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Résumé 
L'histopathologie numérique est un domaine d'innovation très riche, tant dans les applications 
cliniques que dans la recherche, où les solutions basées sur l'apprentissage profond connaissent un 
succès remarquable. Cependant, les méthodes actuelles d'apprentissage profond sont des approches 
gourmandes en données qui nécessitent d'énormes bases de données annotées pour obtenir des 
modèles performants. Or, le domaine médical est connu pour sa difficulté à obtenir des données et 
des annotations - la collecte de données relève d'une réglementation stricte et contraignante, tandis 
que seuls des experts peuvent effectuer des annotations de haute qualité, ce qui est un processus 
laborieux et coûteux. De plus, compte tenu des variations qui peuvent se produire en raison du 
processus et des protocoles de coloration, les données déjà collectées et annotées ne peuvent être 
réutilisées qu'avec un succès limité. Une telle variation de la coloration représente un changement de 
domaine et affecte considérablement les solutions basées sur l'apprentissage profond dans la 
pratique. Cela devient plus évident encore lorsque l’apprentissage se focalise sur des structures 
biologiques visibles avec plusieurs colorations, car les solutions développées en utilisant les données 
d'une coloration sont susceptibles d'échouer lorsqu'elles sont appliquées à une autre. Cette thèse 
étudie le potentiel des réseaux adversaires génératifs (GAN) dans deux directions pour résoudre ces 
problèmes - le transfert de colorations pour permettre la réutilisation de bases de données déjà 
disponibles et le développement de modèles invariants aux colorations qui réduiraient le besoin 
d'acquisition de données ou d'annotations supplémentaires. L'application principale de la thèse est la 
segmentation des glomérules en pathologie rénale avec de multiples colorations. 

 

Résumé en anglais 
Digital histopathology has become a rich area of innovation in both clinical application and research, 
where deep-learning-based solutions have remarkable success. However, current state-of-the-art 
deep learning methods are data-hungry approaches which require huge, annotated data collections to 
perform well. Nevertheless, the medical domain is known for its scarcity of data and annotations — 
collecting data falls under strict low regulations while experts only can perform high-quality 
annotations, which is a laborious and expensive process. Moreover, considering the variations that 
can occur due to the staining process and staining protocols, already collected and annotated datasets 
can only be reused with limited success. Such stain variation represents a source of domain shift and 
significantly affects deep learning-based solutions in practice. This becomes more evident when a 
deep learning task tackles problems related to structures visible under multiple stains as solutions 
developed using the data from one staining are likely to fail when applied to the other. This thesis 
investigates the potential of Generative Adversarial Networks (GANs) in two directions for addressing 
these problems — stain transfer to enable reusing already available data collections; and developing 
stain invariant solutions which would alleviate the need for additional data acquisition or annotations. 
The application focus of the thesis is glomeruli segmentation in renal pathology with multiple stainings. 



École doctorale MSII

Generative Adversarial Networks in

Digital Histopathology: Stain Transfer

and Deep Learning Model Invariance

to Stain Variation

THÈSE
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Abstract

The deep learning revolution opens the door for remarkable applications of artificial
intelligence in the medical domain. Many everyday clinical tasks have great poten-
tial to be fully automated, which has triggered a staggering amount of research. In
such an environment, digital histopathology is not an exception. However, current
state-of-the-art deep learning methods are data-hungry approaches which require
huge annotated data collections to perform well. Nevertheless, digital histopathol-
ogy, like the other fields of the medical domain, is known for its scarcity of data and
annotations - collecting data falls under strict law regulations while experts only
can perform high-quality annotations, which is a laborious and expensive process.
Moreover, considering the variations that can occur due to the staining process and
staining protocols, already collected and annotated datasets can only be reused with
limited success. Such stain variation represents a source of domain shift and sig-
nificantly affects deep learning-based solutions in practice. This thesis investigates
the potential of Generative Adversarial Networks (GANs) in two directions for ad-
dressing these problems — stain transfer to enable reusing already available data
collections; and developing stain invariant solutions which would alleviate the need
for additional data acquisition or annotations.

The application focus of the thesis is glomeruli segmentation in renal pathology
with multiple stainings. The thesis proposes the usage of GAN-based methods for
the stain transfer between multiple stainings and gives extensive discussion related
to the limitations of these methods and potentially misleading results that can oc-
cur. Some of the observed limitations lead to the discovery of hidden noise which
encodes stain-related characteristics. This finding is further exploited to propose
an unsupervised augmentation strategy which has a positive effect on model perfor-
mances in a supervised setting, even with a limited number of annotated samples.
Moreover, the thesis introduces the first method that encourages empirical stain
invariance whose benefits are demonstrated on numerous stainings, including some
unseen. Furthermore, the thesis proposes HistoStarGAN, the first end-to-end train-
able model that simultaneously performs stain transfer, stain normalisation and
stain invariant segmentation. HistoStarGAN model is able to obtain diverse trans-
lations between multiple stainings at the same time and to generalise to unseen
stainings as well. This property is exploited to generate an artificially created fully
annotated dataset, KidndeyArtPathology, which will be released to encourage
the progress of deep learning-based solutions in the field of renal pathology.
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Chapter 1

Introduction

It is only with the heart that one can see

rightly; what is essential is invisible to

the eye.

Antoine de Saint-Exupéry, The Little
Prince

“Let me start by saying a few things that seem obvious. I think if you work as
a radiologist, you are like the coyote that’s already over the edge of the cliff but
has not yet looked down, so he does not know there is no ground underneath him.
People should stop training radiologists now. It is just completely obvious that
within five years, deep learning is going to do better than radiologists because it’s
going to be able to get a lot more experience. It might be ten years, but we have got
plenty of radiologists already. I said this at a hospital, and it did not go down too
well.” [21] stated Geoffrey Hinton in 2016 at the Creative Destruction Lab (CDL)
seminar on “Machine Learning and the Market for Intelligence” in Toronto, Canada.
A few years later, in 2018, three prominent computer scientists, including Geoffrey
Hinton (Yoshua Bengio, Geoffrey Hinton and Yann LeCun), received the prestigious
Turing award “for conceptual and engineering breakthroughs that have made deep
neural networks a critical component of computing”. This Nobel Prize for computing
crowns decades of research effort to model intelligence and make machines able to
assist humans in various areas. Today, artificial intelligence solutions are part of
everyday life, starting from personal assistants in smartphones to self-driving cars.
Such outstanding abilities raise hope and fear that machines could replace many
expert jobs in the near future. The most sensitive area that attracts a lot of attention
is undoubtedly the medical domain.

The deep learning revolution [1] opens the door for remarkable artificial intel-
ligence applications in the medical domain. Plenty of everyday clinical tasks have
great potential to be fully automated, which triggered a staggering amount of re-
search [2–4]. In such an environment, digital histopathology is not an exception.
Nowadays, deep learning-based methods achieve outstanding results in various tasks
such as cancer detection, disease classification, and transplant assessment [22]. In
a specific experimental setting, these solutions are able to perform on par with ex-

1



2 Chapter 1. Introduction

Tissue 
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Figure 1.1: Illustration of the routine histological examination process 1. Image
credits to Rivenson et al. [32].

perienced pathologists [4]. Therefore, the same Hinton’s statement could refer to
pathologists as well.

Nevertheless, the clinical applications of deep learning-based solutions are still
very limited [23]. The current understanding of applied methods gives strong ev-
idence that it is very challenging to replace an expert’s knowledge and experience
with a machine and that tasks are more complex than they might first look [24, 25].
Additionally, theoretical advances in deep learning bring to the table some essential
questions such as model bias towards training dataset, explainability, and inter-
pretability [25–28]. In the context of the medical domain, further questions are
raised, such as responsibility for a given diagnosis, patient privacy, and ethical is-
sues [29, 30]. Thus, at the current state of deep learning, it seems that the path
towards fully automatic medical expertise is long.

Recently, Generative Adversarial Networks (GANs) [5] bring new opportunities
for deep learning in the field of digital histopathology. The demonstration of impres-
sive results obtained using GANs in image generation already surpass the complexity
of routine pathological examination. However, is seeing really believing?

This thesis represents a contribution to understanding what GANs can do and
what they cannot do in digital histopathology, when and in which amount visually
impressive results are trustworthy, and more importantly, in which situations such
results can be misleading. Moreover, the thesis investigates the ways GANs can be
used to build better deep learning models whose path to clinical practice can be
shorter.

1.1 Digital Pathology

Histology (originates from Greek, histos — tissue + logos — science) is a branch of
biology which studies the microscopic structures of healthy animal or human tissue.
The microscopic study of changes that appear in the tissue as a consequence of
disease (pathology) is known as histopathology [31]. Combined with other fields
such as biochemistry and physiology, histological analysis is the gold standard in
the diagnosis of many diseases.

Histopathological examination starts with the physical removal of a tissue sam-
ple from the body by biopsy or surgery. To be microscopically examined, the sample

1Image of the scanner taken from https://tmalab.jhmi.edu/scanning.html.

https://tmalab.jhmi.edu/scanning.html
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undergoes several preparation steps, as illustrated in Figure 1.1. Ideally, the prepa-
ration process should preserve structural features, so that tissue on the slide contains
the same structures as in the body [33]. The preparation usually contains five basic
stages: fixation, processing, embedding, sectioning and staining [7, 34], followed by
scanning, which produces a digitalised version of the slide. As soon as possible, the
extracted tissue is fixed using fixatives (e.g. formalin) to prevent decay. The tissue is
further processed by dehydration, followed by clearing and infiltration, ending with
embedding, usually by paraffin. At this stage, the hardened block with tissue and
the surrounding embedding medium is placed in a microtome, an instrument for sec-
tioning [33], which extracts very thin sections (3− 10µm) that are placed on a glass
slide. Once sections are obtained, they are colourless, and to be microscopically
analysed they need to be stained (dyed).

The staining process chemically introduces contrast into tissue sections, making
visible particular tissue components or cells and enabling their microscopic analysis.
The stains are intended to be selective by making different chemical compounds
(e.g. acidic or basic) with tissue in the section. That way, different stains highlight
different tissue components, enabling various analyses. For example, hematoxylin is
a basic dye that binds acidic components such as cell nuclei resulting in a purplish-
blue colour, while eosin is an acidic dye that enhances basic components such as cell
stroma or cytoplasm by magenta-red colour. This combination of hematoxylin and
eosin (H&E) is a routinely used staining to inspect general structures in the tissue.
More information about the staining process is provided in Appendix A.

Stained glass slides, as physical objects, are fragile and prone to fading over time.
Nowadays, a histological preparation process usually ends with whole-slide scanners
that digitalise the glass slide. Whole-Slide Imaging (WSI) refers to the creation of
a digital representation of a histological glass slide at a level of detail provided by
a light microscope [35]. For example, a WSI, where each pixel corresponds to a
square of 0.5µm (0.25µm) in the slide, is regarded as providing an equivalent level
of detail as seen with a ×20 (×40) objective of a high-quality microscope [35]. In
this way, the examination can be performed physically far from a microscope, using
a personal computer and specialised software for image manipulation. Moreover,
multiple pathologists, not necessarily at the same physical location (e.g. hospital,
city, country), can analyse the slide simultaneously.

The examination performed by pathologists largely consists of recognising spe-
cific patterns, e.g. detection of cancer cells and their distribution. Depending on
the analysis, specific staining might be required as each highlights particular com-
ponents. Thus, a common practice in histology is to stain multiple slices from the
same biopsy with different stains, which provides experts with various information
regarding tissue structure. Although different stains highlight different tissue com-
ponents, some general analyses can be performed in multiple stainings. For example,
in the case of kidney pathology, glomeruli 2 are visible under multiple stains. As
illustrated in Figure 1.2, albeit different parts of glomeruli are highlighted in each
stain, it is possible to detect them regardless of the staining.

The term ‘Digital pathology’ is used for a variety of processes related to WSI
manipulation, such as storage, annotations and analysis. Particularly interesting

2A glomerulus contains a ball-like network of specialised capillaries, representing the filter of
the functional renal unit called a nephron [6]. More information is provided in Appendix A.
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(a) Periodic Acid Schiff (PAS) (b) Jones H&E

(c) CD34

Figure 1.2: An example of three consecutive WSIs of a kidney nephrectomy sample
stained with different stains. Each staining provides different information on the
tissue but some common structures, such as glomeruli, are visible in all stainings
(some of them are marked in green circles).

is the exponential growth of publications related to digital pathology and artificial
intelligence over the last ten years, where 40.57% of the total number of publica-
tions has been published in the last three years (2021, 2020 and 2019). According
to such trends, it is expected that interest and usage will continue to increase as the
technology progresses. For example, Generative Adversarial Networks (GANs) [5]
introduced in 2014 already occupy almost 7.5% of all publications related to artifi-
cial intelligence and digital pathology. Thus, it is of crucial importance to explore
the limitations and raise awareness about what is reasonable to expect from this
technology and its progress.

In the following, common challenges related to digital histopathology and deep
learning-based methods will be discussed. One of the greatest obstacles when de-
veloping deep learning solutions comes from the large variance introduced by the
staining process. This will be discussed in more details in Section 1.1.1. Another
challenge is data availability and quality, which is considered in Section 1.1.2.



1.1. Digital Pathology 5

Figure 1.3: PAS-stain variation in kidney pathology. Each image represents the
glomerulus in PAS staining.

1.1.1 Staining Process

Staining is a crucial step in tissue preparation for histological examination as it
visualises the chemical nature of the tissue and cell structures. However, the final
WSI can take on a very different appearance, as illustrated in Figure 1.2. These
differences can be attributed to stain variation and stain differences, which will be
discussed in the following.

1.1.1.1 Stain Variation

Each of the above-mentioned preparation steps (fixation, processing, embedding,
sectioning, staining and scanning) depends on multiple parameters, which can strongly
affect the diagnostic quality and visual appearance of the resulting slide/image. The
preparation of high-quality tissue slides requires careful manipulation and process-
ing of the tissue since each step can introduce artefacts [36, 37]. For example,
during the staining phase, impurities present in the dye or leaching of certain sub-
stances from tissues into the dye can affect the staining’s intensity [38]. Apart from
artefacts, most commonly, differences in raw materials, exposure time, quality of
the substances used or scanner characteristics are the factors that introduce vari-
ation. Figure 1.3 illustrates PAS-stain variation in kidney pathology and its effect
on glomeruli appearance. Such variation can be overcome in manual analysis by
pathologist due to experience and special training but represent a great challenge
for automated solutions.

1.1.1.2 Stain Differences

The difference between tissue sections stained with different stains is not just in
their visual appearances (Figure 1.2). The chemical reaction provoked in the tissue
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(a) H&E (b) Jones H&E (c) PAS

(d) Sirius Red (e) CD68 (f) CD34

Figure 1.4: Different stains used in kidney pathology. Each image represents a
glomerulus (functional unit of a kidney). Each stain provides specific information
about the structure and chemical environment of the glomerulus.

by the stain results in highlighting particular tissue components; thus, different
structures, or at least different components of the same structures, are visible under
each stain. An important aspect of digital histopathology, also considered in this
thesis, is the analysis of multiple WSIs from the same tissue stained with different
stainings. Usually, consecutive sections (which contain corresponding microscopic
structures) are stained differently to enable the analysis of underlying tissue from
different aspects. The analysis is usually performed with respect to a specific organ
or structure. For example, to diagnose pathologies such as kidney allograft rejection,
it is necessary to study the inflammatory micro-environment of the kidney (see
Appendix A). In this context, the relevant information could be the distribution of
immune cells such as macrophages in relation to glomeruli [39]. To automatically
perform such an analysis, the structure of interest, in this case glomeruli, should be
detected in each of the consecutive sections regardless of the staining used to stain
that section. Figure 1.4 provides examples of glomeruli under different stainings.
However, the differences between stains represent an important obstacle for a deep
learning-based solution. Therefore, the development of stain invariant deep learning-
based solutions, as the main subject of this thesis, is particularly relevant for the
advancement of automatic analysis in digital histopathology.

1.1.2 Data Availability

The introduction of Whole Slide Imaging (WSI) scanners enables the production of
vast amounts of histological image data. Dataset sizes reported in research papers
have increased by several orders of magnitude in the last years [23]. In the light
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of a recent discovery that dataset size significantly affects reaching the human-level
performance of deep learning modes on visual tasks [40], one can expect considerable
advancements toward automating routine histopathological analysis.

However, not all the data produced is of sufficient quality to be directly used.
Thus, additional effort related to data preparation is usually required. Neverthe-
less, the most tedious task is related to the annotation process since a structure of
interest could be very sparse or very dense. For example, the glomeruli are sparse
structures, covering approximately 2% of the renal tissue area [41]. Therefore, the
average kidney WSI, having a size of 100K ×80K pixels (at 40× magnification),
contains around 500 glomeruli, where the glomerulus’ average size is 500× 500 pix-
els. Contrarily, cancerogenic cells can appear in big portions of WSIs, occupying
dense areas of the image. Thus, obtaining annotated dataset is time-consuming,
expensive and task-specific. Since it needs to be performed by experts [42], it is
usually unfeasible to collect high-quality annotations for all the data acquired daily
in hospitals. In addition to other important concerns related to data privacy, these
enormous collected datasets are usually left aside. Instead, deep learning-based
models are trained on specifically collected and prepared datasets, usually alongside
some publicly available collections used for pre-training or initialisation.

Several histological datasets have been made publicly available. The Cancer
Genome Atlas Program (TCGA) hosts a huge dataset collection related to differ-
ent cancer types. However, datasets related to other histological analyses are not
so numerous. For the case of renal pathology, the publicly available AIDPATH
[18] dataset contains only 47 WSIs of human kidney tissue compared to, e.g. 1399
WSIs available in the CAMELYON dataset [43] (breast cancer metastases of lymph
node sections). Dataset availability strongly influences which applications are stud-
ied more frequently [3]. Consequently, the application areas with a few available
dataset collections may have a lower chance of being explored. One of the greatest
obstacles in advancing automatic solutions (deep learning based) in general digital
pathology is obtaining representative datasets with high-quality annotations and
enough diversity to reflect the real world. Thus, methods that facilitate the an-
notation process or do not require huge datasets could be more easily adopted in
practice.

One of this thesis’ contributions is the introduction of methods able to learn
from limited annotated datasets with good generalisation properties (Chapter 4
and Chapter 5). Moreover, this thesis proposes an automatic way to generate fully
annotated dataset collections for renal pathology, which has the potential to create
high-quality datasets for other data-hungry approaches (Chapter 5).

1.2 Generative Adversarial Networks (GANs)

Deep learning has demonstrated remarkable abilities in discriminative tasks, e.g.
recognising patterns in input data. However, in generative approaches, success was
limited. Some of the attempts [44, 45] didn’t attain convincing enough quality. That
changed in 2014, with the introduction of Generative Adversarial Networks (GANs).
Yann LeCun, the chief AI Scientist at Facebook and ACM Turing Award Laureate,
described Generative Adversarial Networks (GANs) as “the most interesting idea in
the last ten years in machine learning” (Quora Session, 28th July 2016). GANs have
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Figure 1.5: StyleGAN — face generation. All images are generated; these people are
not real. The image is taken from [50].

changed the perspective of deep learning and opened a path for impressive applica-
tions. Nowadays, the advances in GAN theory and practice enable the generation
of high resolution, realistically looking images that are indistinguishable from real
pictures (see Figure 1.5). The applications quickly spread to other types of data
such as text [46], music [47] and videos [48]. The best indicator of the realism of
generated samples is the legal consequences recently raised. For example, in 2020,
the state of California put into effect a law regarding the usage of fake images in
the public space [49].

In more technical terms, generative methods can be broadly classified into ex-
plicit and implicit approaches, and GANs belonging to the latter. Explicit genera-
tive models assume that there is a model likelihood function, and typically they are
trained by maximising it. Well-known examples of this class of generative models
are Variational auto-encoders [44] and PixelCNNs [45]. Contrarily, implicit models
are able to generate data without knowing the explicit formulation of its distribu-
tion. Thus, GANs do not directly fit or estimate a data distribution. Instead, the
model learns to sample from the data distribution by a two-player adversarial game.
The players are called the Generator (G) and the Discriminator (D), which are usu-
ally represented as neural networks. The Generator learns to generate new data
points, and the Discriminator learns to distinguish between real data samples and
those produced by the Generator. The learning of these two models is a competitive
(adversarial) game since the players’ objectives are opposing. The Discriminator
aims to discriminate between real and generated data as best as possible, while the
Generator aims to create samples which are indistinguishable from the real data.

The Discriminator has a standard classification task to classify what is real and
what is fake. The input is a data sample, and since it is known which samples
come from the training set and which are generated by the Generator, the training
of the Discriminator is fully-supervised. Thus, the objective is the maximisation
of classification accuracy. The Generator creates a data sample from scratch, i.e.
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Figure 1.6: Illustration of how Generative Adversarial Networks are trained — a) the
Discriminator is trained in a fully-supervised manner to decrease classification error
for both real and fake examples; b) the Generator is trained using the Discriminator’s
feedback for the fake images and aims to increase its classification error for the fake
images.

usually, the input to the Generator is just a vector of random numbers. Since it
is hard to directly quantitatively evaluate the quality of the created sample, the
Generator uses feedback from the Discriminator in order to improve the generation.
The Generator aims to fool the Discriminator into classifying fake samples as real,
so its goal is to minimise the Discriminator’s accuracy for fake samples. This is
graphically presented in Figure 1.6.

More formally, the Generator G and Discriminator D are differentiable functions
represented by neural networks and parametrised by θgen and θdisc respectfully. The
Generator maps a noise z with a prior distribution pz into a data space G(z, θgen),
forming a distribution of fake images, pg. The Discriminator outputs a single scalar,
representing the probability that given sample x comes from real data pdata rather
than pg. The Discriminator is trained to maximise the probability of assigning the
correct label to examples from both distributions, while the Generator is trained
to minimise the Discriminator’s probability of assigning a correct label to a fake
sample. Therefore, they play a two-player minimax game with a value function
V (G,D), formulated as follows:

min
G

max
D

V (G,D) = Ex∼pdata [logD(x)] + Ex∼pg [log (1−D(x))]

= Ex∼pdata [logD(x)] + Ez∼pz [log (1−D(G(z)))]. (1.1)
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Assuming that both models G and D have enough capacity, the Nash equilib-
rium of the game is achieved when pdata = pg and when D is not sure about the
origin of a sample, so produces 1

2 for both real and fake samples [5]. If binary-cross
entropy is used as the Discriminator’s loss function, the adversarial game approxi-
mates Jensen–Shannon divergence between pg and pdata [5].

The theoretical background holds under the assumption that there is a suffi-
ciently large sample size (dataset), the Generator and the Discriminator have enough
capacity, and the training is performed adequately long [51]. In practice, these as-
sumptions are often violated, which leads to well-known challenges involved in GAN
training, such as:

• Mode collapse: the Generator maps diverse inputs to the same output, i.e. pg
captures only a few modes of pdata.

• Vanishing gradients: when the Discriminator is very confident (loss close to
zero), the gradients provided to the Generator are small, resulting in very slow
or no training of the Generator. Contrarily, if the Discriminator is not good
enough, its feedback is also not valuable for the Generator’s learning.

• Convergence: obtaining a global Nash equilibrium is not straightforward.
Thus, learning usually oscillates or converges to a local Nash equilibrium which
can be far from the global one.

To address the above problems, GAN modifications have been proposed related
to architecture and/or objective function. Some of the extensive reviews of GANs
architectures or objectives are [52–54]. The multitude of GAN architectures opens
additional questions regarding their comparisons and evaluation. Thus, an impor-
tant direction of research related to evaluation metrics has been rapidly developed
[55].

Being able to generate samples from complex data distributions, GANs have
great potential to overcome some of the limitations in applying deep learning-based
solutions in digital histopathology. For example, to address the lack of data, GANs
can be employed to synthesise artificial datasets [56]. In this way, many concerns
related to data privacy can largely be reduced. Adversarial domain adaptation,
on the other side, can be used to reduce domain shift between public and private
datasets [57], which is a widely observed problem in digital histopathology. From
a more clinical side, GANs can be used to enhance the diagnostic process [58].
Moreover, a fully virtual staining process [59] can reduce laborious tissue preparation
time and decrease the number of artefacts introduced during staining. However,
GAN applications are rather limited to research studies and rarely transferred to
clinical practice despite such great opportunities. One crucial reason is that GANs
are a very recent technique whose theoretical and practical basis is not yet well
understood. This thesis contributes to a better understanding of the possibilities
and limitations of GAN-based methods in digital histopathology.
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1.3 Thesis Goals and Contributions

1.3.1 Objectives and Contributions

The main focus of this thesis is to investigate the opportunities for Generative
Adversarial Networks (GANs) to be applied in the field of digital histopathology.
Two main research directions can be identified in this thesis:

• Generative Adversarial Networks for stain transfer: this branch of research
applies GANs for stain transfer, i.e. changing an image’s appearance that was
initially stained with stain A to look like as it has been stained with stain B.
The obtained transfer needs to be plausible — the histological image, in the
absence of patient-specific information such as the underlying disease, looks
visually correct to a trained expert with regard to the staining characteris-
tics and the morphological appearance of the tissue components. This thesis
proposes several ways to obtain visually convincing translations and gives lim-
itations of such approaches from both a diagnostic point-of-view and their
application in the computer vision domain.

• Generative Adversarial Networks for stain invariance: this branch of the thesis
investigates how GANs can be used to build better, more robust, deep learning
models. For the problems where a stain invariant solution is feasible, i.e. the
problems solvable across multiple stains, the thesis proposes approaches that
result in stain invariant models. The learning is performed using a limited
number of annotations from a single stain modality, and the goal of the ob-
tained solution is to generalise across multiple stains, even those unseen during
training.

This thesis, in parallel with other authors [19, 20], for the first time proposes the
usage of a GAN-based image-to-image translation method for stain transfer between
different staining modalities — the thesis’ first contribution3. In the meantime, the
approach based on CycleGAN has been established as a standard solution for virtual
staining in general and is widely adopted in the field of digital histopathology. The
most important works are classified and summarised in Chapter 2 of this thesis.
From this summary it is evident that the main focus of the literature so far has
been dedicated to stain normalisation, i.e. standardising histological image appear-
ance inside one stain modality, where CycleGAN-based solutions are the dominant
approaches. However, stain transfer between different staining modalities, on which
this thesis focuses, is rarely addressed in the literature. The thesis reveals that stain
transfer between different stains opens more intriguing questions and has specific
limitations compared to stain normalisation.

This thesis identifies that CycleGAN-based translations contain imperceptible
information related to stain differences whose manipulation can modify the result-
ing translation in a plausible way. As a consequence of this finding, the thesis
proposes an unsupervised augmentation method that increases the robustness of
deep learning-based solutions — the thesis’ second contribution.

3The work [19] has been published at the same time as the preparation of the publication
related to CycleGAN based results presented in this thesis. After the publication of Gadermayr
et al. [19], the work was extended with additional analysis.
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Moreover, this thesis discovers and demonstrates the sensitivity of CycleGAN-
based solutions to small architectural modifications. These changes do not neces-
sarily affect the visual quality of the obtained translations but influence the overall
conclusion related to the usefulness of stain transfer from both diagnostic and ap-
plication points of view — the thesis’ third contribution.

Furthermore, the thesis takes advantage of the plausibility of the obtained trans-
lations to propose the first solution that encourages empirical stain invariance for
the task of glomeruli segmentation. The obtained model is able to segment multi-
ple stains and is also able to generalise to some unseen stains — the thesis’ fourth
contribution. The findings and conclusions of the research conducted in this thesis
are furthermore used to propose an end-to-end trainable model that simultaneously
performs stain transfer and stain invariant segmentation — thesis’ fifth contribu-
tion. The proposed model is, for the first time, also able to simultaneously perform
stain transfer between different stains, stain normalisation inside one stain modal-
ity and generalise the translation process to unseen stains. In addition to this,
all the generated data (including the original and unseen stains) are correctly seg-
mented via the model’s stain-invariant segmentation module. These findings allow
for the generation of the first artificially created, fully annotated dataset Kidney-

ArtPathology, which will soon be made available to the community for further
advancement in digital histopathology — the thesis’ sixth, and final contribution.

1.3.2 Data

This thesis is focused on renal pathology and the specific task of glomeruli seg-
mentation in multiple stainings. Medical background information are provided in
Appendix A. The dataset is composed of a private part, used for research conducted
in this thesis, and a public part, adapted for testing purposes where applicable.

The private dataset contains tissue samples collected from a cohort of 10 pa-
tients who underwent tumour nephrectomy due to renal carcinoma. The kidney
tissue was selected as distant as possible from the tumours to display largely normal
renal glomeruli; some samples included variable degrees of pathological changes such
as full or partial replacement of the functional tissue by fibrotic changes (“sclerosis”)
reflecting normal age-related changes or the renal consequences of general cardio-
vascular comorbidity (e.g. cardiac arrhythmia, hypertension, arteriosclerosis). The
paraffin-embedded samples were cut into 3µm thin sections and stained with either
Jones’ basement membrane stain (Jones H&E), Periodic acid-Schiff reaction (PAS)
or Sirius Red, in addition to two immunohistochemistry markers (CD34 highlight-
ing blood vessel endothelium, CD68 for macrophages), using an automated staining
instrument (Ventana Benchmark Ultra). Whole slide images were acquired using
an Aperio AT2 scanner at 40× magnification (each pixel corresponds to a square of
0.25µm in the slide). All the glomeruli in each WSI were annotated and validated by
pathology experts by outlining them using Cytomine [60]. The dataset was divided
into 4 training, 2 validation, and 4 test patients, and in this thesis, it is referred to
as Hanover or private dataset. The number of glomeruli in each staining dataset is
given in Table 1.1.

In addition to the above, for the specific analyses performed in Chapter 3 and
Chapter 5 of this thesis, the publicly available dataset AIDPATH [18] is used. AID-
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Table 1.1 The number of glomeruli in each staining used in the private dataset.

Staining Training Validation Test

PAS 662 588 1092
Jones H&E 624 593 1043
Sirius Red 654 579 1049
CD34 568 598 1019
CD68 529 524 1046

PATH is a collection of five different datasets of human kidney tissue cohorts ac-
quired and digitised from three European institutions: Castilla-La Mancha’s Health-
care services (Spain), The Andalusian Health Service (Spain) and The Vilnius Uni-
versity Hospital Santaros Klinikos (Lithuania). Tissue samples were collected with
a biopsy needle having an outer diameter between 100µm and 300µm, and paraffin
blocks were prepared using tissue sections 4µm thin, then stained using PAS [18, 61].
In total, the dataset contains 47 WSIs. The slides used in this thesis were manually
annotated using the same system as for the private dataset.

Glomeruli segmentation is framed as a two-class problem: glomeruli (pixels that
belong to a glomerulus) and tissue (pixels outside a glomerulus). The training set
comprised all glomeruli from a given staining’s training patients plus seven times
more tissue (i.e. non-glomeruli) patches (to account for the variance observed in
non-glomeruli tissue). In all experiments, patches of size 512 × 512 pixels (at 40×
magnification for private dataset and 20× magnification for public dataset) are used
since glomeruli and part of the surrounding tissue fit within this size of a patch at
the level of detail used.

1.3.3 Thesis Outline

The remainder of this thesis is organised as follows (Figure 1.7 represents a con-
densed overview of the main thesis structure and contributions):

• Chapter 2 gives an extensive and systematic analysis of the literature regarding
virtual staining and stain invariant solutions based on Generative Adversarial
Networks. Several gaps are identified that are the focus of the contributions
of this thesis.

• Chapter 3 proposes, in parallel with other authors [19, 20], the use of the Cy-
cleGAN to achieve plausible stain transfer between different stains. It will be
demonstrated that such methods can significantly reduce domain shift caused
by different stains. Moreover, this chapter gives several contributions regard-
ing the critical analysis of the proposed method and identifies important lim-
itations that are raised for the first time. Some of these findings are used to
propose a new unsupervised augmentation strategy that, in a fully-supervised
training setting, has a beneficial effect on model robustness. The results of
this chapter are published in [62, 63] and partially in [64].

• Chapter 4 builds upon the findings of Chapter 3 to propose the first stain
invariant solution, which is able to generalise across multiple stains, even to
unseen stains. The results are primarily published in [64]. Moreover, this
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Figure 1.7: A visual overview of the structure and the main contributions presented
in this thesis.

chapter demonstrates the benefits of stain transfer to feature space domain
adaptation.

• Chapter 5 combines stain transfer and stain invariant segmentation into a
single, end-to-end trainable model. Such a model demonstrates better gen-
eralisation to unseen stains than the previously proposed solution (Chapter
4). Moreover, for the first time, it is possible to translate unseen stains and
perform stain normalisation and stain translation in a single forward pass of
the model. These properties are exploited to generate the first artificially cre-
ated, fully annotated kidney pathology dataset. The results of this chapter
are under review [65].

• Chapter 6 gives the conclusions of the research presented in this thesis, and
future research directions are identified.



Chapter 2
Related Work

With the introduction of whole-slide scanners, the amount of digitalised histological
data has been dramatically increasing, which opens up the potential for automated
analysis. However, a deep learning model’s sensitivity to domain shift and the gen-
eral scarcity of annotations in digital histopathology pose an important challenge
to their effective application in the field. As previously mentioned in Section 1.1.1,
a standard histological analysis needs to deal with the variation of a sample’s ap-
pearance that occurs due to differences in tissue preparation and staining protocol.
Therefore, two main sources of variation can be identified — intra-stain variation,
which is the variation in the appearance of the same staining (e.g. due to differ-
ent laboratory procedures), and inter-stain variation, which is the variation in the
appearance of different stainings, as illustrated in Figure 2.1.

Most deep learning-based algorithms are sensitive to domain shift [9, 66], which
is, in the context of digital histopathology, introduced by both inter-stain and intra-
stain variation. For example, it is likely that models trained for a specific task on
histological images of stain A exhibit a drop in performance when applied (for the
same task) to histological images of stain B [17, 67, 68] or a variation of stain A

(e.g. images from other laboratories) [69]. Typical solutions consider either fine-
tuning existing models or training a new model for each possible variation, which
requires additional labelled data. Nevertheless, medical image datasets are often
characterised by their scarcity of annotations [70] and obtaining properly annotated
images is time-consuming and costly as expert knowledge is required [42]. Thus, ad-
dressing stain variation becomes of great importance for the successful development
and application of automated systems. The introduction of Generative Adversarial
Networks (GANs) [5] triggered an exponential growth of approaches that employ
them to tackle domain shift introduced by stain variation.

This chapter represents a review of papers that address intra-stain or inter-
stain variation problems in digital histopathology by Generative Adversarial Net-
works(GANs). To start, Section 2.1 briefly describes GAN models and architectures.
The main classes of approaches to GAN-based solutions in digital histopathology
are then identified in Section 2.2, and the subsequent sections (2.3, 2.4, 2.5) discuss
in more detail each of these approaches. A discussion regarding existing methods
is presented in Section 2.6, which leads to the identification of the main points
addressed in this thesis (Section 2.7).

15
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Figure 2.1: Stain variability: Intra-stain and inter-stain variation in the case of a
kidney dataset. Each row contains samples stained with the same stain.

2.1 Overview of Generative Adversarial Networks

Generative Adversarial Networks (GANs) [5] have gained significant attention since
their introduction in 2014. In practice, the idea of adversarial training of two neural
networks facilitates sampling from very complex data distributions, which greatly
increases the number of possible application areas. To be reminded, for a given
dataset, the Generator is optimised to generate new samples coming from the same
data distribution while the Discriminator learns to distinguish between real data
samples and those generated by the Generator. The learning of these two models is
a competitive (adversarial) game since the players’ objectives are opposite to each
other — the Discriminator aims to discriminate between the real and generated
data as best as possible; in contrast, the Generator aims to create samples that
are as close as possible to the real data. The optimal outcome of such a game is
a Nash equilibrium, where the Generator produces samples indistinguishable (from
the Discriminator’s perspective) from the real data.

Specific GAN architectures have been developed with the expansion of GAN ap-
plication areas. For example, the successful implementation by Radford et al. [73] of
convolutional neural networks (CNN) for both the generator’s and discriminator’s
architecture opens space for advancements in image synthesis applications. Involv-
ing GAN models in various tasks makes practical problems related to obtaining a
Nash equilibrium (mode collapse, vanishing/exploding gradients and convergence)
more evident. The approaches to address these issues usually involve modifying
the objective function and/or model architecture. In Figure 2.2 some of the widely
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Figure 2.2: GAN-architectures widely adopted in the field of digital histopathology.

applied GAN models are graphically represented, while Table 2.1 summarises their
objective functions and main characteristics.

The originally proposed GAN model provides unconditional generation, see Fig-
ure 2.2a, where there is no influence on the output, i.e. after training, the generated
data are randomly sampled from the distribution that the generator learnt to ap-
proximate. Initially, the model used binary-cross entropy as the discriminator’s loss,
approximating the Jensen-Shannon divergence between the real and generated data
distributions [5]. However, commonly reported issues associated with this loss are
mode collapse, instability and uninformative loss values. Thus, there are multiple
GAN variants that try to overcome these limitations. For example, Arjovsky et al.
[74] propose a new cost function that measures the Wasserstein distance between
real and generated data distributions. This distance metric has better theoretical
properties than Jensen–Shannon divergence and widely reduces the probability of
mode-collapse. Although the landscape of different GAN cost functions used in the
literature grows daily, there is little evidence that one function is always better than
another [75]. Consequently, there is no golden rule regarding the choice of objective
function since each has its downsides. A recent review has studied the different cost
functions in more detail [52].

Contrarily to the original GAN formulation, which does not allow control over
the generation process, Mirza and Osindero [71] propose the Conditional GAN
model, see Figure 2.2b. By providing additional input (e.g. class information) to
both the generator and discriminator, control over the generation process is enabled,
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Table 2.1 Different GAN architectures with corresponding objective functions.

Architecture Objective function Remark

GAN [5] LGAN(G,D) = Ex∼pdata
[logD(x)] + Ez∼pz [log (1−D(G(z)))]

Unconditional
generation.

CGAN [71] LcGAN(G,D) =
Ex∼pdata

[logD(x|y)] + Ez∼pz [log (1−D(G(z|y)))]

Conditional gen-
eration.

pix2pix [72] Lpix2pix(G,D) = LcGAN (G,D) + wLL1(G)

Supervised
image-to-image
translation

CycleGAN [12] Lcyc(GAB , DB , GBA, DA) =
Ladv(GAB , DB) + Ladv(GBA, DA) + wLcyc(GAB , GBA)

Unsupervised
image-to-image
translation

StarGAN [14] LStar(G,D) = Ladv(G,D) + wcycLcyc(G) + wclsLcls(G,D)

Unsupervised
multi-domain
image-to-image
translation.

e.g. by providing a class label, a random sample from a given class is generated. The
additional input can represent any information such as a data label, an image at-
tribute, or an image itself. Conditioning opens possibilities for different applications
such as image-to-image translation [72], super-resolution and [76], image inpainting
[77]. Some particularly interesting application areas are image-to-image translations.

Image-to-image translation can be defined as converting an image xA from do-
main A into an image x̂B in the domain B, taking the style of the domain B and
preserving the content of image xA. Conditional adversarial networks are widely
adopted for this purpose, where pix2pix [72], CycleGAN [12], and StarGAN [14],
are pioneers and have been widely applied and extended.

The pix2pix architecture [72], given in Figure 2.2c, is an extension of Conditional
GANs with several modifications. The general idea is to enable translation between
images from a domain A to domain B in a fully-supervised setting where pairs of
translations are already known (i.e. scratched and original photo pairs). The model
contains one Generator G, which takes an image from domain A, xAr and trans-
lates it to domain B, xBg . The Discriminator distinguishes in, an adversarial man-

ner, groundtruth image pairs (xAr , x
B
r ) and pairs which contain generated images,

(xAr , x
B
g ). Additionally, since the dataset is paired, the Generator is constrained with

the L1 loss to obtain translations as close as possible to the groundtruth. Pix2pix
has inspired many works in supervised image-to-image translation [78, 79].

Contrarily to the pix2pix model which requires a paired dataset, the CycleGAN
architecture [12] enables translation in an unpaired setting (see Figure 2.2e). The
model contains two generators — GAB, which translates an image from domain A

to domain B; and GBA, which translates an image from domain B to domain A.
Generators play adversarial games with two discriminators — DA, which distin-
guishes between real images from domain A and images which are translated from
domain B; and DB, which distinguishes between real images from domain B and
images translated from domain A. To overcome the lack of supervised pairing and to
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Table 2.2 Classification of virtual staining techniques.

Virtual staining Original image Target (artificial) image

Stain unstained tissue Unstained Stained with a target stain
Stain normalisation Stained with a variant of stain A Stained with a variant of stain A
Stain transfer Stained with stain A Stained with stain B

prevent structural changes during translation, the learning is constrained by a cycle-
consistency loss. This is a requirement that the pixel-wise distance between a real
image and its cyclic reconstruction is minimal (in Figure 2.2e the distance between
xAr and xAg , and xBr and xBg , is minimised). Due to its ability to perform translations
between unpaired domains, CycleGAN has been broadly adopted in medical imag-
ing, where obtaining paired datasets is laborious (e.g. destaining an already stained
tissue) and time-consuming. Thus, the model is able to learn translations without
paired data, and this model has been extensively exploited.

CycleGAN provides bidirectional translations from domain A to domain B and
vice versa. However, in the case of translations between multiple domains, a sepa-
rate CycleGAN model needs to be trained for each pair of domains. The StarGAN
architecture [14], given in Figure 2.2d, represents a model able to perform multi-
domain translation. A specific discriminator design, which is extended with an
auxiliary domain classification task, provides a multi-domain image-to-image trans-
lation framework. Similarly to CycleGAN, the model is able to learn translations
between unpaired domains. The model contains one generator which, conditioned
on a target domain label i, transforms an image from domain j, x

j
r, to look like

coming from domain i. As with CycleGAN models, the cycle-consistency loss is
employed to prevent structural changes during translation. Several works such as
[80, 81] build upon the StarGAN idea to enable more fine-grained control over the
translation process.

2.2 GAN-Based Solutions To Stain Variation

Generative Adversarial Networks (GANs) can be used for multiple purposes in Dig-
ital Histopathology from both clinical and computer vision perspectives.

From a clinical point of view, GANs can be used to obtain virtual staining
between different stains, which is a progressively growing and significant applica-
tion area. Since the difference between histological images stained differently is not
just colour-based but also in the highlighted tissue components, multiple stainings
of the same specimen provide clinicians with different information regarding a pa-
tient’s health status. However, obtaining multiple stainings of the same specimen is
not always possible. For example, Anglade et al. [82] indicate that cancer patients
could have limited access to immunohistochemistry stainings, which are important
for accurate diagnosis, depending on the resources available in a specific laboratory.
Thus, a significant effort is invested in developing automated solutions that can ex-
ploit already stained tissue to conclude information typically obtained from multiple
stainings. Recent approaches widely explore GAN’s potential for the task of virtual
staining. The GAN’s architecture for image-to-image translation provides an effec-
tive way to obtain virtual staining — the artificial modification of a histopathological
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Figure 2.3: Illustration of the differences between intra-stain and inter-stain stan-
dardisation/augmentation approaches. Standardisation aims to normalise image ap-
pearance within one stain (intra-stain, here PAS) or between different stains (inter-
stain). Augmentation approaches aim to increase data variability by simulating a
wide range of possible image appearances.

image’s appearance after its acquisition.
The final result of virtual staining approaches is visible as a histological image.

Therefore, the pathologist can inspect it, which is an important consideration in
medical imaging. Three main classes of such methods can be identified, as sum-
marised in Table 2.2. The first class of approaches try to skip the physical staining
process by enabling virtual staining of unstained tissue. The second class attempts
to change the appearance of an image originally stained by stain A to look like as it
had been stained by stain B. Depending on the relation between stain A and stain
B, two types of such virtual staining can be identified. If stain A and B are the
same stainings and the difference comes from intra-stain variation, the virtual stain-
ing process is referred to as stain normalisation. The process is referred to as stain
transfer if the stains A and B are two different stainings. The difference between
stain transfer and stain normalisation is also represented in Figure 2.3a and Figure
2.3b. Thus, stain normalisation methods can be considered a special case of stain
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transfer. Sometimes, virtual staining and stain transfer are terms which are used
interchangeably. However, for the remainder of this thesis the term stain transfer
will refer to a virtual (re)staining where original and target stains are different.

Regardless of the diagnostically different information provided in various stain-
ings, pathologists can detect the same tissue structures across multiple stainings,
even though composing parts are highlighted differently in each. For example, as
previously illustrated in Figure 2.3, glomeruli structures are observed in multiple
stainings of kidney pathology. Being able to automatically detect such common
structures across different stainings can be beneficial as it provides additional in-
formation during diagnosis, e.g. the distribution of immune cells around glomeruli
[39]. However, from the computer-science point of view, stain variation can be re-
garded as a source of domain shift, representing an obstacle to the development of
automated solutions. Generative Adversarial Networks (GANs) can be employed to
reduce the domain shift in both pixel-space and feature space. Pixel-space adapta-
tion is usually performed by virtual staining methods. Feature space adaptation is
commonly inspired by adversarial learning and usually requires specifically designed
GAN architectures. Each of these approaches will be discussed in the following.

Virtual staining for pixel-space adaptation is mainly used in two manners: stan-
dardisation, i.e. the reduction of a model’s input variation and augmentation, i.e.
the expansion of the model’s input variation. Standardisation approaches aim to
unify a model’s input appearance. This can be achieved by modifying the properties
of a target image in order to match the characteristics of images used during the
model’s training (source images), e.g. models trained on the source domain can be
applied to the modified target images. This direction is illustrated in Figure 2.3.
Conversely, the annotated domain can be translated to match the unannotated (in
a way that annotations are preserved), which enables the training of a model on
the transformed source images, and the resulting model is directly applicable in the
target domain. Contrarily, augmentation-based approaches employ virtual staining
to obtain more robust models by expanding the variation of the model’s input space.
That is the opposite direction of the illustrated in Figure 2.3.

When GANs are employed to reduce domain shift in feature space, the adapta-
tion is performed by forcing feature-space alignment of the source and target data.
The assumption is that if task-specific learning is based on domain invariant features,
the model should be able to generalise across multiple domains (stains). Tradition-
ally, feature-space-based methods explicitly impose feature distribution alignment
via statistical measures such as Maximum mean discrepancy (MMD) [83, 84]. More
detailed information about such methods can be found in [9, 85]. With the intro-
duction of Generative Adversarial Networks, the state-of-the-art domain adaptation
methods rely more on implicit feature distribution matching imposed by adver-
sarial learning (see Figure 2.4). The task-related model is divided into a feature
extractor and a task-specific module (e.g. classification, segmentation). On top of
the feature extractor, the discriminator is attached with the aim of distinguishing
the distributions of features from the annotated and unannotated stains (the top
part of Figure 2.4). A feature representation is considered to be domain-invariant
if features extracted from both domains follow the same distribution [86], i.e. the
discriminator cannot predict the domain from which the samples originate. Suppose
a task-related model is trained on a stain invariant feature representation extracted
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Figure 2.4: Feature-space domain adaptation approaches reduce domain shift in
feature space, forcing a model to extract stain-invariant features.

from such feature extractor. In that case, it is expected that the model generalises
to a target domain since features from both domains are indistinguishable (from
the discriminator’s perspective). During the training, usually, both source (anno-
tated) and target (unannotated) data are passed through the feature extractor and
discriminator, while only source data is passed to the task-specific (segmentation,
classification, etc.) branch. The discriminator and feature extractor play an adver-
sarial game that eventually leads to feature-space alignment between the source and
target data (bottom part of Figure 2.4).

2.3 GANs for Staining Unstained Tissue

Obtaining histochemical staining of a specimen usually involves an irreversible mul-
tistep procedure which is destructive to the specimen. Thus, enabling diagnostically
relevant virtual staining where the laborious and prone to variation staining pro-
cess is bypassed can have great benefits. Table 2.3 summarises the representative
GAN-based solutions for this task.

The proof-of-concept approach, which confirms that GANs can perform such a
task, is done by Bayramoglu et al. [59] where unstained hyperspectral lung tissue
images were converted into H&E staining using conditional GANs. Later, the stain-
ing process is bypassed by employing GANs to translate from an autofluorescence
image of unstained tissue to a virtually stained histological image in multiple stain-
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Table 2.3 GAN-based approaches to virtual staining of unstained tissue.

Source image Representative
work(s)

GAN model Target Stain

Hyperspectral Bayramoglu
et al. 2017[59]

CGAN H&E

Autofluorescence

Rivenson
et al. 2019[32]

GAN model Multiple

Zhang
et al. 2020[87]

CGAN Multiple

Liu et al. 2022[88] DIRT [89] Multiple
Dimitrakopoulos
et al. 2020[90]

Markov Random Field
loss + GAN

Multiple

Unstained
Rana
et al. 2020[91]

pix2pix H&E

Li et al. 2020[92] pix2pix, StarGAN H&E

ings [32, 87]. Following this line of research, other approaches also use GANs to
translate microscopic images of unstained tissue to multiple stainings [91–93].

Existing approaches mainly rely on paired datasets to learn translations as ac-
curate as possible. Obtaining a high-quality dataset usually involves a non-trivial
slide registration task. Experts (experienced pathologists) are commonly involved in
validating the obtained results [91]. The conclusions are relatively optimistic about
the potential of GAN-based methods in these application areas. By bypassing the
histological process, the problems arising from both inter and intra-stain variation
can be reduced. Thus, multiple fields of digital histopathology can benefit from
advances in these methods. However, current studies focus on the widely used H&E
staining and/or particular tissue/disease. In order to make a universal virtual stain-
ing approach, there is a considerable consensus in the field that large-scale clinical
studies need to be conducted to ensure the suitability and clinical applicability of
proposed solutions [32, 87]. Moreover, using deep models in this context addition-
ally raises the essential question of interpretability and explainability, which are so
far rarely considered.

2.4 GANs for Stain Normalisation

Histopathological images of the same stain and tissue can take on a very different
appearance due to variations in any of the multiple steps involved in the process
of tissue preparation and staining. In Figure 2.1 such an effect can be observed
row-wise, while the inter-PAS variation is presented in more detail in Figure 2.3b.
It is known that such intra-stain variations can increase inter-observer disagreement
[124, 125] and that it is also harmful to automatic analysis [8].

Historically, stain normalisation methods aim to standardise an image’s appear-
ance to match a selected reference image. The main principle is stain decomposition,
where the image is represented by its stain concentration and stain colour matri-
ces, which are further adjusted according to the reference image [126–130]. More
recent approaches use machine learning or deep learning strategies to standardise
image appearance [131, 132]. However, the outcome of these methods is known to
be highly sensitive to the choice of reference image [106].
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Table 2.4 GAN-based approaches to reduce the effects of intra-stain variation.
Approach Representative work(s) Considered

stains

standardisation
CycleGAN StainGAN [94] H&E

CycleGAN - modif. Trans-Net [95] H&E
de Bel et al. [96] PAS
Residual CycleGAN de Bel et al. [97] H&E,PAS

CycleGAN - extension StainNet [98] (distillation learning) H&E
SAASN [99] (attention) H&E
Mahapatra et al. [100] (self-supervsion) H&E
Ke et al. [101] (contrastive learning) H&E

InfoGAN Zanjani et al. [102] H&E
Zanjani et al. [103] H&E

pix2pix STST [104] H&E

CustomGAN (style transfer) Nishar et al. [105] H&E
(auxiliary task) BenTaieb and Hamarneh [106] H&E
(auxiliary task) Liang et al. [107] H&E
(feature disentanglement) Moghadam et al. [108] H&E
SA-GAN [109] H&E

StarGAN - extension MultiPathGAN [110] H&E

augmentation
DIRT++ HistAuGAN [111] H&E

Conditional GAN HistoGAN [112] H&E
Li et al. [113] H&E
Histology CGAN [114] H&E

Custom GAN SDAE-GAN [115] IHC

CycleGAN Tsirikoglou et al. [116] H&E

Progressive GAN Levine et al. [117] H&E

feature-space adaptation
DANN Lafarge et al. [118] H&E

Hashimoto et al. [119] H&E
Graziani et al. [120] H&E
Marini et al. [121] H&E
DA RetinaNet [122] H&E

ADDA Ren et al. [123] H&E

Nowadays, GAN-based solutions are widely applied for stain normalisation. The
majority of approaches consider stain normalisation as a problem of image-to-image
translation, where standardisation and an augmentation-based group of approaches
can be identified. Moreover, some authors consider stain normalisation as a domain
adaptation problem, which forms the third group of adversarial domain adaptation-
based approaches. The representative works from each group are summarised in
Table 2.4 and will be discussed in the following.

Standardisation approaches: Image-to-image translation methods are usu-
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ally employed in the context where one domain represents samples from a reference
staining, and the other domain is translated to match the reference domain’s char-
acteristics. Some authors simulate paired datasets by discarding colour information
(e.g. by using a greyscale image version or extracting a haematoxylin channel from
the image) in order to employ image-to-image translations models such as pix2pix
[72]. For example, Salehi and Chalechale [104] directly employ the pix2pix model
while other authors design a specific GAN architecture [133, 134]. However, this
might be an oversimplification of the problem, as discarding a majority of the colour
information can also eliminate relevant diagnostic details [106, 108]. Thus, plenty
of works adapt the idea of unpaired image-to-image translation methods, such as
CycleGAN [12] since it does not require paired datasets.

StainGAN [94] is one of the first applications of the CycleGAN for stain normal-
isation, which shows superiour results to several classical approaches [126–128, 131].
Moreover, other works such as [95, 96] attest that modifications to the CycleGAN
model’s architecture or loss function could be beneficial in a given experimental
setting. Generally, modification of the architecture or training strategy seems to
have a significant effect on stain normalisation as several papers report an increase
in performance compared to the original architecture by adjusting such parameters
[96]. Plenty of works make modifications to the original CycleGAN, such as the loss
function [94] or the architectural design, such as using a UNet [97] or a ResNet [94]
generator. All of these modifications can lead to a final model that is large and
therefore slow. Thus, Kang et al. [98] proposed the StainNet, based on distillation
learning, to simplify the stain normalisation model and to make inference faster.

However, such an unpaired translation process can negatively affect the diagnos-
tic quality of translations as the model is not constrained to keep such important
information. Therefore, these models are extended with additional modules to en-
hance the translation process. For example, mechanisms such as self-attention [99]
or self-supervised modules [100, 101] have been added.

CycleGAN-based models learn a mapping in two directions, although only one
is usually used after training. Moreover, Moghadam et al. [108] criticise the use of
such architectures since they could be prone to colour and structure alternation. As
a result, specific GAN architectures have been developed to obtain better transla-
tions. Moghadam et al. [108] propose two solutions based on Garcia et al.’s model
and StarGAN [14] to disentangle colour and structural features during the trans-
lation process. BenTaieb and Hamarneh [106] incorporate stain normalisation into
a task-specific adversarial end-to-end framework. Furthermore, Liang et al. [107]
propose a specific GAN architecture for normalising H&E images for the task of
tumour classification where learning is guided by an auxiliary (pre-trained) classi-
fier and specific losses are proposed in order to ensure that structural information is
preserved. Nishar et al. [105] extended the idea of neural style transfer [135] with ad-
versarial training to obtain stain normalisation. Zanjani et al. [102] adapt the idea
of InfoGAN [136] to propose a framework for H&E stain normalisation. Kausar
et al. [109] propose a new GAN architecture where two discriminators control stain
normalisation to ensure correct colour translation and structure preservation.

Augmentation approaches: Some works try to overcome the need for nor-
malisation by switching focus to learning a model robust to intra-stain variation.
Traditional approaches are based on extensive stain-specific colour augmentation
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[137–139]. For example, Tellez et al. [137] propose a specific H&E stain augmenta-
tion strategy based on deconvolution which artificially modifies the concentrations of
haematoxylin and eosin in an image, generating a broad range of realistic H&E im-
ages. The idea of augmentation based on stain separation is further used by Faryna
et al. [138] to adapt the RandAugment [140] technique for digital histopathology; or
by Chang et al. [139] to propose the mix-up stain augmentation strategy. Moreover,
Yamashita et al. [141] found that medically irrelevant style transfer used for augmen-
tation is beneficial for a deep learning model’s robustness. Recently, augmentation
approaches have also been based on GANs [111–113, 115–117, 142] where their abil-
ity to generate high fidelity samples is used to augment a training set. Some meth-
ods [111, 113, 117] directly use generated samples for augmentation, while other
approaches, such as [112, 142], consider that all virtually stained images are not
equally beneficial for learning; thus they propose a specific schema to selectively use
synthetic images for augmentation.

Adversarial domain adaptation: Attempts to reduce intra-stain variation in
feature space via adversarial domain adaptation are also widely considered in the
literature [118, 120, 121, 123, 143–145]. It is usually assumed that some annotated
data are available, i.e. the source domain is annotated, while other stain variations
are unannotated, i.e. the target domains. To be reminded, the basic model’s archi-
tecture often contains a feature extractor, a task-specific branch trained on top of it
using source data only, and a domain discriminator aiming to distinguish between
the representations extracted by the feature extractor from the source and target
domains. The discriminator is adversarially trained with a feature extractor to en-
sure that the domains from which the features originate are indistinguishable. The
adversarial training is usually based on DANN [146] or ADDA [147] approaches.
Frequently, even the basic models, sometimes adjusted to a specific architecture of
feature extractor and discriminator, can already achieve satisfactory results, e.g. a
solution based on the DANN approach [146] is used as a reference algorithm for
the Mitosis Domain Generalisation Challenge 2021 [122]. Moreover, such ideas of
adversarial training are also extended in the field of digital histopathology in several
ways. For example, Hashimoto et al. [119] incorporated adversarial training with
multi-scale multi-instance learning, while Graziani et al. [120] extended adversar-
ial training with user-defined desired/undesired control targets. Although the final
model in many of these approaches is still sensitive to stain variations not seen during
training [138], the model trained in such a way, in a specific experimental design, can
generalise better compared to standardisation and colour augmentation approaches
[123]. Nevertheless, the conclusion can be different in different application areas,
e.g. different tissues or tasks [118]. Thus, having a combination of adversarial train-
ing with stain normalisation or adversarial training with augmentation can have
different effects on the model’s robustness, depending on the task/tissue at hand.

2.5 GANs for Stain Transfer

One of the greatest challenges when performing stain transfer remains the availabil-
ity of high-quality datasets. Therefore, it is not surprising that recent advances in
stain transfer widely explore the potential of GANs. Two main groups of meth-
ods can be identified — methods that just aim to obtain a stain transfer between
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different stainings without considering the reduction of domain shift introduced by
intra-stain variation; and a group of methods that exploit stain transfer to reduce do-
main shift. The latter group can be subdivided into approaches that aim to develop
a stain invariant model and those that result in a stain-specific model but provide
a mechanism for them to be applied to other stains. The Table 2.5 summarises the
most representative works for each category.

Stain-transfer oriented approaches: Several methods employ GANs-based stain
transfer to obtain a virtual specimen having the appearance of multiple stains. The
first attempts employ well-established GAN-based architectures to obtain the trans-
fer. For example, Lahiani et al. [149] show that CycleGANs are able to translate
between two immunohistochemical stainings; however, stain-specific expressions can
be affected by the translation, which could interfere with diagnosis. Nevertheless, Lo
et al. [155] have shown that in renal pathology the participating experts were unable
to differentiate between real and CycleGAN-artificially produced microscopic kidney
biopsy images, which confirms the visual plausibility of the obtained stain transfer.
Similarly, an extensive Turing test study has been performed for liver pathology
[163], which supports the visual plausibility of virtually stained images and even
shows potential clinical application. Other approaches build on these findings to
enhance the translation process, e.g. Lahiani et al. [164] incorporate a perceptual
embedding loss function in the CycleGAN model to learn image embeddings that
are less sensitive to colour, brightness and contrast variations in the input image.
Several authors condition CycleGAN translations [151, 152] to force the preservation
of diagnostically-relevant information. On the same line, Liu et al. [150] build upon
the idea of CycleGAN to propose an architecture and training schema that ensures
pathology consistency during the translation process. Nevertheless, Levy et al. [153]
report superior results of pix2pix stain transfer compared to CycleGAN when virtu-
ally stained samples are used to identify melanocytic tissue in the subjective study
involving both experts and non-experts. The recent work by de Haan et al. [58]
show that their developed GAN-based framework is able to transform H&E samples
into multiple special stains. Additionally, the study shows an improved diagnosis of
several kidney diseases, which is promising for the potential clinical applications of
these methods.

Stain-transfer for improving deep models: Bulten and Litjens [160] exploit
the idea of adversarial training to propose an adversarial autoencoder able to per-
form unsupervised cancer detection. Recent approaches usually take advantage
of well-established GAN-based architectures for image-to-image translation. Thus,
Mercan et al. [156] demonstrated that synthetic images generated by a CycleGAN
could be used to train deep models for mitosis detection and were able to obtain
similar performance as when real samples are used. In parallel with work presented
in Chapter 3 of this thesis, Gadermayr et al. [20] demonstrated for the case of mul-
tiple stainings that CycleGAN translations are able to effectively reduce domain
shift introduced by inter-stain variation in kidney pathology. The proposed frame-
works enable the application of stain-specific segmentation models to other stains
by translating them to the source stain using CycleGAN models at test time. How-
ever, it is also noted that some translation directions are harder than others, and
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Table 2.5 GAN-based approaches to reduce the effect of inter-stain variation.

Approach Representative
work(s)

Considered stains Transfer Di-
rection

Stain Transfer
CustumGAN de Haan et al. [58] H&E, PAS, Masson’s

Trichrome, Jones silver
H&E to others

UMDST [148] H&E, MAS, PAS,
PASM

multi-domain

CycleGAN Lahiani et al. [149] FAP-CK, Ki67-CD8 Ki67-CD8 to
FAP-CK

CycleGAN - extension PC-StainGAN
[150]

H&E, Ki-67 H&E to Ki-67

Xu et al. [151] H&E, Ki-67 H&E to Ki-67
cCGAN [152] H&E, CK19/CK18 Bidirectional

pix2pix Levy et al. [153] H&E, Trichrome stains H&E to
Trichrome
stains

DANN Koga et al. [154] H&E, CD20 CD20 to H&E

Better deep models

stain specific-model
CycleGAN MDS, MDU [20] PAS, AFOG, CD31,

Col3
PAS to others,
others to PAS

Lo et al. [155] H&E, PAS, Masson’s
Trichrome, Silver

H&E to others

Mercan et al. [156] H&E, PHH3 Bidirectional

CycleGAN-extension DASGAN [157] CK, PD-L1 CK to PD-L1
Bouteldja et al.
[158]

PAS, CD31, aSMA,
Col3, NGAL

others to PAS

Xing et al. [159] H&E, Ki-67 Bidirectional
stain transfer

adversarial training CAAE [160] H&E, CK8/18+P63 H&E to other

stain invariant-model
CycleGAN UDA-GAN [64] PAS, H&E, Jones

H&E, Sirius Red,
CD68, CD34, CD3

PAS to others

adversarial training SDA-sed, UDA-sed
[161]

PASM, Masson PASM to Mas-
son

DAPNet [162] H&E, DAB-H Bidirectional

consequently, domain shift reduction is stain-dependent. Similarly, Lo et al. [155]
apply CycleGAN translation to obtain multi-stain glomeruli detection, while Wu
et al. [165] propose fine-tuning a CycleGAN generator using a classification net-
work. Moreover, Xing et al. [159] extend CycleGAN models with a task-specific
module to enhance the translation process and obtain better nucleus quantification.
In a similar manner, Kapil et al. [157] extend the CycleGAN model with an auxiliary
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segmentation task while Bouteldja et al. [158] incorporate a pre-trained segmenta-
tion network to regularise CycleGAN training. Furthermore, this thesis in Chapter 4
proposes a combination of CycleGAN-based stain transfer and feature-space domain
adaptation, which significantly enhances the adaptation process.

However, all of the previously mentioned methods tackle stain-specific models.
Another line of research tries to build stain invariant solutions. From a computer-
vision viewpoint, a stain invariant solution for a specific task can be obtained in a
supervised manner by training a model on all available stains. However, obtaining
annotations for each case is unfeasible. Thus, the primary constraint of obtaining a
stain invariant solution is the limited amount of available annotations. Traditional
methods use the standard practice in digital histopathology of staining consecutive
slides differently. One of the slides is fully annotated by experts, while annotations
in consecutive slides are obtained by mapping (registering) the annotated slide to
the unannotated slides [68, 166]. Approaches that depend on consecutive slides are
usually case-specific. Since they rely on a stain-specific source model, they are not
applicable in the general case where the source slide’s stain may vary. Alternative
approaches exploit adversarial learning to obtain robust models. Mei et al. [161]
build a specific GAN architecture for glomeruli segmentation in two different stains.
Hou et al. [162] enhance adversarial training by using two discriminators that ad-
versarially align features on different scales. This thesis in Chapter 4 demonstrates
that feature space adaptation for particular inter-stain variation can result in a
model able to segment in two stainings. The main drawback of such approaches
is that the resulting feature extractor is biased toward domains seen during train-
ing. Therefore, the model is likely to fail when applied to stains not seen during
training. Alternatively, inspired by the success of augmentation approaches for
reducing intra-stain variation [106, 167], augmentation-based solutions for stain-
invariant models are proposed [17, 64]. In this context, image manipulations, such
as scaling, rotation, adding Gaussian noise or blurring, are particularly beneficial
for increasing the robustness of deep learning models to stain variation [69]. More-
over, geometrical modifications to an image, such as elastic distortion, are helpful
when limited data is available [168]. However, the nature of these augmentations
can be regarded as too linear and an oversimplification of the variations that occur
in the natural staining process [97]. Augmentation based on visually unconvincing
virtual staining can have limited success [17] and GAN-based stain transfer, being
able to obtain visually plausible images, can be highly effective as an augmentation
strategy. This thesis in Chapter 4 (publication [64]) shows that CycleGAN-based
translations used to augment the annotated dataset result in a robust model that
works across several stainings, even those unseen during training. Additionally,
in Chapter 5 (publication [65]), this thesis demonstrates that diverse translations
(contrary to a deterministic offered by CycleGAN models) can furthermore improve
the model’s robustness. Contrarily to such augmentation approaches that result
in (empirically) stain invariant models, alternative approaches exploit GAN-based
stain transfer to integrate information from multiple stainings in order to enhance
segmentation [41], or classification [165] performances. Although such approaches
may also lead to stain invariant models that can generalise to unseen stains, the
benefits of such methods are justified only in a particular experimental setting.
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2.6 Discussion: Virtual Staining Perspectives

Two main areas of virtual staining application have been identified — increasing
the diagnostic quality of the available histological data and building better deep
learning-based solutions. Each of these aspects will be discussed separately.

2.6.1 Diagnostic Applicability

As pointed out by Van der Laak et al. [23], very few deep learning-based solutions
reach the clinical application. When it comes to virtual staining, it can be expected
that this number is even smaller.

One of the greatest challenges when generating artificial histological images is
their evaluation in terms of plausibility and clinical quality. Contrarily to natural
images, medical images have a more complex structure and details can have more
significant meaning; therefore, important diagnostic information can be easily over-
looked. As such, these types of approaches can only be applied in areas in which
such changes are acceptable. Suppose the diagnostic purpose is the detection (e.g.
counting) of morphologically consistent structures that are visible across multiple
stain variations (such as glomeruli in case of kidney pathology). In that case, several
GAN-based models can be used, among which the CycleGAN is the most common.
In terms of visual plausibility, CycleGAN is robust to different architectural changes,
as demonstrated in Chapter 3 (publication [63]) and also suitable for various task-
related extensions, as attested by the numerous publications that modify it. Due to
its limited capacity, the model preserves the shape and position of the global struc-
tures present in the image. However, as discussed in Chapter 3 (publication [62])
the model is able to change the appearance of stain-specific markers, which could
interfere with a final diagnosis. From this perspective, some diagnostic applications
are safe, e.g. glomeruli detection, counting or classification, but not recommended if
the decision depends on cell position, which could be perturbed during the transla-
tion process. When the task at hand concerns specific structures/cell populations,
task-related GAN-based methods can be more effective [111, 150].

Although the majority of GAN-based approaches consider virtual staining as a
style transfer problem, the application of such approaches to the medical domain
opens questions that go beyond the typical use of style transfer in natural images.
Specifically, it is essential to address the possibility of misinterpretation of the images
produced by GAN-based models in the medical domain [97, 156, 169]. The study
of Xu et al. [152] gives an interesting perspective regarding the differences in the
evaluation performed by medical experts (e.g. pathologists) and non-experts (e.g.
computer vision researchers) — the medical experts were able to better notice errors
in virtual staining compared to non-experts, to whom, virtually stained images look
almost indistinguishable to real. Such findings additionally raise the importance of
experts in the loop when developing and assessing the virtual staining methods.

Nevertheless, apart from diagnostically perturbed information, which trained
experts can spot, GAN-based methods can produce human-imperceptible artefacts
[62, 156, 158]. In Chapter 3 of this thesis (publication [62]) is shown that in the case
of virtual staining between histochemical and immunohistochemical stainings, the
translation could contain information embedded as imperceptible noise that encodes
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the position of stain-specific markers. Moreover, this information can be perturbed
in a way to vary the position and number of such markers in a plausible output
image. This is just one type of hallucination for which it is known that GAN-based
solutions in the medical domain are prone to [97, 156, 169] and it is possible that
others are not yet known. These findings indicate that assessing the quality of
translations using visual inspection, a widely adopted strategy in the field could be
ill-advised.

Despite the success of the previously mentioned methods to achieve plausible
virtual staining, it is important to note that the obtained translations cannot yet
replace the real staining process. Stain transfer can affect the appearance of im-
portant diagnostic evaluation criteria, and thus, so far, artificially generated images
cannot be truly relied upon for diagnosis purposes.

2.6.2 Effects on Deep Learning Models

Virtual staining has a wide application area in making better deep models. Most
approaches in the literature consider stain variation as a domain shift that can be
reduced in pixel space by virtual staining. The most frequent manner is to virtually
re-stain the target stain (usually unannotated) during test time to look like it origi-
nates from the annotated domain on which the deep model is trained. Alternatively,
virtual staining is used to build target stain-specific models by transforming the an-
notated domain to look like the unannotated target data during train time. Invariant
approaches, able to work across multiple stains or stain variations, are considerably
less studied. Such approaches usually rely on well-established GAN architectures,
among which CycleGAN and pix2pix models are mostly adopted. However, due to
its ability to work on unpaired datasets, CycleGAN-based approaches are predomi-
nant (see Table 2.5 and Table 2.4), despite the fact that the pix2pix model obtains
biologically more justifiable translations [153, 156]. Although the original version
of both architectures is already successful in many cases [19, 94, 104, 156], recent
advances indicate that guiding learning by task-related modules (e.g. classification
or segmentation networks) [157, 159] can have a positive effect on virtual staining
and the underlying task at hand. These ideas are also extended by self-supervised
and attention models [99–101].

Although many approaches rely on CycleGAN, there is little evidence and dis-
cussion about its limitations when applied to digital histopathology. A particularly
significant concern, also raised by this thesis in Chapter 3, is hallucination effects
[62, 150, 156], which can impact the performance of the underlying deep learning-
based solution. As previously mentioned, it is known that CycleGAN-based models
can introduce imperceptible noise during translations, which in specific contexts can
be regarded as adversarial noise [63]. Recent attempts [158] try to isolate such noise
from the translation; however, the obtained results suggest that some noise may still
be present.

Most of the literature considers the problem of intra-stain variation, in which
the H&E staining and its variation between different scanners or sites are mainly
studied. Inter-stain variation is considerably less studied and rarely covers more
than two stainings. This could be attributed to the lack of high-quality datasets.
Due to privacy concerns, data are rarely publicly available, except for datasets
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specifically released for public competitions. However, such data are usually related
to specific tissue types or diseases, e.g. currently, cancer research is expanding, and
thus the majority of available data collections contain H&E-staining samples. This
could significantly shape the research advances towards specific studies [3] and could
contribute to the scarcity of research related to other stainings and applications.

2.7 Conclusions and Research Opportunities

The general scarcity of annotation in digital histopathology and considerable sample
variation introduced by the staining process pose an important challenge for deep
learning-based solutions. Generative adversarial networks significantly contribute
to the alleviation of these problems and open new application areas. GAN-based
solutions used for virtual staining, under specific constraints and to some extent,
enable the avoidance of the physical staining process. Extensive research has been
made to exploit GAN-based stain transfer for more robust deep learning models,
resulting in more accurate solutions. However, it also brings additional problems
that open new research perspectives.

The primary challenge is how to assess the quality of the obtained translations.
As attested in the literature, GAN-based solutions are able to obtain visually plau-
sible results, but this is not sufficient to overcome the limitations that deep models
face in practice. Chapter 3 (publication [63]) confirms this through extensive exper-
iments that raise the importance of developing methods that are able to assess the
usability of the obtained virtual staining. The first steps in this direction have been
made by Nisar et al. [170].

Additionally, there is a noticeable lack of multi-domain stain transfer methods
in the literature. This thesis fills the gap by 1) proposing the use of the StarGAN
model in Chapter 3; and by introducing the HistoStarGAN model in Chapter 5, an
end-to-end trainable framework for multi-domain stain transfer and stain invariant
segmentation.

Furthermore, stain-invariant solutions are rare in the literature. The first such
solution is proposed in Chapter 4 (publication [64]), and it is also the first to demon-
strate generalisation across unseen stains. Additionally, a new model is introduced
in Chapter 5 (publication [65]) that significantly improves stain invariance.

Moreover, a model proposed in Chapter 5 of this thesis (publication [65]) is
able to generate vast collections of (artificial) multi-stain fully-annotated kidney
pathology data, which will be realised for future use in the community upon valida-
tion by pathologists. Considering the general lack of annotated datasets in digital
histopathology, this collection can contribute to kidney pathology research. Addi-
tionally, the proposed solution is general and has the potential to be extended for
other applications, which can lead to the generation of diverse artificially-created
datasets.



Chapter 3
Stain Transfer

Digital histopathology has become a rich area of innovation in both clinical appli-
cation and research, where deep learning-based solutions achieve remarkable results
[22]. However, nowadays, many state-of-the-art deep learning methods are data-
hungry approaches which require huge collections of annotated data to be trained.
Nevertheless, collecting medical data falls under strict law regulations, while obtain-
ing high-quality annotations can be effectively performed only by trained experts
[42]. All of that poses important constraints for the development of automated solu-
tions. Moreover, already available data and annotations can be reused with limited
success since the differences in tissue preparation and staining protocol highly affect
the result of the staining process [7]. Figure 3.1 illustrates the result of staining
kidney tissue sections using three different staining protocols. Since each staining
provides specific information about the underlying tissue, general structures visible
under multiple stains appear differently, e.g. glomeruli in the red circle in Figure
3.1. These differences represent a source of domain shift [9, 66] and therefore af-
fect automatic systems [8, 19, 69]. Thus, exploring ways to address such variation
becomes essential for successfully developing and applying automated systems.

One way to deal with stain variation is stain transfer — artificially changing the
appearance of an image after its acquisition. The aim is to change the appearance
of an image stained with stain A to look like as it has been stained with stain B.
In Figure 3.1 the idea of stain transfer is illustrated by blue arrows on the right
side of the image. The resulting B-stain like images are artificially generated and
can be used, from a computer vision perspective, to reduce the domain shift and/or
make models more robust to the stain variation. The hypothesis is that if stain
transfer achieves visually convincing results, translations should be able to reduce
domain shift between different stainings, e.g. deep models trained on real images
from staining B should be able to extract similar features from B-stain-like images
(translations from stain A).

This chapter investigates GAN-based methods for achieving stain transfer. In
the Section 3.1 the scope and aims of the transfer are given. Section 3.2 proposes two
GAN-based image-to-image stain transfer methods. Although these solutions have

4The images used for this illustration come from consecutive slides of the same kidney tissue.
Thus, they largely represent the same anatomical structures.
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Figure 3.1: Example of a kidney tissue stained with different stains. The same tissue
part 4appears differently in different stains, e.g. glomeruli in the red circle.

become a standard way to approach stain variation in the field of digital histopathol-
ogy, their limitations are rarely addressed. This chapter fills such gap and gives an
in-depth discussion of some of the limitations of such solutions in Section 3.4 and
Section 3.5. Furthermore, the findings presented in this chapter are used to propose
a new augmentation strategy for supervised learning in digital histopathology which
is presented in Section 3.6.

3.1 Scope and Aims

Stain transfer is considered, from a computer vision viewpoint, as a strategy to
reduce domain shift for the tasks solvable across multiple stainings. It can be for-
mulated as an image-to-image translation problem, where images stained by stain
A are transformed to look like as they have been stained by stain B in a plausible
way.

The term ‘plausible’ refers to the fact that an isolated histological image, without
knowledge of adjacent sections processed with other staining modalities and in the
absence of patient-specific information such as the underlying disease, looks visu-
ally correct to a trained expert with regard to the staining characteristics and the
morphological appearance of the tissue components.

In this context, stain transfer is a many-to-many mapping between two stainings
due to the differences in microscopic structures visible under different stains, as il-
lustrated in Figure 3.2. The cardinality of these mappings primarily depends on the
biological differences between stains, which particularly holds for translations be-
tween different groups of stainings. For example, immunohistochemistry stain CD68
marks a protein exclusively produced by macrophages while PAS, as a chemical re-
action staining glycosylated proteins in general, can only highlight some parts of
macrophages (co-located but not overlapping with CD68). During translation from
PAS to CD68, there is no information about exact macrophage positions, and thus,
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PAS Some plausible translations to CD68

Stain transfer

Figure 3.2: Illustration of many-to-many translations between PAS and CD68 — a
real PAS-stained image can be translated to CD68 in many different plausible ways,
e.g. by varying amount and position of macrophages (marked in brown).

the model is free to “invent” them as long as the overall image looks plausible (see
Figure 3.2). Although this freedom in translation is not acceptable from a medical
viewpoint (and consequently, their usage should be very limited), strictly speaking,
from the mathematical side, there could be many possible ways to translate one PAS
image into CD68 in terms of the amount and position of macrophages. Moreover,
an additional factor which increases the cardinality of translations is the multiple
variations in the staining process, such as contrast or colour intensity. Thus, an
image stained with stain A can be validly translated into multiple images in stain
B.

Defining stain transfer as a deep learning problem leads to the question of
groundtruth. In the case of transfer between different stainings (e.g. PAS and
CD68), it would be beneficial to obtain paired samples where the same image is
stained with both stainings. That way, a model can learn to perform the trans-
lation in a more biologically acceptable way. However, this procedure can be very
complicated to perform since de-staining can affect the underlying tissue and induce
additional artefacts. An alternative approach is to use consecutive slides stained
with different stains [164], but such comparisons are limited since the tissue struc-
tures vary between the slides. Thus, obtaining groundtruth for stain transfer tasks
is not straightforward, and solutions which do not require such pairings are prefer-
able. Furthermore, stain transfer considered from a computer vision viewpoint as a
domain shift reduction strategy can be effectively applied only for the tasks solvable
across multiple stainings — e.g. glomeruli segmentation as they can be observed in
multiple stainings. That imposes additional constraints on the stain transfer prob-
lem that the task-related characteristics should be persevered during the translation.

Taking all that into account, the stain transfer aims to:

1. produce plausible results, in the sense of the definition given on page 34;

2. preserve task-related characteristics;

3. be unsupervised.

Evaluating the quality of the obtained stain transfer can be made by measuring
their ability to reduce domain shift. It is important to note that this validation
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Figure 3.3: Macenko stain normalisation method used for stain transfer — first
row: original glomeruli images from corresponding stains; second row: PAS image
translated to other stains (image credits to Lampert et al. [17]).

strategy can be influenced by short-cut learning [171]. However, in the absence of
better criteria, such a technique is well-established in practice [19]. In this chapter,
it will also be used as an indication of the obtained stain transfer quality with respect
to the task of glomeruli segmentation.

3.2 GAN-Based Stain Transfer

Given two stains A and B, the goal is to obtain a transfer model that is able to
perform translation from a stain A to a stain B. In the case when B is a variation of
stain A, this approach is called stain normalisation since it standardises appearance
inside one particular stain. Historically, stain normalisation has been a wide field
of research from both the diagnostic and automated system development point-of-
view, which led to numerous classical and machine-learning-based approaches, as
illustrated in Chapter 2 of this thesis. However, when stain B is not a variation
of stain A, these approaches are not effective since the basic mechanisms on which
they rely, such as colour deconvolution and standardisation, may not be relevant.
Thus, such methods usually do not result in plausible outputs, as demonstrated
in Figure 3.3 where well-known Macenko stain normalisation [126] is applied to
translate images from PAS to other stains. The colour transfer is achieved by
deconvolving the PAS image and applying its stain concentrations to stain vectors
taken from another staining [17]. Obtaining plausible translations between different
stains becomes possible with the introduction of Generative Adversarial Networks
(GANs) [5, 53]. For the case of stain transfer, the generator can be used to modify
an image from stain A in a way that it looks like as it has been stained with stain
B such that the discriminator cannot make a differentiation between real B-stain
images and translated A-stain (B-like) images. Moreover, since the main mechanism
is distribution matching, the dataset does not necessarily need to be paired.

In the following, two such approaches will be investigated for the task of stain
transfer. Subsection 3.2.1 introduces bi-directional stain transfer by CycleGAN
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Figure 3.4: CycleGAN architecture for stain transfer.

[12], while Subsection 3.2.2 introduces multi-domain stain transfer by StarGAN
[14]. Both methods will be evaluated from the perspective of their ability to reduce
domain shift between different stain protocols in Section 3.3. Moreover, specific
properties of these methods will be discussed in Section 3.4 and limitations will be
given in Section 3.5.

3.2.1 CycleGAN for Stain Transfer

The CycleGAN [12] architecture is given in Figure 3.4. The model consists of two
generators which perform translation between stains: GAB : A → B to translate
from stain A to B and GBA : B → A to translate from stain B to A; in addition
to two discriminators DA and DB. The aim of DA is to distinguish between real
A-stain images and those translated from B-stain to A-stain; while DB aims to
distinguish between real B-stain images and those translated from the A-stain to
B-stain. These are trained using adversarial least-squared objective, such that

Ladv(GAB, DB, GBA, DA) = Es∼A[(DA(s)− 1)2] + Et∼B[DA(GBA(t))
2]

+Et∼B[(DB(t)− 1)2] + Es∼A[DB(GAB(s))
2]. (3.1)

Moreover, training is constrained by the cycle-consistency and identity cost func-
tions, which are formulated as follows:

Lcyc(GAB, GBA) = Es∼A[‖GBA(GAB(s))− s‖1]

+ Et∼B[‖GAB(GBA(t))− t‖1], (3.2)

and

Lidentity(GAB, GBA) = Es∼A[‖GBA(s)− s‖1]

+ Et∼B[‖GAB(t)− t‖1]. (3.3)

Thus, the full objective is

LCycleGAN(GAB, GBA, DA, DB) = Ladv(GAB, DB, GBA, DA)

+wcycLcyc(GAB, GBA)

+widLidentity(GAB, GBA), (3.4)
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Figure 3.5: Illustration of stain transfer obtained with CycleGAN models. The
first row contains real images from each staining. The second row represents the
translations TPAS→X of a PAS image to the target staining. The last row represents
translations TX→PAS of the real target image to the PAS staining.

where wcyc and wid control the relative importance of the cycle-consistency and
identity losses, respectively. Training details are given in the Appendix B.2.

Once trained, the CycleGAN model is able to perform translations TA→B

and TB→A between two stains A and B using the corresponding genera-
tors. The result of CycleGAN translations TPAS→X and TX→PAS , where
X ∈ {Jones H&E, Sirius Red, CD68, CD34} are given in Figure 3.5. All trans-
lations look plausible, as confirmed by pathologists.

In more detail, given an input image from stain A, generator GAB translates it
to look like stain B. The input image is the only information based on which this
generator performs the translation. At this stage, the generator could translate the
input image freely as long as the result is a plausible image in stain B. Thus, a
trivial valid translation would be to translate a given image from stain A into a single
image which looks like stain B. However, the choice of loss function and training
procedure prevents such an outcome. The cycle-consistency term forces reversibility
of the translation processes, which imposes additional constraints on the generator.
More specifically, cycle-consistency requires that the opposite generator GBA is able
to reconstruct the exact image that was input to GAB (pixel-space distance). This
imposes indirect limitations on the translation process since the opposite generator
also has a translated image from staining A as the only input, based on which it
needs to recover the original image accurately. Thus, it would be easier for both
generators to keep as much common information as possible (e.g. overall structure)
than to perform more complicated translations that need to be reversed by the
opposite generator. In practice, the architectural design and training procedure of
this method enables stain transfer in a way that the internal structures are not
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Figure 3.6: StarGAN architecture for stain transfer.

affected, e.g. glomeruli stay in the same position (shape, orientation) before and
after translation. The method is general, not related to a specific stain combination
(contrarily to methods specifically dedicated to stain normalisation), and thus it can
be applied for translation between any pair of stains.

3.2.2 StarGAN for Stain Transfer

When it comes to translations between multiple stainings, training a model to trans-
late between each pair quickly becomes impractical as the number of stains increases.
It would be beneficial to develop a single multi-domain stain transfer model, i.e. a
model capable of translating between multiple stains upon training. As the pio-
neer in multi-domain image-to-image translation, the StarGAN [14] model can be
employed to achieve such multi-domain stain transfer. The model architecture is pre-
sented in Figure 3.6. It contains one conditional generator G∗, conditioned on the do-
main label (stain), which translates an input image xi from stain i to image that have
the characteristics of stain j, xj , i.e. G∗(xi, j) → xj ; and one multi-task discrimina-
tor D∗ that simultaneously distinguishes between real and generated samples (Dadv)
and classifies each image to a domain (Dstain), i.e. D∗(x) → (Dstain(x), Dadv(x)).
The Generator G and Dadv play an adversarial game, making the Generator pro-
duce samples indistinguishable from real images. The classification branch Dstain

guides the Discriminator to recognise the real image’s domains (stain) correctly.
Regarding the Generator’s optimisation, Dstain forces it to produce fake samples
indistinguishable from real samples of that domain (stain). As such, a single dis-
criminator controls the translation to multiple stains. The overall objective function
is:

LStarGAN(G∗, D∗) = Ladv(G∗, D∗) + wcycLcyc(G∗) + wclsLcls(G∗, D∗). (3.5)

In order to obtain adversarial training stability, StarGAN [14] uses Wasserstein
objective with a gradient penalty instead of the original negative log-likelihood, so
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Figure 3.7: Illustration of stain transfer obtained with the StarGAN model. The
first row contains real images from each staining. The second row represents the
translations of a PAS image to the target staining. The last row represents the
translation of the real target image to the PAS. As in Figure 3.5, the obtained
translations look plausible.

the following individual objectives are used:

Ladv(G∗, D∗) = Ex∼Pj(x)[Dadv(x)]− Ex∼Pi(x),j [Dadv(G∗(x, j)))]

+ λgpEx̂[(‖∇x̂Dadv(x̂)‖2 − 1)2], (3.6)

Lcyc(G∗) = Ex∼Pi(x),i,j [‖G∗(G∗(x, j), i)− x‖1], (3.7)

Lcls(G∗, D∗) = Ex∼Pi(x),j [logDstain(j|G∗(x, j))]

+ Ex∼Pi(x)[logDstain(i|x)], (3.8)

where x̂ is sampled uniformly between the real and generated images [14]. Once
trained, StarGAN is able to translate in multiple directions — between any pair of
training stains. Training details are given in Appendix B.

The same translations as with CycleGAN obtained by this model are presented
in Figure 3.7. Since the obtained model is multi-domain, it is possible to translate
between any pair of stains seen during training, as illustrated in Figure 3.8. The
first column contains real images from each staining. Other columns represent their
translations to other stainings using the same StarGAN model. Similarly, as for the
case of CycleGAN, obtained translations look plausible.

Although there are plenty of other methods for multi-domain unpaired image-
to-image translation which outperform StarGAN in the domain of natural images,
such as StarGANv2 [15] or TUINT, [16], their application for stain transfer is not
straightforward (as discussed in Chapter 5 of this thesis). The majority of these
build upon CycleGAN’s principle of constraining the training with cycle-consistency.
However, the way in which it is imposed depends on the purpose and can directly
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Figure 3.8: Illustration of multi-domain stain transfer obtained with the StarGAN
model. The first column contains real images from each staining. Each row contains
translations of given images to the corresponding staining.

influence translations. The differences between the aim of performing translation
in natural images and stain translation become more important as more advanced
architectures are developed. For example, in order to obtain a realistic output when
translating a dog to look like a cat, strong geometrical changes are required (like
changing a shape of a head). Thus, to produce realistic output, advanced architec-
tures such as StarGANv2 [15] build additional modules that enable the generator to
perform large changes to an image. However, when it comes to stain transfer, these
changes could lead to the removal/invention of important tissue structures, limit-
ing the application of the translation from both a medical and a computer vision
point-of-view. Thus, creating a multi-domain stain transfer model is a challenging
task. Contrarily to such methods, the StarGAN has limited capacity to perform
structural changes during the translation process. The translation process is con-
trolled by a single generator that receives the image and fixed domain label as the
only inputs. Similar to CycleGAN translations, it is ’easier’ to keep the structure
during the translation process than to invent it during reconstruction.
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Table 3.1 F1-scores for the glomeruli segmentation baseline results (standard de-
viations are in parentheses).

PAS
Jones
H&E

CD68 Sirius Red CD34 Overall

F1

0.907
(0.009)

0.864
(0.011)

0.853
(0.018)

0.867
(0.016)

0.888
(0.015)

0.876
(0.022)

Precision
0.885
(0.023)

0.821
(0.019)

0.849
(0.024)

0.786
(0.036)

0.849
(0.033)

0.838
(0.037)

Recall
0.932
(0.014)

0.912
(0.005)

0.858
(0.020)

0.963
(0.015)

0.931
(0.010)

0.919
(0.039)

3.3 Results — Domain Shift Reduction

The ability of CycleGAN/StarGAN-based stain transfer models to reduce domain
shift is evaluated for the task of glomeruli segmentation. For each stain, a baseline
model is obtained in a fully supervised way. Baseline performance for each stain
is determined and presented in Table 3.1. These results indicate that glomeruli
segmentation is possible in each of the considered stainings. However, each baseline
model makes a prediction based on a different set of features extracted from a
training dataset. If stain transfer gives a plausible result in a targeted stain, one
can expect that the baseline model from that stain will be able to recognise the same
set (or subset) of features in the translated images. In this regard, two directions of
translations are considered. First, translations from other stains to PAS is evaluated
on PAS pre-trained models, Table 3.2. Second, translation from PAS to all other
stains is evaluated on stain specific pre-trained models, Table 3.3.

The baseline models are evaluated on test images from target stains prior to
stain transfer — Table 3.2, the vPAS row represents the application of PAS models
to other stains; Table 3.3, the vStain row represents the application of pre-trained
models from other stains to PAS images. Since the baseline models are trained to
be applied to one particular stain (used for training), the models fail to recognise
glomeruli in other stainings due to domain shift introduced by different stainings.
However, when stain transfer is applied, a significant increase in performance is
observed, which confirms that the introduced stain transfer methods can reduce
domain shift, see CycleGAN/StarGAN rows in Table 3.2 and Table 3.3.

Although the obtained translations look plausible, stain transfer is not equally
successful in reducing a domain shift in all stain combinations. Even though the
translations obtained using both CycleGAN and StarGAN look plausible (see Figure
3.5 and Figure 3.7 for comparison), it can be observed that the translation model
(StarGAN vs CycleGAN) greatly influence the quantitative results. For example,
in Table 3.3 the same set of pre-trained PAS models are applied to the same test
images from target stainings translated to PAS using different stain transfer models.
Thus, the difference observed in quantitative results can be attributed to the stain
transfer model. A similar conclusion can be drawn by comparing the results in Table
3.3.

Regardless of its superiority over StarGAN, CycleGAN-based stain transfer was
also not equally successful in reducing domain shift across all the tested stainings.
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Table 3.2 Stain transfer using CycleGAN/StarGAN to reduce domain shift between
different stains. vPAS represents the direct application of the pre-trained PAS
model to other stains without translating data; CycleGAN/StarGAN represents
the results obtained by translating PAS to a given stain during test time using
CycleGAN/StarGAN models.

Training
Strategy

Score
Test Staining

PAS
Jones
H&E

CD68
Sirius
Red

CD34 Overall

vPAS

F1

0.907
(0.009)

0.085
(0.034)

0.001
(0.002)

0.016
(0.018)

0.071
(0.063)

0.043
(0.041)

Precision 0.885
(0.023)

0.055
(0.021)

0.097
(0.129)

0.034
(0.034)

0.257
(0.243)

0.111
(0.101)

Recall 0.932
(0.014)

0.418
(0.316)

0.001
(0.001)

0.073
(0.101)

0.058
(0.039)

0.137
(0.190)

CycleGAN

F1 -
0.866

(0.017)

0.637

(0.034)

0.880

(0.015)

0.754

(0.033)

0.789

(0.223)

Precision - 0.842
(0.035)

0.846
(0.050)

0.846
(0.031)

0.879
(0.027)

0.853
(0.018)

Recall - 0.894
(0.020)

0.516
(0.058)

0.918
(0.008)

0.662
(0.059)

0.747
(0.193)

StarGAN

F1 - 0.756
(0.086)

0.092
(0.055)

0.599
(0.108)

0.751
(0.033)

0.550
(0.314)

Precision - 0.675
(0.136)

0.242
(0.116)

0.496
(0.123)

0.742
(0.092)

0.539
(0.223)

Recall - 0.881
(0.029)

0.061
(0.044)

0.780
(0.099)

0.774
(0.070)

0.624
(0.379)

For the case of Jones H&E and Sirius Red, translation to PAS obtains close to base-
line results on pre-trained PAS models, which indicates that domain shift is greatly
reduced. In the case of CD68, despite the visual quality of the obtained translations,
performance gain by stain transfer is significantly worse. Since all results are deter-
mined using the same set of PAS pre-trained models, it can be concluded that the
success of stain transfer also depends on the differences between stains. PAS, Jones
H&E and Sirius Red stainings all mark general tissue structure, and thus mapping
between stains are less complicated since the difference in visible structures is not
huge. This is contrary to the immunohistochemistry stains CD68 and CD34, which
specifically mark macrophages and blood vessel endothelium respectfully. In these
cases, the position of stain-specific markers needs to be deduced. Furthermore, a
similar variance between stains is observed in the opposite translation direction,
Table 3.3. Therefore, the stain difference seems crucial for the reduction of domain
shift as the translations between biologically closer stains result in overall better
domain shift reduction.

3.4 Discussion

The previously presented results show that architectural design and stain combina-
tions can affect the quality of stain transfer when used for domain shift reduction.
The potential reason can be that stain transfer is naturally non-deterministic, a
many-to-many mapping that is reduced by CycleGAN/StarGAN architectures to a
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Table 3.3 Stain transfer using CycleGAN/StarGAN to reduce domain shift between
different stains. vStain represents the direct application of pre-trained models from
the corresponding stain to PAS without translation; CycleGAN/StarGAN represents
the results obtained by translating PAS to a given stain during test time using
CycleGAN/StarGAN models.

Training
Strategy

Score
Test Staining

Jones
H&E

CD68
Sirius
Red

CD34 Overall

vStain

F1

0.029
(0.039)

0.006
(0.006)

0.000
(0.000)

0.029
(0.021)

0.016
(0.015)

Precision 0.026
(0.027)

0.385
(0.258)

0.001
(0.002)

0.481
(0.164)

0.223
(0.246)

Recall 0.062
(0.106)

0.003
(0.003)

0.000
(0.000)

0.015
(0.011)

0.020
(0.029)

CycleGAN

F1

0.891

(0.003)

0.608

(0.083)

0.813

(0.025)

0.590

(0.063)

0.725

(0.150)

Precision 0.877
(0.003)

0.834
(0.033)

0.846
(0.044)

0.848
(0.023)

0.851
(0.018)

Recall 0.905
(0.007)

0.485
(0.096)

0.788
(0.072)

0.456
(0.080)

0.659
(0.223)

StarGAN

F1

0.777
(0.037)

0.568
(0.077)

0.661
(0.110)

0.024
(0.026)

0.508
(0.334)

Precision 0.899
(0.014)

0.500
(0.066)

0.752
(0.076)

0.299
(0.121)

0.613
(0.266)

Recall 0.669
(0.052)

0.706
(0.114)

0.610
(0.201)

0.006
(0.003)

0.498
(0.330)

deterministic, i.e. one-to-one, mapping between stains. As an illustration, lets take
again as an example a translation between PAS and CD68, see Figure 3.9. As a
reminder, CD68 marks a protein exclusively produced by macrophages, while PAS,
as more general staining, can only highlight some parts of macrophages (co-located
but not overlapping with CD68). When performing translation from PAS to CD68,
the generator GPAS−CD68 should produce some macrophages as they appear in the
CD68 image distribution. Since PAS does not contain information specifically re-
lated to macrophages, the model is free to invent them. Thus, there are multiple
possible translations to CD68, and all of them can differ in terms of the appearance
of macrophages. However, taking an image from CD68 that contains macrophages
at specific positions, GCD68−PAS can ignore macrophages since their appearance is
not related to the PAS staining. Nevertheless, cycle-consistency enforces that the
reconstruction of this image performed by GPAS−CD68 recovers exactly the origi-
nal image, meaning that it requires macrophages in the same positions as in the
original. That way, the generator GPAS−CD68 is forced to perform a one-to-one
mapping. Similarly, the opposite direction of translation is also forced to be a one-
to-one mapping. The same conclusion holds for the StarGAN architecture. The fact
that the generator G∗ receives an image and a fixed domain label as the only inputs
defines the deterministic nature of the mapping between stains in a similar way to
the CycleGAN model, i.e. the model needs to reconstruct exactly the same image in
CD68 given its translation to any other stain. However, the StarGAN can be more
constrained in the translation process compared to CycleGAN. Taking into account
that the model needs to learn mappings between several different stains at the same
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Figure 3.9: CycleGAN — implicit deterministic mapping.

time, it is forced to learn deterministic mappings between any pair of stainings seen
during training. With the number of stains increasing, this can lead to improper
translations between some pairs of stainings.

This brings specific limitations related to practical application and evaluation,
such as:

Translation quality: the obtained translations might encode additional informa-
tion in order to ensure a deterministic mapping. This can affect the ability of
translations to reduce a domain shift between stainings.

Training stability and reproducibility: since there are no explicit stopping cri-
teria, one can stop training when plausible translations are obtained. However,
different deterministic mappings can be obtained in different training stages,
which could lead to misleading conclusions about the quality of the obtained
translations.

Generalisability: different stain combinations could encode different information,
giving ambiguous conclusions related to the application of stain transfer mod-
els.

Bashkirova et al. [172] indicate that the cycle-consistency loss in CycleGAN-
based models Lcyc, Eq. (3.2), implicitly forces them to hide information necessary
for proper reconstruction of Brec and Arec in translations A′ and B′ in the form
of imperceptible low amplitude, high frequency noise. It is reasonable to assume
that such noise introduces a domain shift when pre-trained models are applied to
the translated images, which can explain the differences in the results given in
Section 3.3. Given the StarGAN model, which is constrained by cycle-consistency
in the same manner as CycleGAN, it can be assumed that StarGAN stain transfer
also injects imperceptible noise. Bashkirova et al. [172] suggest that such hidden
information can be perturbed by additive Gaussian noise.

To explore this phenomena for digital histopathology, the composition of trans-
lations PAS → Target + N (0, σ) → PAS is used, where N (0, σ) is a zero-mean
Gaussian distribution with standard deviation σ. Figure 3.10 presents CycleGAN
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Figure 3.10: CycleGAN — the effects of additive zero-mean Gaussian noise added
to intermediate representations of PAS images on their reconstructions.

reconstructions of the same PAS image after translation to each target stain, with
different standard deviations of additive noise. This confirms that not all stain
translators encode information in the same way. For example, adding noise with
a standard deviation of 0.5 to the CD68 intermediate stain results in a higher re-
construction error than adding the same noise in the Sirius Red intermediate stain.
It is hypothesised that the noise level in each target staining correlates with the
difficulty of translation, i.e. more complex translations require more noise. Com-
pared to the CycleGAN, the StarGAN appears to be more sensitive, as illustrated in
Figure 3.11 for the reconstructions of a PAS image when intermediate translations
to a given target stain are corrupted. This is probably because StarGAN performs
a much harder task of multi-domain stain translation — to properly reconstruct its
input, more information needs to be hidden. In this regard the lower performances
for StarGAN translations observed in Table 3.2 and Table 3.3 can be understand
as well. A similar conclusion holds for the other direction of CycleGAN/StarGAN
translations, whose results are provided in Appendix B.5.

These observations, and recent studies on the adversarial nature of the Cycle-
GAN model [173, 174], lead to the hypothesis that translations suffer from invisible
artefacts produced during translation. The extent and type of these artefacts could
be related to the differences between stainings. Stain pairs with a more significant
difference in the highlighted structures require more complicated translation, forc-
ing hallucination of specific features, as also confirmed by Mercan et al. [156]. Such
finding is further exploited in Section 3.6 to propose an augmentation strategy for
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Figure 3.11: StarGAN — the effects of additive zero-mean Gaussian noise added to
intermediate representations of PAS images on their reconstructions.

supervised training. Nevertheless, all of that emphasises the care and consideration
needed for the direct application of stain transfer in the medical domain. When
used in clinical practice, the implications should be held up to even greater scrutiny.

3.5 Limitations — Is Seeing Really Believing?

The findings presented in the previous sections, that CycleGAN-based stain transfer
can achieve plausible results and therefore reduce domain shift introduced by stain
variation, have been confirmed by numerous works in the literature [20, 64, 67, 94,
99]. Many works propose a modification to the original CycleGAN architecture
[20, 95], its loss function [94] or, with respect to a specific task, extension with
additional modules [99, 100]. However, due to lack of proper groundtruth, evaluation
of the obtained translations is visual [98, 99]. Assuming that the translation results
in high fidelity, these methods are more often used in the computer vision domain
to reduce domain shift [19, 94]; or as a domain augmentation strategy to reduce
the need for additional annotations [64, 111]. Since these approaches are becoming
more commonplace, and new possibilities are being explored, such as multi-stain
segmentation [64] or improving tumour classification [151], it is of great importance
to raise awareness of the sensitivity of such methods to some common, and rather
small, changes. In the following, it will be demonstrated that even the most simple
architectural choice in CycleGAN-based models can play an important role in the
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ability of the obtained models to reduce domain shift, even though visual appearance
is not affected. Although most models produce plausible translations, i.e. visually
indistinguishable from real samples, the huge performance difference observed in
pre-trained models when applied to translated images confirms that the quality
of translations differs. In order to limit the number of experimental degrees of
freedom, the modifications to the original CycleGAN architecture are restricted to
the normalisation layer. In the original architecture Instance normalisation is used,
and in this study this is varied to other approaches commonly found in the literature:
Batch, Layer, and Group. It is shown that the translations obtained by varying the
normalisation layer belong to different data distributions, distinct from these of real
samples, causing pre-trained models to perform badly. Furthermore, since manual
visual inspection cannot determine a difference in quality between the translations,
it follows that visual inspection cannot be used as a validation criterion for virtual
staining.

3.5.1 Experimental Setup

To demonstrate the CycleGAN-based model’s sensitivity to the underlying archi-
tecture, the original CycleGAN architecture is taken and altered by replacing the
normalisation layers in both the discriminators and the generators. As previously, to
quantitatively measure the quality of obtained translations, their ability to reduce
domain shift introduced by stain variation is determined for the task of glomeruli
segmentation. For ease of reading, the stain on which the segmentation model is
trained in a supervised manner is referred to as the source stain, and the stain that
is translated to the source stain during application is the target stain.

Two sets of complementary hypotheses concerning what can affect the perfor-
mance measured in this setting are identified:

1. Pre-trained model

(a) Short-cut learning [171] in pre-trained models: a model makes a decision
based on some source dataset characteristics that are not necessarily re-
lated to the given problem. Thus, if the translated images do not contain
the shortcut characteristics, the pre-trained model will not perform well.

2. Stain transfer

(a) Stain transfer model: the model’s ability to produce accurate translations
between the target and source stains should impact downstream task
performance.

(b) Direction of translation: some stain translation directions may be harder
(e.g. translation from a general purpose stain to a specific stain).

In order to test these hypotheses, several experiments are conducted, as illustrated in
Figure 3.12 (stains taken for illustration are PAS and Sirius red, translation model
has Instance normalisation layer. The same experiments are performed for other
combinations).

In the case of inter-stain variability, this analysis is performed from two perspec-
tives:
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(b) PAS to target experiments illustration.

Figure 3.12: Experiments design illustration: (a) Target to PAS — models trained
on PAS data are evaluated on different target stains and translation models; (b) PAS
to Target — models trained on target stain are evaluated on different translations
from PAS stain.

• Target to PAS (Figure 3.12a): Five PAS segmentation models are trained
(SPAS

1 , SPAS
2 , . . . , SPAS

5 ) and their performance is evaluated on trans-
lations from four other stainings. For each normalisation layer and
each stain, three translation models are trained, i.e. T x→PAS

1,n , T x→PAS
2,n ,

T x→PAS
3,n , where, x ∈ {Jones H&E, Sirius Red, CD68, CD34} and n ∈

{Instance, Batch, Layer, Group8, Group16, Group32, None}. In this way,
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one pre-trained segmentation model, e.g. SPAS
1 , is applied to the translations

from all stains, T x→PAS
i,n , allowing analysis of the effects of a stain transfer

model (Hypothesis 2.1) and target stain (Hypothesis 2.2). The three stain
translation models that are obtained for each combination of target stain and
normalisation layer allow the measurement of short-cut learning (Hypothesis
1.1). The standard deviation in the performances using different stain trans-
lation models obtained in the same experimental setting can be attributed to
a pre-trained model’s bias.

• PAS to target (Figure 3.12b): Five segmentation models are trained
for each of the target stains (Sx

1 , Sx
2 , . . . , Sx

5 ), where x ∈
{Jones H&E, Sirius Red, CD68, CD34}. These are evaluated on translations
from PAS to each stain, using different stain translation models TPAS→x

1,n , where
n ∈ {Instance, Batch, Layer, Group8, Group16, Group32, None}. As such,
the test images and the segmentation models within one target stain remain
constant, and therefore the variation in results within stains can be attributed
to translation quality (Hypothesis 2.1). Moreover, by comparing the results
from the previous experiment, the influence of translation direction can be
investigated (Hypothesis 2.2). Similarly, as previously stated, the standard
deviation within several runs of the same experimental setting can be related
to short-cut learning (Hypothesis 1.1).

In the case of intra-stain variability, PAS pre-trained models’ sensitivity is mea-
sured to the translation (stain normalisation) from the publicly available AIDPATH
dataset [18]. From this perspective, hypotheses 1.1 and 2.1 can be investigated.

Normalization layers: In the case of 2D images, a feature computed by a model’s
layer, x, is a 4D tensor x = (N,C,H,W ) where N denotes the batch size, C is the
number of channels and H and W are spatial height and width. A normalisation
layer performs normalisation of x such that

x̂ =
x− µnorm

σnorm
, (3.9)

where µnorm and σnorm are the mean and standard deviation computed over different
axes depending on the normalisation technique used.

In the case of Batch Normalisation (BN) [175], µnorm and σnorm are computed
channel-wise, along the (N,H,W ) axes, thus normalising all feature elements that
share the same channel across a batch. Layer Normalisation (LN) [176], calculates
µnorm and σnorm over the (C,H,W ) axes, normalising features for each sample in
a batch separately. Instance Normalisation (IN) [177] computes µnorm and σnorm
across the (H,W ) axes, thus normalising features for each sample and each channel
separately. Similarly to Layer Normalisation, Group Normalisation [178] computes
µnorm and σnorm over the (H,W ) axes, but instead of normalisation over all chan-
nels, a specific number of groups of adjacent channels is chosen. Thus, when the
number of groups is equal to 1, GN becomes LN, and it reduces to IN when the
number of groups is equal to the number of channels. Therefore, the number of
groups is a hyperparameter of this layer. In the literature, it is usually chosen to be
a factor of 2, and herein groups of 8, 16 and 32 are tested (32 being the maximum
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Table 3.4 F1-scores with different CycleGAN normalisation layers (target stain
translated to PAS). The values represent the average of 5 pre-trained segmentation
models (SPAS

1 , SPAS
2 , . . . , SPAS

5 ), each applied to 3 repetitions of the translation

model training (T y→PAS
1,n , T

y→PAS
2,n , T

y→PAS
3,n ), therefore the average and standard

deviations (in parenthesis) of 15 repetitions in total. The last row represents row-
wise averages, excluding Batch normalisation results, since translations obtained by
these models are often not plausible.

Normalisation
Layer

Test Staining

AverageJones H&E
→ PAS

CD68
→ PAS

Sirius Red
→ PAS

CD34
→ PAS

Instance 0.849 (0.017) 0.684 (0.043) 0.870 (0.009) 0.754 (0.008) 0.789 (0.087)

Batch 0.339 (0.059) 0.002 (0.001) 0.508 (0.041) 0.400 (0.067) 0.312 (0.218)

Layer 0.816 (0.014) 0.167 (0.046) 0.832 (0.005) 0.754 (0.024) 0.642 (0.319)

Group8 0.848 (0.011) 0.308 (0.101) 0.810 (0.006) 0.628 (0.040) 0.649 (0.246)

Group16 0.849 (0.011) 0.486 (0.060) 0.800 (0.036) 0.650 (0.039) 0.696 (0.163)

Group32 0.815 (0.007) 0.546 (0.049) 0.807 (0.017) 0.737 (0.015) 0.726 (0.125)

None 0.770 (0.003) 0.250 (0.028) 0.730 (0.035) 0.747 (0.047) 0.624 (0.250)

Average
(excl. BN)

0.824 (0.031) 0.407 (0.197) 0.808 (0.046) 0.712 (0.057)

possible due to the minimal number of filters used in the CycleGAN convolutional
layers).

3.5.2 Results

3.5.2.1 Inter-Stain Variability

The translations obtained by many of the stain transfer models are plausible (in
the sense of definition given on page 34), as will be discussed in more detail in Sub-
section 3.5.3.1. Nevertheless, the quantitative analysis performed using pre-trained
models shows that there are significant differences in their ability to reduce domain
shift. Here, two directions are taken: by evaluating the PAS model’s performance
on translations from the target stains to PAS (see Table 3.4); and by testing the
models pre-trained on each target stain to translations of PAS images (see Table
3.5). The results presented in each table are the averages over three separate Cycle-
GAN models, each applied to five pre-trained baseline models. For ease of reading,
the performances of the baseline models are once more given in Table 3.6 to remind
that the problem is solvable with high accuracy in all considered stainings.

Since all the results in Table 3.4 are calculated using the same PAS pre-trained
models, they can be used to determine the sensitivity of such models to: (column-
wise) different types of normalisation (in which the translated stain, and therefore
test images, in addition to the pre-trained models are fixed); and (row-wise) differ-
ent translation models having the same normalisation strategies. As is established
in the style-transfer literature, Instance normalisation achieves the best overall per-
formance, although in some cases other normalisation strategies achieve similar per-
formance. For example, with CD34, Instance, Layer, Group32 and None (without
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Table 3.5 F1-scores with different CycleGAN normalisation layers (PAS trans-
lated to target stains). The values represent the average of 5 pre-trained segmen-
tation models((Sx

1 , Sx
2 , . . . , Sx

5 ), where x ∈ {Jones H&E, Sirius Red,CD68,CD34}),
each applied to 3 repetitions of the translation model training (TPAS→x

1,n , TPAS→x
2,n ,

TPAS→x
3,n ), therefore the average and standard deviations (in parenthesis) of 15 repeti-

tions in total. ↑ indicates improved performance compared to the reverse translation,
see Table 3.4, and a ↓ a decrease in performance.

Normalisation
Layer

Test Staining

AveragePAS →
Jones H&E

PAS →
CD68

PAS →
Sirius Red

PAS →
CD34

Instance 0.891↑ (0.001) 0.630↓ (0.019) 0.744↓ (0.079) 0.641↓ (0.087) 0.726↓ (0.121)

Batch 0.134↓ (0.022) 0.133↑ (0.087) 0.002↓ (0.001) 0.049↓ (0.008) 0.079↓ (0.066)

Layer 0.879↑ (0.002) 0.459↑ (0.111) 0.172↓ (0.080) 0.524↓ (0.106) 0.509↓ (0.291)

Group8 0.873↑ (0.008) 0.444↑ (0.053) 0.470↓ (0.387) 0.373↓ (0.078) 0.540↓ (0.226)

Group16 0.876↑ (0.002) 0.423↓ (0.121) 0.118↓ (0.025) 0.503↓ (0.106) 0.480↓ (0.312)

Group32 0.883↑ (0.006) 0.577↑ (0.068) 0.320↓ (0.198) 0.377↓ (0.269) 0.539↓ (0.255)

None 0.862↑ (0.009) 0.568↑ (0.078) 0.075↓ (0.055) 0.483↓ (0.115) 0.497↓ (0.325)

Average
(excl. BN)

0.877↑ (0.010) 0.517↑ (0.085) 0.316↓ (0.255) 0.483↓ (0.100)

Table 3.6 F1-scores for the baseline results (standard deviations are in parentheses).

PAS Jones H&E CD68 Sirius Red CD34 Overall

0.907 (0.009) 0.864 (0.011) 0.853 (0.018) 0.867 (0.016) 0.888 (0.015) 0.876 (0.022)

a normalisation layer) all achieve similar results, whereas in CD68 Instance norm
is the clear winner. This indicates that the choice of architecture is dependent on
the stain, and most likely, therefore, the complexity of the translation required.
However, the fact that none of the pre-trained models applied to CD34 and CD68
translations can achieve baseline results indicates that either the pre-trained PAS
models are sensitive to some features not captured by the translation models, and/or
the translation models induce a domain-shift.

This can be explained, to some extent, by the difference between histochemical
(HC) and immunohistochemical (IHC) stains. Since HC stainings PAS, Jones H&E
and Sirius Red use chemicals that interact with several tissue components, multiple
normalisation strategies are able to approach baseline performance. On the other
hand, IHC stainings CD34 and CD68 are designed to detect specific proteins and
here, performance varies greatly.

The results in each column of Table 3.5 are calculated using the same pre-trained
segmentation model but now on the target stains. Therefore, each column represents
a different model tested on the same PAS data translated to each target stain. As
such, they complement the conclusions from Table 3.4, that is from the target stain
perspective, by representing the sensitivity of the pre-trained target models to differ-
ent normalisation strategies. For example, it becomes clear that the normalisation
strategy has very little effect when applying the Jones H&E segmentation models
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to the PAS translations (except with Batch normalisation). The row-wise results
are calculated, again using the same PAS images but now translated to different
stains, and therefore different pre-trained models are used. As previously discussed,
it seems that in this particular application differences in staining type (e.g. HC vs
IHC) can play an important role regarding the sensitivity of the pre-trained model
to translations obtained by different stain transfer models.

Comparing the performances between Tables 3.4 and 3.5 represents the two di-
rections of the same translation (PAS → Target and Target → PAS). Overall, better
results are obtained when translating in the Target → PAS direction, which could
be related to the fact that the translation difficulty is not symmetrical. Even when
accounting for the fact that segmentation is more difficult in non-PAS stains (see
Table 3.6), more significant drops in performance are observed between Tables 3.4
and 3.5. The differences between performance are indicated by an up or down ar-
row in each cell of Table 3.5, representing an increase or decrease compared to Table
3.4. When translating from general staining such as PAS to more specific stainings,
the translation model must ‘invent’ stain-specific markers since they are not specif-
ically marked in the general-purpose stain. Thus, this direction of translation can
be harder than the other way around and the translation model may fail to recon-
struct the finer details that the pre-trained segmentation model relies on. Moreover,
these pre-trained segmentation models could be biased toward stain-specific markers
(e.g. due to short-cut learning), and thus its performance can be highly dependent
on translation quality. Evidence for this is given by the large standard deviations
observed when applying the same translation architecture to the same pre-trained
segmentation models (e.g. Table 3.5, Sirius Red, Group8 and Group32). When the
translations contain the specific features focused on by the pre-trained models, they
perform well (e.g. the best performing translation model in Group8 achieves an av-
erage segmentation score of 0.776), otherwise the translated images can be seen as
out-of distribution examples in which the segmentation model fails (the worst trans-
lation model in results in Group8 achieves an average segmentation score of 0.034),
even though the translations appear plausible, see Figure 3.13.

Additional evidence for this will be given in Subsection 3.5.3.2 when the segmen-
tation model’s variance will be considered from the perspective of stain translation
model training.

3.5.2.2 Intra-Stain Variability

In the case of intra-stain variability, the same pre-trained PAS segmentation models
used previously are evaluated on the AIDPATH dataset containing PAS-stained
WSIs from the Servicio de Salud de Castilla-La Mancha (SESCAM) (see Figure
3.14 for a visual comparison between the two datasets). Direct application of the
segmentation models to this variation of PAS is not successful, missing the majority
of glomeruli (see the vPAS column in Table 3.7), which confirms the need for a
stain normalisation procedure. As in Subsection 3.5.2.1, CycleGAN models were
trained to translate the AIDPATH dataset to the source PAS dataset, using different
normalisation strategies.

Table 3.7 presents these results, in which it can be observed that the normalisa-
tion strategy also has an important role when performing stain normalisation and
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Figure 3.13: PAS patches translated to Sirius Red with two repetitions of the Cy-
cleGAN (Group8) model alongside corresponding segmentations from a pre-trained
Sirius Red model. The last row represents real patches from the Sirius Red domain.

segmentation performance does not correlate with visual quality, see Figure 3.15.

The results presented in Table 3.7 should be interpreted with caution. Since
the AIDPATH dataset is composed of biopsies, the number of glomeruli in each
image is smaller than in the Hanover dataset (private dataset used in this thesis).
Thus, a small number of false positives (or negatives) has a big effect on the overall
score. Also, the images contain a significant portion of sclerotic glomeruli which is
not the case in the Hanover dataset and therefore lower segmentation performance
should be expected due to dataset bias. For example, translation models with Batch
normalisation obtain the best overall recall, i.e. the lowest rate of false negatives,
which means that the segmentation masks predicted by pre-trained models cover
the majority of glomeruli. However, its low precision indicates that there are more
false positives, i.e. more structures are wrongly classified as glomeruli. Contrarily,

Hanover PAS AIDPATH PAS

Figure 3.14: Glomeruli PAS variation between Servicio de Salud de Castilla-La
Mancha (SESCAM) and Hanover.
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Table 3.7 Stain normalisation, the effects of different CycleGAN normalisation
layers on the F1-scores of pre-trained PAS models.

Score vPAS Instance Layer Batch Group8 Group16 Group32

F1

0.183
(0.091)

0.351
(0.042)

0.504
(0.029)

0.532

(0.034)
0.223
(0.053)

0.236
(0.046)

0.282
(0.019)

Precision
0.229
(0.175)

0.819
(0.028)

0.806
(0.024)

0.434
(0.047)

0.680
(0.119)

0.633
(0.105)

0.775
(0.044)

Recall
0.385
(0.256)

0.226
(0.035)

0.370
(0.033)

0.738
(0.012)

0.135
(0.034)

0.148
(0.031)

0.174
(0.015)

SESCAM_7 — translation to PAS and Segmentations
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Figure 3.15: Glomeruli patches extracted from SESCAM_7 image (first row) and
their translations to Hanover dataset PAS using different CycleGAN models trained
on SESCAM_1 and SESCAM_3 images, with corresponding segmentations from a
pre-trained segmentation model on Hanover dataset.

Instance normalisation has the best overall precision, meaning that the pre-trained
models produce fewer false positives, but the detection is less robust, i.e. not all of
the glomeruli structures are detected.

Nevertheless, this study is concerned with performance relative to each normali-
sation strategy, and since the same pre-trained models are used for these evaluations,
the effect of the translation model is evident. Taken together with the results of
inter-stain variability (Subsection 3.5.2.1), there is no ‘golden’ rule for the best choice
of normalisation strategy, and it is rather dependent on the problem at hand.

3.5.3 Qualitative and Quantitative Analysis

In this section, qualitative and quantitative assessments of the stain transfer mod-
els will be presented. The qualitative analysis includes visual assessment, which
is presented in Subsection 3.5.3.1. However, the findings in Subsection 3.5.2 give
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Figure 3.16: Target stain patches translated to PAS using CycleGAN models trained
with different normalisation layers.
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Figure 3.17: PAS patch translated to target stains using CycleGAN models trained
with different normalisation layers.
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Original Run 1 Run 2 Run 3

Original Ep. 10. Ep. 20 Ep. 50

Figure 3.18: An illustration of inter-stain variance, PAS patches translated to the
CD34 target stain using (first row) CycleGAN with instance norm from the 50th
epochs in three separate training repetitions; (second row) CycleGAN with layer
norm from different epochs of the same training run.

strong evidence that this cannot be relied upon. Subsection 3.5.3.2 will further
demonstrate this by highlighting the model’s instability during different training
stages. Moreover, Subsection 3.5.3.3 presents some failure cases that can be easily
overlooked by non-experts. The quantitative analysis includes assessment via eval-
uation approaches found in the literature [150, 155], which are given in Subsection
3.5.3.4, and a comparison of image distributions is presented in Subsection 3.5.3.5.
Furthermore, some guidelines about the clinical usage of artificially stained images
are presented in Subsection 3.5.4.

3.5.3.1 Visual Quality

Figure 3.16 illustrates the visual quality of the obtained translations, in which each
staining has been translated to PAS using different CycleGAN models. Furthermore,
Figure 3.17 presents the translations of a PAS patch to each of the target stainings.
Visually, all translations (except Batch normalisation) look plausible (in the sense
of definition given on page 34).

Note that it is not expected that every normalisation type produces the same
output as the translation between stains is not a one-to-one mapping. This is more
noticeable in stains CD34 or CD68, where translations from PAS can vary greatly
in the amount of stain-related markers. Therefore, the general biological aspects of
considered stains make a visual comparison between different stain transfer models,
such as the one done in [150] (e.g. Figure 6 and 9 of [150]), more unreliable due to
technical consideration. Nevertheless, these variations fall within the range of those
that can occur naturally. Furthermore, the same variations can be observed for one
translation model in different epochs or training repetition, as shown in Figure 3.18,
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and thus it can not be strictly related to change in a model architecture. Therefore,
drawing general conclusions about model capacity based on visual inspection and
the presence/absence of stain-related markers, may lead to incorrect findings.

3.5.3.2 Training Stability

As previously noted by several authors, CycleGAN-based stain transfer is able to
reach plausible translations early during training [64, 67]. Since there are no explicit
stopping criteria in the training process, one can stop training at any moment when
no obvious artefacts are produced and the translations are plausible. Taking into
account that there is no groundtruth for stain translation (the staining process is
irreversible) and that the staining process itself is prone to high variation (particu-
larly between labs), many possible translations are valid. Thus, it is possible that
for the same patch, a stain translation model produces different valid translations
during training (as shown in Figure 3.18).

In order to investigate how the quality of translation varies during training, the
test set (4 WSI images) is evaluated using CycleGAN models from five different
epochs—10th, 20th, 30th, 40th and 50th using stains CD34 and CD68, since they
are (biologically) the most different to PAS and perform the worst in the previous
section (see Tables 3.4 and 3.5). It is assumed that translations between them and
PAS are hard.
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model1(Instance) model2(Instance) model3(Instance) model1(None) model2(None)

model3(None) model1 (Group16) model2 (Group16) model3 (Group16) LR

Figure 3.19: (PAS) Segmentation performance in different CycleGAN epochs.

The architectures with Instance normalisation, Group16 and without any nor-
malisation (None) are used since they obtained respectively the best, average, and
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worst overall scores of the models producing plausible translations in the previ-
ous section (i.e. Batch normalisation is excluded). To visualise this effect, three
pre-trained PAS models were randomly selected and their segmentation scores are
shown in Figure 3.19 over different epochs. Concerning CD34, better performance
is generally obtained in a later epoch; however, this is not the case with CD68. In
both cases, longer training does not necessarily correlate with better translations.
Note that the learning rate (also included in the figures) decreases during training,
explaining the stability obtained at later epochs.

Moreover, the ranking of the normalisation strategies is not constant in each
epoch; for example in the case of CD34, the translations obtained using Group16

in the 30th epoch are better segmented than those obtained by the Instance norm
in the final epoch. As such, the results presented in Tables 3.4 and 3.5 may vary
depending on the experimental setup (training duration, etc.). Apart from visual
differences, an additional cause of the variance of pre-trained model performance
could be different levels or types of noise being injected into the translations at
different epochs due to self-adversarial attacks to which CycleGAN-based architec-
tures are prone [172]. Additional evidence for this is that all segmentation models
are affected similarly at the same epoch (e.g. in the case of CD68 and Group16, all
models have almost 0 F1-score), indicating that the problem originates in the trans-
lation, rather than short-cut learning. This also goes inline with the well-known
phenomenon of transferability of adversarial examples [179].

To confirm that visual quality is not related to segmentation performance, Figure
3.20 presents translations to PAS at different epochs during training using Instance
norm (since it is found to be the best strategy overall), along with their correspond-
ing segmentations (using PAS model 2 from Figure 3.19). As can be seen, they are
all plausible; however, the segmentations vary greatly.

3.5.3.3 CycleGAN Failure Cases

In addition to replacing Instance normalisation with other types of normalisation,
the normalisation layer was removed entirely from the CycleGAN architecture. Al-
though this modification can sometimes lead to more unstable training (in this case,
the translations between PAS and CD68 or Sirius Red were more frequently unsta-
ble), the obtained results are still visually appealing and even better than with some
normalisation strategies (e.g. Batch normalisation). Nevertheless, in this setting it
was found that the CycleGAN models are more likely to produce artefacts. The
model is prone to hallucinate features, such as these presented in Figure 3.21. This
behaviour was observed particularly often when CD34 and CD68 were the target
stains. Since the produced artefacts are visually in accordance with the overall image
texture, these cases could be easily unnoticed by the untrained eye, highlighting the
importance of including pathologists in the stain translation development process.

3.5.3.4 Reconstruction Assessment

Modifications to CycleGAN architecture can include specific modules or loss func-
tions in order to ensure that the model preserves important structural information,
which is sometimes quantified by PSNR and SSIM scores [150]. However, it has been
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Figure 3.20: Glomeruli patches from CD68 and CD34 stainings translated to PAS
using CycleGAN (Instance) models from different training epochs and their segmen-
tation using pre-trained PAS model 2 from Figure 3.19).

shown that changing the normalisation layers of even the most basic CycleGAN ar-
chitecture can cause differences in the preservation of structural information during
translation. Figure 3.22 presents the SSIM and PSNR of PAS images reconstructed
via translation to different target stains with different CycleGAN normalisation
layers. These are calculated over 200 random patches (100 glomeruli and 100 nega-
tive). As it can be observed from these figures, significant variation in both metrics
is present in all target stains. More importantly, the order of the metrics does not
correlate with the ability of the architecture to reduce domain shift (see Table 3.4
and Table 3.5). This indicates that using these metrics in this setting may not
accurately reflect the benefits of modifications to CycleGAN-based models.

3.5.3.5 Translation Distributions5

Despite the success of CycleGANs, they are prone to self-adversarial attacks
[62, 172, 173]. The cycle-consistency constraint forces the generator to hide in-
formation necessary to reconstruct the input image as imperceptible noise and since
it has been shown that the results appear plausible (in the sense of definition given
on page 34), one possible hypothesis is that this imperceptible noise causes the
domain shift observed in Subsection 3.5.2 [170]. Song et al. [180] show that a Pixel-
CNN++ generative model can be used to detect adversarial attacks in images and
it is therefore used here to detect the presence (or not) of adversarial noise in the

5This analysis was done in collaboration with Zeeshan Nisar (PhD student, SDC research team,
ICube).
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Figure 3.21: Hallucination effect of CycleGAN without normalisation.
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Figure 3.22: PSNR/SSIM scores of reconstructed PAS images using different Cycle-
GAN models.

obtained translations.
PixelCNN++ [181] quantifies the pixels of an image x over all its sub-pixels as

a product of conditional distributions, such that it learns to predict the next pixel
value given all previously generated pixels, that is

p(x) =
n2∏

i=1

p(xi|x1, . . . , xi−1). (3.10)

These conditional distributions are parameterised by a convolutional neural net-
work (CNN) and hence shared across all pixel positions in the image. The Pix-
elCNN++ [181] architecture is used to model the underlying distribution of each
stain separately (training details are presented in Appendix B.6): PAS, Jones H&E,
CD68, Sirius Red, and CD34. As such, the PixelCNN++ models are able to gener-
ate images that belong to the real data distribution. Figure 3.23 presents examples
of several such patches. Due to memory limitations, the models are trained on
32×32 pixel patches (therefore, each 512×512 pixel patch is decomposed into non-
overlapping patches), and therefore the models are able to generate only structures
visible at this patch size. Visual evaluation can clearly identify cell nuclei, endothe-
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Figure 3.23: Samples generated from the trained PixelCNN++ for each stain (PAS,
Jones H&E, CD68, Sirius Red, and CD34).

lial lining, a partially granular cytoplasmic texture, extracellular matrix components
(such as collagen fibres), and even some cell borders are faintly outlined, recapitu-
lating the cell membranes of some epithelial cells.

To further validate the efficacy of the PixelCNN++ models, the distributions
of the training, validation, and test sets are plotted for all stains, see Figure 3.24.
This confirms that the PixelCNN++ model is able to accurately estimate real data
distributions, since there is an overlap between all three distributions in all stains.
To investigate whether the drop in performance of the pre-trained models is caused
by an imperceptible domain shift, all the test target stains are translated to PAS
using the CycleGANs models with different normalisation layers. Figure 3.25 shows
the distributions of the resulting images compared to the real PAS test set. It
can be observed that the translated target-to-source stains have a different data
distribution, confirming the existence of a domain shift, which causes the pre-trained
models to fail. If the translation is performed in the opposite direction (from PAS
to target), the same domain shift is found, see Figure 3.26. It is important to note
when interpreting these figures, that the relative distance between the graphs of
real and translated distributions does not necessarily correlate to the performance
of pre-trained models [180].

These results confirm that, although plausible, the translations obtained with
various stain translation models, actually generate data in a manner that slightly
mismatches the real data distributions. Thus, the pre-trained models can exhibit
variation in performance when applied to such data even though the output is
visually plausible. This additionally confirms that stain transfer (Hypothesis 2.1
and 2.2) is the cause of segmentation’s performance variability.
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Figure 3.24: Visualisation of training, validation, and test data distributions for
each stain under PixelCNN++.

3.5.4 Stain Transfer for Clinical Application6

Stain translations can be useful and hold great potential for the future development
of digital histopathology. The potential risk that their results may be misleading
under certain circumstances and can be mitigated by carefully considering the bio-
logical and image-related context and the intended use case.

It is significant to note that the translation process can greatly affect the ap-
pearance of stain-specific markers in immunohistochemical stains, such as CD68 and
CD34. In the given examples, brown immunohistochemical staining (CD68) reflects
the expression of a specific protein during macrophage differentiation and activa-
tion, whereas gradual enrichment of purple staining as a result of the chemical PAS
reaction reflects the presence of carbohydrate macromolecules that are not specific
for macrophages, but enriched in their phagocytic subset and is associated with
protein degradation. Thus, both methods highlight slightly different populations of
macrophages, illustrating the important caveat of translating histochemical (HC) to
immunohistochemical (IHC) and vice versa: the translation looks “plausible” (see

6This analysis was done in collaboration with Prof. Dr. Friedrich Feuerhake (Institute of
Pathology, Hannover Medical School, Germany; University Clinic, Freiburg, Germany).
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Figure 3.25: Qualitative comparison of the real PAS (test) distribution and trans-
lated target-to-PAS distributions using different CycleGAN normalisation layers.
Each distribution is calculated using the test set for each stain.

definition on page 34). In this context this means that their visual appearance is
consistent with the target staining and reflects regular morphological features of
macrophages such as size and shape. However, this visual plausibility may not be
accurate for biomedical evaluation. Examples include biological features such as
“macrophage activation” (reflected by expression of the CD68 protein on the cell
surface), or “protein digestion by macrophages” (reflected by PAS-positive granular
substance within the macrophage cytoplasm). The same holds true for translations
between CD34 and PAS: both methods can highlight blood vessels, CD34 (IHC)
specifically the inner layer (endothelium) and PAS (HC) less specifically compo-
nents of the entire vessel wall. Again, translations between stains in any direction
are likely to look “plausible” and may even be useful for general visual detection of
blood vessels, but they are clearly misleading for other purposes (e.g. specific evalu-
ation of endothelial pathology). For example, the general detection of blood vessels
(e.g. their quantification) is feasible for larger vessels and even down to the size of ar-
terioles in PAS → CD34 translations and vice versa. However, the evaluation of mi-
crovessel density including very small vessels (capillaries) would be difficult, as they
are strongly labelled by CD34 but not necessarily by PAS. Likewise, there are specif-
ically PAS-positive structures, e.g. so-called granular osmiophilic material (“GOM”,
a diagnostic hallmark of a vascular disease abbreviated “CADASIL” [182, 183]) that
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Figure 3.26: Qualitative comparison of real target stain distributions (test set) and
translated PAS-to-target stain distribution (test set) for each type of CycleGAN
normalisation layer.

would not be visible in CD34 staining. Translations between stains would be mis-
leading in these cases. Other examples include the detection of glomeruli in kidney
tissue. This would be possible in both stainings and in translations thereof if the
aim is solely glomeruli quantification, but misleading if particular substructures are
evaluated for diagnostic reasons.

Overall, the purpose of this study is to demonstrate the sensitivity of the stain
transfer model to small modifications in architecture. However, as previously men-
tioned, the obtained translations represent artificially generated images and, in the
current state, cannot replace real images for diagnosis purposes. The aim of such
analysis is to give evidence that a strong comparison between stain transfer models
cannot be easily determined, particularly solely based on visual inspection, since the
overall conclusion depends on various hardly-controllable factors (such as training
run, epoch, architecture, etc.).

3.6 Benefits to Supervised Methods

The findings presented in Section 3.4 and Section 3.5 give evidence that CycleGAN-
base translations contain imperceptible noise that can be associated with stain char-
acteristics. In this section it will be further demonstrated that such noise can be per-
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Figure 3.27: Generating variation by adding noise to intermediate PAS repre-
sentations, the images are reconstructions of CD68/CD34 → PAS + N (0, σ) →
CD68/CD34.
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Figure 3.28: Effects of additive Gaussian noise with the same standard deviation,
the images are reconstructions of CD68/CD34 → PAS + N (0, σ) → CD68/CD34.

turbed in a way to generate artificially created, diverse histopathological examples
in given staining. Such ability is used to propose a new augmentation technique for
supervised training in digital histopathology which positively affects a deep learning
model’s robustness.

3.6.1 Self-Adversarial Attack as an Augmentation Strategy

Given a CycleGAN translation between a general and a specific stain (e.g. immuno-
histochemical), the translation in the specific to general direction should encode
stain-specific information, particularly that related to the position of stain-specific
markers which are not visible in the general stain. If this is the case, then by per-
turbing the hidden noise, one can affect the appearance of stain-related markers in
the reconstructed image. By doing this a new augmentation technique can be in-
troduced that increases the variability of stain-specific markers in histopathological
data. The aim of such augmentation would be to increase a model’s robustness
when trained for non-stain-related tasks.

A mapping between PAS (not specific staining) and two immunohistochemical
(specific) stainings CD68 and CD34 is considered to explore this hypothesis. To
remind, CD68 marks a protein exclusively produced by macrophages, and CD34
stains a protein specific to the endothelial cells of blood vessels. PAS, as a chem-
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Figure 3.29: Proposed self-adversarial attack-based augmentation approach.

ical reaction staining glycolysated proteins in general, can highlight some parts of
macrophages (co-located but not overlapping with CD68), the basal lamina of blood
vessels (co-located with CD34), and other structures not highlighted by either CD68
nor CD34 that contain glycolysated proteins.

3.6.1.1 Method

To translate between PAS and immunohistochemical, separate CycleGAN models
are trained. As discussed in Section 3.4, when translating between immunohisto-
chemical and histochemical stains, imperceptible noise is present in the intermediate
translation and this contains information about stain-related markers, in the direc-
tion from a specific stain to general. Thus, changing the encoded noise changes the
reconstruction of stain-related markers. This noise can be perturbed by introduc-
ing additive zero-mean Gaussian noise to the intermediate translation [172]. The
amount of stain-related characteristics can be controlled through the Gaussian’s
standard deviation. Figure 3.27 shows that translation output (i.e. reconstructed
input, Brec) variance is directly proportional to the level of additive noise and Fig.
3.28 shows that different translations result from varying noise of the same standard
deviation.

The physical accuracy of the resulting stain-related markers remains an open
question, but the fact that they are positioned in plausible locations opens the
possibility of exploiting them to reduce a model’s sensitivity to such stain-related
markers. It should be noted that the amount of additive noise is stain-dependent:
a standard deviation, σ, of 0.3 produces realistic CD68, but a noisy CD34, output.
The proposed augmentation process is described in Fig. 3.29. Let denote PAS as
A and an immunohistochemical stain as B. During supervised training of a model
on B (e.g. for glomeruli segmentation), each sample bi is first translated to PAS,
A′, using the trained CycleGAN generator GBA, with a probability of 50%. Next,
zero-mean Gaussian noise with standard deviation σ is added to the intermediate
translation, which is translated back to B using GAB, where σ ∈ (0, ǫstain] with
uniform probability. The value ǫstain is determined for each staining separately. As
such, the input is altered by the arbitrary appearance of stain-related markers and
the supervised model is forced to be less sensitive to their appearance.

As the translation process likely hides non-overlapping inter-stain information,
the intermediate stain potentially determines which information is encoded. As with
all augmentation techniques, a parameter value must be chosen; in this case it is the
noise level ǫstain. Since the problem being addressed is supervised, ǫstain can be opti-
mised experimentally; however, it could be chosen by manually validating the recon-
structions. A grid search was conducted on a separate dataset partition containing a
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Table 3.8 Quantitative results, standard deviations are in parentheses, number of
glomeruli training patches follow the data percentages.

Stain
Baseline Noise Augmented

F1 Precision Recall F1 Precision Recall

CD68

10%
(53)

0.739
(0.018)

0.754
(0.047)

0.728
(0.034)

0.767
(0.036)

0.832
(0.053)

0.713
(0.044)

30%
(159)

0.812
(0.026)

0.839
(0.038)

0.788
(0.038)

0.828
(0.026)

0.848
(0.065)

0.812
(0.017)

60%
(317)

0.831
(0.024)

0.812
(0.037)

0.852
(0.014)

0.856
(0.017)

0.888
(0.026)

0.826
(0.021)

100%
(529)

0.853
(0.018)

0.849
(0.024)

0.858
(0.020)

0.878
(0.007)

0.899
(0.023)

0.858
(0.010)

CD34

10%
(57)

0.837
(0.017)

0.770
(0.033)

0.919
(0.009)

0.839
(0.035)

0.778
(0.061)

0.913
(0.008)

30%
(170)

0.877
(0.012)

0.841
(0.030)

0.917
(0.012)

0.890
(0.011)

0.867
(0.023)

0.916
(0.009)

60%
(341)

0.882
(0.008)

0.840
(0.015)

0.927
(0.005)

0.901
(0.007)

0.884
(0.019)

0.919
(0.010)

100%
(568)

0.888
(0.015)

0.849
(0.033)

0.931
(0.010)

0.903
(0.006)

0.888
(0.014)

0.919
(0.009)

random 10% subset of each class. The range ǫstain ∈ [0.01, 0.05, 0.1, 0.3, 0.5, 0.9] was
tested by averaging 3 repetitions. It was found that adding noise in the range that
produces realistic output improves upon the baseline (ǫCD68 ≤ 0.3 and ǫCD34 ≤ 0.1),
confirming that the parameter can be chosen manually as well. Nevertheless, the
best value should be determined for each stain to maximise F1 score and these were
found to be ǫCD68 = 0.05 and ǫCD34 = 0.01.

To evaluate the augmentation’s effect with a few data samples, each training set
is split into 5 folds containing 10%, 30%, and 60% of each class taken at random.
A separate random 10% subset of the training data is extracted to choose ǫstain.
All models are trained for 250 epochs, the best performing model on the validation
partition is kept, and tested on the 4 held-out test patients. The average F1-score
and standard deviation are reported.

3.6.1.2 Results

Table 3.8 presents the baseline and noise augmented results with varying amounts of
data. The proposed augmentation improves F1 scores unanimously due to increased
precision. The recall does not improve since no new task-specific information is
added, e.g. glomeruli shape or positional variance. Since stain-related markers are
not indicative of glomeruli in general, the model should largely ignore them. How-
ever, fibrotic and sclerotic glomeruli are present, to which the model can wrongly
associate a specific pattern or marker. For example, fibrotic changes are associated
with CD68 positive macrophages [184] and a loss of CD34 positive vascular struc-
tures. Overemphasising immunohistochemical variations via augmentation biases
the model to other properties, decreasing recall but disproportionately increasing
precision.
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Figure 3.30: Comparison of segmentation performance of pre-trained models trained
with and without the proposed augmentation strategy on the whole PAS test set
over different CycleGAN epochs (the CycleGAN model is different from that used
for proposed augmentation).

3.6.1.3 Effects on a Model Robustness

As previously discussed in Section 3.5, models trained in a supervised way on a
particular stain obtain fluctuating performance when applied to images from other
stains translated using CycleGAN models in different epochs of CycleGAN train-
ing. The potential cause is noise encoded into the translations. However, pre-trained
models trained with the proposed augmentation strategy should be more robust to
such translation variability. Thus, the models obtained using the full training set
(i.e. 100% of data) are applied to PAS images translated to CD68/CD34 using differ-
ent CycleGAN epochs (and the model is different from that used for augmentation).
The obtained results are presented in Figure 3.30. In the case of CD68, the aug-
mentation strategy improves robustness dramatically, particularly in cases where
models trained without this augmentation completely failed to recognise glomeruli
(epoch 10). Overall, taking the last CycleGAN epochs for translation, augmented
models obtain on average 24.1% of the increase in overall F1-score. In the case of
CD34, the improvements are not as significant, although the augmentation strategy
does bring an average increase of 6.4%.
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3.7 Conclusions

This chapter introduced two GAN-based methods for plausible stain transfer —
CycleGAN based, to perform pair-wise stain transfer and StarGAN based, to enable
multi-domain stain translation. The work related to the application of CycleGAN
for stain transfer has been done in parallel with other authors [19, 20, 94], and now
represents the standard approach for virtual staining. These results are partially
presented in a journal article Vasiljević et al. [64]. However, concurrent works did
not provide an in-depth analysis regarding the quality of the obtained translation,
which has been addressed in this chapter.

Specifically, the study demonstrates that stain transfer using the most commonly
used technique, CycleGAN, to reduce the domain shift introduced by both inter-
and intra- stain variation, is highly sensitive to training settings such as the num-
ber of epochs or simple architectural modifications such as the normalisation layer.
Since CycleGAN-based methods are widely adopted in the literature and different
architectural modifications are introduced aiming for better translations, the exper-
iments in this chapter compared different CycleGAN models. In order to control the
architectural differences between stain translation models, the experiments focused
on different normalisation layers in the CycleGAN architecture.

Surprisingly, the majority of architectures tested lead to visually plausible trans-
lations. However, by extensive experiments it was shown that these models generate
data that belongs to different distributions, leading to unpredictable performance
when using pre-trained segmentation models. Thus, it can be concluded that vi-
sual inspection is not sufficient in all situations and should be complemented by
additional criteria for comparing and choosing stain transfer models. Specifically,
this chapter shows that in both stain transfer and stain normalisation, pre-trained
models exhibit huge performance fluctuations even when there are no obvious vi-
sual differences between the translations. These phenomena are attributed to the
self-adversarial attack, a consequence of the natural many-to-many mapping that
exists between different stains (or even the same stain in different labs) which is
reduced to a deterministic mapping in CycleGAN-based architectures. This is con-
firmed by showing that there is a difference between the distributions of real and
translated images using PixelCNN++ generative models. The findings also give
strong evidence that the architectural choice affects the appearance of important di-
agnostic evaluation criteria (such as markers for macrophages) and thus artificially
generated images using these models cannot be relied upon for diagnostic purposes.
These findings are summarised in a journal publication, Vasiljević et al. [63].

Moreover, this chapter confirms that the deterministic nature of CycleGAN mod-
els forces noise to be injected into the translations. In the case of translations be-
tween histochemical and immunohistochemical stainings, it is shown that the noise
encodes stain-specific features and these can be perturbed in a way to alter their ap-
pearance in a plausible manner. This is used to propose a new augmentation method
for supervised training that increases the robustness of deep learning models. The
method was presented as an oral presentation at IEEE International Symposium on
Biomedical Imaging (ISBI) 2021, Vasiljević et al. [62].

The presented findings raise awareness about the clinical usage of stain transfer,
which has been rarely addressed in the literature. Of particular concern is the fact
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that the presented stain transfer approaches can affect the appearance of diagnostic
evaluation criteria and thus such artificially generated images cannot be relied upon
for diagnostic purposes. Moreover, different runs of the same model can result in di-
agnostically different translations, which can lead to misleading clinical conclusions.
All of this indicates that experts are needed in the loop, both for the development
and evaluation stages, as non-competent validation can easily neglect some of these
limitations.

The work presented in this chapter indicates that stain transfer itself, at the
given stage of development, might not be sufficient to deal with domain shift in
digital histopathology. However, the large fidelity of the obtained transfer can be
exploited to build more robust deep models, as confirmed in the proposed augmen-
tation method [62]. Further investigation regarding building more robust models is
presented in Chapter 4 and Chapter 5 of this thesis.



Chapter 4
Stain Invariance

A typical procedure in the histopathological analysis is the examination of consec-
utive tissue slices stained differently (see Figure 4.1). Each stain provides specific
information about the underlying tissue, enabling pathologists to inspect various as-
pects of a specific organ, structure or pattern in the tissue. For example, to diagnose
kidney allograft rejection, it is necessary to study the inflammatory microenviron-
ment of the kidney, such as the distribution of immune cells (e.g. macrophages) in
relation to the number of glomeruli and their health status [39].

To enable the automatic integration of information from differently stained im-
ages, the structure of interest, e.g. glomeruli, should be detected in each tissue slice,
regardless of the staining. Assuming that annotations exist for each stain, such
detection would be a typical application of deep learning. However, as discussed
in Chapter 3, developing stain invariant solutions is not straightforward due to
the scarcity of annotations in digital histopathology datasets and intra/inter stain-
variation. Usually, for a particular task, only a limited amount of annotated data is
available, e.g. for glomeruli segmentation, annotations exist for one stain obtained
from one laboratory. Thus, the main obstacle in developing stain invariant 7 solu-

108 µm

(a) Periodic Acid Schiff (PAS)

108 µm

(b) CD3

108 µm

(c) Sirius Red

Figure 4.1: An example of three consecutive WSIs of a kidney nephrectomy sample
with three common stains. Each staining provides different information on the
tissue: general structural information in PAS, distribution of T lymphocytes in
CD3, specific structures such as collagen or muscular fibres in Sirius Red.

7The term stain invariance, as taken in this thesis, refers to the ability of a solution to generalise
across different stains. It should be noted that in the literature, this term is also used for solutions

73
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tion is learning from a limited set of annotated data, which frequently contains just
one staining.

Considering the problem of stain invariance from a domain adaptation perspec-
tive, given a source domain (annotated stain) and several target domains (unan-
notated stains), the goal is to obtain a model that is able to generalise across all
domains. That can be achieved either by directly obtaining an invariant model or
by adapting the already trained model to a given target stain in an unsupervised
manner. In Chapter 3, it has been demonstrated that adaptation of already trained
models by only pixel-space alignment can have limited success in reducing inter-
stain domain shift. This chapter proposes two solutions to obtain more stain robust
models. In Section 4.1 an augmentation strategy based on stain transfer is proposed,
which yields a test-time stain invariant model able to generalise across several stains,
including unseen stains. In Section 4.2 a solution which exploits stain transfer to
enhance feature-space-based adaptation of already trained models is proposed.

As in the rest of this thesis, the proposed solutions aim to segment glomeruli, a
highly relevant functional kidney unit, considering a dataset of five different stain-
ings (a detailed description of the dataset is given in Chapter 1, Subsection 1.3.2).
The PAS staining is taken as a source, annotated, domain and four other stainings
as targets — two histochemical (Sirius Red and Jones H&E) and two immunohisto-
chemical stainings (CD34 and CD68)— which are considered to be unannotated.

4.1 Unsupervised Domain Augmentation

Recalling the approaches that use virtual staining to tackle the domain shift problem
in digital histopathology presented in Chapter 2 of this thesis, herein, the proposed
method belongs to the augmentation class of approaches — increasing the variability
of the input to a deep learning model, implicitly forcing more general features to be
extracted. High fidelity of GAN-based unpaired image-to-image translation methods
is used to synthesise plausible samples from different stainings that are used as an
augmentation for annotated staining.

4.1.1 UDA-GAN

Unsupervised Domain Augmentation using Generative Adversarial Networks (UDA-
GAN) is a general approach for training stain invariant Convolutional Neural Net-
works (CNNs) for a specific task. After training, the model is able to perform a given
task in various stains, potentially unknown during training time. It is assumed that
annotated WSIs are available for a stain A while WSIs of other stains B1, B2, . . . BN

are unannotated. The aim is to increase the variability of the (annotated) training
set through augmentation by randomly translating it to the unannotated domains
(including the original, annotated domain). The overall architecture of the proposed
method is presented in Figure 4.2. The training details are given in Appendix C.1.

The method contains two phases:

a) (Unsupervised) Stain Translation — in order to obtain realistic translations of
the annotated stain A to unannotated stains B1, B2, . . . , BN , a GAN-based

that are robust to variations in one particular stain (herein referred to as intra-stain variation).
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Stain Translation Model(s)

PAS PAS

PASPAS Jones CD68

CD34
Siruis
Red

Random Selection

PAS JonesCD68 CD34 Siruis Red

Phase 1: Unsupervised Phase 2: Supervised

Figure 4.2: Overall diagram of the proposed approach. Phase 1, translation models
are learnt to translate images from the source domain to the target domains; Phase
2, patches of the source domain are randomly translated to the target domains
during training (U-Net image taken from [13]).

unsupervised, unpaired image-to-image translation model is employed. The
translation model needs to guarantee that important structures are not
changed during the translation process. The structures that need to be pre-
served are task-depended. In this study, the task of glomeruli segmentation
is considered, and thus, their position, shape, size and orientation should not
be changed in the translation process. Based on the results and analysis pre-
sented in Chapter 3, both CycleGAN [12] and StarGAN [14] methods ensure
their preservation, and thus they are considered herein.

b) (Supervised) Task-related model (Segmentation Model) — this model is trained
on the annotated data after being translated to a random unannotated stain.
Since translation does not change the overall structure of the image (see Chap-
ter 3), the original domain’s label/groundtruth is still valid. Thus, various
annotated samples of all available stainings are presented to the model during
training, forcing it to learn stain invariant features. Once the segmentation
model has been trained, it can be directly applied to the unannotated stains
without any further translations.

4.1.2 Quantitative Results

The experimental results are presented in Table 4.1. The UDA-GAN is compared to
the solutions proposed by Gadermayr et al. [20]: 1) train a segmentation model on
source data and apply it to target data translated to the source domain, referred to
as MultiDomain Supervised 1 (MDS1); 2) train on the source stain translated to the
target, and apply the model directly on the target images, MDS2 [20, 67]. For MDS1
and MDS2, the translation models are trained according as given in the Appendix
B. Variants of MDS1 and MDS2 using the StarGAN translators were evaluated
and are referred to as MDS∗1 and MDS∗2. Moreover, the presented approach is
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compared to the method proposed by Brieu et al. [67] which trains a segmentation
model using translators taken from multiple epochs of CycleGAN training with the
aim to increase augmentation variability. This approach is referred to as Multi
UDA-CGAN, where translation models from each 5th epoch are used, resulting in
40 translation models used for augmentation in total. The F1-score, along with
precision and recall, are used to measure performance.

The presented results are the averages of five independent training repetitions,
with corresponding standard deviations. The highest F1-scores for each staining are
in bold (PAS is not included in the vPAS average since it is the training staining).
Baseline performances (U-Net models trained and tested on the same stain using
each stain’s groundtruth) were determined for each staining and presented in Table
4.2 (repeated here from Chapter 3 for ease of reading).

Despite the fact that the translations obtained using both CycleGAN and Star-
GAN look plausible (see Chapter 3), it can be observed that the direction of transla-
tion (MDS1 vs MDS2) and translation model (StarGAN vs CycleGAN) influence the
results. This is best illustrated with MDS1, in which a model trained on the original
PAS data is applied to target data translated to PAS. It can be observed that in
each target stain, the difference between CycleGAN and StarGAN translations is
significant, although there appears to be no significant difference in the quality of
the translations. This phenomenon has been discussed previously in Chapter 3 of
this thesis8. The proposed UDA-GAN approaches show more stable performance
while the best results are obtained using UDA-CGAN.

Furthermore, UDA-CGAN reaches almost baseline performance in three out of
five test stainings. Even though the model has seen data from PAS stain only 20%
of the time during training, the model has baseline performance on this (source)
domain. The model also approaches baseline performance in target stains Jones
and Sirius Red. For stains CD68 and CD34, the model reaches an F1-score of 0.705
and 0.799, meaning that it gives an improvement of 11.9% and 6% respectively
over the next best CycleGAN method (MDS2). The average performance over the
five different stainings shows that UDA-CGAN reaches an average F1-score of 0.827
(0.808 without including the PAS staining, in order to be fairly compared to the
MDS approaches), while MDS2, as the next best method, reaches an F1-score of
0.748. The biggest relative difference is observed in staining CD68, where the overall
improvement is 55.8% compared to the original approach [17] and 11.9% compared
to MDS2. Other than the baseline, UDA-CGAN is the only to achieve acceptable
results in this staining. Multi UDA-CGAN does not improve upon this, possibly
because it introduces too much variability.

Gadermayr et al. suggest that translation “should always be performed from the
difficult-to-segment to the easy-to-segment domain” and that MDS1 is the preferred
method [20]. Table 4.2 shows that the difficult-to-segment stain is CD68 and the
easy is PAS, as it results in a more accurate baseline segmentation. It is also ob-
served in Table 4.1 that MDS1 with PAS as the source domain is, in fact, surpassed

8The results reported in Chapter 3 correspond to the MDS1 approach. However, they are
different due to the implementation differences related to the framework used (Keras vs Tensorflow).
As previously discussed in Chapter 3, such differences can be expected due to multiple factors
(training repetitions and duration). Appendix C.1.1 gives UDA-GAN results using the same models
as in Chapter 3.
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Table 4.1 UDA-GAN — Quantitative results for each strategy trained on PAS
(source staining) and tested on different (target) stainings.

Training
Strategy

Score
Test Staining

PAS
Jones
H&E

CD68
Sirius
Red

CD34 Overall

vPAS
F1

0.907
(0.009)

0.085
(0.034)

0.001
(0.002)

0.016
(0.018)

0.071
(0.063)

0.043
(0.041)

Precision
0.885
(0.023)

0.055
(0.021)

0.097
(0.129)

0.034
(0.034)

0.257
(0.243)

0.111
(0.101)

Recall
0.932
(0.014)

0.418
(0.316)

0.001
(0.001)

0.073
(0.101)

0.058
(0.039)

0.137
(0.190)

UDA-SD [17]

F1

0.891
(0.007)

0.791
(0.079)

0.147
(0.048)

0.828
(0.046)

0.739
(0.026)

0.679
(0.303)

Precision
0.840
(0.018)

0.699
(0.116)

0.365
(0.238)

0.778
(0.088)

0.695
(0.054)

0.675
(0.183)

Recall
0.950
(0.007)

0.926
(0.015)

0.099
(0.032)

0.892
(0.024)

0.795
(0.059)

0.732
(0.359)

MDS1[20]
F1 -

0.872
(0.016)

0.395
(0.057)

0.828
(0.040)

0.673
(0.033)

0.692
(0.215)

Precision -
0.843
(0.036)

0.447
(0.092)

0.787
(0.071)

0.857
(0.033)

0.734
(0.193)

Recall -
0.904
(0.018)

0.364
(0.071)

0.877
(0.020)

0.556
(0.047)

0.675
(0.261)

MDS2[20]
F1 -

0.869
(0.020)

0.586
(0.059)

0.797
(0.040)

0.739
(0.044)

0.748
(0.121)

Precision -
0.833
(0.049)

0.519
(0.108)

0.699
(0.061)

0.723
(0.051)

0.695
(0.132)

Recall -
0.909
(0.013)

0.697
(0.059)

0.929
(0.004)

0.765
(0.106)

0.825
(0.112)

UDA-CGAN

F1

0.901
(0.011)

0.856
(0.036)

0.705
(0.031)

0.873
(0.025)

0.799
(0.034)

0.827
(0.078)

Precision
0.869
(0.034)

0.800
(0.069)

0.690
(0.059)

0.830
(0.051)

0.754
(0.076)

0.789
(0.069)

Recall
0.936
(0.014)

0.924
(0.012)

0.723
(0.034)

0.922
(0.009)

0.856
(0.036)

0.872
(0.089)

Multi
UDA-CGAN

F1

0.897
(0.010)

0.863
(0.030)

0.684
(0.046)

0.861
(0.021)

0.808
(0.023)

0.822
(0.084)

Precision
0.860
(0.021)

0.812
(0.057)

0.648
(0.098)

0.813
(0.043)

0.764
(0.061)

0.779
(0.081)

Recall
0.937
(0.007)

0.922
(0.009)

0.736
(0.038)

0.917
(0.010)

0.862
(0.032)

0.875
(0.083)

MDS∗1
F1 -

0.756
(0.086)

0.092
(0.055)

0.599
(0.108)

0.751
(0.033)

0.550
(0.314)

Precision -
0.675
(0.136)

0.242
(0.116)

0.496
(0.123)

0.742
(0.092)

0.539
(0.223)

Recall -
0.881
(0.029)

0.061
(0.044)

0.780
(0.099)

0.774
(0.070)

0.624
(0.379)

MDS∗2
F1 -

0.816
(0.060)

0.525
(0.048)

0.837
(0.032)

0.766
(0.030)

0.736
(0.144)

Precision -
0.740
(0.096)

0.874
(0.037)

0.785
(0.059)

0.752
(0.030)

0.787
(0.061)

Recall -
0.918
(0.008)

0.376
(0.046)

0.901
(0.014)

0.785
(0.073)

0.745
(0.253)

UDA-∗GAN
F1

0.890
(0.022)

0.807
(0.031)

0.549
(0.081)

0.792
(0.052)

0.758
(0.076)

0.759
(0.127)

Precision
0.853
(0.043)

0.717
(0.050)

0.794
(0.044)

0.703
(0.085)

0.738
(0.082)

0.761
(0.062)

Recall
0.933
(0.008)

0.926
(0.010)

0.426
(0.090)

0.913
(0.013)

0.796
(0.135)

0.799
(0.216)
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Table 4.2 Quantitative baseline results (standard deviations are in parentheses).

PAS
Jones
H&E

CD68
Sirius
Red

CD34 Overall

F1

0.907
(0.009)

0.864
(0.011)

0.853
(0.018)

0.867
(0.016)

0.888
(0.015)

0.876
(0.022)

Precision
0.885
(0.023)

0.824
(0.020)

0.846
(0.027)

0.801
(0.042)

0.862
(0.015)

0.844
(0.032)

Recall
0.932
(0.014)

0.911
(0.005)

0.856
(0.022)

0.957
(0.018)

0.929
(0.011)

0.917
(0.038)

by MDS2 in all but one target stainings (in which it is equal). These results sug-
gest that the characteristics of “difficult-to-segment” stainings may vary, and the
method/translation direction should be adjusted to the specific requirements of a
given biological question, i.e. the panel of necessary staining methods.

In the case of staining CD68, neither MDS1, MDS∗1, MDS2, nor MDS∗2 perform
well. Poor MDS1 (MDS∗1) performance could indicate that the CycleGAN (Star-
GAN) translation between the CD68 and PAS domains does not capture the features
the PAS model uses for segmentation. On the other hand, poor MDS2 and MDS∗2
performance could indicate that the translation between PAS and CD68 contains
features that are not present in real CD68. From a biological viewpoint, this most
likely represents the fact that immunohistochemistry for CD68 highlights just one
specific, migratory cell population (macrophages) that is not part of the pre-existing
tissue architecture, with a brown chromogen, while the anatomical structures are
only faintly stained (blue “counterstain” using hemalaun). Strikingly, immunohis-
tochemistry for CD34, a marker for vascular endothelial cells, labelled with a red
chromogen, performs much better. This can probably be explained by specific im-
munohistochemical labelling of anatomical structures (blood vessels) in addition to
the blueish counterstain, containing more features that are also covered in the other
staining methods (PAS, Jones H&E). This is particularly evident with StarGAN,
which exploits common inter-stain characteristics.

Between MDS1 and MDS2 (both CycleGAN and StarGAN translations), the
largest difference is seen in stain CD68, which marks a protein exclusively produced
by macrophages. PAS, as a chemical reaction staining glycolysated proteins in
general, highlights a part of macrophages (co-located, but not overlapping, with
CD68). Thus the translation from PAS to CD68 (MDS2, MDS∗2) is easier than the
reverse (MDS1, MDS∗1) since PAS contains some (but not all) of the information
exposed by CD68.

The fact that UDA-CGAN outperforms both MDS1 and MDS2 using the same
translation functions indicates that it is capable of extracting more general (stain
invariant) features, i.e. it avoids learning stain-specific and ‘false’ features introduced
by the CycleGAN. This is also the case for UDA-∗GAN but to a lesser extent. UDA-
∗GAN uses the same generator for all translations, so it is likely to extract similar
features between the source stain and all target stains. This reduces the impact of
the multi-stain augmentation, which becomes evident when comparing UDA-∗GAN
to MDS∗2.
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4.1.3 Feature Distributions

In order to visualise the distributions of each model’s extracted features, Figure
4.3 presents UMAP (Uniform Manifold Approximation and Projection) embeddings
[185] of the penultimate convolutional layer’s activations in the best performing
model (over all stainings) for two hundred random glomeruli and two hundred ran-
dom tissue patches of each staining using MDS1, MDS∗1, UDA-CGAN, and UDA-
∗GAN (MDS2 and MDS∗2 models are stain specific, therefore cannot be applied to
all stainings). For MDS1 and MDS∗1, the translations to the PAS stain are achieved
using CycleGAN and StarGAN, respectively, and UDA-CGAN and UDA-∗GAN are
applied to original data without any modification.

In order to quantitatively measure these distributions, silhouette scores [186]
have been calculated between:

• each stain’s glomeruli class and the union of the glomeruli samples from all
other stains;

• PAS glomeruli and each target stain’s glomeruli;

• each stain’s glomeruli and negative samples.

These are presented in Table 4.3. The first should favour the UDA-GAN approaches
since their goal is to learn a stain invariant representation, and the second should
favour MDS1 and MDS∗1, since their objective is to translate the target stainings
to the PAS distribution. At the same time, the third should be the goal of all
approaches.

In the first case, the UDA-GAN approaches exhibit larger (or equal) overlap
between the glomeruli in all stainings, indicating greater clustering, which is reflected
in the fact that these models are able to segment all stainings. Higher scores for
the MDS1 approaches indicate less concentrated clustering (e.g. Jones H&E, which
appears to be concentrated in one part of the glomeruli space, separate from the
other stains).

Since the MDS1 approaches are trained on PAS, they rely on accurate transla-
tion models, which must result in a direct overlap with the PAS distribution. In
comparison, the UDA-GAN approaches can tolerate more translation variance (that
does not result in glomeruli-tissue overlap) since they are trained on the translated
data. Interestingly the scores for MDS1 and MDS∗1 for PAS are relatively high,
indicating that this approach fails to completely overlap the target stains with PAS.

In the second case, it can be observed that UDA-GAN approaches have better
(or equal) overlap with the PAS glomeruli in all stainings. The score for MDS∗1 in
CD68 is much higher than for any other stain, and Figure 4.3 shows that the CD68
glomeruli class has been merged with the negative class, explaining the very low
recall in Table 4.1.

In the third case, it can be observed that the UDA-GAN approaches better
separate the glomeruli and tissue classes. This is especially illustrated in the case
of CD68 in which UDA-∗GAN learns to separate the glomeruli and tissue classes,
whereas MDS∗1 fails. As mentioned, MDS∗1 relies on accurate translations, whereas
the UDA-GAN approaches are able to correct for weak translations during training.
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UDA-CGAN UDA-∗GAN

MDS1 MDS∗1
(best PAS model) (best PAS model)

CD34 Negative

CD34 Glomeruli

Sirius Red Negative

Sirius Red Glomeruli

CD68 Negative

CD68 Glomeruli

H&E Negative

H&E Glomeruli

PAS Negative

PAS Glomeruli

Figure 4.3: Two-dimensional UMAP embeddings of the representation learnt, sam-
pled from the penultimate convolutional layer using 200 patches per stain per class
from the overall best performing PAS and UDA-CGAN models. Each point repre-
sents a patch from the respective class and staining (glomeruli patches are centred
on a glomerulus).
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Table 4.3 Silhouette scores measuring (averaged over three different random sam-
plings): the separation between each stain’s glomeruli class and the glomeruli
class formed from all other stains (Combined), the separation between each stain’s
glomeruli class and the PAS glomeruli class (PAS), and the separation between each
stain’s glomeruli class and its negative class. Calculated using the features of 200
random patches per stain per class, extracted from the penultimate convolutional
layer: 0 means total overlap, 1 means total separation, -1 means that samples are
more similar to the other class than their own, therefore values closer to 0 are better
(in bold) for Glomeruli-Combined and Glomeruli-PAS Glomeruli, and 1 is better (in
bold) for Glomeruli-Tissue.

Training
Strategy

PAS
Jones
H&E

CD68 Sirius Red CD34

Glomeruli-
Combined

UDA-
CGAN

0.069
(0.004)

0.106
(0.008)

0.000
(0.007)

-0.044
(0.003)

-0.019
(0.003)

UDA-
∗GAN

0.051
(0.008)

0.094
(0.005)

0.069
(0.010)

-0.041
(0.003)

-0.024
(0.003)

MDS1
0.198
(0.011)

0.176
(0.014)

-0.057
(0.002)

-0.038
(0.004)

-0.070
(0.005)

MDS∗1
0.219
(0.006)

0.048
(0.011)

0.166
(0.004)

-0.027
(0.003)

-0.063
(0.004)

Glomeruli-
PAS
Glomeruli

UDA-
CGAN

-
0.004
(0.002)

0.123
(0.008)

0.078
(0.003)

0.071
(0.006)

UDA-
∗GAN

-
0.004
(0.001)

0.179
(0.003)

0.070
(0.002)

0.090
(0.003)

MDS1 -
0.002
(0.001)

0.253
(0.007)

0.175
(0.009)

0.255
(0.003)

MDS∗1 -
0.037
(0.005)

0.477
(0.007)

0.098
(0.003)

0.186
(0.010)

Glomeruli-
Tissue

UDA-
CGAN

0.594
(0.009)

0.567
(0.017)

0.533
(0.009)

0.554
(0.012)

0.551
(0.010)

UDA-
∗GAN

0.625
(0.016)

0.584
(0.015)

0.475
(0.014)

0.581
(0.012)

0.530
(0.005)

MDS1
0.489
(0.007)

0.481
(0.017)

0.300
(0.009)

0.300
(0.016)

0.424
(0.006)

MDS∗1
0.489
(0.007)

0.456
(0.019)

0.051
(0.004)

0.354
(0.023)

0.449
(0.005)
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Figure 4.4: GradCAM visualisation of (column-wise) 1) overall best performing
UDA-CGAN model; 2) best MDS1 model in each particular stain; 2) best MDS2
model in each particular stain; 3) best baseline model in each particular stain. N.B.
the first column represents the attention of the same model over different stainings.

4.1.4 Attention

Another approach to illustrate the representations learned is to use attention visu-
alisations. Grad-CAM [187] is used to visualise the attention of the penultimate
convolutional layer, see Figure 4.4. For a fair comparison, the best performing
MDS1, MDS∗1, MDS2, and MDS∗2 model for each staining, and the baseline ap-
proaches are used. For UDA-CGAN and UDA-∗GAN, the overall best-performing
model is taken.

The attention of the best-performing MDS1 (and MDS∗1, except CD68 for which
MDS∗1 does not work) models in all stainings is focused on border-like features,
which the model uses in the original PAS domain (on which it was trained). Poor
MDS1 and MDS∗1 performance can be explained by an absence of the specific
features on which the trained model is focused on, and which are not necessarily
present in the target domains nor relevant for the detection of the structures in gen-
eral. When comparing attention in all the baseline models, it can be observed that in
each staining, the models have a tendency to focus on stain-specific features. The at-
tention of the MDS2 models is more general and close to the stain-invariant model’s
attention. According to the results presented in Table 4.1, the stain-invariant ap-
proach (UDA-CGAN) gives an improvement in precision, while the recalls of both
models are similar (in all stainings except CD34), meaning that the stain-invariant
model reduces false positives and, to some extent, false negatives (while both models
detect true positives similarly). Thus, attention in the true positive class is expected
to be similar. Both the MDS∗2 and UDA-∗GAN use a common translation model
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H&E CD3

Figure 4.5: Examples of glomeruli from the unseen stains.

(StarGAN), which, as previously mentioned, is biased towards common features be-
tween the stains. Thus both models are likely to focus on these common features,
explaining their similar attention (this is also confirmed in Table 4.1). In addition
to common features, the MDS2 models can also use stain-specific features because
they are only exposed to one type of image (as is the case with the presented Jones
H&E example).

The main advantage of the UDA-GAN approaches is their ability to properly
generalise across different stainings, as the presented attentions represent the fea-
tures learnt by one model, while in all other cases a domain (stain) dependent model
is obtained.

4.1.5 Unseen Stains

In order to further evaluate the stain invariance of the UDA-GAN approaches, they
are tested on two unseen stains (unseen to both the CycleGAN/StarGAN and UDA-
GAN models), see Figure 4.5: histological stain H&E (a general overview staining
not specific for a protein) and immunohistochemical stain CD3 (T cell marker).
Even though they highlight similar structures to the “virtually” seen stains, they
are visually very different in appearance. For each stain, images are taken from 3
patients containing 1151 (H&E) and 1083 (CD3) glomeruli. Table 4.4 presents the
results, averaged over the previously trained UDA-GAN models.

Although the results are lower than those obtained using stains virtually seen
during training, i.e. stain translation targets during augmentation, they confirm the
network’s capacity for stain invariant segmentation. On average, both UDA-CGAN
and UDA-∗GAN perform equally well on unseen stains. When taken in the context
of Table 4.1, although they generally achieve lower results, UDA-∗GAN remains
within the range previously seen, and UDA-CGAN exhibits more variance.

A high F1-score is achieved when facing a completely new stain colour profile
(H&E). When faced with a similar stain profile to one virtually seen (CD3, similar
to CD68), the corresponding UDA-CGAN F1-score is similar, and UDA-∗GAN im-
proves, likely because CD3 has more contrast (due to an unspecific reaction of the
primary antibody) when compared to CD68, with which it struggles. It is worth
noting that the models with the best PAS performance (which can be determined
since annotations exist) are also those that perform best on unseen stains.
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Table 4.4 Quantitative results of UDA-GAN models on unseen stains (standard
deviations are in parentheses).

Training
strategy

Score H&E CD3 Average

vPAS
F1 0.126 (0.066) 0.000 (0.000) 0.063
Precision 0.070 (0.041) 0.018 (0.018) 0.044
Recall 0.854 (0.109) 0.000 (0.000) 0.427

UDA-CGAN
F1 0.731 (0.100) 0.658 (0.075) 0.694
Precision 0.781 (0.122) 0.569 (0.124) 0.675
Recall 0.697 (0.123) 0.802 (0.042) 0.750

UDA-∗GAN
F1 0.752 (0.087) 0.650 (0.030) 0.701
Precision 0.824 (0.057) 0.853 (0.065) 0.839
Recall 0.706 (0.147) 0.531 (0.058) 0.618

4.1.6 Multi vs Single Stain Translation

The fact that StarGAN has a single translator may force it to preserve common fea-
tures between stains, features that UDA-∗GAN is likely to focus on. It is also likely
that these features are general and present in unseen stains, therefore UDA-∗GAN’s
performance is similar within the virtually seen and unseen stains. Nevertheless, the
single translator may force StarGAN to ignore hard-to-translate stains, e.g. CD68,
and to minimise its loss upon the other stains. This would cause the general features
to be extracted from the remaining stains. Low recall for CD68 and CD3 indicates
that the model struggles to identify glomeruli, i.e. the general features do not exist
in these stains. This is confirmed in Figure 4.3, in which the CD68 glomeruli class
overlaps the negative class. UDA-CGAN, on the other hand, is trained using the
translators and has more sources of variation since each augmentation translator
is independent. It can therefore leverage the additional information present in the
augmented translations to achieve higher accuracy during application to them, while
still learning a stain invariant representation.

The obtained results can be interpreted in light of the findings presented in
Chapter 3 related to the noise injected into an image during translation. These
analyses, and recent studies on the adversarial nature of CycleGANs [173, 174], lead
to the hypothesis that the translations suffer from invisible artefacts produced by
the translation models. The extent and type of these artefacts could be related
to stain differences. As previously discussed in Chapter 3, stains with a greater
difference in highlighted tissue components require more complicated translation,
forcing the translators to hallucinate specific features. The relatively high sensitivity
to noise (therefore potentially high levels of noise present in the translation) offers
an explanation for UDA-CGAN’s relatively low precision in CD68 and CD34, and
UDA-∗GAN’s relatively low precision overall. From this perspective, it can also be
understood why UDA-CGAN outperforms MDS1 and MDS2 as the model is forced
to be robust to artefacts produced by different translations. In this sense, the lack
of improvement offered by Multi UDA-CGAN model (see Table 4.1) over UDA-
CGAN can be understood. In MDS1, these artefacts hamper the performances as
translated images could act as adversarial examples, while in MDS2, these artefacts
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could be considered by the model as features. The hypothesis is that a mechanism for
assessing the quality of the translation, such as FID [188] in natural images, would
offer a further understanding of these phenomenons and possibly improvement in
developing better translations and stain invariant models.

4.2 Adversarial Domain Adaptation

Instead of putting a constraint directly into the input data (pixel-space methods),
such as reducing their variability as presented in Chapter 3, or increasing their
variability as presented in Section 4.1, a model can be guided by constraints imposed
in feature space (feature-space methods). The most common strategy in feature-
space-based methods is to enforce the extraction of domain agnostic and task-related
features. Contrarily to pixel-space methods, these approaches are mathematically
better defined since it is assumed that all domains contain relevant information for
solving a particular task, and thus a domain-invariant set of features can be found.
However, obtaining such a set is not always straightforward.

One widely adopted approach to feature-space alignment in digital histopathol-
ogy is Domain-Adversarial Training of Neural Networks (DANN) [189]. Although
this method has been surpassed as the state-of-the-art in general domain adap-
tation, due to its simplicity, it has been widely applied in digital histopathology
[118–121, 143, 145]. As an illustration, in the recent Mitosis domain generalisation
challenge 2022, the reference model and two submitted solutions used DANN [190],
demonstrating its usefulness even nowadays. However, DANN is primarily used in
stain normalisation tasks, to improve classification [119–121, 143, 145] or segmenta-
tion [118] performance and it has not yet been studied in the more challenging task
of reducing the domain shift induced by inter-stain variation.

4.2.1 DANN for Stain Invariant Segmentation

Domain-Adversarial Training of Neural Networks (DANN) [189] is an unsupervised
domain adaptation strategy which forces domain-invariant feature extraction via
a Gradient Reversal Layer (GRL). As previously discussed in Chapter 2 (Section
2.2), when performing a feature-space adaptation, the model is divided into feature
extractor and task-specific branch and extended with the discriminator. In DANN
approach, a GRL connects the feature extractor and the discriminator, and acts
as an identity function during the forward pass, while during the backward pass,
it negates the gradients. Feeding both source (annotated data) and target (unan-
notated data) to such model’s composition, makes that the discriminator’s loss is
minimised by itself and maximised by the feature extractor. The training is per-
formed end-to-end, i.e. both models are updated in a single iteration. Optimising
the network in this way is a special type of adversarial game [146] that eventu-
ally trains the feature extractor to extract domain invariant features. Since the
task-specific branch is trained using a domain invariant representation extracted by
feature extractor, the model should be able to generalise to the target data.

The DANN approach has been widely adopted in the area of digital histopathol-
ogy, mainly for classification tasks. A classification model is usually split into
a feature-extractor up to the last convolutional layer and the classification part
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Figure 4.6: UNet architecture (taken from [13]) with a feature map size correspond-
ing to the input patch of 508 × 508 pixels. Layers L9, L13, L16, L19, and L21
correspond to the last (transpose) convolutional layers in the marked blocks.

which mainly contains fully-connected layers. However, for segmentation tasks in
histopathology, it is rarely applied [118]. One potential reason is the complexity
of segmentation models, which are usually encoder-decoder architectures with skip-
connections, such as the UNet [13]. Thus, it becomes more complex to determine
which part of the network should be considered as a feature-extractor and which
will be task-related (segmentation). In Subsection 4.2.1.1 the original DANN will
be applied for the task of glomeruli segmentation in multiple stains. The limitations
of such an approach will be discussed. Subsection 4.2.1.2 proposes a combination of
stain transfer and DANN, which significantly enhance the adaptation process.

4.2.1.1 Vanilla DANN

As in all previous experiments, the PAS staining is considered to be annotated.
Therefore, a pre-trained PAS segmentation model is adapted using unannotated
data from each of the target domains {Jones H&E, Sirius Red, CD68, CD34}. The
UNet architecture used in the segmentation model is given in Figure 4.6. Several
layers are investigated to determine at which layer the feature extractor and segmen-
tation model should be separated. Following the conclusions by Brion et al. [191]
the adaptation is evaluated on layers 9, 13, 16, 19, 21. In preliminary experiments,
it has been found that starting from a pre-trained UNet (source, annotated domain)
stabilised training. Starting from a randomly initialised segmentation network that
is simultaneously trained and adapted, in most cases (runs and stains), diverged.
Thus, the UNet is pre-trained for 100 epochs using PAS data, training details given
in Appendix C.2.1.

Table 4.5 shows the obtained results for each of the tested layers. The baseline
results, which represent the direct application of the PAS pre-trained model to the
target data, prior adaptation, are reported in column vPAS. For each of the tested
layers, three separate adaptation runs are performed, and the overall averages with
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Table 4.5 The segmentation performance of the PAS model adapted at different
layers to a target stain.

Adaptation layer

Target
stain

Measure vPAS Layer 9
Layer
13

Layer
16

Layer
19

Layer
21

Jones
H&E

F1 0.000
0.795
(0.011)

0.815
(0.016)

0.789
(0.021)

0.778
(0.016)

0.828

(0.007)

Precision 0.083
0.788
(0.054)

0.812

(0.037)

0.784
(0.022)

0.785
(0.008)

0.801
(0.017)

Recall 0.000
0.807
(0.048)

0.818
(0.019)

0.796
(0.053)

0.771
(0.025)

0.856

(0.008)

Sirius Red
F1 0.000

0.065
(0.071)

0.653
(0.196)

0.006
(0.002)

0.287
(0.482)

0.848

(0.012)

Precision 0.003
0.121
(0.137)

0.926

(0.037)

0.016
(0.006)

0.678
(0.284)

0.875
(0.011)

Recall 0.000
0.055
(0.048)

0.535
(0.231)

0.004
(0.002)

0.272
(0.463)

0.823

(0.033)

CD68
F1 0.000

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

Precision 0.000
0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

Recall 0.000
0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

CD34
F1 0.000

0.151
(0.261)

0.748

(0.015)

0.636
(0.063)

0.497
(0.202)

0.230
(0.374)

Precision 0.000
0.139
(0.241)

0.845

(0.045)

0.771
(0.000)

0.766
(0.025)

0.393
(0.396)

Recall 0.000
0.164
(0.285)

0.674

(0.051)

0.546
(0.093)

0.404
(0.262)

0.194
(0.323)

corresponding standard deviations are reported.

It is not surprising that the direct application of the PAS-based model cannot
segment in target stains due to domain shift caused by intra-stain variation, which
is confirmed by vPAS results in Table 4.5. Therefore, the adaptation in different
UNet layers has the potential to reduce such domain shift. Adapting at the UNet’s
bottleneck (Layer 9) is not able to reduce the domain shift in any of the test stains
except Jones H&E. Generally, adapting between PAS and Jones H&E is the least
dependent on the position of the GRL. Such findings align with all results presented
in this thesis since several presented approaches successfully remove the domain shift
between these two stains (see Chapter 3, Section 4.1 and Chapter 5). As already
discussed, one potential explanation is that these two stainings are biologically closer
than others, simplifying the adaptation process. When stains are far from each
other, which is the case for the other stainings in these experiments, adapting at
the bottleneck is not always effective. For example, adapting to stain CD34 in 1
out of 3 runs gives an overall F1-score of 0.452; however, in the other two runs, the
adaptation was unsuccessful, giving an overall F1-score close to 0. Regarding the
other layers, the adaptation at Layer 21 quantitatively gives the best results in two
out of four tested stainings. However, in stain CD34, the adaptation at this layer
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Figure 4.7: Two-dimensional UMAP embeddings of the Jones H&E representations
in the segmentation model (pre-trained on PAS data), sampled from Layer 13 and
Layer 21, before and after the adaptation, using 100 patches per stain per class.
Each point represents a patch from the respective class and stain (glomeruli patches
are centred on glomeruli).

is unstable — similarly to adaptation at the bottleneck for stain CD34 in 1 out of
3 runs, it gives the best overall F1-score of 0.66 while in the other two runs, the
overall F1-score is close to 0. Overall, adapting at Layer 13 gives the most stable
results across all the tested stainings, and quantitatively, they are close to the best
results obtained for each stain generally.

In order to visualise the adaptation process, UMAP embeddings of 200 random
patches from the source and target domains are plotted (100 glomeruli patches and
100 tissue patches), see Figure 4.7 and Figure 4.8. The embeddings are plotted
for adaptation Layer 13 and Layer 21 before and after the adaptation. Figure 4.7
presents UMAP embeddings for Jones H&E (the best performing stain) and Figure
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Figure 4.8: Two-dimensional UMAP embeddings of the CD68 representations in the
segmentation model (pre-trained on PAS data), sampled from Layer 13 and Layer
21, before and after the adaptation, using 100 patches per stain per class. Each
point represents a patch from the respective class and stain (glomeruli patches are
centred on glomeruli).

4.8 presents CD68 (the worst-performing stain). It can be observed that for Jones
H&E, adaptation leads to proper alignment in the adapted layer, which is preserved
in later layers (Layer 21) and results in good segmentation performance. However,
for stain CD68, adaptation is successful at the adaptation layer, but the alignment
is not preserved in the latter layers, which results in poor segmentation results.

The obtained adapted models are invariant with respect to two stainings — PAS
and target stain to which it has been adapted. The performances of the adapted
model on the source stain (PAS) are presented in Table 4.6. The results of the
baseline model (a pre-trained model from which the adaptation process starts) are
given in column PAS. The other columns contain the results of the adapted model
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Table 4.6 Segmentation models adapted at Layer 13 for the corresponding target
staining applied to PAS data. N.B. models are able to segment in both source and
target domains (excluding CD68 where adaptation is not successful for the target
staining and the resulting model works only in the PAS domain).

Score
Target Staining

PAS Jones H&E CD68 Sirius Red CD34

F1 0.910 0.902 (0.006) 0.911 (0.001) 0.899 (0.003) 0.891 (0.006)

Precision 0.882 0.884 (0.010) 0.888 (0.002) 0.885 (0.005) 0.884 (0.010)

Recall 0.940 0.920 (0.011) 0.937 (0.001) 0.912 (0.010) 0.897 (0.004)

(at Layer 13) when applied to PAS data. These results confirm that the adaptation
process does not affect the source domain’s performance and that the model can
segment across two stainings simultaneously. The exception is CD68 staining, where
adaption is not successful for the target stain. Nevertheless, the adaptation did not
ruin the performance of the source domain.

The instability of the Vanilla DANN approach can be attributed to the differ-
ences between stains. One way to improve its performance is to force distribution
alignment at several layers. Alternatively, the adaptation task can be facilitated
by first reducing domain shift in the pixel-space domain. However, as has been
shown, stain transfer can produce an imperceptible domain shift. In the following,
DANN will be used in combination with stain transfer as a mechanism to remove
the remaining domain shift between real and virtually stained images.

4.2.1.2 Stain Transfer for DANN

A CycleGAN model is trained to translate between PAS and each target stain. The
model architecture and training strategy are the same as in Chapter 3. Separate
segmentation models are trained for each target staining, using the annotated stain
(PAS) translated to a target by pre-trained CycleGAN models. To be consistent
with the previous section, this approach is referred to as MDS2 [20]. Furthermore,
for each target stain three MDS2 segmentation models are trained, whose average
performances in the target domain are given in Table 4.7, MDS2 row. In order to
reduce the remaining domain shift, the DANN approach is adopted. According to
the results presented in Table 4.5, Layer 13 is the most promising for attaching a dis-
criminator. A separate adaptation is performed for each target segmentation model,
starting from a pre-trained MDS2 model, using unannotated target data and anno-
tated PAS-stain data translated to the target. Training details and discriminator
architecture are the same as in the Vanilla DANN approach.

Table 4.7 presents the results after adaptation in row MDS2-adapted, which a)
show that the DANN approach is able to improve results in all stainings; b) con-
firm the existence of a feature-space discrepancy between real and virtually stained
images. The individual results of the improvements obtained for each MDS2 model
in each target stain are in Appendix C.2.2.

In three out of four target stainings, this strategy obtained close-to baseline
results (baseline results for each stain are given in Table 4.2). In stain CD68, this
strategy achieves 0.708 F1-score, which is an improvement of 10% compared to the
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Table 4.7 MDS2 DANN adaptation results.

Training
Strategy

Score
Test Staining

Jones H&E CD68 Sirius Red CD34

MDS2[20]
F1 0.876 (0.003) 0.603 (0.072) 0.814 (0.034) 0.863 (0.018)

Precision 0.855 (0.005) 0.499 (0.100) 0.730 (0.057) 0.825 (0.038)

Recall 0.899 (0.002) 0.790 (0.032) 0.924 (0.006) 0.906 (0.007)

MDS2[20]
adapted

F1 0.880 (0.002) 0.708 (0.023) 0.849 (0.011) 0.871 (0.007)

Precision 0.851 (0.007) 0.691 (0.041) 0.781 (0.024) 0.845 (0.016)

Recall 0.912 (0.004) 0.735 (0.077) 0.932 (0.007) 0.899 (0.006)

Table 4.8 Silhouette scores measuring the separation between each stain’s glomeruli
class and the PAS (translated to given staining) glomeruli class (averaged over three
models). Calculated using the features of 100 random patches per stain, extracted
from the adaptation layer (Layer 13). Values closer to zero mean better alignment.

Training
Strategy

Test Staining
Jones H&E CD68 Sirius Red CD34

MDS2[20] 0.007 (0.004) 0.017 (0.010) 0.023 (0.006) 0.008 (0.003)

MDS2[20]
adapted

0.005 (0.004) 0.005 (0.002) 0.010 (0.006) 0.007 (0.002)

non-adapted stain-transfer-based model. In the other three stains, DANN-based
adaptation boosted performance to close to baseline (fully supervised training on
annotated target data, see Table 4.2).

In order to visualise the adaptation process, UMAP embeddings from 200 ran-
dom patches from the source and target domains are plotted (100 glomeruli patches
and 100 tissue patches), see Figure 4.9 and Figure 4.10. It can be seen that since
the process starts from an MDS2 model (trained on PAS → target images), which
is already able to segment glomeruli in the target domain, the domains appear to
be aligned even without adaptation. The adaptation further refines this alignment,
which is confirmed by the silhouette scores given in Table 4.8, where lower values
are obtained in the adapted compared to the MDS2 model. Such alignment is re-
flected in the overall increase in precision (less false positives), which is observed in
all tested stainings.

The same strategy can be applied to MDS1, which assumes that the translated
images (target to source) are segmented using pre-trained source models (in this case,
PAS). A domain shift exists between the source data and the target translations to
the source. As in the previous experiment, the DANN approach is used to reduce
the domain shift. The obtained results are presented in Table 4.9. Surprisingly,
the adaptation in the direction target→PAS is not as successful as the direction
PAS→target. An improvement is observed in stainings CD68 and CD34, which are,
as previously discussed, biologically far from PAS and thus it is expected that stain
transfer injects more noise into translations (i.e. the domain shift is bigger than
in other stainings). However, for histochemical stainings Jones H&E and Sirius
Red (biologically closer to PAS), MDS1 already achieves baseline results (see Table
4.2) and adaptation negatively affects the performances. The drop in performance
mainly comes from the decrease in precision (more false positives) that is observed
in all tested stainings. Such behaviour can be explained by classes mixing in the
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Figure 4.9: Two-dimensional UMAP embeddings of the Jones H&E representations
in the MDS2 segmentation model (pre-trained on PAS translated to Jones H&E),
sampled from the Layer 13 and Layer 21, before and after the adaptation, using 100
patches per stain per class. Each point represents a patch from the respective class
and stain (glomeruli patches are centred on glomeruli).

feature space, and thus more advanced domain adaptation techniques such as FADA
[192] can be beneficial. The potential of such methods for both MDS1 and MDS2
remains to be explored in the future.

4.3 Conclusions

To summarise, this chapter introduced UDA-GAN, a state-of-the-art model for stain
invariant segmentation that outperforms all other existing pixel-space alignment
approaches in five different stainings. The model is domain invariant (including
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Figure 4.10: Two-dimensional UMAP embeddings of the CD68 representations in
the MDS2 segmentation model (pre-trained on PAS translated to CD68), sampled
from Layer 13 and Layer 21, before and after the adaptation, using 100 patches per
stain per class. Each point represents a patch from the respective class and stain
(glomeruli patches are centred on glomeruli).

unseen stains), can be easily extended to new stainings, and the training procedure
is general so that it can be used in different segmentation and classification tasks.

UDA-GAN’s stain invariance has been shown through quantitative results and
by analysing the resulting feature distribution and attention, demonstrating that
patches from all stainings are better aligned than competing approaches. The ap-
proach uses pixel space alignment, which aids visual interpretation and verification.
The results have been discussed and related to those found in the literature. Namely,
choosing translation model epochs by visual inspection is not the best approach (al-
though no formal method for selecting the epochs to be used nor evaluating quality
exists), and the direction of translation of the data cannot be simply prescribed a
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Table 4.9 MDS1 DANN adaptation results.

Training
Strategy

Score
Test Staining

Jones H&E CD68 Sirius Red CD34

MDS1[20]
F1 0.871(0.023) 0.641 (0.033) 0.884 (0.018) 0.764 (0.026)

Precision 0.847 (0.040) 0.867 (0.018) 0.854 (0.036) 0.891 (0.009)

Recall 0.897 (0.003) 0.510 (0.045) 0.918 (0.006) 0.669 (0.043)

MDS1[20]
adapted

F1 0.839 (0.037) 0.675 (0.031) 0.861 (0.005) 0.816 (0.019)

Precision 0.791 (0.064) 0.700 (0.091) 0.813 (0.006) 0.803 (0.047)

Recall 0.893 (0.003) 0.667 (0.099) 0.915 (0.004) 0.830 (0.010)

priori. Finally, UDA-GANs limitations were presented; it is still unclear exactly
why the model’s performance degrades with certain stainings despite visually ac-
curate translations. One hypothesis is that some stainings are far from each other
in terms of biological structures highlighted; in particular immunohistochemical
staining methods highlighting migratory immune cells can be far from conventional
histology staining methods making the translation task harder. Therefore, the trans-
lation model is forced to introduce hidden information. Consequently, distributional
differences between features extracted from real and virtually stained images could
still exist, as previously demonstrated in Chapter 3.

This chapter also presented an approach to reducing inter-stain domain shift by
adversarial training for feature-space alignment. A widely used mechanism for do-
main adaptation based on Gradient Reversal Layer (GRL) is used for this purpose.
It is found that GRL position can affect the adaptation process and that the final
results are prone to high standard deviations for a specific position. Nevertheless,
the obtained models are invariant with respect to source and target staining, and it
is demonstrated that the model is able to segment across both domains. However,
it is shown that this method is not able to reduce intra-stain variation when applied
to difficult stain combinations (e.g. PAS and CD68). To overcome such limitations,
a combined solution of a stain transfer and feature-space adaptation is proposed.
Such a method greatly improves upon domain shift reduction solely based on stain
transfer, and the benefits are demonstrated for all stainings, particularly for diffi-
cult stain combinations (general and immunohistochemical staining). The method
achieves almost baseline results in three out of four tested stainings. These exper-
iments suggest that the best way to address inter-strain variation is a combination
of feature and pixel-space alignment strategies, which will be exploited in the next
chapter.



Chapter 5

HistoStarGAN — Integrated Stain

Transfer and Stain Invariance

Taking into account the differences in tissue components visible under different stain-
ings and the variation that occurs inside one staining protocol, virtual staining can
be considered an ill-posed problem since a single image can be virtually stained in
multiple valid ways. However, the previously discussed methods for virtual staining
(presented in Chapter 3) reduce virtual staining to a deterministic mapping due to
their technical characteristics, producing a single and fixed output for a given input.
Although training repetitions of the same model, or different epochs during train-
ing, can result in different translations (as demonstrated in Chapter 3), the common
characteristic of all previously discussed methods is a deterministic translation and
therefore limited output diversity upon model training. For tasks that use virtual
staining intending to reduce model input variability, such as normalisation methods,
the diversity of virtual staining is non-desirable, and thus, methods with determin-
istic behaviour are widespread in the literature (see Chapter 2). Nevertheless, as
previously demonstrated in Chapter 4 for inter-stain variation and in the literature
for intra-stain variation [111], invariant solutions can greatly benefit from diverse
translations of a single image. Additionally, if a single model can obtain diverse
translations between multiple stainings simultaneously, i.e. a diverse multi-domain
model, that would significantly reduce the number of needed virtual staining models,
providing a way to obtain stain invariant solutions more efficiently.

Inspired by the current state-of-the-art methods for diverse multi-domain style
transfer, such as StarGANv2[15] and TUINT [16], the same methods could be used
for diverse virtual staining. However, contrarily to the domain of natural images
where style transfer can alter source-specific image characteristics as long as the final
output has a large fidelity (i.e. the size of ears is modified when translating a cat to a
dog; in female to male transfer, the amount of hair and hairstyle is altered, a beard
can be added/deleted, etc.), in the medical domain such extensive alterations are
not allowed. For example, in digital histopathology applications, such models could
result in removing/inventing a specific cell population (like cancerous) or structures
(such as glomeruli), affecting the usefulness of the translations. Thus, the direct
application of these models is not straightforward.

95
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This chapter proposes an extension of the StarGANv2 model, named HistoStar-
GAN, for applications in renal histopathology. The presented model performs plau-
sible and diverse stain transfer between multiple stainings, preserving the struc-
ture of interest during the translation process. Additionally, using the annotations
provided in single staining, the model obtains stain invariant segmentation of the
selected structure across multiple stainings. The proposed solution, explained in
more detail in Section 5.1, results in a single model that is, for the first time, able to
perform simultaneous stain normalisation, stain transfer and stain invariant segmen-
tation. The HistoStarGAN can, for the first time, generalise stain transfer to unseen
stainings, which is demonstrated in numerous examples in this chapter. Moreover,
the new state-of-the-art performances for stain invariant glomeruli segmentation is
achieved, outperforming the previous (proposed in Chapter 4) by a large margin.
Visual and quantitative results are given in Section 5.2. The HistoStarGAN’s model
architecture and training parameters are analysed in more detail in ablation studies
presented in Section 5.3. Upon training, the HistoStarGAN model is able to archive
multiple translations for a single image. This property is exploited to generate the
first artificially created dataset, KidneyArtPathology, presented in more details
in Section 5.4. The KidneyArtPathology dataset can be accessed online 9.

5.1 HistoStarGAN

5.1.1 Model Description

HistoStarGAN architecture is presented in Figure 5.1. The model is composed of
five modules: generator (G), discriminator (D), mapping network (F ), style encoder
(E) and segmentation network (S). The models G, D, F and E are elements of
StarGANv2’s architecture.

The mapping network F generates a stain-specific style by transforming the ran-
dom latent code z into the target stain’s style. The style is injected into the genera-
tor G during translation, which enables diverse generations as different latent codes
result in different stain-specific styles. In order to ensure that the generator uses
the injected style information, the model is constrained with a style reconstruction
loss, i.e. the style encoder E extracts the style from the generated image, and the
difference between that style and the style provided to the generator during trans-
lation is minimised (blue arrows in the Figure 5.1). In order to explicitly allow style
diversification, the model is trained to produce different outputs for different styles
in the given target domain by the style diversification loss (orange arrows in the Fig-
ure 5.1). Moreover, the model is constrained using a cycle-consistency loss (green
brackets in Figure 5.1), e.g. the difference between the original and reconstructed
images is minimised. Reconstruction is performed using the same generator, but
the style information is extracted from the mapping network by taking the original,
real image as the input.

The generator G is an encoder-decoder network, with an instance normalisation
layer in the encoder and an adaptive instance normalisation layer in the decoder.
In this way, the encoder removes stain-specific characteristics from the image while
the decoder injects target-stain characteristics during the generation process. Thus,

9 https://main.d33ezaxrmu3m4a.amplifyapp.com/

https://main.d33ezaxrmu3m4a.amplifyapp.com/
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Figure 5.1: HistoStarGAN — an end-to-end trainable model for simultaneous stain
transfer and stain invariant segmentation. The red block denotes the difference
compared to the StarGANv2 model [15].

the features extracted by the generator’s encoder should be stain invariant. Under
the assumption that a structure of interest is visible in all stainings, i.e. the stain
invariant solution is feasible, the representation extracted in the bottleneck should be
sufficient to perform the considered object-related task. Therefore, a segmentation
module is attached to the bottleneck. Trained end-to-end with the other modules,
this extension forces the preservation of structures of interest during the translation
process.

More formally, let X be the set of histopathological images, S the set of avail-
able segmentation masks for the structure of interest, and Y the set of stainings
found in X . Given an image x ∈ X , its original staining y ∈ Y and corresponding
segmentation mask mseg, the model is trained using the following objectives:

Adversarial objective: The latent code z ∈ Z, source domain y ∈ Y and target
domain ỹ ∈ Y are randomly sampled. The target style code s̃ = Fỹ(z) is obtained
via the mapping network F . Thus the generator G, with input image x from domain
y and style s̃, generates and output image G(x, s̃). This image is evaluated by the
discriminator’s output, which corresponds to a domain ỹ, Dỹ. These are trained
using the adversarial objective, such that

Ladv = Ex,y[logDy(x)] + Ex,ỹ,z[log (1−Dỹ(G(x, s̃)))]. (5.1)

Style reconstruction: In order to ensure that generator G uses the provided
style code s̃ when producing output G(x, s̃), the mapping netowrk E is employed to
extract the provided style from the generated image, Eỹ(G(x, s̃)), and the following
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style reconstruction objective is formed:

Lsty = Ex,ỹ,z[‖s̃− Eỹ(G(x, s̃))‖1]. (5.2)

Style diversification: The generator is forced to produce different outputs for
different styles produced by the mapping network F . Given different latent codes
z1 and z2, style codes s̃1 and s̃2 are generated. Then, the following diversity cost is
maximised:

Lds = Ex,ỹ,z1,z2 [‖G(x, s̃1)−G(x, s̃2)‖1]. (5.3)

Cycle-consistency: The following cycle-consistency loss forces the generator to
reconstruct the original image given the source style code ŝ = Ey(x):

Lcyc = Ex,y,ỹ,z[‖x−G(G(x, s̃), ŝ)‖1]. (5.4)

Segmentation objective: The cross-entropy loss is used to train the segmenta-
tion branch on both real data and their translation to a random stain, such that:

Lseg = Ex,mseg [mseg logSeg(x)] + Ex,mseg ,z[mseg logSeg(G(x, s̃))]. (5.5)

Full objective: The importance of each of these losses is controlled by hyperpa-
rameters and combined in the following full objective:

min
G,F,E

max
D

Ladv + λstyLsty − λdsLds + λcycLcyc + λsegLseg. (5.6)

5.1.2 Training Setup

5.1.2.1 Dataset

Training the HistoStarGAN model’s segmentation branch is supervised, and requires
the segmentation masks for all images in the dataset. However, as discussed in
previous chapters, this assumption is unrealistic. It is more reasonable to assume
that annotations exist for limited examples, e.g. as is common in the field, only
for one staining [19, 64]. Similarly as in the previous chapters, the PAS staining
is considered to be annotated (the source stain), while the other stainings (Jones
H&E, Sirius Red, CD34, CD68) are considered to be unannotated.

To overcome the lack of annotations in target stainings, the CycleGAN’s de-
terministic nature and limited capacity to perform geometrical changes are used to
artificially generate a fully-annotated dataset. As previously, the CycleGAN model
is trained in an unsupervised manner, using randomly extracted patches from a
given pair of stainings. Separate CycleGAN models are trained for each pair of
PAS-target stains. When trained, the CycleGAN models are applied to the source
(annotated) dataset in order to generate annotated samples in the target stainings.
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5.1.2.2 Training Details

As in the previous chapters, the task of glomeruli segmentations is considered. Cy-
cleGAN models are trained using the same training setting as described in Chapter
3, for 50 epochs, but with patches of size 512×512 pixels extracted from the training
patients in each staining. Upon training, a balanced dataset is formed by translat-
ing 500 glomeruli and 500 random negative patches from PAS to all target stains.
When training the HistoStarGAN model, extensive data augmentation is performed,
following the conclusions by Karras et al. [193] that data augmentation is a crucial
factor when training GANs with limited data. The CycleGAN-based dataset is lim-
ited in several aspects: a) the size — the annotated dataset is not very big compared
to datasets typically used to train GAN models; b) the variability of the glomeruli’s
size/shape is limited to the variability present in the annotated dataset; c) the capac-
ity of CycleGAN models to mimic a real target distribution affects the appearance
of stain-specific tissue components. Thus, adding unsupervised augmentation that
leads to realistically-looking images during training is important to increase dataset
variability and establish more diverse translations. The augmentations used are hor-
izontal/vertical flipping, affine transformations and elastic deformation, in addition
to image enhancement and additive Gaussian noise.

The following augmentations are applied 50% of time with an independent proba-
bility of 0.5 (batches are augmented ‘on the fly’) for each method; elastic deformation
(σ = 10); affine transformations — random rotation in the range [0°, 180°], random
shift sampled from [−5, 5] pixels, random magnification sampled from [0.95, 1], and
horizontal/vertical flip; brightness and contrast enhancements with factors sampled
from [0.0, 0.2] and [0.8, 1.2] respectfully; additive Gaussian noise with σ ∈ [0, 0.01].

The HistoStarGAN model is trained using the following loss weights: λsty = 1,
λds = 1, λcyc = 1, and λseg = 5. To stabilise training, the weight of style diver-
sification loss, λds, is linearly decreased to zero over 100 000 iterations [15]. Also,
the weight of the segmentation loss, λseg, is 0 for the first 10 000 iterations until
the model starts to generate recognisable images from each stain. Although their
fidelity is not high enough, at this moment the segmentation model receives enough
meaningful information to start learning. HistoStarGAN is trained for 100 000 it-
erations. The architectures for the generator, discriminator, style encoder, and
mapping network are the same as in the original StarGANv2 architecture [15] as
well as optimisers and learning rates. The segmentation branch’s architecture is
the same as the generator’s decoder, without the adaptive instance normalisation
layer. The segmentation branch is trained using the Adam optimiser with a learning
rate of 10−5. As for the other networks, exponential moving averages over param-
eters [10] is applied during training to obtain the final segmentation network, as
experimentally, it gives better results than the best model saved based on validation
performance.

The HistoStarGAN model’s segmentation branch is trained using a balanced
dataset, mainly containing artificial histological images produced by both CycleGAN
and HistoStarGAN. However, tasks in digital histopathology are usually concerned
with sparse structures, and using an imbalanced dataset to account for the tissue
diversity is beneficial for learning [17, 64]. Moreover, CycleGAN-based translations
can be noisy [63], which could affect the stain invariant properties of the segmen-
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Table 5.1 Quantitative results for HistoStarGAN compared to UDA-GAN. Each
model is trained on annotated PAS (source staining) and tested on different (target)
stainings. Standard deviations are in parentheses, and the highest F1-scores for each
staining are in bold.

Model Score
Test Staining

PAS
Jones
H&E

CD68
Sirius
Red

CD34 Overall

UDA-
GAN

F1

0.903
(0.003)

0.849
(0.031)

0.720
(0.016)

0.875
(0.016)

0.800
(0.033)

0.829
(0.072)

Precision
0.878
(0.018)

0.787
(0.060)

0.688
(0.110)

0.835
(0.035)

0.720
(0.064)

0.782
(0.079)

Recall
0.930
(0.014)

0.923
(0.010)

0.777
(0.095)

0.921
(0.007)

0.903
(0.016)

0.891
(0.064)

HistoStar-
GAN

F1

0.871
(0.009)

0.870
(0.007)

0.755
(0.006)

0.859
(0.004)

0.840
(0.004)

0.839
(0.048)

Precision
0.845
(0.029)

0.864
(0.019)

0.845
(0.039)

0.883
(0.018)

0.839
(0.032)

0.855
(0.018)

Recall
0.899
(0.016)

0.877
(0.007)

0.684
(0.024)

0.836
(0.017)

0.842
(0.024)

0.828
(0.084)

tation module. Thus, after training HistoStarGAN as a whole, the segmentation
module is fine-tuned for one epoch using real unbalanced PAS-stained images while
the rest of the model is fixed (the choice of the number of fine-tuning epochs is dis-
cussed in Section 5.3). This dataset contains all PAS glomeruli (662 extracted from
the training patients) and seven times more negative patches (4634) to account for
tissue variability. The Adam optimiser is used with a batch size of 8 and a learning
rate of 0.0001. The same augmentation as in Lampert et al. [17] is applied during
fine-tuning.

5.2 Results

This Section will demonstrate that HistoStarGAN results in a single model able to
perform diverse stain transfer, stain normalisation and stain invariant segmentation.
Moreover, having a stain-invariant encoder, the HistoStarGAN model can, for the
first time, generalise stain transfer to unseen stainings.

5.2.1 Diverse Multi-Domain Stain Transfer

A trained model is able to perform diverse stain transfer between any pair of stain-
ings seen during training. The diverse transfer is obtained by sampling different
random codes, which are transformed by the mapping network into target-stain
specific styles. Some examples of PAS image translations, alongside corresponding
segmentations, are provided in Figure 5.2. The obtained translations are plausible
histopathological images, where the structures of interest, glomeruli in this case, are
preserved during translation. The differences between translations are at the level of
microscopic structures (e.g. the appearance of nuclei, the thickness of a membrane,
etc.), see Figure 5.3. Since the HistoStarGAN is multi-domain, the same model is
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Translations

Real PAS PAS Jones H&E Sirius Red CD68 CD34

Figure 5.2: Diverse HistoStarGAN translations of a PAS glomeruli patch to target
stains (including PAS) with corresponding segmentations. Fake images in each row
are generated using the same random vector transformed into a stain-specific style
by the Mapping network. The differences between translations are in microscopic
structures (e.g. membrane weight or nucleus appearing), which is barely visible in
these figures. Full resolution images, in which these differences are more visible, are
available online.

also able to perform translations between other staining pairs, examples of which
are provided in Figure 5.4.

Generalisation of stain transfer: Since HistoStarGAN is trained on a variety
of stains, the generator’s encoder is stain invariant, which for the first time enables
virtual staining of unseen stains. Examples of which are presented in Figure 5.5,

https://github.com/jecaJeca/HistoStarGAN
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PAS Generated Images CD68 Generated Images

Figure 5.3: Closer look to the differences between the HistoStarGAN translations.

in which a new stain modality named H&E in addition to three double-stainings
CD3-CD68, CD3-CD163 and CD3-CD206 are translated to stainings seen during
training. Moreover, in Figure 5.6 the model is applied to the AIDPATH dataset
[18] composed of images which are publicly available variations of the PAS stain.
This demonstrates that HistoStarGAN can generalise and obtain stain normalisation
(column PAS) and stain transfer (other columns) simultaneously, alongside stain-
invariant segmentation. Videos representing the exploration of the latent space
during translation, are provided online10. Additional results are provided in the
Appendix D.

5.2.2 Stain Invariant Segmentation

A model composed of the generator’s encoder and the segmentation branch can
perform stain-invariant segmentation of WSIs across various stainings. Table 5.1
presents the segmentation results for test WSIs from all stainings (virtually) seen
during training. The model’s performance is compared to UDA-GAN, which uses the
same CycleGAN models for data augmentation. Since the patch size is 512 × 512,
each patch is cropped to 508 × 508 during UDA-GAN training. The presented
results are the averages of three independent training repetitions with corresponding
standard deviations.

10 https://main.d33ezaxrmu3m4a.amplifyapp.com/

https://main.d33ezaxrmu3m4a.amplifyapp.com/
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Figure 5.4: HistoStarGAN translations between different stains with corresponding
segmentation.
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Table 5.2 Quantitative results for HistoStarGAN compared to UDA-GAN on un-
seen stains. Each model is trained on annotated PAS (source staining). Standard
deviations are in parentheses, and the highest F1 scores for each staining are in bold.

Model Score

Test Staining

H&E CD3
CD3-
CD68

CD3-
CD163

CD3-
CD206

CD3-
MS4A4A

Overall

UDA-
GAN

F1

0.681
(0.031)

0.648
(0.111)

0.258
(0.062

0.260
(0.050)

0.330
(0.058)

0.330
(0.071)

0.418
(0.194)

Precision
0.865
(0.079)

0.550
(0.161)

0.171
(0.047)

0.168
(0.039)

0.230
(0.054)

0.240
(0.070)

0.371
(0.281)

Recall
0.563
(0.028)

0.824
(0.032)

0.538
(0.070)

0.586
(0.039)

0.598
(0.029)

0.542
(0.029)

0.608
(0.108)

HistoStar-
GAN

F1

0.813
(0.022)

0.741
(0.009)

0.597
(0.011)

0.611
(0.015)

0.593
(0.014)

0.570
(0.012)

0.654
(0.099)

Precision
0.855
(0.018)

0.850
(0.007)

0.835
(0.022)

0.891
(0.021)

0.881
(0.026)

0.882
(0.025)

0.866
(0.022)

Recall
0.777
(0.056)

0.656
(0.011)

0.465
(0.017)

0.465
(0.021)

0.447
(0.020)

0.422
(0.016)

0.539
(0.144)

The HistoStarGAN can generalise across all virtually seen stainings during train-
ing, outperforming UDA-GAN trained using the same translation models. Apart
from being an end-to-end model that simultaneously performs virtual staining and
segmentation, HistoStarGAN also results in an increase in precision. This can be
attributed to the fact that HistoStarGAN better recognises the negative tissue (less
false positives). However, recall is lower, which indicates that more glomeruli (or
parts of them) are missed compared to UDA-GAN. This could be the consequence
of predicting a segmentation mask from the feature space directly, without skip-
connections. However, extending the HistoStarGAN model with skip-connections
between the encoder and segmentation branch experimentally showed to negatively
affect training stability.

Generalisation of stain invariance: To test the generalisation of HistoStar-
GAN, the model is applied to new stainings not seen during training. Using the
annotations of four whole-slide images from each of the new stainings (H&E, CD3,
CD3-CD68, CD3-CD163 and CD3-CD206), the averages of three independent train-
ing repetitions with corresponding standard deviations are presented in Table 5.2.
Overall, HistoStarGAN generalises better and is more robust compared to UDA-
GAN. A potential cause of UDA-GAN failure in some stains can be its learning
process where stain invariance is forced only on the pixel level. Although the His-
toStarGAN uses the identical CyleGAN translations, the framework extracts stain-
invariant features, which are better transferred to unseen stains. Moreover, the
segmentation branch of HistoStarGAN is trained on a dataset with more variety
since HistoStarGAN translations are also included (see Figure 5.1).

5.3 Ablation Studies

HistoStarGAN model builds upon StarGANv2 in several aspects — the first ex-
tension is attaching a segmentation module to the generator; the second is using
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Figure 5.5: HistoStarGAN — a generalisation of stain transfer and segmentation to
unseen stain modalities.
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Figure 5.6: HistoStarGAN applied for stain normalisation, stain transfer and
glomeruli segmentation of the publicly available AIDPATH (PAS-based) dataset.

StarGANv2

Segmentation branch

Dataset characteristics

Fine-tuning

Figure 5.7: Illustration of the differences between the StarGANv2 and HistoStar-
GAN. Each of these differences is justified via an ablation study.

pre-trained CycleGANs to create the training dataset, and the third is fine-tuning
the segmentation module using only source data. In the following, each of these
aspects will be discussed via an ablation study, in a bottom-to-top direction as
illustrated in Figure 5.7.

5.3.1 Fine-Tuning

Table 5.3 demonstrates that fine-tuning the segmentation branch using the fixed
generator’s encoder increases segmentation performance. In practice, fine-tuning for
just a single epoch on an imbalanced source dataset increases overall performance
on virtually seen stains (test patient WSIs) by around 6% in the overall F1-score.
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Table 5.3 Fine-tuning effects on the segmentation model’s performance, in which
the model is fine-tuned for one epoch.

Model Score
Test Staining

PAS
Jones
H&E

CD68
Sirius
Red

CD34 Overall

HistoStar-
GAN

F1 0.820 0.816 0.705 0.792 0.777 0.782
Precision 0.779 0.791 0.764 0.792 0.802 0.761
Recall 0.865 0.843 0.655 0.782 0.795 0.779

HistoStar-
GAN
(fine-tuned)

F1 0.876 0.875 0.762 0.855 0.842 0.842

Precision 0.851 0.871 0.861 0.886 0.842 0.862

Recall 0.902 0.879 0.683 0.825 0.843 0.826

However, longer fine-tuning, although potentially beneficial for particular stainings,
does not offer any benefits. Also, the performance on the source’s validation set
does not correlate with the obtained improvements, i.e. the fine-tuned model with
the lowest validation loss does not bring the best overall results on unseen stains.
Thus, fine-tuning for one epoch is chosen.

5.3.2 Dataset Characteristics

A balanced and (virtually) fully annotated dataset is used to train HistoStarGAN.
A labelled dataset is required since the segmentation branch is trained in a super-
vised manner, and thus alternative data sampling strategies such as random data
sampling [19, 64] are not suitable. However, the fully annotated dataset does not
need to be balanced. Thus, using the findings of Lampert et al. [17], an imbalanced
source (PAS) dataset is formed where all glomeruli in the training patient images
are extracted (662) and seven times as many negative patches (4634). This dataset
is translated using CycleGAN to all target stains (CycleGAN models are always
trained in an unsupervised way, on random patches). Thus, a fully annotated and
highly imbalanced dataset is created on top of which the HistoStarGAN model is
trained.

The results obtained in this setting are presented in Figure 5.8, in which one
glomeruli patch from the PAS stain is translated into multiple stainings using dif-
ferent latent codes. The obtained translations for one stain pair differ from each
other in terms of glomeruli texture and surrounding structures. The model is
able to change the size of glomeruli by changing the size of the Bowman’s cap-
sule (white space), in addition to varying the appearance of stain-specific markers
(i.e. macrophages in CD68 stain). Nevertheless, the segmentation branch success-
fully recognises all glomeruli variations. Compared to training with a balanced
dataset, this setting offers more translation variability related to the surrounding
tissue and structure of the glomeruli themselves. However, although globally these
translations look realistic, the internal structures inside the glomeruli are not. Since
in HistoStarGAN these translations must also be successfully segmented, this leads
to an increase in the false positive rate. For example, it is evident that the pro-
duced translations often contain ‘artificial looking patterns’ such as a tendency to
group microscopic structures (e.g. nuclei) into diagonal, horizontal or vertical stripes
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Translations

Real PAS PAS Jones H&E Sirius Red CD68 CD34

Figure 5.8: HistoStarGAN translations using a model trained using a CycleGAN-
generated imbalanced annotated dataset. The images in each column are generated
using the same latent codes.

(in Figure 5.8 this is mostly visible in translations to Sirius Red and Jones H&E).
Therefore, the proposed model uses a balanced dataset since it greatly reduces such
possibilities.

5.3.3 Segmentation Branch

Without the segmentation branch, HistoStarGAN is reduced to StarGANv2 (see
Figure 5.7). Moreover, removing the segmentation module removes the requirement
for the dataset to be fully annotated. Thus, such a model can be trained using a
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Figure 5.9: StarGANv2 trained on CycleGAN-generated translations of a balanced
PAS dataset to other stains.

dataset composed of random patches (uniformly sampled in each stain), as well as
created by CycleGAN translations of the annotated stain (PAS), both balanced and
imbalanced. Each of these will be separately analysed.

CycleGAN-Based Balanced Dataset A StarGANv2 model trained on a bal-
anced dataset produced by CycleGAN translations of the annotated stain, can also
result in diverse multi-domain translations between multiple stainings, as illustrated
in Figure 5.9. Usually, the glomeruli structures are visually preserved. However,
when measuring the quality of obtained translation using the performances of pre-
trained segmentation models for each staining (baseline models trained in a fully-
supervised setting), the conclusion can be different. Figure 5.10 presents a visual
comparison of HistoStarGAN and StarGANv2, where translations obtained by Star-
GANv2 are segmented using pre-trained models from each staining. Since both mod-
els can obtain diverse translations, Figure 5.10 represent the average translation and
average segmentation over 50 random latent codes. It can be seen that HistoStar-
GAN gives more accurate segmentations, especially in difficult cases, e.g. sclerotic
glomeruli, rows 5 and 7. Nevertheless, in the absence of a segmentation branch, the
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Figure 5.10: StarGANv2 trained on a balanced CycleGAN-generated dataset com-
pared to HistoStarGAN. The segmentations for StarGANv2 are obtained by stain-
specific, pre-trained baseline models. Each translation and segmentation is averaged
over 50 random latent codes. N.B: HistoStarGAN yields more accurate segmenta-
tions. Pre-trained models result in 324 × 324 pixel images which are placed in the
centre of 512× 512 pixel black squares.
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Figure 5.11: StarGANv2 model trained on CycleGAN-generated translations of an
imbalanced PAS dataset to other stains.

dataset composition itself cannot be a strong guarantee that glomeruli structures
will be preserved. Thus, an explicit requirement, such as attaching the proposed
segmentation branch, is beneficial to ensure the correctness of the translation and
robust segmentation.

CycleGAN-Based Imbalanced Dataset If the dataset used to train the Star-
GANv2 is imbalanced, the model can no longer preserve the structure of interest.
Some examples of stain transfers obtained with this model are presented in Figure
5.11. Since the HistoStarGAN model trained using the same imbalanced dataset
does not have such a problem, this demonstrates the significance of the proposed
segmentation branch.

Random Dataset: StarGANv2 can also be trained on a dataset composed of
random patches extracted from each stain (PAS, Jones H&E, Sirius Red, CD68
and CD34). Thus, 5000 random patches from the training patients are extracted
uniformly, and the total dataset containing 25 000 images is used to train the Star-
GANv2 model. As in the CycleGAN-generated imbalanced data setting, this model
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Figure 5.12: StarGANv2 model trained on random patches extracted from all stains,
applied to translated glomeruli patches.

cannot preserve the structure of interest, as demonstrated in Figure 5.12. Moreover,
it is prone to bigger alterations of microscopic structures, which limits the usefulness
of such translations and confirms the benefits of the proposed HistoStarGAN model.

5.4 KidneyArtPathology Dataset

This Section describes the KidneyArtPathology dataset — artificially created,
fully annotated dataset released to encourage the progress of deep learning-based
solutions in the field of renal pathology12. The dataset contains 5000 images from
five stainings, in a resolution of 512 × 512 pixels, fully annotated for the task of
glomeruli segmentation. To achieve this, a HistoStarGAN model is trained using
as representative as possible dataset — two immunohistochemical stainings (CD68

11Image credits in order of appearance: Strasbourg Cathedral:
https://www.visitstrasbourg.fr/en/discover/must-see-attractions/the-cathedral/, Kragujevac
Museum: https://www.topworldtraveling.com/articles/travel-guides/15-best-things-to-do-in-
kragujevac-serbia.html, Dog: https://github.com/fastai/imagenette.

12The dataset will be released upon selection performed by pathologists.
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Generated images

PAS Jones H&E Sirius Red CD68 CD34

Figure 5.13: The HistoStarGAN model generates plausible histopathological images
from random noise.

Translations

Image PAS Jones H&E Sirius Red CD68 CD34

Figure 5.14: KidneyArtPathology — histopathological image generation from natu-
ral images11.

and CD34) in addition to three histochemical stainings (PAS, Jones H&E and Sirius
Red). Thus, the model can generate various translations in multiple stainings, which
has allowed the creation of the KidneyArtPathology dataset 13. The dataset

13KidneyArtPathology has been released online, https://main.d33ezaxrmu3m4a.amplifyapp.com/

https://main.d33ezaxrmu3m4a.amplifyapp.com/
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is composed of HistoStarGAN translations of PAS stain images (the same as those
used to generate the annotated dataset used for HistoStarGAN training) which
are translated using ten random latent vectors into each staining, including PAS.
Moreover, the associated pre-trained HistoStarGAN model (also publicly available)
can be further used to augment private datasets with their annotated translations
to stainings used during HistStarGAN’s training.

There are several benefits of such a dataset, which fall under three categories:

• Pathological — Non-invasive Pathology Training, the diverse appearance of
glomeruli can be helpful in the early stages of a pathologist’s training.

• Benchmarks — the absence of publicly available real-world datasets poses huge
challenges for rigorous comparison in the literature. Thus, such a large collec-
tion of annotated patches can serve as a benchmark.

• Domain adaptation — The data can be used in addition to a private dataset
(which can contain limited data) to build more robust models, e.g. as an
augmentation or domain adaptation strategy.

New histopathological images: Since the style of a stain is encoded by the
mapping network, it is possible to generate new patches in each training staining
by providing a random image, rather than a source histopathological patch, to be
translated to a given stain. In addition to a fully-annotated glomeruli dataset, new
histopathological images in different stains can be generated. Some generated exam-
ples are provided in Figure 5.13. Alternatively, by providing a non-histopathological
image, the HistoStarGAN is able to convert it to a histopathological image, exam-
ples of which are provided in Figure 5.14, and additional are provided in Appendix
D (although medical use of this is admittedly most likely limited to non-existent, it
is an interesting side property of HistoStarGAN).

5.5 Limitations and Opportunities

HistoStarGAN is an end-to-end model that can segment and generate diverse plausi-
ble histopathological images alongside their segmentation masks. However, for some
latent codes the model can produce specific artefacts in the translations. These are
usually well-incorporated into the overall texture of the image, which makes them
not obvious at first glance. A closer look at one such example is given in Figure
5.15. The primary hypothesis is that the discriminator does not have enough ca-
pacity to spot these artefacts, and thus a more sophisticated discriminator could be
considered.

Furthermore, the performance of the HistoStarGAN model can be affected by
choice of source and target stainings and the quality of CycleGAN translations,
which remains to be explored in future work. HistoStarGAN is based on CycleGAN
translations, which are proven to be noisy (Chapter 3), and therefore some of these
invisible artefacts may be recreated by HistoStarGAN. Thus, it is unclear what
information from the source domain is preserved in translations and whether any
of the applied augmentations can perturb them. It is possible that incorporating
additional real examples from the target stainings can improve translation quality.



5.6. Conclusions 115

Figure 5.15: HistoStarGAN — common artefacts. N.B. the artefacts are well-
incorporated into the image texture and not obviously noticeable at first glance.

Additionally, it has been confirmed experimentally that the choice of loss functions
used for the diversity loss can significantly affect the HistoStarGAN translations.
For example, the model will be forced to perform structural changes if diversity loss
is set to maximise the structural similarity between images (this is illustrated on the
linked project’s website). Although from a style-transfer perspective, such a solution
is interesting, changing internal structures in this way is not biologically justifiable.
However, according to a recent study [141], medically-irrelevant augmentation can
increase model robustness; thus, this represents another exciting direction for the
work ahead.

Nevertheless, the model has great potential to be used for tackling the lack of
annotations in histopathological datasets. Depending on the availability of labels
in a given target domain, diverse HistoStarGAN translations with corresponding
segmentation masks can help training from unsupervised to fully supervised settings,
using one or more source (annotated) domains.

Finally, it is crucial to note that translations obtained by the HistoStarGAN
model should not be used for diagnostic purposes. All images are artificially gener-
ated, and the model can perturb diagnostic markers. Thus, the dataset composed of
HistoStarGAN translations should only be used for general-purpose analysis related
to glomeruli (e.g. counting).

5.6 Conclusions

The HistoStarGAN model represents the first end-to-end trainable solution for si-
multaneous stain normalisation, stain transfer and stain invariant segmentation.
For the first time, obtaining highly plausible stain transfer from unseen stainings is
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possible without any additional change to the model (e.g. fine-tuning). Moreover,
the model achieves new state-of-the-art results in stain invariant segmentation, suc-
cessfully generalising to six unseen stainings. The proposed solution is general and
extendible to new stainings or use cases.

Being able to generate diverse translations for a given input, the proposed so-
lution has allowed the generation of the first artificially created, fully-annotated
dataset — KidneyArtPathology. Furthermore, the model is trained on five
widely used stainings, and pre-trained models are available, enabling offline data
augmentation (e.g. on private datasets) by stain transfer to these stainings.

However, the obtained virtual staining can realistically change the appearance
of microscopic structures, such as the number of visible nuclei, size of Bowman’s
capsule or membrane thickness. Thus, it is ill-advised to use these translations
for applications that rely on the assumption that the translation process preserves
all structures in the original image. Moreover, such virtually stained images must
not be used for diagnostic purposes since diagnostic markers can be altered. As
such, this study goes towards saving resources and time for annotating the high-
quality datasets required for developing deep learning-based models, not to replace
the process of physical staining.

Nevertheless, it remains an open question why the model’s performance varies
across different stainings. One hypothesis is that the model, being based on Cy-
cleGAN translations, replicates some of their limitations. However, the influence of
these CycleGAN models and the choice of the stainings used in the dataset remains
to be explored in future work.



Chapter 6
Conclusions and Perspectives

Digital histopathology is a promising research area where many daily tasks, such as
segmentation or classification, have the potential to be facilitated by deep-learning-
based solutions. However, many state-of-the-art approaches are data hungry, requir-
ing huge collections of annotated data to perform well. Additionally, considering the
variations that can occur due to the staining process and staining protocols, already
collected and annotated datasets can only be reused with limited success. This
thesis has investigated the potential of Generative Adversarial Networks (GANs)
in two directions for addressing these problems — stain transfer to enable reusing
already available data collections; and developing stain invariant solutions which
would alleviate the need for additional data acquisition. The application focus was
glomeruli segmentation in renal pathology with multiple stainings, all of which have
been annotated by trained experts for evaluation purposes.

The work presented in this thesis was preceded by an extensive literature review
(Chapter 2) of existing GAN-based approaches that tackle stain variation and stain
invariance. That led to the identification of several shortfalls in current methods and
motivated solutions to these issues. Particularly, the significant lack of approaches
that tackle stain transfer between multiple stainings and the lack of stain invariant
solutions was recognised, which is resolved by this thesis.

Chapter 3 proposed, in parallel with Gadermayr et al. [19], the use of CycleGAN-
based approaches to obtain plausible stain transfer between multiple stainings. It
has been demonstrated that such methods can significantly reduce domain shift
caused by inter-stain variation, enabling models trained for one stain modality to
be applied on another without additional annotations. Although CycleGAN-based
approaches have been quickly accepted by the community and became the standard
for stain transfer (and more commonly for stain normalisation), the limitations of
these methods are rarely addressed. Chapter 3 of this thesis provided a critical look
at these methods, raising the importance of such limitations through extensive ex-
periments. A significant conclusion from this analysis is that the visual inspection
as an evaluation criterion, widely adopted in practice, is ill-advised, primarily if the
evaluation is performed by non-experts (e.g. non-pathologists). Trained experts can
spot some failure modes; therefore, experts-in-loop are very important. However,
inspection solely based on visual evaluation is not recommended as conclusions can
be misleading due to human-imperceptible artefacts that the stain transfer model

117
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can inject. The presence of imperceptible artefacts has been related to stain-specific
characteristics. This finding was additionally exploited to propose an unsupervised
augmentation method that increases deep learning model robustness in a supervised
setting. Thus, imperfections of the stain transfer model can be used to build better
deep-learning-based solutions. Nevertheless, the artefacts present in the translations
can affect the pre-trained model’s performance unpredictably, making such quan-
titative evaluations unreliable. These findings raise the importance of developing
objective evaluation criteria for artificially generated medical data.

Chapter 4 introduced Unsupervised Domain Augmentation using Generative
Adversarial Networks — UDA-GAN — the first solution that encourages empirical
stain invariance for the task of glomeruli segmentation. That was achieved by taking
advantage of the plausibility of the translations obtained by the proposed stain
transfer approach. It has been shown that the obtained model can segment across
multiple stains and generalises to some unseen stains. Such results confirm that
obtaining a stain invariant solution for glomeruli segmentation is feasible and can be
achieved using a limited set of annotations. However, the model’s performance can
vary depending on the staining characteristics. Moreover, UDA-GAN is more stable
and achieves better quantitative results than competitive, stain-specific solutions,
indicating that stain transfer as a domain shift reduction strategy could have greater
potential as a part of the solution than the solution itself. This was also confirmed
by feature-space adaptation experiments, where a combination of stain transfer and
feature-space adaptation outperforms both strategies individually.

In Chapter 5, the findings of the previous chapters are brought together to
propose HistoStarGAN, the first end-to-end trainable model that simultaneously
performs stain transfer, stain normalisation and stain invariant segmentation. Such
a model better generalises to unseen stainings than the previously proposed UDA-
GAN approach (Chapter 4). Moreover, for the first time, it is possible to translate
unseen stains to the set of chosen staining modalities in addition to stain invari-
ant glomeruli segmentation. Such ability has been used to generate KidneyArt-

Pathology, the first artificially created, fully annotated kidney pathology dataset,
released to encourage the progress of deep learning-based solutions in the field of
renal pathology. Such a data collection, in addition to a pre-trained model, offers
several benefits to the community, such as non-invasive pathology training, bench-
marking and the development of better models on small and private datasets.

Nevertheless, based on the findings presented in this thesis, the use of artifi-
cially created datasets in the medical domain should be carefully regulated. Their
clinical use should be limited given the current state-of-the-art, as these methods
can perturb diagnostically relevant information. From the deep learning perspec-
tive, it is evident that such approaches can enhance model learning and increase a
model’s robustness. However, short-cut learning is still likely to happen, making
such models sensitive to unexpected and sometimes imperceptible data variations.
Thus, solutions that can learn from the limited available data while generalising to
unannotated unseen domains, such as solutions proposed in Chapter 4 and Chapter
5 of this thesis, should gain more focus in the literature.

This thesis also confirms that experts in the loop are significant from the per-
spective of developing automated solutions. Their understanding and acceptance of
automatic solutions are essential to clinical application. Finding a reasonably high
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number of experts willing to participate in studies is still difficult. Resistance to
automatic solutions is not neglectable from both the patient and expert viewpoint.
In order to reduce the gap, it is essential to include experts from the earliest stages
of development. Understanding the potential and, more importantly, the limita-
tions and sources of errors of automated solutions are the first steps toward making
clinically appropriate and widely-acceptable solutions.

6.1 Perspectives

This section discusses possible future research directions that arise from the work
presented in this thesis. Some of the directions are related to the methods proposed
in this thesis, whilst others are related to general problems in the field of digital
histopathology.

6.1.1 Synthetic Medical Datasets

The computer vision community has a noticeable trend to replace real datasets
with synthetic [194–196]. That way, multiple issues, such as data privacy and the
laborious annotation processes, can be alleviated to a great extent. There are similar
attempts in the medical field [197–199] where this thesis has been contributed by
the KidneyArtPathology dataset. However, the potential and use of artificially
generated datasets in the medical domain remain to be explored.

The medical data generators, such as herein proposed HistoStarGAN, require
some portion of real data collected from hospitals. These data typically fall un-
der strict legal regulations. Thus, it is of crucial importance to carefully examine
whether artificially created medical data contains any sensitive patient-related in-
formation [200]. Moreover, considering that a neural network can unintentionally
memorise part of the training dataset [201] and the possibility of model inversion
[202], the potential to deduce sensitive information from pre-trained generative mod-
els should be investigated.

Additionally, the representativeness of the synthetic data should be considered.
It is possible that artificially created data contain imperceptible artefacts, which
can affect the generalisation properties of models that learn from such data. More-
over, similar to the real datasets, synthetic data can be biased towards a specific
patient group (e.g. gender), which could result in unintentionally biased models.
Nevertheless, the possibility of generating a representative synthetic dataset using
real (currently) biased datasets or algorithms [203, 204] remains to be explored in
the work ahead.

6.1.2 Learning From Limited Data

Obtaining annotations in the medical domain requires expert knowledge, which is
a significant bottleneck in developing automated solutions. Typically, it is possible
to obtain annotations for some limited data (e.g. one staining); however, as has
also been confirmed by this thesis, due to domain shift, the model trained on such
data will fail when applied to data with different characteristics (e.g. different stain
or stain variation). The solutions presented in this thesis (Chapter 4 and Chapter
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5) demonstrate that it is possible to develop a stain-invariant solution for glomeruli
segmentation. However, it remains to be explored if it is possible to develop a model
that is able to detect, irrespective of the staining protocol, other diagnostically
relevant structures (e.g. tubules) using the annotations provided in a single stain.
Another promising avenue is to develop a single model that is able to detect several
diagnostically relevant structures in a stain invariant manner.

6.1.3 Federated Learning

Currently, the datasets used in the medical domain are very limited in size and
representativeness [205]. Even in the cases where learning from a given medical
dataset obtains near-to-human performances for the considered task, the size of
the dataset is significantly smaller compared to those used in other artificial in-
telligence applications [205]. Moreover, the available data can be unintentionally
biased towards specific genders or ethnicities resulting in unfair model predictions
in under-represented patient groups [203, 204].

Given that vast amounts of data are generated daily in hospitals worldwide,
theoretically, obtaining a representative dataset for a given task should be possi-
ble. However, apart from their heterogeneity due to different technical equipment
and protocols, medical data falls under rigorous regulations for data protection that
largely prevents them from being merged and forming a representative data collec-
tion.

The idea of Federated Learning (FL) [206], where a model is trained in a decen-
tralised/distributed manner, is of great importance for the medical domain [207].
Instead of bringing all the data to one place, where the model is trained, the model
itself is distributed to the sites (i.e. nodes) where the data are stored. Training
iterations are performed locally on each node, followed by a global model update.
Although such a training schema does not require explicit data sharing, the data
still could be exposed by specific attacks or model inversion [202]. Another chal-
lenge is ensuring secure communication during training and defence against various
model-related attacks, e.g. that the model does not get ‘poisoned’ during training
[208]. All of this represents a promising and exciting research direction for the future
of AI in the medical domain.

6.1.4 Advanced Approaches to Automatic Solutions

Current deep-learning approaches exploit available data to solve complex tasks per-
formed by experts, e.g. pathologists. However, the expert’s conclusion is not solely
based on the data the model uses for training. In addition to experience, domain-
specific knowledge is crucial in the decision-making process. Nevertheless, trying to
approximate such a complex process by learning uniquely from one type of data, e.g.
images, in some cases might be an oversimplification of the problem. In this context,
steps toward an effective multi-domain solution seem promising. A system which
can incorporate medical records in various formats (e.g. text, image, voice) could
have a considerable potential to obtain general and robust knowledge. However,
learning from such heterogeneous data is still not straightforward.

A promising direction for advanced approaches is the incorporation of the at-
tention mechanism in the model’s learning. Apart from state-of-the-art attention
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approaches, an exciting direction can be to incorporate eye-tracking into the learn-
ing process [209, 210]. This can be used for training a model to focus on important
aspects of the image [211], increasing its interpretability. Moreover, once the model
is trained, it can serve as an advisory tool for the expert, pointing to the portions
of the images that are not carefully investigated enough.
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Appendix A
Medical Background

Staining

The tissue sections extracted and prepared to be microscopically examined are trans-
parent, providing very little detail of tissue structure. In order to increase the con-
trast in the tissue and to make tissue components visible, the staining process is
required. The staining always involves the visual labelling of some biological entity
by attaching or depositing in its vicinity a marker of characteristic colour or form
[7]. Since different tissue components are biochemically different, they will react
with the provided staining differently. The basic principles on which the stain dye a
tissue is building chemical compounds established between the dye and the tissue.
For example, the acidophilic tissue components such as erythrocyte cytoplasm and
collagen fibres [212] will bind to acid dyes such as hematoxylin; the basophilic tissue
components such as nuclei [212] will bind to basic dyes such as eosin. Staining with
haematoxylin and eosin (H&E) is routinely performed in histopathology. However,
many other stains have been developed to highlight particular tissue components.
Nevertheless, it is important to note that the colours in which tissue components
appear to depend on the staining; they are not related to the tissue structures’
colour.

Moreover, immunohistochemical stainings are employed to enable more specific
information, such as the expression of a particular protein (antigen). The basic
working principle of these stainings is antigen-antibody binding — e.g. a solution
containing a special antibody is laid over the tissue, therefore, only cells having tar-
geted antigen will attach the antibody, which further can be visualised [31]. There
is an important difference between immunohistochemical (IHC) staining methods
highlighting only one specific protein with a chromogenic label, as opposed to histo-
chemical (HC) staining methods that are less specific. More general (histochemical)
stains use chemicals that can interact with several tissue components, making them
visible from different perspectives. In contrast, specific stains, such as immunohis-
tochemical stains, are designed to highlight only specific proteins (e.g. a group of
cells).

In the following, a brief description of stainings used in this thesis is given:

Hematoxylin and Eosin (H&E) staining: is classical histochemical staining
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Figure A.1: Illustration of the kidney and nephron structures.

with a long history of clinical usage [213]. It highlights very general tissue
components and enables the analysis of most organs and diseases. It contains
two components, hematoxylin, which binds acidic structures such as cell nu-
clei, and eosin which binds basic components such as cytoplasmic proteins.
Hematoxylin reaction results in the appearance of blue colour on the image
while eosin produces pink. Thus, clear nuclear contrast can be achieved to
reveal the distribution of cells [214]. This staining is the gold standard in
diagnosing several types of cancer, and it is usually routinely performed in
histological examinations.

Jones Hematoxylin and Eosin (H&E) staining: is histochemical silver stain-
ing widely adapted in renal pathology to mark the basement membrane in
black, nuclei in blue and the background in pink. Usually, it is used to demon-
strate abnormalities of the glomerular basement membrane.

Periodic Acid-Schiff Reaction (PAS): is histochemical staining used to iden-
tify carbohydrates by exposing a tissue section to periodic acid oxidation
and then staining them with Schiff’s reagent [212]. It marks carbohydrate-
containing cell components in magenta (shades of purplish pink) [33]. PAS is
most commonly used to demonstrate cells filled with glycogen deposits, or the
glycocalyx [33]. In renal pathology, according to Banff classification scheme
[215], its usage is recommended for the identification of glomerulitis, tubulitis
and any destruction of the tubular basement membrane.

Sirius Red: is a histochemical stain which marks connective tissue (collagen) red
and cytoplasm in lighter violet or pink [33].

CD68: is an immunohistochemical stain which reflects the expression of a specific
protein during macrophage differentiation and activation.

CD34: is an immunohistochemical stain which highlights blood vessels, specifically
the inner layer (endothelium).
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Figure A.2: Comaprison of the histological differences (PAS stain) between healthy
and rejected kidney sample.

Kidney

Kidneys are bean-shaped organs, part of a human’s urinary system, that filter the
blood and produce urine. Adult kidneys average 150g and are approximately 11cm
long, 6cm wide and 3cm thick [216]. The kidney is divided into two main parts
— the cortex and medulla, see Figure A.1a. The functional unit of the kidney
is the nephron, and the average human kidney contains approximately 1 million
nephrons [31]. The nephrons are located in both cortex and medulla, with some
parts lying in the cortex (e.g. glomeruli) and the others in the medulla (e.g. loop of
Henle ). The main components of the nephron are illustrated in Figure A.1b. The
blood comes through the afferent vessel to the glomerulus — a specialised network
of capillaries which perform the filtration and goes out of the glomerulus via the
efferent vessel. The glomeruli filtrated products are collected into Bowman’s space
(i.e. primary urine) and further processed in the renal tubule to finally form the
urine in the collecting duct. The renal tube is essential in re-absorbing some of
the glomeruli filtrated substances, e.g. glucose, water and amino acids, and returns
them to the blood. For example, the loop of Henle additionally absorbs different
salts and enables the concentration of the urine. Therefore, the tubular apparatus
concentrates the filtrate from up to 200l of primary urine to 1.5l of the final urine
[6].

The body’s total blood volume is circulated through the kidneys about 300
times each day [31]. The kidneys have essential functions in the human body, such
as filtration, pressure regulations, maintenance of acid-base balance etc. However,
the prevalence of chronic kidney disease is very high, around 13.4.% [217], which
indicates that kidney diseases may be more common than diabetes [217]. Kidney
transplantation is the preferred treatment for end-stage renal disease patients as
it offers better life quality than dialysis and has a higher survival rate [218]. Ev-
ery year, thousands of patients undergo kidney transplantation. Nevertheless, the
transplantation process can have short-term success. Some transplants have been
rejected in the first months after the transplantation (acute rejection), while others
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can be rejected after several years (chronic rejection).
Chronic rejection can be attributed to the immune response [219], and it is man-

ifested by the progressive decrease in the glomeruli filtration rate. On the histolog-
ical scan, chronic rejection affects all parts of the kidney — arteries, interstitium,
glomeruli, and tubules [219], as demonstrated in Figure A.2. Therefore, detecting
these structures can be an important indicator of kidney health status. According
to the Banff classification scheme [215], the adequate kidney biopsy specimen should
contain ten or more glomeruli and at least two arteries, while a minimal number of
glomeruli is seven.
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Stain Transfer

B.1 Dataset

All stain transfer models are trained on data extracted from the training patients
in each staining in an unsupervised way. The patches are randomly extracted using
a uniform sampling strategy, and the final dataset is composed of 5000 random
patches per staining, in a size of 508×508 pixels, scaled to the range [−1, 1], except
for experiments in Chapter 5, where the patches have the size of 512× 512 pixels.

In the case of intra-stain variation, where AIDPATH dataset [18] is used, patches
were randomly extracted from patients 1 and 7 using a uniform sampling strategy.
During test time, pre-trained models were applied to patients 1, 3 and 7 (patient 3
is kept as an out-of-training distribution sample since it contains sufficient glomeruli
- 49).

B.2 CycleGAN Models

The model’s architecture of 9 ResNet blocks is used. All CycleGAN models are
trained for 50 epochs, with a learning rate of 0.0002, using the Adam optimiser and
a batch size of 1. From the 25th epoch, the learning rate linearly decayed to 0, and
the cycle-consistency and identity weights halved. In all experiments, the translation
model from the last (50th) epoch is used. Moreover, Shrivastava et al.’s strategy [220]
of updating the discriminator using the 50 previously generated samples is adopted
to reduce model oscillation. The training parameters for CycleGAN models are
taken from the original paper (wcyc = 10, wid = 5) [12]. Preliminary experiments
showed that the visual translation quality is not highly dependent on the weight
values of Eq. (3.4) (although some combinations required more training to obtain
realistic translations). As has been discussed in more detail in Chapter 3 (Section
3.5), visual criteria is not a good proxy for assessing the quality of stain translation,
and so the weighting values proposed by the original authors [12] are used since they
already achieve visually good results.
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B.3 StarGAN Training

The generator’s and discriminator’s architecture and training settings from the Cy-
cleGAN model (without instance normalisation in the discriminator as suggested in
the original paper [14]) are employed. The loss weights are taken from the original
StarGAN article (wcyc = 10, wcls = 1, λgp = 10) [14]. The model is trained for
50 epochs, and, similarly to the CycleGAN training strategy, the model from the
50th epoch is used. Preliminary experiments were conducted with various values for
the weight parameters in Eq. (3.5). Some combinations lead to unstable training
or require more epochs to produce realistic translations in all stain combinations.
Thus, the parameter values from the original paper were used [14].

B.4 Segmentation Models

The U-Net architecture [13] is used for segmentation. The U-Net training set com-
prised all the glomeruli from the 4 training patients - 662 for PAS, 624 for Jones
H&E, 529 for CD68, 654 for Sirius Red, and 568 for CD34. Seven times more
negative patches are extracted from each stain to account for the variance of non-
glomeruli tissue. The validation sets (2 patients) were composed of 588 (PAS), 593
(Jones H&E), 524 (CD68), 579 (Sirius Red) and 598 (CD34) glomeruli patches.

The same training parameters are used for all experiments: the batch size of 8,
learning rate of 0.0001, 250 epochs, and the network with the lowest validation loss
is kept. The slide background (non-tissue) is removed by thresholding each image
by its mean value, then removing small objects and closing holes. All patches are
standardised to [0, 1] and normalised by the mean and standard deviation of the (la-
belled) training set. The following augmentations are applied with an independent
probability of 0.5 (batches are augmented ‘on the fly’), in order to further force the
network to learn general features: elastic deformation (σ = 10, α = 100); random ro-
tation in the range [0°, 180°], random shift sampled from [−205, 205] pixels, random
magnification sampled from [0.8, 1.2], and horizontal/vertical flip; additive Gaussian
noise with σ ∈ [0, 2.55]; Gaussian filtering with σ ∈ [0, 1]; brightness, colour, and
contrast enhancements with factors sampled from [0.9, 1.1]; stain variation by colour
deconvolution [167], α sampled from [−0.25, 0.25] and β from [−0.05, 0.05]. Due to
the specificity of the U-Net architecture with valid convolutions, the central part of
each is used (resulting in a segmentation patch size of 508 × 508). The predicted
segmentation has a size of 324× 324 pixels.

The best model is saved based on performance on the validation set, which is
composed of patches extracted from validation patients. The performances of the
best models are calculated over test patients in each of the experiments.

B.5 CycleGAN/StarGAN Noise Sensitivity - Additional
Results

Figure B.1 and Figure B.2 represent reconstructions of target-stain images when
intermediate translation to PAS stain obtained by CycleGAN/StarGAN model is
corrupted with Gaussian zero-mean noise respectfully.
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Figure B.1: CycleGAN — the effects of additive zero-mean Gaussian noise with dif-
ferent standard deviations to image reconstructions when added to the intermediate
translation to PAS.

B.6 PixelCNN++ Model

The PixelCNN++ [181] architecture is used to model the underlying distribution of
each stain: PAS, Jones H&E, CD68, Sirius Red, and CD34. The model employs 3
Resnet [221] blocks consisting of 5 residual layers in the encoding phase, with 2× 2
downsampling between the ResNet blocks. The same architecture is employed in the
decoding phase but with upsampling layers instead of downsampling. All residual
layers utilise 160 filter maps in their convolutional layers and have a dropout of 0.5.
The overall training for one PixelCNN++ model took approximately 15 days on an
HPC with 4 V100 GPUs (in parallel).

Since each pixel value is conditioned on the product of all previously generated
pixels, the models were trained and evaluated on patches of size 32×32 due to GPU
memory limitations. For each stain, 1280000 train, validation, and test patches
from the corresponding patents are extracted. The model is trained for 60 epochs
with a learning rate of 0.001 and a decay rate of 0.999. The best model is saved
based on the validation set’s lowest bits-per-dimension score [222]. The validation
set of 128000 patches randomly extracted from the validation patients is used. The
original publicly available implementation 14 is employed.

14https://github.com/openai/pixel-cnn

https://github.com/openai/pixel-cnn
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Figure B.2: StarGAN — the effects of additive zero-mean Gaussian noise added to
intermediate representations of given stains on their reconstructions when added to
the intermediate translation to PAS.



Appendix C
Stain Invariance

C.1 UDA-GAN

CycleGAN and StarGAN models are trained using the same dataset composition,
architecture and training setting as provided in Appendix B. Similarly, as in all
previous experiments, the segmentation model is UNet, having the same architec-
ture as in B.4. The MDS1 approach uses baseline PAS models, which are trained
according to the Appendix B.4. The MDS2 approach uses the same setting for the
training, except that the image (PAS stain) is before feeding to the UNet model
(during the training phase), translated using CycleGAN/StarGAN model into the
given target staining. The proposed UDA-GAN augmentation is performed before
other augmentation strategies. The segmentation model architecture and training
setting are the same for all segmentation models (UDA-SD, UDA-GAN, MDS1,
MDS2 and Multi UDA-CGAN).

C.1.1 UDA-GAN Robustness

Due to implementation differences, in addition to differences resulting from training
settings and the CycleGAN epoch chosen (as demonstrated in Chapter 3), there
are differences in the reported MDS1 results presented in Chapter 3 and the results
presented in Section 4.1. The experiments in Chapter 3 are implemented in Ten-
sorflow 2, while those from Section 4.1. are implemented in the Keras framework
(now deprecated since Keras has been integrated into Tensorflow 2). However, these
reveal that the proposed UDA-GAN approach is less sensitive to such variation than
other approaches. Table C.1 presents the results for MDS1, MDS2 and UDA-GAN
using TensorFlow implementation of a CycleGAN (same models as used in Chapter
3). Although absolute numbers are different, the UDA-GAN approach is far less
sensitive to non-visible changes in translation when compared to MDS1 and MDS2.
The overall gain in the hardest target, CD68, remains in the same range, 13%, com-
pared to the next best-performing method (MDS1), confirming the importance of
the proposed method in terms of its ability to generalise. In other stainings, the
UDA-GAN model performs close to their baseline results (see Table 4.2).
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Table C.1 Quantitative results for each strategy trained on PAS (source staining)
and tested on different (target) stainings. Standard deviations are in parentheses,
and the highest F1 scores for each staining are in bold.

Training
Strategy

Score
Test Staining

PAS
Jones
H&E

CD68
Sirius
Red

CD34 Overall

MDS1[20]
F1 -

0.866
(0.017)

0.637
(0.034)

0.880
(0.015)

0.754
(0.033)

0.784
(0.113)

Precision -
0.842
(0.035)

0.846
(0.050)

0.846
(0.031)

0.879
(0.027)

0.853
(0.018)

Recall -
0.894
(0.020)

0.516
(0.058)

0.918
(0.008)

0.662
(0.059)

0.747
(0.193)

MDS2[20]
F1 -

0.852
(0.033)

0.628
(0.079)

0.820
(0.032)

0.848
(0.026)

0.787
(0.107)

Precision -
0.811
(0.061)

0.527
(0.115)

0.737
(0.054)

0.799
(0.049)

0.718
(0.132)

Recall -
0.901
(0.005)

0.803
(0.030)

0.928
(0.012)

0.905
(0.007)

0.884
(0.055)

UDA-
CGAN

F1

0.900
(0.015)

0.853
(0.013)

0.760
(0.035)

0.848
(0.045)

0.849
(0.023)

0.842
(0.051)

Precision
0.864
(0.032)

0.794
(0.028)

0.735
(0.072)

0.785
(0.079)

0.805
(0.046)

0.797
(0.046)

Recall
0.940
(0.007)

0.922
(0.007)

0.791
(0.021)

0.927
(0.007)

0.899
(0.008)

0.896
(0.060)

C.2 DANN

C.2.1 Training Details

The discriminator is a Fully Connected Neural Network (FCNN) whose first layer
is the Gradient Reversal Layer, followed by GlobalAveragePooling. The network
contains four fully-connected layers (the number of nodes is 512 − 256 − 64 − 1)
followed by Batch norm and using the LeakyRelu activation function, except for the
last layer in which the sigmoid activation function is used.

In the original DANN manuscript [146], the authors proposed the usage of λhp in
order to reduce the influence of a signal from the untrained discriminator at the early
stages of training. However, according to preliminary experiments, when starting
from a pre-trained model, as is in these experiments, better alignment is obtained
when λhp is set to 1 starting from the first epoch.

The overall model containing the UNet and the Discriminator is trained using
Stochastic Gradient Descent (SGD) with lr = 0.0001. Half of the training batch
contains source (annotated) data, and the other half target (unannotated) data.
The UNet is trained using categorical cross entropy and source data, while the
Discriminator and the part of the UNet to which the Discriminator is attached are
trained using binary cross entropy with label smoothing 0.1 and batches containing
both source and target data.

UNet pre-training The UNet is pre-trained on PAS training data using a batch
size of 8, a learning rate of 0.0001 and 100 epochs, and the network with the low-



C.2. DANN 133

est validation loss is kept. All patches are standardised to [0, 1]. The following
augmentations are applied with an independent probability of 0.5 (batches are aug-
mented ‘on the fly’): elastic deformation (σ = 10, α = 100); random rotation in
the range [0°, 180°], random shift sampled from [−205, 205] pixels, random magnifi-
cation sampled from [0.8, 1.2], and horizontal/vertical flip; additive Gaussian noise
with σ ∈ [0, 2.55]; Gaussian filtering with σ ∈ [0, 1]; brightness, colour, and con-
trast enhancements with factors sampled from [0.9, 1.1]; stain variation by colour
deconvolution [167], α sampled from [−0.25, 0.25] and β from [−0.05, 0.05].

C.2.2 MDS2 Individual Models and Adaptation Results:

Table C.2 Jones H&E - MDS2 approach and its DANN adaptation.

Training
strategy

Score Model1 Model2 Model3 Average Std

MDS2
baseline

F-score 0.878 0.872 0.879 0.876 0.003
Precision 0.859 0.848 0.858 0.855 0.005
Recall 0.898 0.898 0.901 0.899 0.002

MDS2
adapted

F-score 0.877 0.883 0.881 0.880 0.002
Precision 0.845 0.860 0.848 0.851 0.007
Recall 0.913 0.907 0.916 0.912 0.004

Table C.3 CD68 - MDS2 approach and its DANN adaptation.

Training
strategy

Score Model1 Model2 Model3 Average Std

MDS2
baseline

F-score 0.668 0.503 0.638 0.603 0.072
Precision 0.588 0.360 0.549 0.499 0.100
Recall 0.773 0.836 0.762 0.790 0.032

MDS2
adapted

F-score 0.678 0.712 0.733 0.708 0.023
Precision 0.738 0.638 0.699 0.691 0.041
Recall 0.627 0.806 0.771 0.735 0.077

Table C.4 Sirius Red - MDS2 approach and its DANN adaptation.

Training
strategy

Score Model1 Model2 Model3 Average Std

MDS2
baseline

F-score 0.841 0.766 0.835 0.814 0.034
Precision 0.777 0.650 0.763 0.730 0.057
Recall 0.918 0.932 0.923 0.924 0.006

MDS2
adapted

F-score 0.855 0.833 0.859 0.849 0.011
Precision 0.795 0.747 0.799 0.781 0.024
Recall 0.924 0.942 0.930 0.932 0.007
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Table C.5 CD34 - MDS2 approach and its DANN adaptation.

Training
strategy

Score Model1 Model2 Model3 Average Std

MDS2
baseline

F-score 0.839 0.880 0.870 0.863 0.018
Precision 0.774 0.863 0.838 0.825 0.038
Recall 0.915 0.898 0.905 0.906 0.007

MDS2
baseline

F-score 0.869 0.880 0.863 0.871 0.007
Precision 0.835 0.867 0.831 0.845 0.016
Recall 0.907 0.892 0.897 0.899 0.006



Appendix D
HistoStarGAN - Additional Results

D.1 Histopathological Images

The HistoStarGAN model is able to accurately segment and translate unseen renal
histological images (unseen stainings) taken from the internet, some of the examples
given in Figure D.1.

D.2 Semantic Generation Potential

The HistoStarGAN is also able to create histopathological images of glomeruli start-
ing from the ellipse-like image, see Figure D.2. This opens a possibility for His-
toStarGAN to be extended into a semantic histopathological image generator, a
SPADE-like tool [223] to enable semantic generation of histopathological images
based on a class-related drawing — e.g. glomeruli, tubule, nuclei etc. Based on
preliminary experiments, it seems that HistoStarGAN is able to generate kidney
structures based on specific patterns provided in the input, e.g. glomeruli-like struc-
tures based on circle-like textures or tubules based on empty circles. However, this
does not necessarily imply that every circle-like structure will be represented as a
glomeruli/tubule. The potential and limitations of such a use case remain to be
explored in future work.

15Image credits in order of appearance: https://static.cambridge.org/binary/

version/id/urn:cambridge.org:id:binary:20181009125204364-0075:9781107281981:

61398fig4_6.png?pub-status=live, https://www.kidneypathology.com/English_version/

Membranoproliferative_GN.html, https://www.kidneypathology.com/English_version/

Histologic_patterns.html, https://commons.wikimedia.org/wiki/File:Membranous_

nephropathy_-_alt_-_mpas_-_very_high_mag.jpg.
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Translations

Image PAS Jones H&E Sirius Red CD68 CD34

Figure D.1: HistoStarGAN - Images generated from histological images taken from
the internet 15.
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Translations

Template image PAS Jones H&E Sirius Red CD68 CD34

Figure D.2: HistoStarGAN - Semantic image generation based on the provided
template image. The template image used in the first row is modified by adding
circles and lines and provided as an input to the HistoStarGAN model in the third
and fifth rows. All template images are created in Adobe Illustrator, using pre-
defined patterns.
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4 Variabilité des colorations : variations intra et inter-colorations sur
des exemples de tissus rénaux. Chaque ligne contient des exemples
colorés avec la même coloration. . . . . . . . . . . . . . . . . . . . . . 169
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Résumé

Problématique

La révolution de l’apprentissage profond [1] ouvre la porte à des applications remar-
quables de l’intelligence artificielle dans le domaine médical. De nombreuses tâches
cliniques quotidiennes ont un grand potentiel d’automatisation, ce qui a déclenché
une grande quantité de travaux de recherche sur le sujet [2–4]. Dans un tel envi-
ronnement, l’histopathologie numérique ne fait pas exception. Cependant, comme
elle repose sur un processus de coloration des tissus étudiés, le résultat est sujet
à de fortes variations en raison des différences dans la préparation des tissus et
le protocole même de coloration. Chaque coloration met en évidence des struc-
tures spécifiques dans le tissu, et la variance introduite par les différents protocoles
n’est pas seulement visuelle. Ces variations représentent une source de décalage de
domaine et, en tant que telles, affectent considérablement les solutions basées sur
l’apprentissage profond dans la pratique. Cela devient plus évident lorsqu’une tâche
à accomplir s’attaque à des problèmes liés à des structures visibles sous plusieurs
colorations. Récemment, les réseaux génératifs adversaires, Generative Adversar-
ial Networks (GANs) [5], apportent de nouvelles opportunités pour l’apprentissage
profond dans le domaine de l’histopathologie numérique. Cette thèse contribue à
comprendre ce que les GANs peuvent et ne peuvent pas faire dans le domaine de
l’histopathologie numérique, quand des résultats visuellement impressionnants sont
dignes de confiance et quand ils sont trompeurs. La thèse étudie également les façons
dont les GANs peuvent être utilisés pour construire des modèles d’apprentissage pro-
fond plus robustes.

Contexte

L’examen histopathologique commence par le prélèvement physique d’un échantillon
de tissu dans le corps par biopsie ou chirurgie. Pour être examiné au microscope,
l’échantillon subit plusieurs étapes de préparation, dont le processus important de
coloration. La coloration introduit chimiquement un contraste dans les sections de
tissu, rendant visibles des structures ou des cellules spécifiques, permettant ainsi
leur analyse microscopique. Les colorants sont conçus pour être sélectifs ; ainsi,
chacun met en évidence différentes structures tissulaires, ce qui permet des analyses
différentes. Dans la figure 3 sont donnés des exemples de trois colorations pour le cas
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(a) Periodic Acid Schiff (PAS) (b) Jones H&E (c) CD34

Figure 3: Un exemple de trois coupes consécutives d’un échantillon issu d’une
néphrectomie, teintés avec trois colorants différents. Chaque coloration fournit des
informations différentes sur le tissu, mais certaines structures communes, comme les
glomérules, sont visibles dans toutes les colorations (cercles verts).

de la pathologie rénale. L’examen effectué par les pathologistes consiste en grande
partie à reconnâıtre des structures spécifiques, par exemple les glomérules dans le
rein (cercles verts de la figure 3) et à évaluer leur état de santé. En fonction de
l’analyse, des colorations spécifiques peuvent être nécessaires car chaque coloration
fournit des informations différentes. Ainsi, une pratique courante en histologie con-
siste à colorer différemment plusieurs coupes de la même biopsie et à les analyser
ensemble. Par exemple, dans le cas de la pathologie rénale, les glomérules sont vis-
ibles sous plusieurs colorations et, comme l’illustre la figure 3, bien que différentes
parties des glomérules soient mises en évidence dans chaque coloration, les experts
peuvent les détecter quelle que soit la coloration. Par conséquent, les solutions
automatiques de détection doivent être invariantes à ces différences de coloration.

Cependant, le processus de coloration est sujet à une grande variabilité [7] en
raison des différences dans la préparation des tissus (temps d’exposition, fixation
des tissus, épaisseur des sections, etc.) et dans le protocole de coloration. Par
conséquent, lors du développement d’une solution invariante à la coloration, deux
sources principales de variation doivent être prises en compte : la variation intra-
coloration, qui est la variation de l’apparence d’une même coloration (par exemple,
due aux procédures de différents laboratoires) et la variation inter-coloration, qui est
la variation de l’apparence de différentes coloration, comme illustré dans la figure
4. Ces différences affectent considérablement les systèmes automatiques [8] car elles
représentent une source de décalage de domaine [9]. Un pathologiste est capable de
corriger ces variations grâce à son expérience contrairement aux algorithmes actuels
basés sur l’apprentissage profond.

Capables de générer des échantillons à partir de distributions de données com-
plexes, les GAN ont un grand potentiel pour surmonter certaines limitations de
l’utilisation de l’apprentissage profond en histopathologie numérique. Un domaine
d’application particulièrement prometteur est le transfert de couleurs, qui permet
la re-coloration virtuelle d’une image histopathologique, c’est-à-dire la modification
de son apparence pour donner l’impression qu’elle a été colorée avec une autre col-
oration ou une variation de coloration. Ainsi, le transfert de couleurs basé sur les
GAN peut réduire le décalage de domaine introduit par la variation inter et intra-
colorations dans l’espace des pixels. En outre, le transfert de couleurs peut être
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Figure 4: Variabilité des colorations : variations intra et inter-colorations sur des
exemples de tissus rénaux. Chaque ligne contient des exemples colorés avec la même
coloration.

utilisé pour créer des collections d’ensembles de données artificielles, ce qui pourrait
résoudre les problèmes de confidentialité des données médicales.

Axes de recherche

Deux axes de recherche principaux ont été identifiés :

• Réseaux génératifs adversaires pour le transfert de couleurs : cet axe con-
siste à appliquer les GAN au transfert de couleurs, c’est-à-dire à la modifi-
cation de l’apparence d’une image colorée avec la coloration A pour qu’elle
ressemble à une image colorée avec la coloration B. Le transfert obtenu
doit être réaliste : l’image microscopique générée, en l’absence d’informations
spécifiques sur le patient telles que la maladie sous-jacente, doit être visuelle-
ment réaliste pour un pathologiste, à la fois au niveau de la coloration et de
l’aspect morphologique des composants tissulaires. La thèse propose plusieurs
façons d’obtenir des translations visuellement convaincantes et donne les lim-
ites de ces approches tant du point de vue du diagnostic que de leur application
dans le domaine de la vision par ordinateur.

• Réseaux génératifs adversaires pour la construction de modèles robustes : cet
axe de la thèse étudie comment les GANs peuvent être utilisés pour construire
de meilleurs modèles d’apprentissage profond plus robustes et capables de
résoudre le même problème dans des images provenant de plusieurs colorations
(segmentation de structures à grande échelle, par exemple). L’apprentissage
est effectué à l’aide d’un nombre limité d’annotations provenant d’une seule
modalité de coloration, et l’objectif de la solution obtenue est de généraliser
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ce modèle à de multiples colorations, même à celles qui n’ont jamais été vues
durant l’apprentissage.

Méthodes

Réseaux génératifs adversaires - Generative Adversarial Netowrks

(GANs)

Les réseaux génératifs adversaires (GAN) [5] appartiennent à la classe des modèles
génératifs implicites. Ils sont optimisés pour échantillonner la distribution des
données d’un ensemble d’apprentissage par un jeu contradictoire à deux joueurs. Les
joueurs sont généralement représentés par des réseaux neuronaux appelés générateur
(G) et discriminateur (D). Le générateur effectue l’échantillonnage, c’est-à-dire qu’il
est optimisé pour générer de nouvelles données, tandis que le discriminateur agit
comme un classificateur, apprenant à distinguer les échantillons de données générés
des échantillons réels. L’apprentissage de ces deux modèles est un jeu compétitif
(contradictoire) puisque les objectifs des joueurs sont opposés. Le discriminateur
vise à distinguer le mieux possible les données réelles des données générées, tan-
dis que le générateur vise à créer des échantillons qui ne se distinguent pas des
données réelles. Le résultat optimal d’un tel jeu est un équilibre de Nash, où le
générateur produit des échantillons indiscernables (du point de vue du discrimina-
teur) des données réelles. La figure 5 illustre graphiquement le jeu contradictoire et
les joueurs pour la tâche de génération de visages.

Les réseaux génératifs adversaires ont suscité beaucoup d’attention depuis leur
introduction en 2014, car ils permettent d’échantillonner à partir de distributions
de données très complexes, ce qui a considérablement augmenté leurs domaines
d’application. Un domaine d’application particulièrement intéressant du point de
vue de l’histopathologie numérique est la traduction d’image à image. Cette tâche
peut être définie comme la conversion d’une image xA du domaine A en une image
x̂B du domaine B, en prenant le style du domaine B et en préservant le contenu de
l’image xA. Les réseaux adversaires conditionnels sont parfaitement adaptés à cela.

Transfert de couleurs

Dans le contexte de l’histopathologie numérique, des méthodes de traduction
d’image à image peuvent être utilisées pour obtenir une coloration virtuelle. La
coloration virtuelle consiste à modifier artificiellement l’apparence d’une image
histopathologique après son acquisition, par exemple en faisant en sorte qu’une
image initialement colorée par la coloration A ressemble à une image colorée par la
coloration B de manière réaliste. Le terme ‘réaliste’ fait référence au fait qu’une
image histologique seule, sans connaissance des sections adjacentes traitées avec
d’autres modalités de coloration, et en l’absence d’informations spécifiques au pa-
tient telles que la maladie sous-jacente, semble visuellement correcte pour un expert
à la fois concernant les caractéristiques de coloration et l’aspect morphologique des
composants tissulaires. Des architectures pour la traduction d’image à image, telles

17À titre d’illustration, la fausse image est générée à l’aide d’un modèle ProgressiveGAN pré-
entrâıné ; la vraie image est tirée du jeu de données Celeb-A [11].
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Figure 5: Illustration de l’entrâınement contradictoire a) le discriminateur est en-
trâıné à distinguer les échantillons de données réels des échantillons générés ; b) le
générateur est entrâıné à l’aide des informations fournies par le discriminateur, afin
de produire des échantillons impossibles à distinguer des données réelles17.

que CycleGAN (voir figure 6), ont un grand potentiel pour être appliquées à la
coloration virtuelle.

Le modèles est constitué de deux générateurs qui effectuent le tranfert de couleurs
: GAB : A → B pour le transfert de A vers B et GBA : B → A pour le transfert de
B vers A; et de deux discriminateurs DA and DB. L’objectif de DA est de distinguer
les images réelles du domaine A de celles translatées de B vers A; tandis que DB a
pour objectif de distinguer les images réelles du domaine B de celles translatées de
A vers B. Une fois entrâıné, le modèle est capable de vers des transferts TA→B et
TB→A entre deux colorations A et B, en utilisant le générateur correspondant.

Invariance colorimétrique

Le modèle CycleGAN est capable d’obtenir des translations réalistes et plausibles en-
tre différentes colorations, ce qui va être utile pour proposer une solution invariante à
la coloration pour la segmentation des glomérules — Unsupervised Domain Augmen-
tation using on Generative Adversarial Networks (UDA-GAN). UDA-GAN est une
approche générale pour la formation de réseaux neuronaux convolutifs (CNN) invari-
ants aux colorations pour une tâche spécifique. Après l’entrâınement, le modèle est
capable d’exécuter une tâche donnée dans différentes colorations, potentiellement
inconnues pendant la période d’apprentissage. On suppose que des WSI annotées
sont disponibles pour une coloration A alors que les WSI des autres colorations
B1, B2, . . . , BN ne sont pas annotées. L’objectif est d’augmenter la variabilité de



172 Résumé
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Figure 6: Architecture d’un CycleGAN pour la coloration virtuelle en histopatholo-
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Figure 7: Schéma général de l’approche proposée. Phase 1, les modèles de trans-
lation sont entrâınés pour traduire les images du domaine source vers les domaines
cibles ; Phase 2, les patchs du domaine source sont transférés de manière aléatoire
vers les domaines cibles pendant l’entrâınement (image U-Net tirée de [13]).

l’ensemble d’apprentissage (annoté) en le traduisant de manière aléatoire dans les
domaines non annotés (y compris le domaine original annoté). L’architecture globale
de la méthode proposée est présentée dans la figure 7.

La méthode se décompose en deux phases :

a) (non supervisé) Modèle pour le transfert de couleurs – Afin d’obtenir des trans-
lations réalistes de la coloration annotée A vers des colorations non annotées
B1, B2, . . . , BN , un modèle de translation d’image à image non supervisé basé
sur un GAN est utilisé. Les modèles CycleGAN [12] et StarGAN [14] sont
considérés pour cette tâche.

b) (supervisé) Modèle lié à la tâche (modèle de segmentation) – ce modèle est en-
trâıné sur les données annotées après avoir été traduites en une coloration
aléatoire non annotée. Comme la traduction ne modifie pas la structure glob-
ale de l’image, la vérité terrain du domaine d’origine reste valide. Ainsi,
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au cours de l’apprentissage, divers échantillons annotés de toutes les col-
orations disponibles sont présentés au modèle, le forçant à apprendre des car-
actéristiques invariantes de la coloration. Une fois le modèle de segmentation
entrâıné, il peut être appliqué directement aux colorations non annotées, sans
autre translation.

Transfert de coloration et invariance – une solution complète

Indépendamment du réalisme des translations obtenues, le modèle CycleGAN est
bidirectionnel et ne permet donc qu’une coloration virtuelle entre deux colorations
sélectionnées. De nombreuses méthodes de translation d’image à image non ap-
pariées multi-domaines existent [14–16]. Cependant, contrairement au modèle Cy-
cleGAN, elles ne sont pas directement applicables au transfert de couleurs. Ces ar-
chitectures avancées comme StarGANv2 [15] incluent des modules additionnels qui
permettent au générateur d’effectuer des changements importants sur une image tout
en garantissant la réversibilité à travers une contrainte de cohérence cyclique. Cepen-
dant, lorsqu’il s’agit de transfert de couleurs, ces modifications pourraient conduire
à la suppression/invention de la structure des tissus, empêchant l’application de ces
translations à des tâches médicales ou de vision par ordinateur. Ainsi, l’obtention
d’un modèle de transfert multi-colorations n’est pas simple. Dans cette thèse, une
extension du modèle StarGANv2, appelée HistoStarGAN, est proposée. L’approche
présentée est capable d’effectuer des colorations virtuelles réalistes et diverses tout
en préservant la structure d’intérêt pendant le processus de traduction. De plus, le
modèle fournit une segmentation invariante de la structure sélectionnée.

L’architecture du modèle HistoStarGAN est présentée dans la Figure 8. Le
modèle contient cinq modules principaux : le générateur (G), le discriminateur (D),
le réseau de mise en correspondance (F) et l’encodeur de style (E) (originellement de
l’approche StarGANv2) en plus d’un réseau de segmentation (S) (en rouge dans la
Figure 8) qui est relié au générateur. L’architecture de StarGANv2 (composée des
modules G, D, E, F) est déjà suffisante pour effectuer la translation entre différentes
colorations, cependant, les structures anatomiques importantes sont perturbés. Par
exemple, les glomérules peuvent être supprimés. Le but du module de segmentation
est d’éviter que les structures d’intérêt disparaissent pendant la translation.

Le générateur G est un réseau de type encodeur-décodeur dans lequel une couche
de normalisation dans l’encodeur supprime les caractéristiques spécifiques à la col-
oration, tandis que la normalisation adaptative dans le décodeur injecte des infor-
mations spécifiques à la coloration. Ainsi, l’espace latent du générateur extrait une
représentation des données invariante par rapport aux colorations. Un module de
segmentation est relié à l’espace latent et vise à segmenter la structure d’intérêt en
utilisant la représentation invariante de la coloration. Entrâınée de bout en bout
avec d’autres modules, la branche de segmentation force la préservation des struc-
tures d’intérêt dans l’espace latent pendant le processus de translation.
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Figure 8: HistoStarGAN — un modèle entrâınable de bout en bout pour le transfert
simultané de couleurs et une segmentation invariante des colorations. Le bloc rouge
indique la différence par rapport au modèle StarGANv2 [15].

Résultats

Transfert de coloration basé sur un CycleGAN

Les résultats des translations de CycleGAN TPAS→X et TX→PAS , où
X ∈ {Jones H&E, Sirius Red,CD68,CD34}, sont donnés dans la figure 9. Toutes
les traductions semblent plausibles, comme le confirment les pathologistes. Cepen-
dant, un tel transfert de couleurs n’est pas capable de réduire le décalage de domaine
dans toutes les colorations de manière égale. On peut observer que certaines trans-
lations sont plus difficiles que d’autres, ce qui influence grandement la qualité des
résultats.

Dans l’ensemble, la conception architecturale et la procédure d’apprentissage de
cette méthode permettent le transfert de couleurs de telle sorte que les structures
internes ne sont pas affectées, par exemple, les glomérules restent dans la même
position (forme, orientation, etc.) avant et après la translation. La méthode est
générale, elle n’est pas liée à une coloration spécifique, et peut donc être appliquée
pour la translation entre n’importe quelle paire de colorations. Cependant, la con-
ception architecturale et la procédure d’apprentissage qui conduisent à un modèle
déterministe de transfert des couleurs (c’est-à-dire une correspondance une-à-une en-
tre les colorations), entrâınent des limitations supplémentaires liées à l’application
pratique et à l’évaluation, telles que :

Qualité de la translation : les translations obtenues peuvent coder des informations
supplémentaires afin d’effectuer une mise en correspondance déterministe.
Cela peut affecter la capacité des translations à réduire le décalage de do-
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Figure 9: Transfert de couleurs obtenu avec les modèles CycleGAN. La première
rangée contient les images réelles de chaque coloration. La deuxième rangée
représente les translations TPAS→X d’une image PAS vers la coloration cible. La
dernière rangée représente les translations TX→PAS d’images cibles réelles vers la
coloration PAS.

maine entre les colorations.

Stabilité et reproductibilité de l’apprentissage : comme il n’y a pas de critère d’arrêt
explicite, on peut arrêter l’apprentissage lorsque des traductions réalistes sont
obtenues. Cependant, le mapping déterministe peut être différent à différentes
époques ou répétitions de l’entrâınement, ce qui pourrait conduire à des con-
clusions trompeuses sur la qualité des translations obtenues.

Généralisation : différentes combinaisons de couleurs pourraient coder des infor-
mations différentes, ce qui donnerait lieu à des conclusions ambiguës liées à
l’application des modèles de transfert de couleurs.

Tous ces aspects sont étudiés plus en détail dans le chapitre 3 de la thèse. Il
s’avère que le potentiel du transfert de couleurs basé sur le CycleGAN pour réduire
le décalage de domaine introduit par la variation inter-coloration peut être grande-
ment influencé par son architecture, c’est-à-dire que l’on peut utiliser beaucoup
de couches de normalisation dans le modèle sans affecter le réalisme de la trans-
lation mais en affectant grandement sa capacité à réduire le décalage de domaine.
Ainsi, l’inspection visuelle, qui est l’une des approches largement utilisées lors de
l’évaluation du transfert de couleurs virtuelles, n’est pas suffisant. De plus, on con-
state que le bruit existe bel et bien dans les translations. Il peut être perturbé de
manière à générer des échantillons divers, affectant la présence de marqueurs impor-
tants pour le diagnostic, par exemple les macrophages. Ces résultats sont ensuite
utilisés pour proposer une méthode d’augmentation de données non supervisée, qui
s’avère bénéfique pour l’apprentissage supervisé.
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UDA-GAN

Le modèle UDA-GAN est capable d’atteindre une performance équivalente à la base-
line dans trois des cinq colorations de test. Malgré le fait que le modèle ne voit que
la coloration PAS (la seule coloration annotée dans ces expériences) 20% du temps
pendant l’appretnissage, le modèle atteint une performance équivalente à la base-
line dans ce domaine (source). Le modèle se rapproche également de la performance
de base pour les colorations cibles Jones H&E et Sirius Red. Pour les colorations
CD68 et CD34, le modèle atteint un score F1 de 0, 705 et 0, 799, ce qui signifie qu’il
apporte une amélioration de 11, 9% et 6% respectivement par rapport à la meilleure
méthode suivante basée sur CycleGAN (MDS2). La performance moyenne sur les
cinq colorations différentes montre que UDA-CGAN atteint un score F1 moyen de
0, 827 (0, 808 sans inclure la coloration PAS, afin d’être équitablement comparé aux
approches MDS), tandis que MDS2, en tant que deuxième meilleure méthode, at-
teint un score F1 de 0, 748. La plus grande différence relative est observée dans la
coloration CD68, où l’amélioration globale est de 55, 8% par rapport à l’approche
originale [17] et de 11, 9% par rapport à MDS2. En dehors de l’approche de base,
UDA-GAN est la seule à obtenir des résultats acceptables dans cette coloration.

L’invariance du modèle est également démontrée par son application à deux
nouvelles colorations — la coloration histologique H&E (une coloration générale
non spécifique à une protéine particulière) et la coloration immunohistochimique
CD3 (marqueur des cellules T). Ces colorations n’ont pas été observées lors de
l’apprentissage du CycleGAN et de l’UDA-GAN. Les résultats obtenus confirment
la capacité du réseau à réaliser une segmentation invariante aux colorations.

HistoStarGAN

L’entrâınement d’HistoStarGAN aboutit à un modèle unique capable d’effectuer
divers transferts de couleurs et une segmentation invariante aux colorations. De
plus, en translatant une image dans son propre domaine, il est possible pour la
première fois d’obtenir une normalisation des colorations. De plus, grâce à son
codeur invariant, le modèle HistoStarGAN est capable d’effectuer la translation de
couleurs et la segmentation de colorations non vues lors de l’apprentissage.

La capacité du modèle à effectuer la translation de couleurs multi-domaine (et les
segmentations correspondantes) est illustrée dans la figure 11 ; la généralisation d’un
transfert de couleurs à des colorations non vues dans la figure 12 ; et la normalisation
de la coloration PAS dans la figure 13, dans laquelle l’ensemble de données AIDPATH
[18] (disponibles publiquement) est traduit en plusieurs colorations.

Le modèle HistoStarGAN représente la première solution de bout en bout en-
trâınable pour la normalisation simultanée des colorations, le transfert de couleurs
et la segmentation invariante aux colorations. Pour la première fois, il est possible
d’obtenir un transfert de couleurs hautement réaliste à partir de colorations non
vues, sans aucune modification supplémentaire du modèle (par exemple, un fine
tuning). De plus, le modèle définit de nouveaux résultats à l’état de l’art pour la
segmentation invariante aux colorations, en se généralisant avec succès à six col-
orations inconnues. La solution proposée est générale et peut être étendue à de
nouvelles colorations ou à de nouveaux cas d’utilisation.

En étant capable de générer diverses translations pour une entrée donnée, la
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solution proposée offre un moyen de générer le premier ensemble de données créé
artificiellement et entièrement annoté — KidneyArtPathology, qui est disponible
publiquement pour encourager les recherches futures. En outre, le modèle est en-
trâıné sur cinq colorations largement utilisées et des modèles pré-entrâınés sont
disponibles, ce qui permet d’augmenter les données hors ligne (par exemple, sur
des ensembles de données privés) par le transfert des colorations utilisées pendant
l’entrâınement du modèle.

Contributions

Les contributions principales de cette thèse sont présentées sur la figure 10.

Chapter 2 – Literature Review

(a)

(b)

(c)

Chapter 3 Chapter 4 Chapter 5

Figure 10: Un résumé visuel de la structure et des principales contributions
présentées dans cette thèse.

Cette thèse, en parallèle avec d’autres auteurs [19, 20], a proposé pour la
première fois l’utilisation d’une méthode de translation d’image à image basée sur
un GAN pour le transfert de couleurs entre différentes modalités de coloration
– la première contribution de la thèse, voir figure 10. Chapitre 3(a)18. Entre-
temps, l’approche basée sur CycleGAN a été établie comme une solution standard
pour la coloration virtuelle en général et est largement adaptée au domaine de
l’histopathologie numérique. Les travaux les plus importants sont classés et résumés
dans le Chapitre 2 de cette thèse. Il est clair que la littérature s’est jusqu’à présent
concentrée sur la normalisation des colorations, c’est-à-dire la standardisation de
l’apparence des images histologiques dans une modalité de coloration, où les solu-
tions basées sur CycleGAN sont les approches dominantes. Cependant, le transfert
de couleurs entre différentes modalités de coloration, sur lequel cette thèse se con-
centre, est rarement abordé dans la littérature. La thèse révèle que le transfert entre

18L’ouvrage [19] a été publié en même temps que la préparation de la publication liée aux
résultats basés sur CycleGAN présentés dans cette thèse. Après la publication de Gadermayr et al.
[19], le travail a été étendu avec des analyses supplémentaires.
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différentes colorations ouvre des questions plus complexes et présente des limitations
spécifiques par rapport à la normalisation des colorations.

This thesis identifies that CycleGAN-based translations contain imperceptible
information related to stain differences whose manipulation can modify the resulting
translation in plausible way. As a consequence of this finding, the thesis proposes an
unsupervised augmentation method that increases the robustness of deep-learning
based solutions — the thesis’ second contribution, see Figure 10 Chapter 3(c).

De plus, cette thèse à permis de découvrir et de démontrer la sensibilité des solu-
tions basées sur CycleGAN à de petites modifications architecturales. Ces change-
ments n’affectent pas nécessairement la qualité visuelle des translations obtenues
mais influencent les conclusions générales relatives à l’utilité du transfert de couleurs
tant du point de vue du diagnostic que de l’application — la troisième contribution
de la thèse, voir figure 10 Chapitre 3(b)).

De plus, la thèse profite du réalisme des translations obtenues pour proposer la
première solution qui permet d’avoir un modèle de segmentation robuste et invariant
aux colorations pour la segmentation des glomérules dans des coupes histologiques
rénales. Le modèle obtenu est capable de segmenter plusieurs colorations et est
également capable de généraliser à certaines colorations non vues — la quatrième
contribution de la thèse, voir figure 10 Chapitre 3(a) et Chapitre 4.

Les résultats et les conclusions des travaux menés durant cette thèse sont en outre
utilisés pour proposer un modèle complet qui effectue simultanément le transfert de
couleurs et la segmentation invariante aux colorations — la cinquième contribution
de la thèse, voir la figure 10. Le modèle proposé est, pour la première fois, capable
d’effectuer simultanément le transfert entre différentes colorations, la normalisation
de couleurs dans une coloration et de généraliser le processus de translation à des col-
orations non vues. En outre, toutes les données générées (y compris les colorations
originales et non vues) sont correctement segmentées grâce au module de segmen-
tation invariant. Ces résultats permettent de générer le premier jeu de données
entièrement annoté, créé artificiellement, qui sera bientôt mis à la disposition de
la communauté pour faire progresser l’histopathologie numérique — la sixième et
dernière contribution de la thèse.
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Figure 11: Translations d’HistoStarGAN entre différentes colorations avec les seg-
mentations correspondantes. Chaque translation est obtenue en utilisant différents
codes latents.
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Translations
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Figure 12: HistoStarGAN — généralisation du transfert de couleurs et de la seg-
mentation à des colorations non vues.
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Translations
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Figure 13: HistoStarGAN a été appliqué pour la normalisation des colorations, le
transfert de couleurs et la segmentation des glomérules du jeu de données AIDPATH
(basé sur PAS) disponible publiquement.
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Résumé 
L'histopathologie numérique est un domaine d'innovation très riche, tant dans les applications 
cliniques que dans la recherche, où les solutions basées sur l'apprentissage profond connaissent un 
succès remarquable. Cependant, les méthodes actuelles d'apprentissage profond sont des approches 
gourmandes en données qui nécessitent d'énormes bases de données annotées pour obtenir des 
modèles performants. Or, le domaine médical est connu pour sa difficulté à obtenir des données et 
des annotations - la collecte de données relève d'une réglementation stricte et contraignante, tandis 
que seuls des experts peuvent effectuer des annotations de haute qualité, ce qui est un processus 
laborieux et coûteux. De plus, compte tenu des variations qui peuvent se produire en raison du 
processus et des protocoles de coloration, les données déjà collectées et annotées ne peuvent être 
réutilisées qu'avec un succès limité. Une telle variation de la coloration représente un changement de 
domaine et affecte considérablement les solutions basées sur l'apprentissage profond dans la 
pratique. Cela devient plus évident encore lorsque l’apprentissage se focalise sur des structures 
biologiques visibles avec plusieurs colorations, car les solutions développées en utilisant les données 
d'une coloration sont susceptibles d'échouer lorsqu'elles sont appliquées à une autre. Cette thèse 
étudie le potentiel des réseaux adversaires génératifs (GAN) dans deux directions pour résoudre ces 
problèmes - le transfert de colorations pour permettre la réutilisation de bases de données déjà 
disponibles et le développement de modèles invariants aux colorations qui réduiraient le besoin 
d'acquisition de données ou d'annotations supplémentaires. L'application principale de la thèse est la 
segmentation des glomérules en pathologie rénale avec de multiples colorations. 

 

Résumé en anglais 
Digital histopathology has become a rich area of innovation in both clinical application and research, 
where deep-learning-based solutions have remarkable success. However, current state-of-the-art 
deep learning methods are data-hungry approaches which require huge, annotated data collections to 
perform well. Nevertheless, the medical domain is known for its scarcity of data and annotations — 
collecting data falls under strict low regulations while experts only can perform high-quality 
annotations, which is a laborious and expensive process. Moreover, considering the variations that 
can occur due to the staining process and staining protocols, already collected and annotated datasets 
can only be reused with limited success. Such stain variation represents a source of domain shift and 
significantly affects deep learning-based solutions in practice. This becomes more evident when a 
deep learning task tackles problems related to structures visible under multiple stains as solutions 
developed using the data from one staining are likely to fail when applied to the other. This thesis 
investigates the potential of Generative Adversarial Networks (GANs) in two directions for addressing 
these problems — stain transfer to enable reusing already available data collections; and developing 
stain invariant solutions which would alleviate the need for additional data acquisition or annotations. 
The application focus of the thesis is glomeruli segmentation in renal pathology with multiple stainings. 
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