Thèse soutenue

Développement de propriétés des réseaux complexes pour les Interfaces Cerveau-Machine
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Juliana González Astudillo
Direction : Fabrizio De Vico Fallani
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 06/10/2022
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris
Partenaire(s) de recherche : Laboratoire : Institut du cerveau (Paris ; 2009-....)
Jury : Président / Présidente : Fabien Lotte
Rapporteurs / Rapporteuses : Sophie Achard, Sylvain Chevallier

Résumé

FR  |  
EN

Une interface cerveau-machine (ICM) est un système capable de traduire les modèles d’activité cérébrale en messages pour une application. Il permet à un sujet d’envoyer des commandes à un appareil à travers l’activité cérébrale, sans nécessiter d’activité musculaire périphérique. Ces systèmes sont de plus en plus explorés pour le contrôle et la communication, ainsi que pour le traitement des troubles neurologiques, notamment via la capacité des sujets à moduler volontairement leur activité cérébrale grâce à l’imagerie mentale (IM). Pour contrôler une ICM, l’utilisateur doit produire différents types de signaux cérébraux que le système identifiera et traduira en commandes. Même si cette technique a été largement utilisée, la performance des sujets, mesurée comme la correcte classification de l’intention de l’utilisateur, affiche toujours de faibles scores. Une grande partie des efforts pour résoudre ce problème s’est concentrée sur la classification. Alors que la recherche de features alternatives a été peu explorée. Dans la plupart des systèmes mis en œuvre, la reconnaissance des états mentaux repose sur la puissance spectrale d’un nombre réduit de sources, en se concentrant sur les caractérisation d’une seule région du cerveau. Cependant, le cerveau n’est pas un ensemble de pièces isolées travaillant de manière indépendante. Il s’agit plutôt d’un réseau complexe qui intègre des informations dans des régions différemment spécialisées. Il s’avère que l’examen des signaux d’une région spécifique, tout en négligeant ses interactions avec les autres, simplifie à l’extrême le phénomène. Il serait préférable de comprendre le comportement collectif du système pour bien saisir le fonctionnement cérébral. Ainsi, nous pensons que l’étude à travers la connectivité fonctionnelle pourraient être plus représentatives de la complexité des processus neurophysiologiques, puisqu’elles mesurent les interactions entre différentes aires cérébrales, reflétant l’échange d’informations qui est essentiel pour décoder l’organisation cérébrale. Ensuite, ces interactions peuvent être synthétisées à l’aide d’estimateurs des réseaux complexes, modélisant le cerveau humain comme un réseau. Certes, l’analyse de réseau peut présenter une performance plus précise car elle optimise le coût de calcul et la dimensionnalité. Néanmoins, la simple extraction des propriétés topologiques du réseau, sans tenir compte de la nature spatiale intrinsèque du cerveau, pourrait manquer des informations cruciales pour comprendre le fonctionnement du cerveau. Des études récentes ont démontré que la connectivité cérébrale révèle la latéralisation des hémisphères lors de tâches liées à l’IM moteur. Couvrant ces deux concepts, nous avons exploré la double contribution de la topologie et de l’espace dans la modélisation des états mentaux moteurs par la latéralisation fonctionnelle. Plus précisément, nous avons introduit de nouvelles métriques pour quantifier la ségrégation et l’intégration au sein et entre les hémisphères, et nous avons montré qu’il s’agit de caractéristiques très pertinentes pour décoder une tâche mentale d’imagerie motrice. Ces propriétés de réseau donnent non seulement des précisions de classification compétitives, mais ont également l’avantage d’être interprétables sur le plan neurophysiologique, par rapport aux approches de pointe qui sont plutôt aveugles au mécanisme sous-jacent.