Thèse soutenue

Sources locales et éloignées de pollution atmosphérique dans l'Arctique

FR  |  
EN
Auteur / Autrice : Eleftherios Ioannidis
Direction : Kathy Law
Type : Thèse de doctorat
Discipline(s) : Physico-chimie de l'atmosphère
Date : Soutenance le 09/09/2022
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Sciences de l'environnement d'Île-de-France (Paris ; 1992-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Atmosphères, observations spatiales (Guyancourt, Yvelines ; 2009-....)
Jury : Président / Présidente : Solène Turquety
Examinateurs / Examinatrices : Barbara D'Anna, Matthias Beekmann
Rapporteurs / Rapporteuses : Virginie Marecal, Stephen R. Arnold

Résumé

FR  |  
EN

La région arctique se réchauffe plus rapidement que toute autre région de la planète en raison de l’effet des gaz à effet de serre, notamment le CO2, et des forçeurs climatiques à courte durée de vie d’origine anthropique, comme le carbone suie (BC). Au cours des 20 à 30 dernières années, les émissions anthropiques lointain au-dessus des régions de latitude moyenne ont diminué. Les émissions anthropiques dans l’Arctique y contribuent également et pourraient augmenter à l’avenir et influencer davantage la pollution atmosphérique et le climat de l’Arctique. Les émissions naturelles, telles que les aérosols d’origine marine, pourraient également augmenter en raison du changement climatique en cours. Cependant, les processus et les sources qui influencent les aérosols et les gaz traces dans l’Arctique sont mal quantifiés, surtout en hiver. Dans cette thèse, des simulations quasi-hémisphériques et régionales sont réalisées à l’aide du modèle Weather Research Forecast, couplé à la chimie (WRF-Chem). Le modèle est utilisé pour étudier la composition atmosphérique sur la région Arctique et lors de deux campagnes de terrain, l’une au nord de l’Alaska à Barrow, Utqiagvik en janvier et février 2014 et la seconde à Fairbanks, au centre de l’Alaska en novembre et décembre 2019 lors de la campagne française pré-ALPACA (Alaskan Layered Pollution And Chemical Analysis). Tout d’abord, les aérosols inorganiques et les aérosols de sel marin (SSA) modélisés sont évalués sur des sites arctiques pendant l’hiver. Ensuite, le modèle est amélioré en ce qui concerne les traitements des SSA, après évaluation par rapport aux données de la campagne de Barrow, et leur contribution à la charge totale d’aérosols dans la région arctique est quantifiée. Une série d’analyses de sensibilité est effectuée sur le nord de l’Alaska, révélant des incertitudes du modèle dans les processus influençant les SSA dans l’Arctique, tels que la présence de glace de mer et de chenaux ouverts. Ensuite, une analyse de sensibilité est effectuée pour étudier les processus et les sources qui influencent le BC hivernale dans l’ensemble de l’Arctique et au nord de l’Alaska, en se concentrant sur les traitements de dépôt et les émissions régionales. Des variations de la sensibilité du modèle aux dépôts humides et secs sont constatées dans tout l’Arctique et pourraient expliquer les biais du modèle. Dans le nord de l’Alaska, les émissions régionales provenant de l’extraction pétrolière contribuent de manière importante au BC observée. Les résultats du modèle sont également sensibles aux schémas de paramétrisation de la couche limite. Troisièmement, la version améliorée du modèle est utilisée pour étudier la contribution des sources régionales et locales à la pollution atmosphérique dans la région de Fairbanks pendant l’hiver 2019. En utilisant des émissions actualisées, le modèle donne de meilleurs résultats pour l’hiver 2019 que pour l’hiver 2014, lorsqu’on le compare aux observations effectuées sur des sites de fond en Alaska. Les sous-estimations des aérosols modélisés de BC et de sulfate s’expliquent en partie par le manque d’émissions anthropiques locales et régionales. Dans le cas du sulfate , des mécanismes supplémentaires de formation d’aérosols secondaires dans des conditions sombres/froides doivent également être pris en compte.