resends every stored messages
between it and A

8.8 Comparison with existing solutions 65

able to verify the chain of signatures.

If the request is accepted, then the broker has to resent every stored

message. This resend process has to be done off-chain, each message has

to be acknowledged by the crashed broker. This is to prevent fee attacks.

Indeed, if the stored messages can be sent on-chain, then a malicious

broker could declare a false crash, and force the honest broker to resend

all the stored messages on-chain, by not acknowledging these messages.

The malicious broker would have to pay the fees for one message, the

public announcement of the crash, but would have forced the honest

broker to pay fees for every stored message.

The same fail-over announcement can be used to join several brokers. So

a broker can contact all its known brokers and retrieve all its subscription

states. On the other hand, the same fail-over announcement cannot

be used for two different crashes. If a broker tries to do so, it will be

easily detected, because the other broker already has received a history

request with this fail-over announcement or because the timestamps

do not match. For instance, subscriptions created after the fail-over

announcement message cannot be used to recover the state of these

subscriptions.

Declaring errors on the blockchain makes broker behaviors publicly

auditable. Those behaviors can be used by other brokers to measure a

broker’s reliability. Brokers want to send as few transactions as possible

in the ledger because they cost money and take more time to be delivered,

so they prefer to cooperate with brokers that force the least number of

on-chain messages.

8.8 Comparison with existing solutions

In this section, we compare SUPRA with two solutions: MQTT and

Trinity, which is the first combination of MQTT and blockchain to our

knowledge.

MQTT

We compare MQTT and SUPRA to verify that SUPRA removes the issues

linked with having a central broker.

The two common ways to add security in MQTT are to use SSL/TSL

encryption and to use an authentication system on the broker. It is enough

to remove overhearing by a third party but not enough to remove the

star topology with the central broker. This broker can be the source of

trust issues if it is malicious. In SUPRA, brokers communicate directly

with each other, to create the subscription and send data. It removes the

central authority from the system.

Still, the biggest difference between MQTT and SUPRA is about the

trust assumptions between the users. In MQTT, the publishers and the

subscribers must trust the central broker, if it is not the case they need

to connect themselves to another broker. In SUPRA, publishers and

subscribers must trust their local broker, so, just like MQTT, if they do

not trust the local broker they must connect themselves to another broker.

66 8 First version of SUPRA

[90]: Uzunov (2016), ‘A survey of secu-

rity solutions for distributed publish/-

subscribe systems’

On the other hand, the brokers do not trust each other. Also, thanks to

the help of the blockchain, brokers can come and go as they want in the

network of brokers. Once the broker declared a public key in the ledger,

it just has to open channels with brokers sharing or wanting interesting

data to join the system, and it can stop these channels at any time to

leave the system. This dynamic property is interesting to interconnect

IoT networks.

Also, MQTT runs over TCP [89]. TCP gives guarantees on message

delivery: messages are ordered and they reach the destination if it is

available. MQTT could be used to interconnect brokers but the problem

is that we cannot make the difference between an offline/unreachable

broker and a malicious broker who does not send acknowledgments.

The result is the same for the honest broker, it has to resend infinitely

messages.

SUPRA also guarantees message ordering and message delivery with

the help of the unidirectional channel with on-off chain proof of delivery,

but it introduced a maximum delay Tacknowledged to deliver a message. If

the sender does not receive acknowledgments, the message will be sent

to the ledger and malicious brokers will not be capable of denying this

message.

The on-chain and off-chain communications allow SUPRA to have level 2

in MQTT’s QoS classes i. e., messages are delivered exactly once, because

brokers will ignore re-transmissions of a previously received message,

between untrusted brokers.

These differences between MQTT and SUPRA make SUPRA more secure

and also increase its number of use-cases. SUPRA can be used when

traceability is needed in data exchanges or where the central broker is

replaced with a dynamic network of brokers.

Trinity

To compare Trinity [3] and SUPRA, we use the 19 distributed publish/sub-

scribe protocol threats presented in [90]. These threats were used in [90] to

compare several security solutions in publish/subscribe protocols. Each

threat is presented by its ID in the survey, TX where X ∈ {1, 2, ..., 19}.

Trinity and SUPRA are alike against several threats because these proto-

cols share similar properties. Messages are signed, which prevent attacks

based on data alterations or spoofing (T4, T5, T6, T7, T10) and there are

mechanisms to prevent malformed messages (T9). In Trinity, it is the API

used by the brokers and, in SUPRA, it is the judge. Malformed proofs

are ignored by the judge. The blockchain also allows these protocols to

handle crashed brokers because data lost during a crash are available

on-chain after the crash recovery (T18).

In Trinity, all the data published on a blockchain is only accessible by

the brokers. In SUPRA, we use a new communication paradigm to send

data off-chain as much as possible. The blockchain is used to create

trust in brokers’ identities and as a backup communication link for

data. Despite this difference between Trinity and SUPRA, both protocols

are protected against unauthorized actors (T11) and data repudiation

8.9 Proof of concept 67

[4]: Ramachandran et al. (2018), ‘Trinity:

A Distributed Publish/Subscribe Broker

with Blockchain-based Immutability’

[3]: Ramachandran et al. (2019), ‘Trinity:

A byzantine fault-tolerant distributed

publish-subscribe system with im-

mutable blockchain-based persistence’

[4]: Ramachandran et al. (2018), ‘Trinity:

A Distributed Publish/Subscribe Broker

with Blockchain-based Immutability’

[81]: Lv et al. (2019), ‘An IOT-oriented

privacy-preserving publish/subscribe

model over blockchains’

[92]: Danish et al. (2019), ‘A Lightweight

Blockchain Based Two Factor Authenti-

cation Mechanism for LoRaWAN Join

Procedure’

(T17, T19). However, there is a risk of eavesdropping (T1, T2) in Trinity,

because data are not encrypted.

Trinity’s blockchain network is only available for brokers, it supposes

a minimal amount of trust between brokers, because of this trust, data

are not encrypted. Thus, brokers have access to every published data,

even data from a topic for which they have no subscribers. In SUPRA,

data are encrypted and only the receiver can decrypt it, which removes

eavesdropping. Brokers trust the blockchain and the protocol as a whole,

but they do not trust other brokers.

Both protocols don’t implement tools against flooding and denial of

service-based attacks (T14, T15, T16, T17). SUPRA and Trinity also

share a risk of subscription leak (T12), if a broker is hacked. These

leaks will only concern the subscriptions of the hacked broker but not

every subscription in the network. Trinity implements a QoS system on

published data in [4], this feature is not present in SUPRA but can be

added in future works.

SUPRA and Trinity do not implement routing protocols (layer 3) in their

specifications, so we think that it is not meaningful to compare them

against route poisoning attacks (T7).

8.9 Proof of concept

During our presentation of SUPRA, we explained how brokers exchange

messages to set up and use the communication channel and we also

proposed a complete message format. To prove that our proposition is

realistic we made a proof of concept compatible with Ethereum. The

code of our proof of concept is available online [91].

Ethereum is a crypto-currency that allows the creation of smart contracts.

The presence of smart contracts is mandatory for SUPRA, because we

need smart contracts to implement the judge used to resolve conflicts.

Also, Ethereum is well known in the literature, since several works use

this blockchain for their implementation [3, 4, 81, 92].

Our proof of concept allows users to put online several brokers and attach

subscribers and publishers to them. For a simple setup, we can create

two brokers, one publisher connected to the first broker publishing data

in topic 1, and one subscriber connected to the second broker subscribed

to topic 1 of the first broker. Figure 8.9 illustrates the architecture.

Figure 8.9: Architecture of our proof of

concept

68 8 First version of SUPRA

Once the system is set up, the subscriber can notify its local broker about

the topic it wants. At the reception of this notification, the broker will

create a channel between it and the broker connected to the publisher

on the specified topic. When the publisher shares data with the topic,

the data will go through the channel between its broker and the broker

connected to the subscriber, and then reach the subscriber.

To simulate lost messages, data can be published with a specific flag. The

broker connected to the subscriber ignores messages with the flag and it

does not send an acknowledgment. To respect the rules of the channel,

since the broker does not receive an acknowledgment in time, it sends

the message to the Ethereum smart contract. When the message is added

to the ledger, the other broker detects this message and forwards it to its

local subscriber. The smart contract is written in Solidity. The publish-

ers/subscribers, the brokers, and their interaction with the Ethereum

blockchain are written in JavaScript.

Our smart contract also implements some functions for the judge that

can be tested with unit tests. For instance, a broker A that receives a

message M2 can accuse another broker B not having sent it message M1.

In our unit tests, we created two scenarios, one where broker B defends

itself by showing that M1 is on-chain, and one where broker B defends

itself by sending M1 and its acknowledgment to the judge. In both cases,

the judge accepts the proof and A pays a penalty to B. If no proof is

provided, B pays a penalty to A.

The implementation of our broker is pretty simple. We did not execute

extensive measurements on this proof of concept. Our purpose was

only to prove the feasibility of data sharing between brokers by using

the hybrid off-chain/on-chain method. This proves that it is possible to

interconnect untrusted brokers, and so share data in a publish/subscribe

manner. In practice, an MQTT broker can be used for communications

between the broker and the local subscribers/publishers. SUPRA is

only used for communications between brokers. This way, we can make

assumptions about the performance of such types of communications.

When data goes through the off-chain channel, the performance is similar

to MQTT, if we put aside the signature checking process. On the other

hand, messages that go through the on-chain channel are slower than

messages send with MQTT, because users have to wait for a block with

the messages in it, but this occurs only if brokers are disconnected or

malicious.

8.10 Conclusion

SUPRA is a publish/subscribe protocol aiming at communication be-

tween untrusted brokers. To do so, the protocol ensures that the brokers

connected to subscribers are sure to receive before a delay Tacknowledged
the messages from the broker connected to publishers. Also, we prove

that it is always possible for an honest broker to prove the incorrect

behaviors of a malicious broker.

In the next chapters, we will present two extensions for SUPRA. Those

extensions correct two issues of the first version of the protocol while

keeping the security properties.

Signature reduction 9

9.1 Scalability issue 69

9.2 Signature synchronisation 71

9.2.1 Solution Details 71

9.3 Security 73

9.3.1 Reuse acknowledgements 73

9.3.2 Data access on-chain . . . 74

9.4 Conclusion 76

In our first version of SUPRA, we focused on creating a communication

channel between brokers presenting delivery guarantees for users. This

channel places itself in a middle of a publish/subscribe architecture

where brokers share data from publishers, but this first version of the

protocol has one flaw. We realized that the protocol does not scale well

with the number of brokers interested in the same topic.

In the first version of SUPRA, the communication between the brokers

is client/server-based and it creates a scalability problem. If the broker

connected to a publisher wants to share the same data with N brokers,

it has to generate N different messages. It might not be a problem from

computational resources point-of-view, since brokers are assumed to

be unconstrained devices and they have to be reliably connected to the

blockchain, but this issue has an impact on the number of messages send

to the ledger. In this chapter, we explain the scalability problem of the

first version of SUPRA and we explain how to resolve it.

9.1 Scalability issue

To simplify our presentation and resolution of the scalability issue present

in the first version of SUPRA, in this chapter, we will named "publisher"

a broker having at least one publisher and "subscriber" a broker having

at least one subscriber. The communications that we are explaining are

occurring between the brokers. The real publishers and subscribers are

still loosely coupled and they do not know each other.

We presented in the previous chapter the 5 modules that composed

SUPRA. Of these modules, the most important is the publishing module.

Once the subscription is set up, the publisher, so the broker having at least

one publisher, uses this module to send data to the subscribers, brokers

having at least one subscriber for this topic. The most used message in

the protocol is the one named “data publication” and, in this section, we

will see why this message creates a scalability issue.

For the rest of the chapter, we assume that there are N subscribers for

the topic T . Each subscriber is identified by a unique number Sub, with

0 ≤ Sub < N . In Figure 9.1, we can observe the messages Mi that the

publisher has to create to publish data D to the N subscribers in SUPRA.

Each message is the concatenation of:

▶ Ti: timestamps of Mi.

▶ Sub: the identifier of the subscriber.

▶ Pub: the identifier of the publisher. It is used by the receiver to

retrieve the public key used to sign the message.

▶ ASub: the alias for the topic name T . This value is used to identify

multiple subscriptions between the same publisher and the same

subscriber without using the topic name T , just like port numbers.

▶ EncSub(D): data D encrypted with the subscriber public key.

70 9 Signature reduction

2-0
timestamp

Ti
UUID publisher

Pub
encrypted data

EncSub(D)
 previous signature

Prei
signature

Si
alias
ASub

UUID subscriber
Sub

Figure 9.1: Data publication for the subscriber i

▶ Prei: the signature of the previous message.

▶ Si: the sender’s signature of the message.

This message has three fields that generate a scalability issue with the

number of subscribers N .

Indeed, Mi contains Sub, the identifier of the subscriber. This identifier is

unique for each subscriber. With this information, the smart contract can

understand which managers are involved in the communication. Since

each identifier is unique, the publisher has to create N versions of Mi to

share the same data D.

To avoid unauthorized entity to have access to D, the publisher encrypts

data. In the first version of SUPRA, the publisher uses the public key of

Sub to encrypt D. Each subscriber links a public key to its identifier in

the distributed ledger. The public key of each subscriber is unique. It

forces the publisher to do N encryption operations for D and it creates

N versions of EncSub(D), one for each subscriber.

ASub is used to identify active subscriptions between a publisher and

its subscribers. This value is set during the triple handshake between

the subscriber and the publisher and is chosen by the subscriber. ASub is

coded on 2 bytes, which means that it is very unlikely that subscribers

to a given topic have the same alias. At the same time, it can happen

that two subscribers to different topics chose the same alias, which is

something we want to avoid (with a numerical analysis
∗
, if more than 302

subscribers choose a value independently and uniformly at random, there

is a probability more than
1
2 that at least two will choose the same).

Because of these three fields, the value of Si cannot be equal in each

subscription to the same topic T , and by extension the value Prei. Since

there are N versions of the message Mi, the publisher has to do N

signature operations. This idea is against the publish/subscribe model.

In this model, the publisher and the subscriber are loosely coupled,

they do not know each other, and the publisher should not do actions

specific to each subscriber. In the current version of SUPRA, the publisher

has to generate N messages for the same data, encrypted N times, and

sign each version. For these reasons, we consider that the protocol does

not scale well with the number of subscribers and does not respect the

publish/subscribe model.

To make SUPRA scalable with the number of subscribers, we will present

how to synchronize the signatures between subscriptions for the same

topic.

∗
It is known that the probability that at least a collision occurs is 1 − 216!

(216−N)!·216N

(known as the Birthday problem), which is greater than
1
2 when N ≥ 302.

9.2 Signature synchronisation 71

2-4 timestamp UUID src alias new key
(asymetricaly encrypted)

previous
signature signature

Symetric key update

UUID dest

Figure 9.2: Symmetric key sharing message in SUPRA

9.2 Signature synchronisation

In this section, we present how SUPRA can be modified to reduce the

number of signatures and encryption operations to 1 for each data, no

matter the number of subscribers. We showed in the previous section

that

Mi = Ti||Sub||Pub||ASub||EncSub(D)||Prei||Si

is different for each subscriber Sub (despite the fact that the data D is

the same).

A schematic idea of our solution is presented in Figure 9.3. If we want to

make SUPRA scalable, we have to find a solution to make Si equal for all

subscribers. This means that from N chains of signature, the publisher

can synchronize the subscriptions to the same chain of signature. To do

so, we need to prove two things:

▶ R1: The first message M1 after the synchronization is the same for

every subscriber.

▶ R2: if the message Mi is the same for every subscriber, then the

message Mi+1 will also be the same for every subscriber.

9.2.1 Solution Details

Removing the Sub field from the message Sub is the unique identifier

of the subscriber. To resolve our scalability issue, we are forced to

remove this field from the data publication. Indeed, if we let this field

in the message, two signatures for two subscribers must be different. In

section Section 9.3, we prove that removing this field from the message

does not affect the traceability of the protocol and that the judge smart

contract can still work without this information.

Using a symmetric key to encrypt the data As long as data are asym-

metrically encrypted, it is impossible to synchronize the subscriptions,

because each public key creates a different value for EncSub(D). In Figure

9.2, we present a new control message. This message allows the publisher

to securely share a symmetric key K with the subscriber. The symmetric

key is encrypted with the public key Sub. By sharing the same symmetric

key K with all subscribers, the publisher only has to encrypt the data D

one time by using the key K.

Let the publisher chose the topic Alias In the previous triple handshake

(that occurs when opening a subscription), the subscriber chooses the

value ASub. Now, to make sure that this value is equal for all subscriptions

to the same topic, we have to update the handshake and let the publisher

choose it. We will refer to as AP ub the alias selected by the publisher for

the topic T .

72 9 Signature reduction

Subscription 1

Subscription N

N subscriber with N chains of
signatures

N subscribers with 1 chain of signatures

Figure 9.3: Schematic representation of signature synchronisation.

The new message format for a data publication is

Mi = Ti||Pub||AP ub||EncK(D)||Prei||Si.

Since the message does not contain information about the subscriber, if

the publisher can create one version Mi that is the same for all subscribers,

then the message Mi+1 will also be the same for all the subscribers (rule

R2). Currently, if we denote M1 the first message that the publisher

uses to share data D, Pre0 is the signature of the last message of the

handshake used to set up the subscription. This signature is made by the

subscriber and each subscriber has a unique public key, so there will be

N versions of Pre0.

Allow Pre signature overwrite In order for all the subscribers to start

with the same message M1, we present a new control message, named

Signature overwrite SigOver, to set the same value for Pre0 between

the N subscribers. The message has this format

SigOver =
TSigOver||Sub||Pub||AP ub||SOver||PreSigOver−1||SSigOver

Sub, Pub, and AP ub identify the subscription. TSigOver is the timestamp

of the message, PreSigOver−1 is the signature of the previous message

in the chain, and SSigOver is the signature of the all the previous fields

concatenated.

The message contains the value SOver that is used in the next data

publication as the value for Prei. This message allows the manager to

set the rule R1 at any time, as illustrated in Figure 9.4. In the figure, we

can observe that M1 uses the value indicated in the signature overwrite

as Pre0 and not SN+1. Before the message, the publisher has a chain of

signatures with each subscriber. Then, after the publisher overwrite the

Pre signature with the same value S0 for all subscribers, the publisher

ends up with one chain of signatures for all subscribers. This idea

is represented in Figure 9.5. In this figure, we can observe that the

publisher shares the same value S3 between all subscribers. By doing so,

it synchronizes the N chains of signatures into one unique chain.

The proposition can be optimized by adding the values of K and S0,

9.3 Security 73

Pub SN-1 SN

MN

TN APub EncK(D)

Pub SNTN+1 APubSub S0 SN+1

Pub S0 S1

M1

T1 APub EncK(D)

Signature overwrite

Figure 9.4: Example of signature over-

writing

Subscription 1

N subscriber with N chains of
signatures

N subscribers with 1 chain of signaturesN signature overwritting

Pub S0 S1T1 Pub S1T2 APubSub1 S3 S2

Pub S3 S4T3

Pub S1'T2 APubSubN S3 S2'

APub EncK(D1)

Subscription N

Pub S0' S1'T1 APub EncK(D1)

APub EncK(D2)

Figure 9.5: Synchronisation between several subscriptions.

directly in the triple handshake, but it is still important to be able to do

these actions outside of the triple handshake. For instance, when the

publisher wants to update the symmetric key (if there is a risk of leakage),

without stopping and reopening every subscription.

9.3 Security

In this section, we explain why the signature synchronization process

does not change the security properties of SUPRA.

9.3.1 Reuse acknowledgements

In SUPRA, messages are acknowledged explicitly by the subscriber or

implicitly when they are added to a block. If the subscriber explicitly

acknowledges the message, it signs the signature of the message. Since

we add a new message to overwrite signatures, one could ask whether

the publisher can reuse an acknowledgment from the subscriber for

another message on the same topic.

Recall that an acknowledgment implicitly acknowledges the previous

messages on the same topic received by a subscriber. However, an

acknowledgment for a message Mi should not be used directly for

another message, or the same message for another subscriber.

74 9 Signature reduction

Lemma 9.3.1 Let Mi and Mi′ be two messages, and let ACKi,k be the
acknowledgement of message Mi by subscriber Subk. Then, ACKi,k is
not an acknowledgement of message Mi′ , for any subscriber Subk′ , with
(i, k) ̸= (i′, k′).

Proof. Assume for the sake of contradiction that ACKi,k is an acknowl-

edgement for message Mi′ , for a subscriber Subk′ , with (i, k) ̸= (i′, k′).

First, if the messages have different topics, hence different topic alias,

then their signatures are also different. This implies that Mi and Mi′

have the same topic alias.

Since Mi and Mi′ have the same topic alias, if i ̸= i′
, then their as-

sociated timestamp are different, say Ti < Ti′ . With these different

timestamps, the signatures of the two messages are different, and so are

their acknowledgment.

If i = i′
, then k ̸= k′

. In this case, by definition, ACKi,k is the signature

by Subk of the signature Si of the message Mi. Hence ACKi,k cannot be

the signature of Si by another subscriber Sk′

9.3.2 Data access on-chain

When the acknowledgment from the subscriber takes too much time,

to deliver the message before Tacknowledged , the publisher sends the

message on-chain. With our modifications, there is no information

directly related to the subscribers inside the data publication, and the

payload is symmetrically encrypted with the key K . One cannot decrypt

the data without knowing this key. With our modification, we also reduce

the number of messages on-chain. In the first version of the protocol, each

message Mi is different for each subscriber, so if n subscribers do not

send ACKi in time, the publisher has to send n messages on-chain. Now,

since there is only one version of Mi, the publisher just has to send Mi in

the distributed ledger and the n subscribers will retrieve the message.

Subscriptions can be open, but they can also be closed. A former subscriber

still has the key K, which means that it can decrypt the payload of

messages present in the distributed ledger, without subscribing to the

topic. To avoid such a scenario, good practice from a publisher’s point of

view is to update the symmetrical key at each unsubscription. However,

this can lead to a lot of updates, when subscribers come and go quickly.

Another technique is to set a threshold value for the unsubscriptions,

when this value is reached, the publisher updates the key. This technique

introduces a trade-off between the update rate of the symmetric key and

the risk for former subscribers to decrypt messages in the ledger.

Conflict resolution with the smart-contract

SUPRA uses a smart contract to detect publishers who do not deliver

messages in time. By comparing the signatures in the last received

message and a new message, the subscriber can detect if a message is

missing. If the subscriber is unable to find the missing message after

9.3 Security 75

Tacknowledged , it knows that the publisher did not respect the protocol,

because the message should at least be in the distributed ledger.

To prove that the publisher did not respect the protocol, the subscriber

has to present the two messages used to detect the missing message.

In our proposition, we remove the identifier of the subscriber from the

message, but it is still possible for the subscriber Sub to prove that any

message Mi is from an active subscription with the publisher Pub.

The publisher and the subscriber do a handshake to set up the subscrip-

tion. During this phase, the publisher indicates the alias AP ub used for

the subscription. This value is then added to all the messages from the

subscription. The handshakes of active subscriptions have to be stored

by the managers. When the subscriber presents the two messages used

to detect an error, it also presents the handshake to prove that there is

an active subscription. The repetition of AP ub and Pub in all messages

proves that the messages are from the same subscription.

Lemma 9.3.2 If a subscriber Sub has an active subscription with publisher
Pub and receives two messages Mi and Mj with i + 1 < j, and does not
receive messages Mi′ , i < i′ < j before time Tj + Tacknowledged , then Sub

can accuse Pub of not respecting the protocol.

Proof. Sub does not know how many messages are missing between

Mi and Mj but by showing Mi and Mj to the judge smart-contract,

everyone can see the mismatch between the previous signature Prej in

Mj and the signature Si of message Mi. Showing the acknowledgment

of the subscription message proves that the subscription is open. If the

subscription is still open, the publisher cannot show a closing subscription

to defend itself. If the messages Mi′ , i < i′ < j, are not all on the

distributed ledger and the publisher does not have the acknowledgments

Acki′,Sub for those messages from Sub (which is the case since Sub did

not receive those messages), then the publisher has no way to defend

itself. The publisher indeed did not follow the protocol and the accusation

is successful.

Preventing false accusation

Lemma 9.3.3 If a publisher Pub follows the protocol, it can always defend
itself against any accusation.

Proof. Assume that a subscriber Sub accuses Pub of not delivering a

message before Tacknowledged . In the worst-case Sub has access to all the

messages sent by Pub to Sub and other subscribers with other topics.

To start the accusation Sub has to send a message Mj to the judge

smart contract, accusing Pub of not sending the previous message Mj−1
before Tj−1 + Tacknowledged . Sub also sends the subscription acceptation

message from Pub to show that the subscription is open. To be valid,

the Message Mj must have the same topic alias as the subscription

acceptation message. Since the publisher followed the protocol correctly,

this topic alias is unique and is not used for another topic so the message

Mj is indeed addressed to Sub.

76 9 Signature reduction

First, if the subscription is closed (correctly), the publisher either has

an acknowledgment, from Sub, of the closing subscription message, or

this message is in the distributed ledger. In this case, the publisher can

defend itself.

Otherwise, if the subscription is still open, for every message Mi older

than Tacknowledged , the publisher, which follows the protocol, either

has received an acknowledgment or the message has been included

in the distributed ledger. In both cases, it can defend itself against the

accusation.

9.4 Conclusion

By changing the message format of the data publication and by adding

new control messages, we reduced the number of signature operations

by the broker connected to the publisher for sharing the same data to

N brokers. Now, the broker executes 1 signature instead of N . By doing

so, we reduce the energy required by the broker to execute the protocol

and we reduce the number of messages on-chain when a network failure

occurs, thus reducing the cost of communication.

Still, over time, the broker connected to the publisher will just lose money

because some message will be sent in the ledger. For the broker connected

to the publisher, SUPRA only adds constraints. The broker has to deliver

data in time, otherwise, it will be considered as misbehaving, and pay

some transaction fees. These constraints can prevent the usage of the

protocol for real-life scenarios. In the next chapter, we will present a

solution for this problem with our last extension for SUPRA: a payment

system allowing the broker connected to the publisher to gain money for

sharing data through the SUPRA channel.

[82]: Bu et al. (2019), ‘HyperPubSub:

Blockchain based publish/subscribe’

[87]: Ramachandran et al. (2019),

‘Publish-pay-subscribe protocol for

payment-driven edge computing’

Data payment extension 10

10.1 Secret-less secured

payment system 77

10.1.1 Setup the communica-

tion 78

10.1.2 Data payment 79

10.1.3 Closure 81

10.2 Security 83

10.3 Reputation system 85

10.4 Comparison with other

solutions 86

10.5 Conclusion 86

SUPRA requests the broker connected to the subscriber to pay some

transaction fees, because some messages will be sent in the ledger to be

considered delivered in time. On the other hand, this broker gets nothing

in return for providing such a delivery service for the other brokers. For

this reason, adding a data payment extension for SUPRA is interesting

to create an incentive for the broker to share data with the protocol.

In Chapter 6, we presented several data payment protocols, some of them

using the blockchain. The blockchain can be interesting to share IoT data

because it allows a smaller granularity in payment than classic currencies.

For instance, in Bitcoin, the main token is also named Bitcoin but it is

not the smallest transferable token. Indeed, the smallest denomination

of a Bitcoin is called a Satoshi which is 10−8
Bitcoin, and based on

exchange platforms, 1 Satoshi is less than 0.01
=C.

∗
Which means that with

Bitcoin, we can buy/sell individually things that cost less than 0.01
=C.

This property is also present in other crypto-currency, for instance, in

Ethereum [7] the smallest denomination of an Ether is called the Wei,

which is 10−18
Ether, and also has a value smaller than 0.01

=C.

With publish/subscribe communication, the current state of the art

of the proposition with blockchain usage is either dependent on one

blockchain implementation [82] or the payment system adds an extensive

delay for data delivery [87]. We already explained in Chapter 7 that

SUPRA is not blockchain dependent and can run on several blockchain

implementations. In this chapter, we will present an extension for SUPRA

which reduces the impact of the payment system on data delivery and

presents security guarantees for the buyer and the vendor: the broker

with a publisher will get its payment, the broker with the subscriber will

receive data.

The Lightning channels presented in Chapter 3 could be extended to

allow a data transfer, hence ensuring that a commitment transaction takes

effect only when data is correctly transferred. However, this would add

complexity to a protocol that already requires complex secret exchanges

between participants. Moreover, LN would require each broker to keep

all the revoked transactions. Our solution achieves the same goal with a

much simpler approach, using the fact that data transfer is directed from

the seller to the buyer, which removes the necessity to store secret-based

revocable transactions. That is why our proposition is secret-less.

10.1 Secret-less secured payment system

In this chapter, we explain how to add a secret-less secured payment

system to SUPRA. We use the same notation and assumptions as in

SUPRA. Namely, A and B denote two brokers that are connected by

an unreliable link, but they are both reliably connected to the same

∗
As of July 2022, 1 Satoshi = 0.00021

=C

78 10 Data payment extension

Vendor Buyer

SUBSCRIPTION REQUEST:
topic name

MENU:
topic ID T, data price P,
closing window W

ACK

Blockchain

Lock F tokens in the
smart-contract

Check if the subscriber has
locked tokens

Figure 10.1: The publisher and the subscriber open a channel

blockchain. At least one publisher for the topic T is connected to A and

at least one subscriber for this topic is connected to B.

10.1.1 Setup the communication

To start the communication, we modify the handshake between A and

B used to open a SUPRA channel. The new handshake is represented

in Figure 10.1. Just like in SUPRA, we assume that A and B both know

which blockchain and which smart contract is used during the communi-

cation.

To add a payment system, we add two new information in A’s answer in

the handshake : the data price P , and the closing window W .

P can contain several prices based on the data’s timestamp. For instance,

if the publisher sells cars’ GPS locations, data generated just before and

after business hours can cost more than data generated at night, because

there are more cars on the road. The price can be also a constant value

and, for the rest of the chapter, we will assume that each data have a

constant price P .

The closing window defines how much data can be in transit simultane-

ously, i. e., can be sent without being acknowledged. This is important

because, if the buyer B wants to close the subscription, some data could

still be in transit and B is required to pay for at most W messages after

the subscription is closed. With a large closing window W , A can send

data at a high rate because fewer acknowledgments are required (at

least one every W message). Having W data not acknowledged is not a

problem because the vendor is allowed to claim the tokens to be paid for

them. Of course, when W data are not acknowledged, the vendor has to

wait for an acknowledgment, retransmit some data, or send them in the

blockchain, following the hybrid channel specification. The value W is

also a protection for the buyer because it knows that, if it fails, the vendor

can ask to be paid for at most W unacknowledged messages, and not

steal the whole money with dummy data. This protection is explained in

more detail in Section 10.2

The value W depends on the application. For instance, if data are shared

in bursts, W can be equal to the maximum size of a burst.

10.1 Secret-less secured payment system 79

B can refuse or accept the values P and W proposed in the handshake.

If it accepts these values, as illustrated in Figure 10.1, B has to lock some

funds in the smart-contract. To do so, we modify the SUPRA’s judge

smart contract with a function to store and manage funds in the contract.

To call this function, B sends F tokens to the contract and indicates the

ID of A and the topic ID T of the SUPRA channel. Locking funds with

this function can be done later as well, without limitation. The details

about how funds can be claimed from the smart contract are explained

later.

Once the tokens are stored in the contract, the buyer B sends an acknowl-

edgment to the vendor A. At the reception of this message, A checks if

tokens are locked in the contract with the correct information. If these val-

ues are correct, and there is enough locked token, A can start selling data

to B. Otherwise, it can immediately stop the subscription. For instance, if

the funds F are smaller than the price P times the closing window W , B

does not have enough tokens to pay for the closing window, so A has no

interest in sharing data with it. At the ends of the handshake, A and B

have opened a SUPRA channel and have set up the payment system.

10.1.2 Data payment

Once the funds are locked in the contract and the handshake is over, A can

sell data to B. In SUPRA, the two brokers share two channels to exchange

messages: an unreliable off-chain channel, and a reliable on-chain channel.

Since using the on-chain channel costs fees and adds delay, the first

channel used to share data is the off-chain. Then, the on-chain channel is

only used when the sender does not receive an acknowledgment, to be

sure that the message is delivered in time. The vendor can be paid by the

smart contract either by showing an acknowledgment or by showing an

on-chain message.

Payment using data acknowledgments

SUPRA acknowledgments contain the A’s ID, and also the topic ID. For

our payment system, we add a new field in the acknowledgments: the

current cost C of the subscription.

As presented in Figure 10.2, if P is the price for each data, each acknowl-

edgment B increases the cost C by P . If some messages go through

the blockchain, because they are not acknowledged in time, the next

acknowledgment includes the price of these missing data. In Section 10.2,

we explain what happens if users try to deviate from the protocol. For

instance, if B purposefully does not send acknowledgments or updates

the price incorrectly.

The acknowledgment has two purposes. First, like basic acknowledg-

ments, it proves that data was received correctly. Second, since ac-

knowledgments are signed in SUPRA, the signer cannot deny the event

acknowledged and the data inside the acknowledgment. By adding the

price in the acknowledgments, it proves that B is willing to give C tokens

to A for the specific topic ID T . The acknowledgment contains all the

information needed by the smart contract to send tokens to the vendor.

80 10 Data payment extension

Figure 10.2: Payment promises through

acknowledgments

Vendor Buyer

Data publication 1

Blockchain

ACK: C=P

Data publication 2

Data publication 2

ACK: C=NP

Data publication N

Data publication 3

ACK: C=3P

Figure 10.3: The publisher claims two

times tokens from the contract

Vendor Blockchain
ACKi: Ci

Get
min(Ci, F) tokens

ACKj: Cj

Get
min(Cj-r1 F-r1) tokens

At any point in time, the vendor A can claim tokens in the contract.

To do so, it has to present an acknowledgment from the user B to the

smart contract, as illustrated in Figure 10.3. For instance, it can claim

its token after i1 messages, after i2 messages, . . . , after ik messages,

i1 < i2 < . . . < ik. For all j, let ACKj be the acknowledgment for the

message Mj . Cj is the cost associated with ACKj i. e., Cj = P × j. For

the first claim, A presents ACKi1 to the smart contract and receives

r1 = max(0, min(Ci1 , F)) tokens out of the F tokens locked in the

contract. A cannot claim more tokens than the F locked in the contract

and the claim must be non-negative. The smart contract stores in a

variable R all the tokens that are already claimed by A, here R = r1 so

that, when the publisher later presents ACKi2 , the publisher receives

r2 = max(0, min(Ci2 − R, F − R)) tokens. Again, the smart-contact

stores R = r1 + r2, in case of future demands from the publisher. In

general,

rk = max (0, min (Cik
−R, F −R)) where R =

k−1∑
j=1

rj

10.1 Secret-less secured payment system 81

Hence, the total amount of tokens redeemed by the publisher, after ik

messages, is min(Cik
, F), which is exactly the amount of token earned

by sending ik data (and no more than F tokens can leave the contract in

total).

Claiming tokens periodically can be interesting for the vendor if it wants

to get paid faster. For instance, A could claim every day its earnings for

all subscriptions, but, if it wants to minimize the transaction fees, it has to

wait for an acknowledgment with a value C as close as possible to F .

It’s important to notice that the public keys are registered in the distributed

ledger. This means that, when someone presents an acknowledgment,

the smart-contract can verify if the acknowledgment is from the correct

user, B in our case, and if the entity claiming tokens is the one indicated

when the tokens were locked. Hence, even if a malicious entity can

get the acknowledgment, only A can claim the tokens for this specific

subscription.

Payment using on-chain messages

As we said previously messages can be lost when users use the off-chain

channel. This means that the acknowledgments can also be lost. In that

case, we need to implement a method for the vendor to reclaim tokens

without presenting an acknowledgment.

To be paid for the messages up to message Mj , we allow the vendor to

present to the smart-contract a previous message Mi, its acknowledgment

ACKi, a message Mj present in the ledger, and the handshake used

to set up the channel. If all the messages Mx, where i < x ≤ j, are

present in the ledger, then the smart-contract uses the price indicated in

the handshake and the cost in ACKi to compute the earnings up to the

message Mj .

Also, the smart-contract can check the integrity of the request. Indeed,

during the handshake, the brokers agreed on a value W as the closing

window. Since the vendor presents the handshake, the smart-contract

can learn the value W and check if the chain of messages in the ledger

Mi+1, ..., Mj is not larger than W .

Also, when the vendor uses this method, the tokens are not transferred

immediately to its wallet, because malicious vendors could use this

technique to claim more tokens once the subscription is closed. In Section

10.2, we define this delay and explain how the smart-contract can detect

such behaviors.

10.1.3 Closure

There are two steps to stop the payment system: closing the SUPRA

channel and claiming the remaining tokens in the contract. These steps

can be done in any order. The smart contract ensures that the publisher

and the subscriber leave with the right amount of tokens.

82 10 Data payment extension

Figure 10.4: The subscriber reclaims its

remaining tokens

Vendor BuyerBlockchain

ACKi : Ci

Tclosure
Get
min(Ci, F) tokens

Get
max(0, F-Ci) tokens

Claim tokens

Closing the SUPRA channel

In SUPRA, A and B can close the channel whenever they want. For

instance, B can stop the channel if its subscribers are not interested in

the topic anymore, or A can stop the channel because the topic is no

more shared by the publisher. To close the channel, the initiator sends

a message to notify the other broker and waits for its acknowledgment.

Since these messages go through the off-chain channel, they can be lost. In

this case, the initiator sends the notification directly in the blockchain to

ensure it arrives before a delay Tacknowledged , like other data messages.

All messages are chained together by repeating the signature of the

previous message. If A stops the subscription, the notification repeats the

signature of the last published data, but it is not the case if the closing

originates from B, the broker on which the subscriber is connected. As

said earlier, from the message chained in the stoppage notification, B

will pay, at most, W data. This is to pay the potential message on the link

sent by A but not yet acknowledged by B.

On-chain closing of the payment channel

The payment channel must be closed on-chain in order to reset the

variable R and to avoid previous acknowledgments from being used

again (see the proof of Lemma Lemma 10.2.4) It is closed either by the

vendor or by the buyer.

The first method is to send the unsubscription message and the ac-

knowledgment to the smart-contract. If A, the vendor, initiates the

unsubscription, these two messages contain the final value for C. The

smart-contract can use this value to send the final payment to A and

transfer the remaining tokens to B. If B initiates the unsubscription,

we need to take into consideration the window W . In this case, the

smart-contract waits for a delay Tclosure before doing the final payment,

to let A claim the tokens for W . To do so, Tclosure has to be superior to

∆on−chain , the maximum delay to add a transaction in the ledger. We

will explain in Section 10.2, what happens if users try to cheat with W .

The second technique to close the payment channel is for B to claim the

tokens in the contract, as illustrated in Figure 10.4. This can be used in

case A leaves the system so that B can always recover its tokens. When it

requests the tokens in the contract, to prevent it from recovering tokens

that were intended to A, the tokens are on hold during a delay Tclosure.

During this delay, A can claim the earned tokens in the contract one last

time.

10.2 Security 83

Table 10.1: Comparison between our solution and SDPP in terms of on-chain messages and payment guarantees

number of

on-chain messages

maximum number of

unpaid data

maximum number of

data paid in excess

SDPP 1 every K data K − 1 0

Our solution

1 if no problem occurs

less than any desired value M ≥W otherwise

0 W

[39]: Herlihy (2018), ‘Atomic cross-chain

swaps’

After a delay Tclosure, B receives the remaining tokens in the contract.

Once the smart contract unlocks these tokens, A has no more guarantee

of getting paid. If the SUPRA channel is still open, A can still share data

with B, but it will not get tokens for those new messages.

If no one closes the payment channel, then the vendor is at risk if they

open a new subscription. Indeed, if the value R is not reset, then the

number of tokens the vendor can claim will be wrong.

10.2 Security

In this section, we prove that our payment system provides the properties

of an atomic swap [39]. This means that, if some users are malicious,

correct users do not end up worse off.

In the remaining, we say that a user can prove some property P if it can

generate a signed message, so that the judge smart contract can verify

that P is true. This implies that the proof cannot use external or private

information.

Before presenting the possible malicious behaviors of the seller or the

buyer, we will define our penalty system: if A, the seller, can prove that B,

the buyer, misbehaves, it can directly claim the F tokens in the contract.

Conversely, if B can prove that A misbehaves, it can directly reclaim its

F tokens. When one user accuses another of misbehaving, the funds F in

the contract are locked for both users, until the resolution of the conflict.

Since our system uses SUPRA, the users have to respect the properties of

the SUPRA channel: published data are delivered before Tacknowledged .

We already explained in Chapter 8 what happens in case of conflicts on

this property. In this chapter, we focus on malicious behaviors in the data

payment system.

Lemma 10.2.1 Let Mi be the first message such that the value Ci of the
acknowledgment ACKi is not equal to i× P . Then the seller A can prove
that B made a mistake.

Proof. Let ACKj be the last acknowledgment received before ACKi. If

no data message where acknowledged before Mi, ACKj = ACK0 the

acknowledgment for the subscription acceptation. There are two possible

cases:

Case (a): j = i − 1. In this case, the tuple (Mj , ACKj , Mi, ACKi) is a

proof that B made a mistake. Indeed, the judge smart contract can verify

that Mi follows Mj (by checking that the previous signature of Mi is the

signature of Mj) and the cost Ci is not equal to Cj + P . Since, Cj = j×P

by assumption, we have a proof that Ci ̸= i× P .

84 10 Data payment extension

Case (b): j < i− 1. This means that each message Mk with j < k < i is

either on the blockchain or stored by A (because unacknowledged). Let

Store be the set of stored messages by the seller A, and Txs be the set of

transactions in the blockchain where messages Mk, with j < k < i, are

published. Hence, the tuple

(Mj , ACKj , Store, Txs, ACKi)

is the proof that B made a mistake. Indeed, the judge smart contract

can see that the cost associated with Mj is j × P , by assumption, that

there are i− j messages correctly chained by signature by A (either in

Store or in Txs), and that B acknowledged the last one, which implicitly

acknowledges all the previous messages. So the buyer is aware that there

are i− j messages so the cost associated with ACKi should be i× P . If

it is not, the tuple is a proof that the buyer made a mistake.

We assumed that the data price has a constant value P , but this proof

also works if the price evolves based on the message’s timestamp since

all the messages between Mi and Mj , if there are any, are timestamped,

and the price evolution is indicated in the handshake.

Lemma 10.2.2 An honest vendor can always claim its earnings for the sent
messages.

Proof. If the vendor has an acknowledgment, it can present the acknowl-

edgment to receives the correct amount of tokens. Otherwise, if the

vendor does not have acknowledgments from the buyer, we proved

in the previous Lemma that from two acknowledgments ACKi and

ACKj , A can present a list of on-chain message Mi+1, Mi+2, ..., Mj−1.

This means that, if an honest vendor does not receive acknowledgments,

claiming tokens with the method explained in Section 10.1.2, where a list

of consecutive messages in the ledger are presented to the ledger, will

work. Meaning that an honest vendor can always claims its earnings,

even without an acknowledgment.

Notice that we cannot make the difference between a dropped message

and a malicious buyer who purposefully does not send acknowledgments.

For this reason, if A claims tokens without an acknowledgment, the buyer

B is not penalized. Still, B gains nothing by not sending acknowledgments

because it will still pay for the messages sent on-chain.

Lemma 10.2.3 If a malicious vendor tries to claim more tokens than it should,
the buyer can have a proof that the vendor is malicious.

Proof. A malicious vendor can try to claim tokens for on-chain messages

sent after the end of the channel, but this behavior can be detected and

penalized. To do so, when the vendor uses this method, the token transfer

only takes place after a delay, to let the subscriber the time to prove the

malicious behavior. This delay can be equal to Tclosure.

To prove the malicious behavior, B can present several messages. If the

SUPRA channel was stopped by A, B can present the unsubscription

10.3 Reputation system 85

[93]: Park et al. (2018), ‘Smart contract-

based review system for an IoT data mar-

ketplace’

notification Mstop from A used to close the subscription. The difference

between the timestamp inside Mstop and the timestamp inside the

messages on the ledger will be enough to prove that the vendor is

malicious.

If the SUPRA channel was stopped by B we have to take into consideration

the window W . If Mstop was sent after the reception of M0, B has to

send acknowledgments for the messages Mi, where 1 ≤ i ≤ W . If the

vendor tries to claim tokens for a message where i > W , B can present

the message Mstop, the list M0, ..., MW , and the handshake to the smart-

contract. With the handshake, the smart contract can learn the value of

W , and with Mstop it can check whether the list is correct. If the list is

correct, it knows that A tried to claim tokens for an invalid message.

It is important to notice that this malicious behavior is impossible if the

buyer closes on-chain the payment channel because, if the channel is

closed on-chain and no new tokens where locked by the buyer since then,

the smart-contract can immediately deduce that the request from the

vendor is for incorrect messages.

Lemma 10.2.4 Let Mi be a message from a previous subscription to a topic
T and ACKi be its acknowledgment. The vendor cannot use ACKi to claim
tokens in a new subscription for the same topic T with the same buyer.

Proof. All the exchanged messages are signed and timestamped by the

sender. If the vendor reuses an old acknowledgment, the timestamp will

be smaller than the timestamp of the previous on-chain closing payment

channel. The smart contract can compare the timestamp and prevent the

vendor from irregularly claiming tokens.

10.3 Reputation system

Using the blockchain to resolve conflicts also creates a review system

on users’ behaviors. In [93], authors present a smart contract to review

communications and add trust in users. In our proposition, the ledger

contains the history of all conflicts. Before starting communication with

a new user, a cautious user can check all the user’s conflicts and accept

or refuse the communication based on the conflict history. Also, it can

observe how much time the broker has claimed or locked tokens and so

deduce when the broker joined the system.

We explain in Chapter 4, that some reputation systems using the

blockchain can be useless against Sybil attacks: if a malicious user has a

bad reputation, it will register itself with a new identity and a neutral

reputation. To resolve this issue, we use the locked token as a finite

resource to prevent such behaviors. Malicious brokers with subscribers

will always lose the locked tokens if they try to deviate from the protocol

and if the other broker is honest. Over time, they will just lose money.

With this system, brokers with publishers will never lose tokens, since

they never lock tokens. To correct this problem, we can for instance force

86 10 Data payment extension

all brokers to lock some tokens when they register their public keys in the

smart-contract. If a user detects an incorrect behavior from one broker,

it wins the locked tokens, and also the potential tokens locked for the

payment system. Thus all brokers have an incentive from following the

protocol and detecting malicious brokers.

Also, it can be interesting for users to remain in the network with a

good reputation for a long period. For instance, a broker could choose

to reduce the data price with a broker requesting regularly the same

topic. Also, it is possible to implement a broker where some topics are

available for all users, but some ’premium’ topics will only be available

for brokers with correct reputations and in the network for a defined

time. For instance, two topics for the same kind of data but one has some

noises in the measurement and not the other.

10.4 Comparison with other solutions

In this section we compare our solution with SDPP [84], which the closest

solution offering similar guarantees. Table 10.1 present the most important

differences in terms of blockchain usage and payment guarantees. In

SDPP, payment is done with an on-chain message once every K data, so

the there are at most K − 1 unpaid data. With our solution, blockchain

is not used if no problems occur. Payment also uses the blockchain but

can be performed at any time, so one message is enough to be paid for

an entire subscription period. In the worst case, the vendor can be forced

to send W messages on-chain (or more if it is willing to). Value W is

decided by the vendor and can be any value greater than 0. No data

can remained unpaid and at most W data is paid by the buyer after the

subscription is closed.

10.5 Conclusion

Compared to classical currencies, the small payment granularity of

crypto-currencies allows users to sell IoT data individually without

rounding the price, but, to do so, we need a data payment protocol.

To the best of our knowledge, our solution for SUPRA is the first to have

all of the following properties:

▶ message delivery is guaranteed; data payment is guaranteed for

each data;

▶ data are shared in a publish/subscribe manner;

▶ the protocol can run with different blockchain implementations;

▶ blockchain (and the cost associated with it) is only used if there is

a problem (abnormal delay or malicious participants);

▶ malicious behaviors can be detected and punished by a distributed

smart-contract using only publicly available information.

To conclude those works on SUPRA, we create a publish/subscribe

protocol to inter-connect untrusted brokers, thanks to the blockchain.

This protocol ensures data delivery before a certain delay. As long as the

blockchain network remains trustable, a honest broker will always be

10.5 Conclusion 87

capable of proving on the ledger that a malicious broker did not respect

the delay. Compared to other state of the art solutions, our propositions

reduces the number of messages sent to the ledger which reduce the

cost of using the blockchain. On top of this delivery system, we add a

payment system to create an incentive for the brokers which share data.

In the next chapter, we will present another propositions made during

the thesis. With SUPRA, we focus ourselves improving security with the

blockchain in the infrastructure on which IoT applications are running.

With our next proposition, we propose a new consensus algorithm that

does not used computational power as voting power, and could reduce

the energy consumption of a blockchain network. This improvement can

be a first step for implementing blockchain directly on IoT devices.

Proof of interaction

[14]: Back (2002), ‘Hashcash - A Denial

of Service Counter-Measure’

[1]: Nakamoto (2008), Bitcoin: A Peer-to-
Peer Electronic Cash System

[5]: Abliz et al. (2009), ‘A guided tour

puzzle for denial of service prevention’

Proof of Interaction 11

11.1 Preliminaries 92

11.1.1 Model 92

11.1.2 Guided Tour 92

11.1.3 Naive Approach 93

11.2 The Proof-of-Interaction 94

11.2.1 Algorithm Overview . . 94

11.2.2 Algorithm Details . . . 95

11.3 Blockchain Consensus

Using PoI 98

11.4 Security 100

11.4.1 Crash Faults 100

11.4.2 Selfish mining 101

11.4.3 Shared Mining 101

11.5 Conclusion and Possible

Extensions 102

In Chapter 2, we presented the current challenges for DLT. One of this

challenge is the usage of computational resources. Indeed, the PoW forces

users to invest in computational resources because, the more values it can

try for the nonce the higher the chance to find the new block and get the

reward. Investing in computational resources prevents Sybil attacks. The

node can own several public keys it the network, it computational power

remains the same. On the other hand, it creates a race for computational

power between users and today the energy consumption used by the

nodes to find new blocks is comparable to the energy consumption of a

country
∗
. Also, the PoW is vulnerable of selfish mining. An attack where

a node does not share the new block to have an edge on the next block

and increasing its reward, thus wasting honest nodes’ energy.

There have been many attempts to avoid using Proof-of-work based

agreement, but usually adding other constraints [94] (e.g., small number

of nodes, hardware prerequisite, new security threats).

In this chapter, we propose to use a new client-puzzle called Proof-of-

Interaction to define a new energy-efficient Blockchain protocol. The

Proof-of-work [14] is a method initially intended for preventing spamming

attacks. It was then used in the Bitcoin protocol [1] as a way to prove that

a certain amount of time has passed between two consecutive blocks.

Our concensus algorithm is based on a work presented just prior the

publication of Bitcoin in 2008, by M. Abliz and T. Znati [5]. They proposed

A Guided Tour Puzzle for Denial of Service Prevention, which is another

spam protection algorithm. This mechanism has not yet been used in the

Blockchain context, and is at the core of our new Proof-of-Interaction. The

idea was that, when a user wants to access a resource in a server that is

heavily requested, the server can ask the user to perform a tour of a given

length in the network. This tour consists of accessing randomly a list of

nodes, own by the same provider as the server. After the tour, a user can

prove to the server that it has completed the task and can then retrieve

the resource. The way we generate our tour in our Proof-of-Interaction is

based on the same idea. We generalized the approach of M. Abliz and T.

Znati to work with multiple participants, and we made the tour length

variable.

First, we propose a better alternative to Proof-of-Work, called Proof-of-

Interaction, which requires negligible computational power. Second, we

show how it can be used to create an efficient Blockchain protocol that is

resilient against selfish mining, but assumes for now that the network is

known.

∗
As of July 2022, the energy consumption of the Bitcoin network is equal to the energy

consumption of Argentina

https://digiconomist.net/bitcoin-energy-consumption/

92 11 Proof of Interaction

11.1 Preliminaries

11.1.1 Model

The network, is a set Nof n nodes that are completely connected. Each

node has a pair of private and public cryptographic keys. Nodes are

uniquely identified by their public keys (i. e., the association between

the public keys and the nodes is common knowledge). Each message is

signed by its sender, and a node cannot fake a message signed by another

(non-faulty) node.

We denote by signu(m) the signature by node u of the message m, and

verifu(s, m) the predicate that is true if and only if s = signu(m).
For now, we assume the signature algorithm is a deterministic one-way

function that depends only on the message m and on the private key

of u. This assumption might be very strong as, with common signature

schemes, different signature could be generated for the same message,

but there are ways to remove this assumption by using complex secret

generation and disclosure schemes, not discussed in this chapter, so

that each signature is in fact a deterministic one-way function. The

function H is a cryptographic, one-way and collision resistant, hash

function [95].

As for the Bitcoin protocol, we assume the communication is partially

synchronous i. e., there is a fixed, but unknown, upper bound ∆ on the

time for messages to be delivered.

The size of a set S is denoted with |S|.

11.1.2 Guided Tour

The guided tour defined by M. Abliz and T. Znati [5] can be summarized

as follow. When a resource server is under DOS attack, it responds to

a given request by a random seed hash h0, a set S of n servers and a

length L. The client has to solve a puzzle in order to complete its request

to the resource server. To solve the puzzle, the client makes L requests

to the servers in S in a specific order. The index, in S, of the first server

to request is deduced from h0. Let i0 ∈ [0, n − 1] such that i0 ≡ h0
mod n. Then, the client sends message h0 to the i0-th server in S. The

server responds with hash h1. Then then client computes i1 ∈ [0, n− 1]
such that i1 ≡ h1 mod n, and sends message h1 to the i1-th server in

S, and so on. This continues until hash hL is obtained. hL is a proof

that the tour as been completed, and is sent to the resource server to

obtain the requested resource. Thanks to a secret shared among all the

servers, the resource server is able to check that hash hL is indeed the

expected proof for the initial seed h0. This idea is interesting because the

whole tour depends only on the initial value, and cannot be performed

in parallel because each hash hi cannot be found until hi−1 is known.

We then present a naive approach on how it can be used as a distributed

client-puzzle.

11.1 Preliminaries 93

11.1.3 Naive Approach

We give here a naive approach on how asking participants to perform a

tour in the network can be used as a leader election mechanism to elect

the node responsible for appending the next block in a Blockchain.

When a node u0 wants to append a block to the blockchain, it performs

a random tour of length L in the network retrieving signatures of each

participants it visits. The first node u1 to visit is the hash of the last block

h0 = last_block_hash of the blockchain modulo n (if we order nodes

by their public keys, the node to visit is the i-th with i = h0 mod n).

u1 responds with the signature s1 = signu1
(h0). The hash h1 = H(s1),

modulo n, gives the second node u2 to visit, and so on. This idea is

similar to the guided tour of M. Abliz and T. Znati [5], and here the

whole tour depends only the hash of the last block. Given h0, anyone can

verify that the sequence of signatures (s1, s2, . . . , sL) is a proof that the

tour has been properly performed. If each node in the network performs

a tour, the first node to complete its tour is elected broadcast its block,

containing the proof, to the other nodes to announce it.

However, here, each node has to perform the same tour, which could be

problematic. An easy fix is to select the first node to visit, not directly

using the hash of the last block, but also based on the signature of the

node initiating the tour, h0 = H(signu0
(last_block_hash)). Now, given

h0, the sequence of signatures (signu0
(h0), s1, s2, . . . , sL) proves that

the tour has been properly performed by node u0. Each tour, performed

by a given node, is unique, and a node cannot compute the sequence of

signature other than by actually asking each node in the tour to sign a

message. Indeed, the next hop of the tour depends on the current one.

Here, one can see that it could be a good idea to also make the tour

dependent on the content of the block node u0 is trying to append.

Indeed, using only the last block to generate a new proof does not protect

the content of the current block, i. e., the same proof can be used to

create two different blocks. To prevent this behavior, we can assume

that h0 = H(signu0
(last_block_hash) ·M) (· being the concatenation

operator) where M is a hash of the content of the block node u0 is trying

to append. In practice, it is the root of the Merkel tree containing all the

transactions of the block. Here, the proof is dependent on the content

of the block, which means that if the content of the block changes the

whole proof needs to be computed again.

From there, we face another issue. Each node performs a tour of length

L, so each participant will be elected roughly at the same time, creating

a lots of forks. To avoid this, we can make the tour length variable. We

found two ways to do so. The first one is not to decide on a length in

advance, and perform the tour until the hash of k-th signature is smaller

than a given target value, representing the difficulty of the proof. In

this way, every interaction with another node during a tour can be seen

as a tentative to find a good hash (like hashing a block with a given

nonce in the PoW protocol). The target value can be selected so that the

average length of the tour is predetermined. However doing so, since

the proof does depend on the content of the block, u0 can change the

content of the block, by adding dummy transactions for instance, so that

94 11 Proof of Interaction

the tour stops after one hop
†
. The other way to make the tour length

variable is to use a cryptographic random number generator, seeded with

signu0
(last_block_hash), to generate the length L. Doing so, the length

depends only on u0 and on the previous block. Then a tour of length L is

performed as usual.

To complete the scheme, we add other information to the message sent to

the visited node so that they can detect if we try to prove different blocks

in parallel. We also make u0 sign each response before computing the

next hop, so that the tour must pass through u0 after each visit. Finally,

we will see why it is important to perform the tour, not using the entire

network, but only a subset of it.

11.2 The Proof-of-Interaction

In this section we define the most important piece of our protocol, which

is, how a given node of the network generates a proof of interaction.

Then, we will see in the next section how this proof can be used as an

election mechanism in our Blockchain protocol.

11.2.1 Algorithm Overview

We present here two important algorithms. One that generates a Proof-

of-Interaction (PoI), and one that checks the validity of a given PoI.

Generating a Proof-of-Interaction. Consider we are a node u0 ∈ N

that wants to generate a PoI. Given a fixed dependency value denoted d,

the user u0 wants to prove a message denoted m. The user has no control

over d but can chose any message to prove.

The signature by u0 of the dependency d, denoted s0 = signu0
(d), is

used to generate the subset S of nS = min(20, n/2) nodes to interact

with

S = {S0, S2, . . . , SnS−1} = createServices (N, s0) .

S is generated using the pseudo-random Algorithm createServices,

and depends only on d and on u0. From s0, we also derive the length of

the tour L = tourLength(D, s0), where D is a probabilistic distribution

that corresponds to the difficulty parameter. tourLength is a random

number generator, seeded with s0 that generates a number according

to D. Using D one can easily change the average length of the tour for

instance.

Now u0 has to visit randomly L nodes in S to complete the proof,

as illustrated in Figure Figure 11.1. To know what is the first node

u1 we have to visit, we first hash the concatenation of s0 with m to

obtain h0 = H(s0 ·m). This hash (modulo |S|) gives the index i in S

of the node we have to visit, i ≡ h0 mod |S|. So we send the tuple

†
There are some ways to limit this attack, but we believe it will remain an important attack

vector

11.2 The Proof-of-Interaction 95

Figure 11.1: u0 interacts randomly with a

subset S of the nodes

Figure 11.2: u0 interacts with a sequence

of nodes to construct a PoI. In this example,

the dependency is the hash of the previous

block.

(h0, d, m) to node u1 = Si, which responds by signing the concatenation,

s1 = signu1
(h0 · d ·m).

To know what is the second node u2 we have to visit, we sign and hash

the response from u1 to obtain h1 = H(signu0
(s1)), so that u2 = Sj ∈ S

with j = h1 mod |S|. Again, we send the tuple (h1, d, m) to u2, which

responds by signing the concatenation, s2 = signu2
(h1 · d ·m). We sign

and hash the response from u1 to obtain h2 = H(signu0
(s2)) and find

the next node we have to visit, and so on (see Figure Figure 11.2). This

continues until we compute signu0
(sL), after the response of the L-th

visited node.

The Proof of Interaction (PoI) with dependency d of message m by node u0
and difficulty D is the sequence

(s0, s1, signu0
(s1), s2, signu0

(s2), . . . , sL, signu0
(sL)).

Checking a Proof-of-Interaction. To check if a PoI (s0, s1, s′
1 . . . , sk, s′

k)
from user u, is valid for message m, dependency d and difficulty D,

one can first check if s0 is a valid signature of d by u0. If so, we can

obtain the set S = createServices(N, s0) of interacting nodes, the

length L = tourLength(D, s0), and the hash h0 = H(s0 ·m). From h0
and S, we can compute what is the first node u1 and check if s1 is a

valid signature from u1 of (h0 · d ·m), and if s′
1 is a valid signature of s1

from u0. Similarly, one can check all the signatures until s′
k. Finally, if all

signatures are valid, and k = L, the PoI is valid.

11.2.2 Algorithm Details

The pseudo code of our algorithms are given below.

96 11 Proof of Interaction

The algorithm createServices is straightforward. We assume that we

have a random number generator (RNG) — defined by the protocol hence

the same for all the nodes in the network — that we initialize with the

given seed. The algorithm then shuffles the input array using the given

random number generator. Finally, it simply returns the first nS elements

of the shuffled array.

Algorithm createServices: create a pseudo-random subset of nodes

Input: N , the set of nodes

h, a seed

Output: S, a subset of nodes

1 RNG.seed(h)
2 S ← shuffled(N, RNG)
3 S ← S.slice(0, nS)
4 return S

The main part of the algorithm generatePoI consists in a loop, that

performs the L interactions. The algorithm requires that each node

in the network is executing the same algorithm (it can tolerates some

faulty nodes, as explained later). The end of the algorithm shows what

is executed when a node receives a message from another node. The

procedure checkMessage may depends on what the PoI is used for. In

our context, the procedure checks that the nodes that interacts with us

does not try to create multiple PoI with different messages, and use the

same dependency as everyone else. We will see in details in the next

section why it is important.

The algorithm checkPoI that checks the validity of a PoI is checking that

each signature from the proof is valid and respects the proof generation

algorithm.

Proof-of-Interactions Properties. Now we show that the Proof-of-

Interaction has several properties that are awaited by client-puzzle

protocols [96].

Computation guarantee: The proof can only be generated by making

each visited node sign a particular message in the correct order.

The sequence of visited node depends only on the initiator node,

on the dependency d, and on the message m, and cannot be known

before completing the tour. Furthermore, a node knows the size of

his tour before completing it, which means that the node knows

before doing his tour how much messages it needs to exchange

and how much signatures it will do to have a correct proof.

Non-parallelizability: A node cannot compute a valid PoI for a given

dependency d and message m in parallel. Indeed, in order to know

what is the node of the i-th interaction, we need to know hi−1,

hence we need to know si−1. si−1 is a signature from ui−1. So we

can interact with ui only after we receive the answer from ui−1 i. e.,
interactions are sequential.

Granularity: The difficulty of our protocol is easily adjustable using

the parameter D. The expected time to complete the proof is

2 × mean(D) × Com where Com is the average duration of a

message transmission in the network, and mean(D) is the mean of

the distribution D.

11.2 The Proof-of-Interaction 97

Algorithm generatePoI: Program executed by u0 to generate the PoI

Input: d, the dependency (hash of last block of the blockchain)

m, the message (root of the merkle tree of the new block)

D, difficulty of the PoI

N , the set of nodes in the network

Output: P , a list of signatures {s0, s1, s′
1, s2, s′

2, . . . , sk, s′
k}

1 P ← []
2 s0 ← signu0

(d)
3 S ← createServices(N, s0)
4 L← tourLength(D, s0)
5 P.append(s0)
6 current_hash← H(s0 ·m)
7 for L iterations do

8 next_hop← current_hash%|S|
9 s← sendSnext_hop

(current_hash, d, m)
10 P.append(s)
11 s← signu0

(s)
12 P.append(s)
13 current_hash← H(s)
14 return P

15 When Receive (h, d, m) from u do

16 if checkMessage(u, h, d, m) then

17 Reply signu0
(h · d ·m)

Algorithm checkMessage: Check the message received from node u

Input: u, the sender of the request

h, difficulty of the PoI

d, the dependency (hash of last block of the blockchain)

m, the message (root of the merkle tree of the new block)

Output: whether to accept or not the request

1 if d is the hash of the latest block of one of the longest branches then

2 if Received[(u, d)] exists and is not equal to m then

3 penalties (u)

4 return false

5 Received[(u, d)] = m
6 return true

7 else

8 if unknown d then

9 Ask block d
10 return false

Efficiency: Our solution is efficient in terms of computation for all

the participants. The generation of one PoI by one participant

requires mean(D) hashes and mean(D) signatures in average for

the initiator of the proof, and mean(D)/n signatures in average

for another node in the network. The verification requires 2D + 1
signature verification and mean(D) hashes in average. The size of

the proof is also linear in the difficulty, as it contains 2mean(D) + 1
signatures.

98 11 Proof of Interaction

Algorithm checkPoI: Program executed by anyone to check the

validity of a PoI

Input: P , a proof-of-interaction

u, creator of the proof

d, the dependency (hash of last block of the blockchain)

m, the message (root of the merkle tree of the new block)

D, difficulty of the PoI

N , the set of nodes in the network

Output: whether P is a valid PoI or not

1 if not verifu(P[0],d) then

2 return false

3 S ← createServices(N, P [0]);
4 L← tourLength(D, P [0]);
5 if L ∗ 2 + 1 ̸= |P | then

6 return false

7 current_hash← H(P [0] ·m);
8 for i = 0; i < L; i + + do

9 next_hop← current_hash%|S|;
10 if not verifSnext_hop

(P [2 ∗ i + 1], current_hash · d ·m) then

11 return false

12 if not verifu(P [2 ∗ i + 2], P [2 ∗ i + 1]) then

13 return false

14 current_hash← H(P [2 ∗ i + 2]);
15 return true

11.3 Blockchain Consensus Using PoI

In this section we detail how we can use the PoI mechanism to build a

Blockchain protocol. The main idea is to replace, in the Bitcoin protocol,

the Proof-of-work by the Proof-of-interactions, with some adjustments.

We prove in the next section that it provides similar guarantees to the

Bitcoin protocol.

Block Format. First, like in the Bitcoin protocol, transactions are stored

in blocks that are chained together by including in each block, a field

containing the hash of the previous block. In Bitcoin, a block includes a

nonce field so that the hash of the block is smaller than a target value

(hence proving that computational power has been used) whereas in our

protocol, the block includes a proof of interaction where the dependency

d is the hash of the previous block, and the message m is the root of

the Merkel tree storing the transactions of the current block. Like for

the transactions, the block header could contains only the hash of the

PoI, and the full proof can be stored in the block data, along with the

sequence of transactions.

Block Generation. Now we explain how the next block is appended

in the blockchain. Like in Bitcoin, each participant gathers a set of

transactions (not necessarily the same) and when the last block is received,

wants to append a new block to the blockchain. To do so, each node tries

to generate a PoI with the hash of the last block as dependency d, the

11.3 Blockchain Consensus Using PoI 99

root of the Merkel tree of the transactions of their own block as message

m, and using the last block difficulty D. We assume the difficulty D is

characterized by its mean value mean(D), which is the number that is

stored into the block. Like in Bitcoin, the difficulty can be adjusted every

given period, depending on the time it takes to generate the last blocks.

Participants have no choice over d so the length of their tour, and the

subset S of potential visited nodes is fixed for each participants (one can

assume that it is a random subset). Each participant is trying to complete

its PoI the fastest as possible, and the first one that completes it, has a

valid block. The valid block is broadcasted into the network to announce

to everyone that one have completed a PoI for its new block. When a

node receives a block from another node, it checks if all the transactions

are valid and then checks if the PoI is valid. If so, it appends the new

block to its local blockchain and starts generating a PoI based on this new

block.

First, one can see that this could lead to forks, exactly like in the Bitcoin

protocol, where different part of the networks try to generate PoI with

different dependencies. Thus, the protocol dictates that only one of the

longest chain should be used as a dependency to generate a PoI. This is

defined in the procedure checkMessage. When a node receives a message

from another node, it first checks if the dependency matches the latest

block of one of the longest chain. If not, the request is ignored.

Incentives. Like in Bitcoin, we give incentives to nodes that participate

to the protocol. The block reward (that could be fixed, decreasing over

time, or just contains the transactions fees) is evenly distributed among

all the participants of the PoI of the block. This implies that, to maximize

their gain, nodes should answer as fast as possible to all the requests

from the other nodes currently generating their PoI, to increase their

chance of being part of the winning block.

Also, it means that we do not want to answer a request for a node that

is not up to date i. e., that is generating a PoI for a block for which there

is already a valid block on top, or for a block in a branch that is smaller

than longest one.

Preventing Double-Touring Attacks. What prevents a node to try to

generate several PoI using different variation of its block? If a node wants

to maximize its gain (without even being malicious, but just rational) it

can add dummy transactions to its current block to create several versions

of it. Each version can be used to initiate the generation of a PoI using

different tours. However, he has to send the message m every times he

interacts with another node. If the length of the tour is long enough, the

probability that two different tours intersect is very high. In other words,

a node that receives two messages from the same node, with the same

dependency d, but different values of m will raise the alarm. To prevent

double-touring, it is easy to add an incentive to discourage nodes from

generating several blocks linked to the same dependency. To do so, we

assume each participant has locked a certain amount of money in the

Blockchain, and if a node u has a proof that another node has created two

different blocks with the same dependency (i. e., previous block), then

the node u can claim as reward the locked funds of the cheating node.

100 11 Proof of Interaction

In addition, it can have other implications such as the exclusion of the

network. We assume that the potential loss of being captured is greater

than the gain (here the only gain would be to have a greater probability

to append its own block).

Difficulty Adjustment. The difficulty could be adjusted exactly like

in Bitcoin. The goal is to chose the difficulty so that the average time

B to generate a block is fixed. Here, the difficulty parameter D gives a

very precise way to obtain a delay B between blocks and to limit the

probability of fork at the same time. If Com denotes the average duration

of a transmission in the network, then we want the expected shortest tour

length among the participants to be ⌈B/Com⌉.

For instance, it is known that the average minimum of n independent

random variables uniformly distributed on the interval (a, b) is

b + na

n + 1 .

Thus, if D is the uniform distribution between 1 and ⌈B/Com⌉(n+1)−1,

then the length of the shortest tour among all the participants will be

⌈B/Com⌉ in average.

Every given period (e.g., 2016 blocks as in Bitcoin), the difficulty could

be adjusted using the duration of the last period (using the timestamps

included in each block) to take into account the possible variation of

Com, so that the average time to generate a block remains B.

Communication Complexity. A quick analysis shows that each node

sends messages sequentially, one after receiving the answer of the other.

At the same time, it answers to signature requests from the other nodes.

In average, a node is part of nS tours. Hence the average number of

messages per unit of time is constant i. e., nS + 1 every Com. Then, the

total amount of messages, per unit of time, in the whole network is linear

in n.

11.4 Security

This section discusses about common security threats and how our

PoI-based Blockchain handles them. We assume that honest nodes will

always follow our algorithms but an attacker can have arbitrary behavior,

while avoiding receiving any penalty (which could remove him from

the network). We assume that an attacker can eavesdrop every messages

exchange between two nodes but he can not change them. Also, assume

that an attacker A cannot forge messages from another honest node B.

11.4.1 Crash Faults

A node crashes when it completely stops its execution. The main impact

is that it does not respond to the sign requests of other nodes. This can

be an issue because at each step of the PoI generation, the initiator node

could wait forever the response of a crashed node. Crashed nodes are

11.4 Security 101

[98]: Sapirshtein et al. (2016), ‘Optimal

selfish mining strategies in bitcoin’

handled by the fact that a node only has to interact with a subset S of

the whole network N, computed using the service creation function,

createServices. Hence, if a node crashes, only a fraction of the PoI that

are being generated will be stuck waiting for it. All the nodes whose

Service sets S do not contains crash faults are able to generate their PoI

entirely. Since each set S is of size nS = min(n/2, 20), we have that, if

half of the nodes crash, the probability a given set S contains a crashed

node is 1−
(1

2
)nS

. So that the probability p that at least one set S contains

only correct nodes is

p = 1−
(

1−
(

1
2

)nS
)n

One can see that the probability p tends quickly (exponentially fast) to

1 as n tends to infinity. For small values of n, the probability is greater

than a fixed non-null value. In the rare event that all the sets S contain at

least a crashed node, then the protocol is stuck until some crashed nodes

reboot and are accessible again.

Finally, we recall that honest nodes are incentivized to answer, because

they get a reward when they are included in the next block’s PoI. Hence,

honest nodes will try be back again as fast as possible.

11.4.2 Selfish mining

Selfish mining [97] is an attack where a set of malicious nodes collude to

waste honest nodes resources and get more reward. It works as follow.

Once a malicious node finds a new block, it only shares it with the other

malicious nodes. All malicious nodes will be working on a private chain

without revealing their new block, so that honest nodes are working

on a smaller public branch i. e., honest nodes are wasting resources to

find blocks on a useless branch. When honest nodes find a block, the

malicious nodes might reveal some of their private blocks to discard

honest blocks and get the rewards.

In Bitcoin, selfish mining is a real concern as attackers having any

fraction of the whole computational power could successfully use this

strategy [98].

Interestingly, our PoI-based Blockchain is less sensible to such attack. Our

algorithm gives a protection by design. Indeed, when generating a PoI, a

node has to ask to a lots of other nodes to sign messages containing the

hash of the previous block, forcing it to reveal any private blocks. Other

nodes in the network will request the missing block before accepting

to sign the message. In other words, it is not possible to generate a PoI

alone. Moreover, if a node is working on a branch that is smaller than the

legitimate chain and ask for the signature of an honest node, the latter

will tell the former to update its local Blockchain, thus preventing him

from wasting resources.

11.4.3 Shared Mining

During the PoI, a node will most of the time be waiting for the signature

of another node. So the network delay has the highest impact on the block

102 11 Proof of Interaction

creation time. To remove this delay, a set of malicious nodes can share

theirs private keys between each other and try to create a set S where

every nodes are malicious. If one malicious node of the pool succeeds,

it can compute the proof locally without sending any messages. It will

generate the PoI faster than honest nodes and have a high chance to

win.

We defined earlier that each node of the network is known. Which mean

that each node is a distinct entity. For this attack to succeed, entities need

to share their private keys. This is a very risky move because once you

give your private key to someone, he can create transactions in your name

without your authorization. This risk alone should discourage honest

nodes to do it, even if they want to maximize their gain.

We can still assume that a small number of malicious nodes do know

each other and collude to perform this attack. We show now that this

attack is hard to perform. S only depends on the previous block and on

the identity of the initiator of the proof, so the nodes have no control

over it. S consists of nS nodes randomly selected among the network.

So if there are F malicious friends on the network, there is on average

the same fraction (n/F) of malicious friends in S as in N. However, the

probability for the tour to contains only malicious friend is very low.

Indeed, with F malicious friends on the network, the probability that the

entire tour consists of malicious friends is (n/F)mean(D)
in average.

When a malicious node initiates a PoI for a given message, it can see

whether the tour contains an honest node or not, so it might be tempted

to change the content (by reordering the transaction or inserting dummy

transactions) of its block until the tour contains only his malicious friends.

However, even if there is a fraction (n/F) = 0.1 of malicious friends in

the network (hence in S), and if mean(D) = 100, for instance, then the

probability that a given tour contains only malicious friends is 10−100
. To

find a tour with only malicious friends, an initiator would have to try in

average 10100
different block content, which is not feasible in practice.

11.5 Conclusion and Possible Extensions

We have presented an new puzzle mechanism that requires negligible

work from all the participants. It asks participants to gather sequentially

a list of signatures from a subset of the network, forcing them to wait

for the response of each visited node. This mechanism can be easily

integrated into a Blockchain protocol, replacing the energy inefficient

Proof-of-work. The resulting Blockchain protocol is efficient and more

secure than the Bitcoin protocol as it is not subject to selfish-mining. Also,

it does not have the security issues found in usual PoW replacements

such as Proof-of-stack or Proof-of-elapsed time. However, it currently

works only in networks where participants are known in advance. The

design of our Blockchain protocol makes it easy to propose a possible

extension to remove this assumption.

The easiest way to allow anyone to be able to create blocks, is to select as

participants the n nodes that locked the highest amount of money. This

technique is similar to several existing blockchain based on protocols that

work only with known participants (such as Tendermint [99] using an

11.5 Conclusion and Possible Extensions 103

extension of PBFT [100]) or where the nodes producing blocks are reduced

for performance reasons (such as EOS [101] where 21 producer nodes are

elected by votes from stakeholders). We believe a vote mechanism from

stakeholders can elect the set of participants executing our protocol. The

main advantage with our solution is that the number of participants can

be very high, especially compared to previously mentioned protocols.

Conclusion 12

12.1 Summary of our works 105

12.1.1 SUPRA 105

12.1.2 Proof-of-Interaction . . 106

12.2 Futur work and perspec-

tives 107

In this last chapter, we will summarize the propositions presented in this

manuscript and present some possible future works.

12.1 Summary of our works

In this manuscript, we presented two contributions: SUPRA, a publish/-

subscribe protocol and Proof of Interaction (PoI), a consensus algorithm.

12.1.1 SUPRA

SUPRA is the main contribution of this thesis. It is a publish/subscribe

protocol built to create secured communications between untrusted

brokers with the help of the blockchain. Publish/subscribe is a com-

munication paradigm useful in IoT because there is a loose coupling

between the publishers and the subscribers. It means that they do not

need to know each other to share information. This property allows new

publishers and subscribers to easily join or leave the system, which is

interesting in IoT applications where the number of active devices is

dynamic, and also the publishers and the subscriber does not need to be

online at the same time to share data, which is interesting for constrained

devices with batteries. To have this property, the brokers handle the

complex operations of the paradigm. They store the subscriptions and

forward data to the interested entities.

We observed in Chapter 5 that the blockchain can be used to increase the

security between the brokers. Compared to other state-of-the-art solutions

presented in this same chapter, SUPRA avoids as much as possible sending

messages in the ledger, to reduce the cost of the communication and

reduce the delay. Also, the protocol avoids using functions specific to

one blockchain implementation. Allowing smart-contracts is the only

requirement the protocol needs for the blockchain. In Chapter 7, we

explained in more detail how we reduced the number of messages in the

ledger and what are the requirements of the architecture.

In Chapter 7 we presented the important property of our communication

channel: messages are delivered before a known delay because the broker

connected to the publisher either has an explicit acknowledgment from

the other broker or the message is added in a block and is assumed

acknowledged. We presented the first version of the protocol in Chapter 8

where we showed how the brokers set up the communication channel so

that the broker having publishers can share data with the broker having

subscribers.

Also, we explained in this chapter how the broker having subscribers

can detect if the broker having publishers does not respect Tacknowledged .

This misbehaving can be proved to a smart-contract by presenting some

exchanged messages between the brokers and all the other users can verify

106 12 Conclusion

these messages using public information. We proved in our first version

of the protocol that an honest broker cannot be proved misbehaving by a

malicious broker and honest brokers can always prove that a malicious

broker is misbehaving.

We presented in Chapter 9 and Chapter 10 two extensions for SUPRA.

The first extension is an update to reduce the number of signatures

executed by the broker with publishers to share data, and so the number

of messages. We realized that, when the broker with publishers wanted

to share the same data with several different brokers, it had to create

one different message for each broker. Meaning that when the broker

with publishers had to send a message in the ledger in order to respect

Tacknowledged , different versions of a message sharing the same data

ended up in the ledger, which is a waste of storage resources for the

blockchain nodes and monetary resources for the broker. In the first

extension, we explained this problem in more detail and how to correct it

so that the broker with publishers only has to create 1 identical message

for all the brokers interested in the same topic. Also, we proved that this

modification does not change the security properties of SUPRA. Still,

even with this extension, the broker with publishers will have to pay

some fees and, over time, it just loses money. This issue can prevent the

implementation of the protocol in real-life scenarios. For this reason, in

Chapter 10, we presented a data payment extension for SUPRA. With

this modification, the brokers have an incentive for sharing data with the

protocol.

To summarize, we used the blockchain to create secured publish/sub-

scribe communications between untrusted brokers. Those brokers can

exchange data from publishers and have guarantees on data delivery or

have proofs that something wrong happens. Thanks to a smart-contract,

the incorrect behaviors can be presented to all the other users in the

system. We tried to reduce as much as possible sending messages in the

distributed ledger to increase the performance of SUPRA and reduce the

cost of communications. Still, some fees will be paid by the brokers, and to

encourage them to use our protocol we added a data payment extension.

SUPRA increases the security of publish/subscribe communications and

allows user to sell individually IoT data.

12.1.2 Proof-of-Interaction

By inspiring ourselves from a spam protection algorithm, we defined in

Chapter 11 an energy-efficient puzzle-client that can be integrated into a

blockchain protocol: the Proof of Interaction

Compared to the PoW, which is the most known consensus algorithm for

blockchains, the PoI does not require extensive computational resources

because the proof needed to validate the block is the list of signatures

from other nodes in the network that can only be retrieved sequentially.

The interesting property of this signature retrieving process is that the

node generating a proof is forced to share its previous block with the

contacted nodes. Otherwise, the contacted node will refuse to participate

in the proof, so the node will not be able to finish its proof. This sharing

process prevents selfish-mining which is a known attack on PoW systems.

Also, the PoI has linear complexity in the number of messages with the

12.2 Futur work and perspectives 107

[102]: Daniel et al. (2022), ‘IPFS and

friends: A qualitative comparison of next

generation peer-to-peer data networks’

[64]: Zhou et al. (2019), ‘A Blockchain

based Witness Model for Trustworthy

Cloud Service Level Agreement Enforce-

ment’

number of nodes on the network. Whereas other consensus algorithms

relying on message exchanges between nodes, like PBFT, have quadratic

complexity.

For IoT, we explained in Chapter 4 that the computational and storage

resources required to execute blockchain clients prevent constrained

devices from executing them. Thus, by reducing the computational

resource required to take part in the consensus, the PoI can be a first step

for reducing the requirements to be a full-node in a blockchain network

and reducing the energy consumption.

12.2 Futur work and perspectives

We have several ideas for future works with SUPRA. The first short-

term objective for SUPRA is to remove one assumption on the protocol.

In Chapter 7, we explained that one of the assumptions used by the

unidirectional channel with on-off proof of delivery is that the size of the

messages is smaller than the maximum transaction size of the blockchain.

With this assumption, published data are directly inside the SUPRA

messages in an encrypted fashion, but it is not realistic if brokers share

large data. For instance, in Ethereum, there is no limit on the transaction

size. There is only a limit on the total number of gas in a block. In

Ethereum, the transaction fees are the number of gas in the transaction

multiplied by the price of one gas, and the larger the transaction, the

more gas is needed, hence the more fees are paid by the user. So removing

data from the on-chain messages can reduce the size of the message and

the cost of using the blockchain.

To remove this assumption, we can replace the data shared inside the

SUPRA with its fingerprint. Meaning that no matter the size of the

exchanged data, the size of the SUPRA remains the same but it creates an

issue with on-chain messages. In SUPRA, data is assumed acknowledged

when added in a block because it is present in the on-chain message.

If we remove data from the messages, brokers have to make available

the published data elsewhere, in a storage place known by the other

brokers. Adding data fingerprint in the ledger does not prove that data

was available in time for the other brokers in this storage place. It means

that to remove this assumption, we need to change the on-chain message

format so that it includes a proof of the availability of the data in the

shared storage place. We have some ideas on how to do this. For instance,

IPFS [102] or other peer-to-peer file systems could be solutions to store

published data, but this idea needs further investigation. An alternative

is to inspire ourselves with the SLA monitoring serving presented in

[64]. The judge smart-contract could be linked with a cloud storage place

and when a broker has to send data on-chain, it sends the fingerprint

in the ledger and the data in this storage place. Since smart-contracts

cannot check information outside the blockchain, some users register

themselves in the contract as inspectors and they check if data is truly

available in the cloud storage system. This idea needs further work to

explain how to prove data availability in the cloud storage system and

how to encourage users to be inspectors.

108 12 Conclusion

For the PoI, our future works include removing the assumption on the

fixed known size of the network. To verify the validity of a block made

with a PoI, one must verify the seed used to build the set of nodes S and

the length of the tour L. This set S is a subset of the network of nodes N .

In our presentation of the PoI, we assumed that N is fixed and known,

so nodes can easily check the validity of S, but it also means that no new

nodes can join the system. We already explained in the conclusion of

Chapter 11 that N can be composed of the biggest stakeholders of the

network, just like in a PoS system, but this idea needs further research.

A long-term objective for the PoI is to create a blockchain implementation

using it. Thus allowing us to make measurements and observe the

requirements needed to use this consensus algorithm. If we can combine

this consensus algorithm with some storage reduction methods presented

in Chapter 2, we may reduce the requirements for being a node and we

could consider including devices with less computational power and

storage resources than the current blockchain full nodes. Still, these new

nodes will need good connectivity to execute the consensus algorithm.

In Chapter 4, we explained that, in an IoT architecture, it is realistic to

assume that gateways or servers can be blockchain full nodes. Gateways

have more resources than constrained devices because they have more

responsibilities, but they may not be as powerful as a server. For this

reason, by reducing the requirements for being a node, more gateways

could join the blockchain network. Thus reducing the delay to share data

from IoT devices in the blockchain network.

Appendix

Bibliography

Here are the references in citation order.

[1] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/bitcoin.pdf.

2008 (cited on pages v, x, 1, 7, 10, 91).

[2] Patrick Th Eugster et al. ‘The Many Faces of Publish/Subscribe’. In: ACM Computing Surveys 35.2

(2003), pp. 114–131. doi: 10.1145/857076.857078 (cited on pages vi, 2, 33).

[3] Gowri Sankar Ramachandran et al. ‘Trinity: A byzantine fault-tolerant distributed publish-subscribe

system with immutable blockchain-based persistence’. In: ICBC 2019 - IEEE International Conference
on Blockchain and Cryptocurrency (2019), pp. 227–235. doi: 10.1109/BLOC.2019.8751388 (cited on

pages vi, 36, 66, 67).

[4] Gowri Sankar Ramachandran, Kwame-Lante Wright, and Bhaskar Krishnamachari. ‘Trinity: A

Distributed Publish/Subscribe Broker with Blockchain-based Immutability’. In: (2018), pp. 1–8 (cited

on pages vi, 36, 67).

[5] Mehmud Abliz and Taieb Znati. ‘A guided tour puzzle for denial of service prevention’. In: 2009
Annual Computer Security Applications Conference. IEEE. 2009, pp. 279–288 (cited on pages x, 91–93).

[6] Nick Szabo. ‘Secure property titles with owner authority’. In: Online at http://szabo. best. vwh. net/se-
curetitle. html (1998) (cited on pages 1, 13).

[7] Vitalik Buterin et al. ‘Ethereum white paper’. In: GitHub repository 1 (2013), pp. 22–23 (cited on pages 1,

13, 77).

[8] ‘Trade-offs between Distributed Ledger Technology Characteristics’. In: ACM Computing Surveys 53.2

(2020). doi: 10.1145/3379463 (cited on page 7).

[9] Leslie Lamport, Robert Shostak, and Marshall Pease. ‘The Byzantine Generals Problem’. In: ACM
Transactions on Programming Languages and Systems (1982), pp. 382–401 (cited on page 8).

[10] Danny Dolev and H. Raymond Strong. ‘Authenticated algorithms for Byzantine agreement’. In: SIAM
Journal on Computing 12.4 (1983), pp. 656–666 (cited on page 9).

[11] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. ‘Consensus in the presence of partial synchrony’.

In: Journal of the ACM (JACM) 35.2 (1988), pp. 288–323 (cited on page 9).

[12] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. ‘Impossibility of distributed consensus

with one faulty process’. In: Journal of the ACM (JACM) 32.2 (1985), pp. 374–382 (cited on page 9).

[13] John R Douceur. ‘The sybil attack’. In: International workshop on peer-to-peer systems. Springer. 2002,

pp. 251–260 (cited on pages 9, 10).

[14] Adam Back. ‘Hashcash - A Denial of Service Counter-Measure’. In: Http://Www.Hashcash.Org/Papers/Hashcash.Pdf
August (2002), pp. 1–10 (cited on pages 10, 91).

[15] Rafael Pass, Lior Seeman, and Abhi Shelat. ‘Analysis of the blockchain protocol in asynchronous

networks’. In: EUROCRYPT 2017 10211 LNCS (2017), pp. 643–673. doi: 10.1007/978-3-319-56614-
6_22 (cited on page 11).

[16] Florian Tschorsch and Björn Scheuermann. ‘Bitcoin and beyond: A technical survey on decentralized

digital currencies’. In: IEEE Communications Surveys and Tutorials 18.3 (2016), pp. 2084–2123. doi:

10.1109/COMST.2016.2535718 (cited on page 12).

[17] Sunny King and Scott Nadal. ‘Ppcoin: Peer-to-peer crypto-currency with proof-of-stake’. In: self-
published paper, August 19 (2012) (cited on page 12).

[18] Peter Gaži, Aggelos Kiayias, and Alexander Russell. ‘Stake-bleeding attacks on proof-of-stake

blockchains’. In: 2018 Crypto Valley Conference on Blockchain Technology (CVCBT). IEEE. 2018, pp. 85–92

(cited on page 12).

https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/857076.857078
https://doi.org/10.1109/BLOC.2019.8751388
https://doi.org/10.1145/3379463
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1109/COMST.2016.2535718

[19] François Bonnet, Quentin Bramas, and Xavier Défago. ‘Stateless Distributed Ledgers’. In: arXiv preprint
arXiv:2006.10985 (2020) (cited on page 12).

[20] Wellington Fernandes Silvano and Roderval Marcelino. ‘Iota Tangle: A cryptocurrency to communicate

Internet-of-Things data’. In: Future Generation Computer Systems 112 (2020), pp. 307–319. doi: https:
//doi.org/10.1016/j.future.2020.05.047 (cited on page 13).

[21] PoET 1.0 Specification. https://sawtooth.hyperledger.org/docs/core/releases/1.2.4/
architecture/poet.html (cited on page 15).

[22] Lin Chen et al. ‘On Security Analysis of Proof-of-Elapsed-Time (PoET)’. In: Stabilization, Safety, and
Security of Distributed Systems. Ed. by Paul Spirakis and Philippas Tsigas. Springer International

Publishing (cited on page 15).

[23] Shikah J Alsunaidi and Fahd A Alhaidari. ‘A survey of consensus algorithms for blockchain technology’.

In: 2019 International Conference on Computer and Information Sciences (ICCIS). IEEE. 2019, pp. 1–6 (cited

on page 15).

[24] Asutosh Palai, Meet Vora, and Aashaka Shah. ‘Empowering Light Nodes in Blockchains with Block

Summarization’. In: 2018 9th IFIP International Conference on New Technologies, Mobility and Security,
NTMS 2018 - Proceedings 2018-Janua (2018), pp. 1–5. doi: 10.1109/NTMS.2018.8328735 (cited on

page 15).

[25] Emanuel Palm, Olov Schelen, and Ulf Bodin. ‘Selective blockchain transaction pruning and state

derivability’. In: Proceedings - 2018 Crypto Valley Conference on Blockchain Technology, CVCBT 2018 (2018),

pp. 31–40. doi: 10.1109/CVCBT.2018.00009 (cited on page 15).

[26] Roman Matzutt et al. ‘How to Securely Prune Bitcoin’s Blockchain’. In: IFIP Networking 2020 Conference
and Workshops, Networking 2020 (2020), pp. 298–306 (cited on page 15).

[27] Roman Matzutt et al. ‘CoinPrune: Shrinking Bitcoin’s Blockchain Retrospectively’. In: IEEE Transactions
on Network and Service Management 18.3 (2021), pp. 3064–3078. doi: 10.1109/TNSM.2021.3073270
(cited on page 15).

[28] Teasung Kim, Jaewon Noh, and Sunghyun Cho. ‘SCC: Storage Compression Consensus for Blockchain

in Lightweight IoT Network’. In: 2019 IEEE International Conference on Consumer Electronics, ICCE 2019
(2019). doi: 10.1109/ICCE.2019.8662032 (cited on page 15).

[29] ‘Recycling Smart Contracts: Compression of the Ethereum Blockchain’. In: 2018 9th IFIP International
Conference on New Technologies, Mobility and Security, NTMS 2018 - Proceedings 2018-Janua (2018), pp. 1–5.

doi: 10.1109/NTMS.2018.8328742 (cited on page 15).

[30] Xiaojiao Chen, Sianjheng Lin, and Nenghai Yu. ‘Bitcoin Blockchain Compression Algorithm for Blank

Node Synchronization’. In: 2019 11th International Conference on Wireless Communications and Signal
Processing, WCSP 2019 (2019). doi: 10.1109/WCSP.2019.8928104 (cited on page 15).

[31] Qiuhong Zheng et al. ‘An Innovative IPFS-Based Storage Model for Blockchain’. In: Proceedings -
2018 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2018 (2019), pp. 704–708. doi:

10.1109/WI.2018.000-8 (cited on page 15).

[32] Randhir Kumar and Rakesh Tripathi. ‘Implementation of Distributed File Storage and Access

Framework using IPFS and Blockchain’. In: Proceedings of the IEEE International Conference Image
Information Processing 2019-Novem (2019), pp. 246–251. doi: 10.1109/ICIIP47207.2019.8985677
(cited on page 15).

[33] Jakub Sliwinski and Roger Wattenhofer. ‘Asynchronous Proof-of-Stake’. In: () (cited on page 15).

[34] Jakub Sliwinski and Roger Wattenhofer. ‘ABC: Proof-of-Stake without Consensus’. In: (2019) (cited on

page 15).

[35] Miguel Castro, Barbara Liskov, et al. ‘Practical byzantine fault tolerance’. In: OsDI. Vol. 99. 1999. 1999,

pp. 173–186 (cited on page 16).

[36] Joseph Poon and Vitalik Buterin. ‘Plasma: Scalable Autonomous Smart Contracts’. In: Whitepaper
(2017), pp. 1–47 (cited on pages 17, 46).

https://doi.org/https://doi.org/10.1016/j.future.2020.05.047
https://doi.org/https://doi.org/10.1016/j.future.2020.05.047
https://sawtooth.hyperledger.org/docs/core/releases/1.2.4/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/releases/1.2.4/architecture/poet.html
https://doi.org/10.1109/NTMS.2018.8328735
https://doi.org/10.1109/CVCBT.2018.00009
https://doi.org/10.1109/TNSM.2021.3073270
https://doi.org/10.1109/ICCE.2019.8662032
https://doi.org/10.1109/NTMS.2018.8328742
https://doi.org/10.1109/WCSP.2019.8928104
https://doi.org/10.1109/WI.2018.000-8
https://doi.org/10.1109/ICIIP47207.2019.8985677

[37] Rami Khalil et al. ‘Commit-Chains : Secure , Scalable Off-Chain Payments’. In: Cryptology ePrint Archive
i (2018), p. 642 (cited on page 17).

[38] Joseph Poon and Thaddeus Dryja. ‘The bitcoin lightning network’. In: Scalable o-chain instant payments
(2015) (cited on pages 20, 46, 47).

[39] Maurice Herlihy. ‘Atomic cross-chain swaps’. In: Proceedings of the Annual ACM Symposium on Principles
of Distributed Computing (2018), pp. 245–254. doi: 10.1145/3212734.3212736 (cited on pages 23, 39,

46, 49, 83).

[40] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. ‘General state channel networks’. In:

Proceedings of the ACM Conference on Computer and Communications Security (2018), pp. 949–966. doi:

10.1145/3243734.3243856 (cited on page 23).

[41] Stefan Dziembowski et al. Multi-party virtual state channels. Vol. 11476 LNCS. 2019, pp. 625–656 (cited

on page 23).

[42] Fernando E Alvarez, David Argente, and Diana Van Patten. Are Cryptocurrencies Currencies? Bitcoin as
Legal Tender in El Salvador. Tech. rep. National Bureau of Economic Research, 2022 (cited on page 24).

[43] Gabriel Montenegro et al. ‘Transmission of IPv6 packets over IEEE 802.15. 4 networks’. In: Internet
proposed standard RFC 4944 (2007), p. 130 (cited on page 25).

[44] Carsten Bormann, Mehmet Ersue, and Ari Keranen. ‘Terminology for constrained-node networks’. In:

Internet Engineering Task Force (IETF): Fremont, CA, USA (2014), pp. 2070–1721 (cited on page 25).

[45] Bitcoin Project. Bitcoin Core requirements. https://bitcoin.org/en/bitcoin-core/features/
requirements. 2022 (cited on page 25).

[46] Ethereum Foundation. Geth requirements. https://ethereum.org/en/developers/docs/nodes-
and-clients/. 2022 (cited on page 25).

[47] IOTA Foundation. Hornet requirements. https://wiki.iota.org/hornet/getting_started. 2022

(cited on page 25).

[48] Yash Gupta et al. ‘The applicability of blockchain in the Internet of Things’. In: 2018 10th International
Conference on Communication Systems and Networks, COMSNETS 2018 2018-Janua (2018), pp. 561–564.

doi: 10.1109/COMSNETS.2018.8328273 (cited on page 26).

[49] Madhusudan Singh, Abhiraj Singh, and Kim Shiho. ‘Blockchain: A game changer for securing IoT

data’. In: IEEE World Forum on Internet of Things, WF-IoT 2018 - Proceedings 2018-Janua (2018), pp. 51–55.

doi: 10.1109/WF-IoT.2018.8355182 (cited on page 26).

[50] Otto Julio Ahlert Pinno, Andre Ricardo Abed Gregio, and Luis C.E. De Bona. ‘ControlChain: Blockchain

as a Central Enabler for Access Control Authorizations in the IoT’. In: 2017 IEEE Global Communications
Conference, GLOBECOM 2017 - Proceedings 2018-Janua (2018), pp. 1–6. doi: 10.1109/GLOCOM.2017.
8254521 (cited on page 26).

[51] M. Shyamala Devi, R. Suguna, and P. M. Abhinaya. ‘Integration of Blockchain and IoT in Satellite

Monitoring Process’. In: Proceedings of 2019 3rd IEEE International Conference on Electrical, Computer and
Communication Technologies, ICECCT 2019 (2019), pp. 1–6. doi: 10.1109/ICECCT.2019.8869185 (cited

on page 26).

[52] Pradip Kumar Sharma, Seo Yeon Moon, and Jong Hyuk Park. ‘Block-VN: A distributed blockchain

based vehicular network architecture in smart city’. In: Journal of Information Processing Systems 13.1

(2017), pp. 184–195. doi: 10.3745/JIPS.03.0065 (cited on page 26).

[53] Junqin Huang et al. ‘B-IoT: Blockchain driven internet of things with credit-based consensus mech-

anism’. In: Proceedings - International Conference on Distributed Computing Systems 2019-July (2019),

pp. 1348–1357. doi: 10.1109/ICDCS.2019.00135 (cited on page 27).

[54] Jun Lin et al. ‘Using blockchain to build trusted LoRaWAN sharing server’. In: International Journal of
Crowd Science 1.3 (2017), pp. 270–280. doi: 10.1108/ijcs-08-2017-0010 (cited on page 27).

[55] Sina Rafati Niya et al. ‘Adaptation of Proof-of-Stake-based Blockchains for IoT Data Streams’. In: c

(2019), pp. 15–16. doi: 10.1109/bloc.2019.8751260 (cited on page 27).

https://doi.org/10.1145/3212734.3212736
https://doi.org/10.1145/3243734.3243856
https://bitcoin.org/en/bitcoin-core/features/requirements
https://bitcoin.org/en/bitcoin-core/features/requirements
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://wiki.iota.org/hornet/getting_started
https://doi.org/10.1109/COMSNETS.2018.8328273
https://doi.org/10.1109/WF-IoT.2018.8355182
https://doi.org/10.1109/GLOCOM.2017.8254521
https://doi.org/10.1109/GLOCOM.2017.8254521
https://doi.org/10.1109/ICECCT.2019.8869185
https://doi.org/10.3745/JIPS.03.0065
https://doi.org/10.1109/ICDCS.2019.00135
https://doi.org/10.1108/ijcs-08-2017-0010
https://doi.org/10.1109/bloc.2019.8751260

[56] Bin Liu et al. ‘Blockchain Based Data Integrity Service Framework for IoT Data’. In: Proceedings - 2017
IEEE 24th International Conference on Web Services, ICWS 2017 (2017), pp. 468–475. doi: 10.1109/ICWS.
2017.54 (cited on pages 27, 30).

[57] Ali Dorri et al. ‘Blockchain for IoT security and privacy: The case study of a smart home’. In: 2017
IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops
2017 (2017), pp. 618–623. doi: 10.1109/PERCOMW.2017.7917634 (cited on page 27).

[58] Seyoung Huh, Sangrae Cho, and Soohyung Kim. ‘Managing IoT devices using blockchain platform’.

In: International Conference on Advanced Communication Technology, ICACT (2017), pp. 464–467. doi:

10.23919/ICACT.2017.7890132 (cited on pages 27, 28).

[59] Oscar Novo. ‘Scalable access management in IoT using blockchain: A performance evaluation’. In:

IEEE Internet of Things Journal 6.3 (2019), pp. 4694–4701. doi: 10.1109/JIOT.2018.2879679 (cited on

pages 28, 29).

[60] Oscar Novo. ‘Blockchain Meets IoT: An Architecture for Scalable Access Management in IoT’. In:

IEEE Internet of Things Journal 5.2 (2018), pp. 1184–1195. doi: 10.1109/JIOT.2018.2812239 (cited on

page 28).

[61] Yuanyu Zhang et al. ‘Smart contract-based access control for the internet of things’. In: IEEE Internet of
Things Journal 6.2 (2019), pp. 1594–1605. doi: 10.1109/JIOT.2018.2847705 (cited on pages 28, 29).

[62] ‘IoTChain: A blockchain security architecture for the Internet of Things’. In: IEEE Wireless Communica-
tions and Networking Conference, WCNC 2018-April (2018), pp. 1–6 (cited on page 28).

[63] Mathis Steichen et al. ‘Blockchain-Based, Decentralized Access Control for IPFS’. In: Proceedings -
IEEE 2018 International Congress on Cybermatics: 2018 IEEE Conferences on Internet of Things, Green
Computing and Communications, Cyber, Physical and Social Computing, Smart Data, Blockchain, Computer
and Information Technology, iThings/Gree (2018), pp. 1499–1506. doi: 10.1109/Cybermatics_2018.2018.
00253 (cited on page 28).

[64] Huan Zhou et al. ‘A Blockchain based Witness Model for Trustworthy Cloud Service Level Agreement

Enforcement’. In: Proceedings - IEEE INFOCOM 2019-April (2019), pp. 1567–1575. doi: 10.1109/
INFOCOM.2019.8737580 (cited on pages 30, 107).

[65] Yunlei Sun et al. ‘A low-delay, lightweight publish/subscribe architecture for delay-sensitive IOT

services’. In: Proceedings - IEEE 20th International Conference on Web Services, ICWS 2013 (2013), pp. 179–

186 (cited on page 33).

[66] Michele Amoretti et al. ‘A scalable and secure publish/subscribe-based framework for industrial IoT’.

In: IEEE Transactions on Industrial Informatics 17.6 (2020), pp. 3815–3825 (cited on page 33).

[67] Aleksandar Antonić et al. ‘A mobile crowd sensing ecosystem enabled by CUPUS: Cloud-based

publish/subscribe middleware for the Internet of Things’. In: Future Generation Computer Systems 56

(2016), pp. 607–622 (cited on page 34).

[68] Ken Borgendale Andrew Banks Ed Briggs and Rahul Gupta. MQTT Version 5.0. https://docs.oasis-
open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html. Accessed: 2020-06-09. 2019 (cited on page 34).

[69] Markus Dahlmanns et al. Transparent End-to-End Security for Publish/Subscribe Communication in
Cyber-Physical Systems. Vol. 1. 1. Association for Computing Machinery, 2021, pp. 78–87 (cited on

page 34).

[70] Sam Kumar et al. ‘Jedi: Many-to-many end-to-end encryption and key delegation for IoT’. In: Proceedings
of the 28th USENIX Security Symposium (2019), pp. 1519–1536 (cited on page 34).

[71] Cristian Borcea et al. ‘PICADOR: End-to-end encrypted Publish–Subscribe information distribution

with proxy re-encryption’. In: Future Generation Computer Systems 71 (2017), pp. 177–191 (cited on

page 34).

[72] Shrideep Pallickara et al. ‘A Framework for Secure End-to-End Delivery of Messages in Publish/Sub-

scribe Systems’. In: 2006 7th IEEE/ACM International Conference on Grid Computing. 2006, pp. 215–222.

doi: 10.1109/ICGRID.2006.311018 (cited on page 34).

https://doi.org/10.1109/ICWS.2017.54
https://doi.org/10.1109/ICWS.2017.54
https://doi.org/10.1109/PERCOMW.2017.7917634
https://doi.org/10.23919/ICACT.2017.7890132
https://doi.org/10.1109/JIOT.2018.2879679
https://doi.org/10.1109/JIOT.2018.2812239
https://doi.org/10.1109/JIOT.2018.2847705
https://doi.org/10.1109/Cybermatics_2018.2018.00253
https://doi.org/10.1109/Cybermatics_2018.2018.00253
https://doi.org/10.1109/INFOCOM.2019.8737580
https://doi.org/10.1109/INFOCOM.2019.8737580
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://doi.org/10.1109/ICGRID.2006.311018

[73] Fengyun Cao and Jaswinder Pal Singh. ‘Efficient event routing in content-based publish-subscribe

service networks’. In: Proceedings - IEEE INFOCOM 2.C (2004), pp. 929–940. doi: 10.1109/infcom.
2004.1356980 (cited on page 35).

[74] Silvia Bianchi, Pascal Felber, and Maria Gradinariu Potop-Butucaru. ‘Stabilizing distributed R-trees

for peer-to-peer content routing’. In: IEEE Transactions on Parallel and Distributed Systems 21.8 (2010),

pp. 1175–1187. doi: 10.1109/TPDS.2009.131 (cited on page 35).

[75] Rahul Shah et al. ‘Efficient dissemination of personalized information using content-based multicast’.

In: IEEE Transactions on Mobile Computing 3.4 (2004), pp. 394–408 (cited on page 35).

[76] Spyros Voulgaris, Etienne Rivière, and Anne-marie Kermarrec Maarten. ‘S UB -2-S UB : Self-Organizing

Content-Based Publish and Subscribe for Dynamic and Large Scale’. In: IPTPS’06: the fifth International
Workshop on Peer-to-Peer Systems (2005), p. 16 (cited on page 35).

[77] João Paulo De Araujo et al. ‘A Publish/Subscribe System Using Causal Broadcast over Dynamically

Built Spanning Trees’. In: Proceedings - 29th International Symposium on Computer Architecture and High
Performance Computing, SBAC-PAD 2017 (2017), pp. 161–168. doi: 10.1109/SBAC-PAD.2017.28 (cited

on page 35).

[78] Shrideep Pallickara et al. ‘A security framework for distributed brokering systems’. In: Community
Grids Laboratory Technical Report. Available from http://www. naradabrokering. org (2003) (cited on pages 35,

36).

[79] Mudhakar Srivatsa, Ling Liu, and Arun Iyengar. ‘Eventguard: A system architecture for securing

publish-subscribe networks’. In: ACM Transactions on Computer Systems (TOCS) 29.4 (2011), pp. 1–40

(cited on page 35).

[80] Gianluca Dini and Angelica Lo Duca. ‘On securing publish-subscribe systems with security groups’.

In: 2009 IEEE Symposium on Computers and Communications. IEEE. 2009, pp. 532–537 (cited on page 35).

[81] Pin Lv et al. ‘An IOT-oriented privacy-preserving publish/subscribe model over blockchains’. In: IEEE
Access 7 (2019), pp. 41309–41314. doi: 10.1109/ACCESS.2019.2907599 (cited on pages 36, 37, 67).

[82] Gewu Bu et al. ‘HyperPubSub: Blockchain based publish/subscribe’. In: Proceedings of the IEEE
Symposium on Reliable Distributed Systems (2019), pp. 366–368. doi: 10.1109/SRDS47363.2019.00052
(cited on pages 37, 41, 77).

[83] Elli Androulaki et al. ‘Hyperledger fabric: a distributed operating system for permissioned blockchains’.

In: Proceedings of the thirteenth EuroSys conference. 2018, pp. 1–15 (cited on pages 37, 41).

[84] R. Radhakrishnan and B. Krishnamachari. ‘Streaming Data Payment Protocol (SDPP) for the Internet of

Things’. In: (2018), pp. 1679–1684. doi: 10.1109/Cybermatics_2018.2018.00280 (cited on pages 39,

48, 86).

[85] David Chen et al. ‘PayFlow: Micropayments for bandwidth reservations in software defined networks’.

In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE. 2019, pp. 26–31 (cited on page 40).

[86] Ryota Nakada, Kien Nguyen, and Hiroo Sekiya. ‘Implementation of Micropayment System Using IoT

Devices’. In: Journal of Signal Processing 25.4 (2021), pp. 137–140 (cited on page 40).

[87] Gowri Sankar Ramachandran et al. ‘Publish-pay-subscribe protocol for payment-driven edge comput-

ing’. In: 2nd {USENIX}Workshop on Hot Topics in Edge Computing (HotEdge 19). 2019 (cited on pages 41,

77).

[88] Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark. ‘MQTT-S—A publish/subscribe protocol

for Wireless Sensor Networks’. In: 2008 3rd International Conference on Communication Systems Software
and Middleware and Workshops (COMSWARE’08). IEEE. 2008, pp. 791–798 (cited on page 58).

[89] Transmission Control Protocol. RFC 793. 1981 (cited on page 66).

[90] Anton V. Uzunov. ‘A survey of security solutions for distributed publish/subscribe systems’. In:

Computers and Security 61 (2016), pp. 94–129 (cited on page 66).

[91] Quentin Bramas. Proof-of-Concept of SUPRA, a distributed publish/subscribe protocol with blockchain as a
conflict resolver. https://github.com/Bramas/supra-PoC. 2022 (cited on page 67).

https://doi.org/10.1109/infcom.2004.1356980
https://doi.org/10.1109/infcom.2004.1356980
https://doi.org/10.1109/TPDS.2009.131
https://doi.org/10.1109/SBAC-PAD.2017.28
https://doi.org/10.1109/ACCESS.2019.2907599
https://doi.org/10.1109/SRDS47363.2019.00052
https://doi.org/10.1109/Cybermatics_2018.2018.00280
https://github.com/Bramas/supra-PoC

[92] Syed Muhammad Danish et al. ‘A Lightweight Blockchain Based Two Factor Authentication Mechanism

for LoRaWAN Join Procedure’. In: 2019 IEEE International Conference on Communications Workshops
(ICC Workshops) (2019), pp. 1–6. doi: 10.1109/iccw.2019.8756673 (cited on page 67).

[93] Ji-Sun Park et al. ‘Smart contract-based review system for an IoT data marketplace’. In: Sensors 18.10

(2018), p. 3577 (cited on page 85).

[94] Wenbo Wang et al. ‘A survey on consensus mechanisms and mining strategy management in

blockchain networks’. In: IEEE Access 7 (2019), pp. 22328–22370 (cited on page 91).

[95] Bart Preneel. ‘Analysis and design of cryptographic hash functions’. PhD thesis. Katholieke Universiteit

te Leuven, 1993 (cited on page 92).

[96] Suratose Tritilanunt et al. ‘Toward Non-parallelizable Client Puzzles’. In: Cryptology and Network
Security. Ed. by Feng Bao et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 247–264 (cited

on page 96).

[97] Ittay Eyal and Emin Gün Sirer. ‘Majority is not enough: Bitcoin mining is vulnerable’. In: International
conference on financial cryptography and data security. Springer. 2014, pp. 436–454 (cited on page 101).

[98] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. ‘Optimal selfish mining strategies in

bitcoin’. In: International Conference on Financial Cryptography and Data Security. Springer. 2016, pp. 515–

532 (cited on page 101).

[99] Jae Kwon. ‘Tendermint: Consensus without mining’. In: Draft v. 0.6, fall 1.11 (2014) (cited on page 102).

[100] Miguel Castro and Barbara Liskov. ‘Practical Byzantine fault tolerance and proactive recovery’. In:

ACM Transactions on Computer Systems (TOCS) 20.4 (2002), pp. 398–461 (cited on page 103).

[101] EOS IO. ‘Eos. io technical white paper’. In: EOS. IO (accessed 18 December 2017) https://github. com/EO-
SIO/Documentation (2017) (cited on page 103).

[102] Erik Daniel and Florian Tschorsch. ‘IPFS and friends: A qualitative comparison of next generation

peer-to-peer data networks’. In: IEEE Communications Surveys & Tutorials 24.1 (2022), pp. 31–52 (cited

on page 107).

https://doi.org/10.1109/iccw.2019.8756673

Special Terms

D

DAG Directed Acyclic Graph. 26

DLT Distributed Ledger Technologies. 7, 8, 25, 26, 28, 31, 34–36, 42, 91

H

HTLC Hashed Timelock Contract. 21–23

I

IoT Internet of Things. xix, 1, 2, 24–28, 31, 33, 37, 39, 77, 86, 87, 105–108

L

LR-WPAN Low Rate Wireless Personal Area Network. 25

P

PKI Public Key Infrastructure. 9

PoI Proof of Interaction. 2, 3, 105–108

PoS Proof of Stake. 12, 14, 108

PoW Proof of Work. 2, 3, 10–12, 14, 15, 25, 31, 46, 91, 106

S

SUPRA Secured Update Protocol with Righterous Accusations. xix, 2, 45–48, 51, 53, 55, 56, 61, 64–69, 76, 77,

86, 87, 105–107

Abstracts

Résumé

Cette thèse traite de l’utilisation de la Blockchain dans les applications liées à l’Internet des Objets (IoT).

L’IoT est un domaine présent dans notre quotidien et les applications IoT reposent sur l’utilisation d’objets

contraints, des appareils informatiques beaucoup moins puissants qu’un ordinateur. L’utilisation de ces

objets contraints force la définition de nouveaux protocoles et l’utilisation de nouveaux outils pour assurer

les communications et la sécurité des applications. Dans cette optique, nous nous posons la question de

savoir si la blockchain, une technologie de registre distribuée, peut être un outil permettant de répondre à ce

problème de sécurité.

Pour répondre à cette question, nous avons réalisé deux contributions: un algorithme de consensus réduisant

la consommation énergétique des nœuds blockchain, et un protocole publish/subscribe fournissant des

garanties de livraison des données.

Mots clés : blockchain, internet des objets, publish/subscribe, algorithme de consensus, paiement des

données

Abstract

This thesis presents how the blockchain technology is used in Internet-of-Things (IoT) applications. IoT is

something present in our everyday life and the IoT applications rely on constrained devices, devices far less

powerful than a computer. Using these constrained devices forces us to define new protocols and use new

tools to ensure security in these applications. In this thesis, we ask ourselves if the blockchain, a distributed

ledger technology, can be a tool used to increase security in IoT applications.

To answer this question, we propose two contributions : a consensus algorithm reducing the energy

consumption of the blockchain nodes, and a publish/subscribe protocol presenting data delivery guarantees.

Keywords : blockchain, internet-of-things, publish/subscribe, consensus algorithm, data payment protocol

	Abstracts
	Acknowledgments
	Resumé
	Introduction

	Introduction
	SUPRA

	SUPRA
	Preuve d'interaction

	Preuve d'interaction
	Conclusion

	Conclusion
	Contents
	Introduction
	Contributions

	Contributions
	List of publications

	List of publications
	State of the art
	Blockchain
	General concepts

	General concepts
	Consensus

	Consensus
	Consensus problem
	Permissionless consensus
	Applications

	Applications
	Challenges

	Challenges
	Resources usage
	Transaction rate
	Off-chain solutions
	Commit-chains

	Commit-chains
	General idea
	Smart-contract
	Pros/Cons
	State channels

	State channels
	Lightning Network
	Hashed Timelocked Contract
	Pros/cons
	Usage
	Blockchain and IoT
	Blockchain nodes on constrained devices

	Blockchain nodes on constrained devices
	Blockchain nodes on unconstrained devices

	Blockchain nodes on unconstrained devices
	Blockchain usage

	Blockchain usage
	Database
	Resource access management
	Reputation system
	Conclusion
	Publish/subscribe
	General concept

	General concept
	Without DLT

	Without DLT
	End-to-end encryption
	Distributed publish/subscribe
	With DLT

	With DLT
	Conclusion

	Conclusion
	Data payment protocol
	SDPP

	SDPP
	Publish/subscribe propositions

	Publish/subscribe propositions
	Conclusion

	Conclusion

	SUPRA
	General concepts
	Architecture

	Architecture
	Distributed publish/subscribe
	Blockchain network
	Trust between the brokers
	The use of Unidirectional Channels in Distributed Publish/Subscribe Architectures

	The use of Unidirectional Channels in Distributed Publish/Subscribe Architectures
	Unidirectional Channel with On-Off Chain Proof of Delivery

	Unidirectional Channel with On-Off Chain Proof of Delivery
	Conclusion

	Conclusion
	First version of SUPRA
	Communication example

	Communication example
	Generic message format

	Generic message format
	Public key module

	Public key module
	Subscription module

	Subscription module
	Subscription demand
	Subscription stoppage
	Publishing module

	Publishing module
	Trial module

	Trial module
	Message conservation
	Trial process
	Network issue and fail-over

	Network issue and fail-over
	Comparison with existing solutions

	Comparison with existing solutions
	Proof of concept

	Proof of concept
	Conclusion

	Conclusion
	Signature reduction
	Scalability issue

	Scalability issue
	Signature synchronisation

	Signature synchronisation
	Solution Details
	Security

	Security
	Reuse acknowledgements
	Data access on-chain
	Conclusion

	Conclusion
	Data payment extension
	Secret-less secured payment system

	Secret-less secured payment system
	Setup the communication
	Data payment
	Closure
	Security

	Security
	Reputation system

	Reputation system
	Comparison with other solutions

	Comparison with other solutions
	Conclusion

	Conclusion

	Proof of interaction
	Proof of Interaction
	Preliminaries

	Preliminaries
	Model
	Guided Tour
	Naive Approach
	The Proof-of-Interaction

	The Proof-of-Interaction
	Algorithm Overview
	Algorithm Details
	Blockchain Consensus Using PoI

	Blockchain Consensus Using PoI
	Security

	Security
	Crash Faults
	Selfish mining
	Shared Mining
	Conclusion and Possible Extensions

	Conclusion and Possible Extensions
	Conclusion
	Summary of our works

	Summary of our works
	SUPRA
	Proof-of-Interaction
	Futur work and perspectives

	Futur work and perspectives

	Appendix
	Bibliography
	List of Terms

