Thèse soutenue

Méthodes d’apprentissage et coévolution pour les interactions protéines-protéines

FR  |  
EN
Auteur / Autrice : Maureen Muscat
Direction : Martin Weigt
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 19/12/2022
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris (1992-...)
Partenaire(s) de recherche : Laboratoire : Biologie computationnelle et quantitative (Paris ; 2011-....)
Jury : Président / Présidente : Alessandra Carbone
Examinateurs / Examinatrices : Tatiana Galochkina
Rapporteurs / Rapporteuses : Raphaël Guerois, Andrea Pagnani

Résumé

FR  |  
EN

Dans cette thèse, nous nous intéresserons à l'utilisation de l'apprentissage automatique pour le problème de la prédiction des interactions protéine-protéine (IPP). L'étude des interactions protéine-protéine est un problème central en biologie, car les protéines interagissent entre elles pour former les réseaux complexes qui assurent les fonctions biologiques des cellules. Les techniques expérimentales permettant de déterminer quand et comment les protéines interagissent sont très coûteuses et prennent beaucoup de temps. Il existe donc un grand besoin de méthodes informatiques permettant de prédire les IPP. Nous allons explorer l'utilisation de l'apprentissage automatique basé sur la coévolution et l'apprentissage profond pour la prédiction des IPP. Les méthodes de coévolution ont été utilisées avec succès pour un certain nombre de tâches différentes, telles que la prédiction des contacts intra-protéines, des contacts inter-protéines et la prédiction du paysage mutationnel. Au cours de mon doctorat, j'ai développé un algorithme d'apprentissage automatique supervisé pour prédire les contacts inter-domaines et inter-protéines, appelé FilterDCA. L'objectif était d'ajouter une certaine supervision, en utilisant des patterns de contact typiques, tout en gardant l'outil interprétable. J'ai également travaillé sur les interactions protéines-protéines dans le virus SARS-CoV2 et dans le cas d'un complexe multi-protéique présent dans les membranes de certaines bactéries.