
THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Adam KHAYAM
A Meta-Approach to Describe Effectful and Distributed Semantics

Thèse présentée et soutenue à Salle Métivier (C024), INRIA Rennes, le 30/11/2022
Unité de recherche : CELTIQUE/EPICURE

Rapporteurs avant soutenance :

Catherine DUBOIS Professeure, Ecole Nationale Supérieure d’Informatique pour l’Industrie et l’Entreprise
Sukyoung RYU Professeure, Korea Advanced Institute of Science and Technology

Composition du Jury :
Attention, en cas d’absence d’un des membres du Jury le jour de la soutenance, la composition du jury doit être revue
pour s’assurer qu’elle est conforme et devra être répercutée sur la couverture de thèse

Président : Sandrine BLAZY Professeure Université de Rennes 1
Examinateurs : Xavier RIVAL Directeur de Recherche, INRIA Paris

Arthur CHARGUÉRAUD Chargé de Recherche, INRIA Nancy

Dir. de thèse : Alan SCHMITT Directeur de Recherche, INRIA Rennes
Co-dir. de thèse : Tamara REZK Directrice de Recherche, INRIA Sophia Antipolis

ACKNOWLEDGEMENT

Another experience has finished, and I am thankful to the universe for that. It seems
yesterday that I started my doctoral path, and now it is its end.

First, I would like to thank the reviewers that have carefully read my thesis and given
insightful comments. It is such a heavy document, so I can only thank you for your time
reading and commenting on it. In the same way, I would like to thank the rest of the jury:
time is valuable, and dedicating your time to me means a lot.

Now let’s talk about these three years. I had a wonderful time in Rennes, even during
the pandemic. One of the pillars of this period was my team (Celtique/Epicure). I thank
each of you, I loved everything, but I am a fan of the small things. For example, at the
pandemic’s beginning, you organized “la pause café” to chat each afternoon. It was a
sparkle of normality. I have a lot of respect for you, and I could not have been luckier.
The Celtique/Epicure team is amazing.

A special mention goes to my friends in Rennes. We had a wonderful time during a
crazy period. We were a stronghold to each other, and we made that crisis one of the best
parts of our lives. I wanted to cite each one of you and your papers. A material way to
thank you individually, but suddenly I realized you already have too many citations :p.

I want to thank also my colleagues in Sophia Antipolis, my friends in Nice, and the
people that often visit from Paris. I always found a great environment there and felt
welcomed by both the teams on the floor, INDES and STAMP.

Then, let’s talk about my parents in academia, Alan and Tamara, ladies first. Thank
you for hiring me; I hope I did not disappoint you. I learned a lot from you, and I am
always thankful for your belief in me. Alan, it was quite an adventure. I came to you as
a profane, and you had the patience and ability to introduce me to the topic. You helped
me a lot with your knowledge and your personality. Whenever I was insecure about what
to do, I knew that I had you covering my back.
I am lucky. I couldn’t have hoped for a better academic family.

Let’s go to my biological family. I thank you for your patience, mostly when I don’t
pick up the phone and answer back. I love you!

Last but not least: Moudy, nothing would have started without you. Thank you,

iii

brother!

iv

Titre : Une Méta-Approche pour Décrire des Sémantiques avec Effets et Distribuée

Mot clés : Sémantique Squelettique ; Langage de Spécification ; ECMAScript ; Monades ; Sys-

tèmes Distribués ; Internet des Objets

Résumé : L’étude de la sémantique des lan-
gages de programmation est un domaine de
l’informatique visant à représenter formelle-
ment le comportement de programmes. L’état
de l’art a beaucoup progressé au cours des
quatre dernières décennies en proposant de
plus en plus de cadres adaptés à la réalisation
de ces études. S’il existe de nombreux styles,
dont on connaît les caractéristiques positives
et les limites, il reste encore beaucoup à faire
en termes d’outils adaptés à la description et
à l’étude de la sémantique des langages de
programmation.

Cette thèse s’inscrit dans ce contexte, en
proposant une méthodologie pour pouvoir pro-
duire un objet représentant le comportement
d’un langage de programmation, en fournis-
sant tout ce qui est nécessaire pour pou-
voir les étudier. La contribution de la thèse
consiste à fournir une méthodologie pour
écrire une sémantique concise et visuelle-
ment proche d’une spécification. Pour ce faire,
nous utilisons un certain nombre de construc-
tions algébriques qui, associées à notre ap-
proche purement fonctionnelle, conduisent à

une formalisation claire, concise et facile à
maintenir. Nous avons appliqué cette tech-
nique à deux études de cas, la modélisation
de la spécification JavaScript, ECMAScript, et
la représentation d’un modèle formel pour dé-
crire la sémantique d’orchestration représen-
tant le comportement des applications de l’in-
ternet des Objets. Ces travaux donnent une
idée claire du potentiel et de l’expressivité de
notre cadre formel, appelé sémantique sque-
lettique [8, 41].

Ce manuscrit est à la fois une introduction
à l’utilisation de la sémantique squelettique et
son application aux langages de programma-
tion, même quand ceux-ci ont une spécifica-
tion complexe et de taille conséquente. C’est
également une étude de la manière d’exploiter
les caractéristiques d’un tel outil pour produire
des formalisations qui peuvent étre claires et
lisibles par l’homme. En substance, il s’agit de
faire d’une représentation mathématique d’un
langage, qui s’adresse à une catégorie spéci-
fique de chercheurs, un support précieux pour
les programmeurs en vue d’implémentations
réelles.

Title: A Meta-Approach to Describe Effectful and Distributed Semantics

Keywords: Skeletal Semantics; Specification Language; ECMAScript; Monads; Distributed

Systems; Internet of Things

Abstract: The study and production of pro-
gramming language semantics is a computer
science field aiming to represent these ob-
jects’ behavior formally. The State-of-the-art
presents different styles and technologies for
working on semantics. Technologies have pro-
gressed a lot during the last four decades
by proposing more and more frameworks
adapted to carry out these studies. On the
one hand, semantic styles have well-known
positive characteristics and limitations. On the
other hand, semantic tools are an active re-
search topic.

The thesis proposes a methodology for en-
coding semantics in a tiny functional meta-
language called Skel [41]. This language has
a suite of tools for generating different arte-
facts for performing different types of stud-
ies. The methodology proposed in this thesis
shows how to write concise semantics visually
close to a programming language specifica-

tion. To do so, we combined different algebraic
constructs for writing precise, concise, read-
able, and easily maintainable formalizations.
We have applied this technique to two case
studies, the modeling of the JavaScript speci-
fication, ECMAScript, and the representation
of a formal model to describe orchestration
semantics representing the behavior of Inter-
net of Things applications. These works give
a clear idea of the potential and expressive-
ness of our formal framework—Skeletal Se-
mantics [8].

This manuscript is an introduction to
Skeletal Semantics, showing how to produce
usable and human-readable formalizations of
different types of specifications—inference-
rule based and in prose. In essence, the aim
is to turn a mathematical representation of a
language addressed to a specific category of
researchers into valuable support for program-
mers to build real implementations.

RÉSUMÉ EN FRANÇAIS

Tout langage de programmation peut être considéré comme un ensemble de règles
(sémantique) représentant le comportement de ses éléments atomiques (syntaxe).
Compte tenu certaines données (entrées) et d’une instance syntaxique d’un langage
de programmation (programme), une interprétation est un processus permettant de
renvoyer un résultat (sortie) en transformant les données par des manipulations du
programme effectuées conformément aux règles du langage.

Un parallèle légitime peut être fait avec les langues naturelles. En effet, si avec
une langue naturelle on construit des discours, interprétables par les interlocuteurs,
avec les langages de programmation on produit des programmes, des directives pour
la machine. Pour comprendre ces directives, il faut disposer d’un programme qui in-
terprète le programme à la machine. Ce dernier doit être clair et sans ambiguïté, car
l’interprétation du programme nécessite une représentation de la syntaxe et la séman-
tique dans laquelle ce programme est écrit.

Dans ce manuscrit, nous traitons de différents types de sémantique des langages
de programmation et de leur représentation. Plus précisément, nous proposons un
moyen efficace de représenter la sémantique des langages de programmation d’une
manière qui soit concise et fidèle aux spécifications qui représentent leur comporte-
ment. Ces langages peuvent être de nature différente, tendant à être définis, de manière
informelle, en langage naturel ou pseudo-algorithmique, ou, de manière formelle, en
notation mathématique. Dans cette thèse, nous montrerons que, grâce à un petit méta-
langage appelé Skel, nous sommes capables de capturer la sémantique de ces deux
types de spécifications. De ces définitions formelles, on extrait ensuite du code pour
pouvoir produire de manière modulaire un interpréteur sur lequel on peut exécuter des
programmes.

vii

Définition de Langages Dans la Sémantique Squelet-
tique.

Pour représenter formellement la définition d’un langage de programmation, il est générale-
ment nécessaire de définir la syntaxe et la sémantique des constructions du langage.

Par exemple, si nous devions considérer un langage de programmation qui ne fait
que des additions d’entiers, nous pourrions définir sa syntaxe de la manière suivante.

VALUE v ::= n

EXPR e ::= v | e1 + e2

Avec cette représentation, on dit que les valeurs du langage sont les entiers, qui dans
ce cas n’ont pas de définition réelle, et qu’une expression du langage est soit une
valeur, soit une somme entre deux expressions.

En ce qui concerne la sémantique des expressions dans ce langage, il existe les
différents formalismes qui peuvent être utilisés. Dans cette thèse, nous nous limiterons
à sémantique opérationnelle, un cadre logique qui sert à décrire comment une con-
struction de la langue est exécutée. Dans ce qui suit, nous présentons la sémantique
du petit exemple de syntaxe défini ci-dessus.

VALEUR

n ⇓e n

ADDITION

e1 ⇓ n1 e2 ⇓ n2

e1 + e2 ⇓ n1 + n2

La première règle, Valeur, renvoie un nombre entier dans le cas où l’expression est
simplement une valeur de la langue. La deuxième règle, Addition, évalue l’addition.
Dans le cas d’une somme, il évalue le premier terme de l’addition, le second, et renvoie
la somme des deux entiers. Comme la définition d’une expression est récursive, cette
règle simple évalue également les sommes qui comportent d’autres additions entre
des entiers en tant que sous-expressions. Dans la thèse, nous écrirons la plupart de
la sémantique en utilisant la sémantique squelettique [8].

Pour donner immédiatement un aperçu de la puissance de la sémantique squelet-
tique et du Skel, il faut considérer la conclusion de la règle, n1 + n2. Comme les en-
tiers, l’addition n’a pas non plus de définition réelle, autre que celle que nous pour-
rions naturellement lui donner. Le langage Skel, est un petit langage fonctionnel défini

viii

pour l’écriture de la sémantique. Exactement comme la définition formelle de ce lan-
gage avec l’addition, nous pouvons définir ce langage en Skel, avec le même niveau
d’abstraction. Ce langage décrit la règle, et non le programme qui la représente.

type int
type value = | Int int
type expression = | Val value | Plus (expression, expression)

val plus : expression -> expression -> int

val eval (e:expression) : nat =
branch let Val (Int n) = e in n
or let Add (e_1, e_2) = e in

let n_1 = eval e_1 in
let n_2 = eval e_2 in
plus n_1 n_2

end

En fait, en regardant le code, nous pouvons voir que nous définissons trois types,
un pour les entiers, un pour les valeurs et un pour les expressions, mais contrairement
aux deux derniers, les entiers, type int, n’ont pas de définition. Il en va de même
pour l’addition val plus. Cette opération ne définit pas l’algorithme de la somme, elle
indique simplement qu’il existe un terme qui prend deux entiers et renvoie un entier.
Quant à la fonction eval, dans le cas où l’expression est une valeur, elle renvoie l’entier
qu’elle encapsule, sinon, pour la somme, elle évalue la première expression, la sec-
onde, et enfin renvoie la somme des deux entiers.

En général, pour des langages aussi petits, il est indifférent d’écrire la sémantique
d’un langage de programmation sur papier ou sur une machine. Le problème se pose
lorsque les langues sont de grande taille. En fait, certifier une grande sémantique sur
le papier est presque impossible, ne serait-ce qu’en raison de la quantité de nota-
tion qui doit être définie afin d’avoir des formalisations compactes. Il ne faut pas non
plus oublier que la démonstration par induction sur des définitions de langages aussi
larges sur papier est compliquée. Au cours des dernières décennies, différentes ap-
proches ont été portées à l’état de l’art dans le but de pouvoir écrire la sémantique
sur une machine, et de pouvoir utiliser le support de la machine pour certifier les inter-

ix

prètes résultants. Il existe deux philosophies : l’une impliquant l’utilisation d’assistants
de démonstration tels que Coq [70], HOL [29], Isabelle [30], Twelf [71, 27], et l’autre
exploitant les logiciels et les environnements définis pour écrire la sémantique, tels
que K [63], Ott [66], Lem [55], PLT [36]. La langue Skel est placée dans la deuxième
catégorie. Contrairement aux concurrents de la deuxième catégorie, avec Skel on ne
peut pas exécuter directement des programmes, mais on peut générer divers artefacts
grâce à l’ensemble des outils fournis par necro [53].

Nous aborderons les styles et outils sémantiques dans la première partie de cette
thèse.

Dans les parties 2 et 3, nous montrerons comment exploiter ce langage pour écrire
des sémantiques pour des langages au comportement complexe.

Contributions

Les contributions de la thèse sont présentées dans les deuxième et troisième parties.
Dans la deuxième partie, les contributions sont de décrire une approche systé-

matique pour écrire la sémantique d’une manière concise qui est fidèle à sa spécifi-
cation, facilement maintenable, et à partir de laquelle un interprète peut être généré
pour exécuter des programmes. Les langages que nous allons considérer ont des ef-
fets secondaires, tels que la modification de la mémoire, la présence d’exceptions, et
suspensions du code. Dans cette partie de la thèse, nous présenterons d’abord une
série de langages jouets et leur formalisation en Skel. Ces langages seront une ex-
tension de l’autre, et leur formalisation restera structurellement la même, déléguant la
propagation des effets secondaires aux opérateurs monadiques. Nous présenterons
plus tard la mécanisation d’ECMAScript. Nous utiliserons le même modus operandi
pour produire une description formelle structurellement solide de cette spécification.
La contribution dans ce cas est une formalisation concise, maintenable et lisible de la
sémantique de l’ECMAScript; la génération d’un interpréteur fonctionnel et l’exécution
de petits programmes.

Dans la troisième partie de la thèse, la contribution consiste à raffiner une séman-
tique déjà existante représentant le comportement d’un système distribué particulier.
En fait, le contexte de ce système est celui des applications web qui incluent des
interactions avec des dispositifs connectés au réseau. Nous appelons généralement
ces systèmes Internet des Objets (IoT). Une autre contribution de cette partie est

x

la production d’un interprète pour cette sémantique, montrant que ce modèle formel
non-déterministe pose des problèmes lors de son exécution, car il est complexe. Une
dernière contribution de cette partie est la définition d’un ordonnanceur pour ce modèle
qui limite le non-déterminisme, rendant le modèle exécutable. Pour soutenir la correc-
tion de l’ordonnanceur, nous fournirons un théorème d’équivalence entre la séman-
tique non-déterministe et celle de l’ordonnanceur.

Les contributions de la deuxième partie de la thèse sont présentées dans deux
articles publiés et un en cours de révision [34, 33, 35].

Les contributions de la troisième partie de la thèse sont actuellement en cours de
rédaction sous forme d’article.

Plan du Manuscrit

La thèse se compose de trois parties.
Le premier présentera, dans le chapitre 1, les techniques standard pour représenter

formellement le comportement des constructions linguistiques d’un langage de pro-
grammation, et dans le chapitre 2, les logiciels créés pour avoir une représentation
formelle de ces langages sur une machine. En détail, ce dernier chapitre présentera la
sémantique des squelettes et le langage Skel, un petit langage fonctionnel permettant
d’écrire des spécifications de langage.

La deuxième partie de la thèse traitera de la manière de capturer les effets sec-
ondaires des spécifications du langage. Par exemple, les langages peuvent avoir un
état modifié, gérer les exceptions, suspendre l’exécution de certains segments de
code. Ces effets sont généralement peu pratiques à gérer, car ils doivent être représen-
tés explicitement dans un langage purement fonctionnel.

Dans le chapitre 3, nous verrons comment définir de manière modulaire la séman-
tique d’un petit langage de programmation jouet, que nous étendrons progressivement
en introduisant de nouvelles constructions de langage et des effets secondaires. Nous
montrerons que grâce à l’utilisation des monades, nous serons en mesure d’écrire des
représentations extrêmement modulaires, solides et facilement extensibles en Skel.
La propagation des effets secondaires sera gérée, implicitement, par les opérateurs
monadiques.

Dans le chapitre 4, nous utiliserons les techniques d’écriture sémantique définies
dans le chapitre précédent pour représenter la sémantique d’un langage réel, JavaScript.

xi

Contrairement au chapitre précédent, où les spécifications du langage étaient décrites
par des règles d’inférence logique, dans ce chapitre nous nous baserons sur une spé-
cification textuelle. Contrairement à d’autres langages, comme Python, la spécifica-
tion de JavaScript est extrêmement précise. Nous montrerons que notre technique
d’écriture parvient à capturer, de manière fidèle, concise et maintenable, le comporte-
ment du langage. A partir de la représentation formelle, nous allons générer un in-
terpréteur de noyau JavaScript et montrer l’exécution d’un petit programme. Pouvoir
représenter l’ensemble de la spécification est utopique, en fait notre principale con-
tribution est de montrer que le langage est suffisamment expressif pour rendre cette
tâche historiquement difficile relativement simple.

La troisième partie de ce document présentera, au chapitre 5, une sémantique
représentant le comportement d’un système distribué. Ce modèle, cherche à exprimer
l’évolution de ces systèmes dans le contexte de l’Internet des objets. Nous allons mon-
trer la sémantique, d’abord à travers les règles d’inférence et ensuite en Skel. Nous
discuterons de la lourdeur de l’exécution de ce modèle, qui est non-déterministe par
nature, et présenterons une solution, un ordonnanceur qui tentera de limiter le non-
déterminisme inhérent à ce modèle. Nous montrerons que la sémantique du l’ordonnanceur
est équivalente à la sémantique non-déterministe, ce qui rend possible l’exécution de
programmes exécutés sur ce modèle, quelle que soit la complexité du programme.

xii

TABLE OF CONTENTS

Introduction 2

I Background 5

1 Semantic Styles 7
1.1 A While Language . 8
1.2 Operational Semantics . 10

1.2.1 Structural Operational Semantics 11
1.2.2 Big-Step Operational Semantics 15

1.3 Abstract Machines . 18
1.4 Pretty-Big-Step Semantics . 21

2 The Skel Specification Language 27
2.1 The Skel Language . 28

2.1.1 An Arithmetic Language in Skel 29
2.1.1.1 Syntax and Semantics 29

2.1.2 The Necro Ecosystem . 32
2.1.3 An Interpreter for The Arithmetic Language 36

2.2 Related Specification Language . 39
2.3 Conclusion . 41

II Effectful Semantics 43

3 Describing Concisely Effectful Semantics 45
3.1 Effectful Arithmetic Language . 47
3.2 PCF . 54
3.3 Adding State to the PCF language . 59
3.4 A Fully Monadic Skeletal Semantics . 64
3.5 Explicit Contination Manipulation . 69

xiii

TABLE OF CONTENTS

3.5.1 Program Examples . 70
3.5.2 Syntax and Semantics . 71
3.5.3 A Stateful PCF Language with Yield and Exceptions in Skel . . . 77

3.6 Related Work . 81

4 A Faithful Description of ECMAScript in Skeletal Semantics 85
4.1 ECMAScript Algorithms in Skel . 87

4.1.1 ECMAScript . 87
4.1.2 Challenges of the Formalization 88
4.1.3 Completion Record and the ECMAScript Error Handling (?!) monad 97
4.1.4 A Control-Flow monad . 100
4.1.5 A Real Example in Skel . 103
4.1.6 Current Status . 106

4.2 Interpreter Evaluation . 109
4.2.1 Interpreter Instantiation . 109
4.2.2 Evaluation . 110

4.2.2.1 Framework Comparison 110
4.2.2.2 Program Execution . 112

4.3 Related Work . 113

III Distributed Semantics 117

5 An Executable Semantics for Distributed IoT Applications 119
5.1 Context . 121
5.2 WEBI: A Formal Semantics to IoT Applications 123

5.2.1 The WEBI Configuration . 123
5.2.2 Semantics . 127

5.2.2.1 WEBI Transition Relation 129
5.2.2.2 Client-Driven Rules . 129
5.2.2.3 Service-Driven Rules 135
5.2.2.4 Device-driven Rules . 138
5.2.2.5 The Evaluation Function 142

5.2.3 Example: The Cost of Non-Determinism 145
5.2.3.1 Initial WEBI Configuration Setting 146

xiv

TABLE OF CONTENTS

5.2.3.2 Execution . 152
5.3 A Scheduler for WEBI . 155

5.3.1 Semantics . 155
5.3.1.1 Assumptions for the Scheduler 156
5.3.1.2 Scheduler Configuration 159
5.3.1.3 Small-Step Semantics 161

5.3.2 Equivalence of the Scheduler and the WEBI Semantics 168
5.3.2.1 Commutation Lemmas 169
5.3.2.2 Interval Lemmas . 173
5.3.2.3 Proof Sketch of Theorem 1 175

5.3.3 Executing the Example of Section 5.2.3 in Skel 177

Conclusion 182

Bibliography 187

xv

LIST OF FIGURES

1.1 Definition of the While language grammar. 8
1.2 Expression evaluation function φ . 10
1.3 Example . 10
1.4 Small-Step expression evaluation. This description matches the behav-

ior defined in Figure 1.2. 12
1.5 Small-Step commands evaluation. 13
1.6 Commands Evaluation in Big-Step . 16
1.7 First level of the big-step derivation tree of the program. We put . . . when

we refer to the rest of the program. 17
1.8 Abstract Machine definition of expression evalauation. 19
1.9 Abstract Machine definition of commands evalauation. 20
1.10 Expression Evaluation with Option Results in Big-Step 22
1.11 Expression Evaluation in Pretty-Big-Step 23
1.12 Syntax definition of the language in Pretty-Big-Step style. 24
1.13 Commands Evaluation in Pretty-Big-Step 25

2.1 skeleton for the While constructor . 28
2.2 Arithmetic Language . 30
2.3 Arithmetic Language Definition in Skel 31
2.4 The Necro ecosystem. 32
2.5 The interpretation monad module and its identity monad instantiation . . 34
2.6 The UNSPEC module type and its functors. 38
2.7 The INTERPRETER module type and its functor. 39

3.1 Syntax of the Exception type . 48
3.2 Arithmetic Language Rules Extended with Division and Exceptions . . . 48
3.3 Arithmetic Language in Skel Extended with Division and Exceptions . . 49
3.4 Exception monad in Skel, and its application to the eval function 52
3.5 Exception Monad and its Symbolic Application to eval 53

xvii

LIST OF FIGURES

3.6 The zero term implementation . 54
3.7 PCF Semantic Rules . 56
3.8 PCF Semantics in Skel . 57
3.9 extEnv instantiation in OCaml . 58
3.10 PCF with References . 62
3.11 Sample of the updated functions . 66
3.12 Functions for creating closures. The output is a computation in the monad. 67
3.13 Delimited Sequence of Yield . 70
3.14 Two Ways Communication through Yield 71
3.15 Abstract Machine for PCF + state + delimited continuations. 73
3.16 Yield Language in Skel . 77
3.17 Ping-Pong State Updates through Yield 81

4.1 State Monad in Skel . 89
4.2 Internal representation of the object {n : 42}. 96
4.3 Example of algorithmic steps in which a local environment is necessary. 96
4.4 Skel Formalization of ES Completion Records 97
4.5 Out and Anomaly Declarations . 98
4.6 The Model of ? and !. 99
4.7 The controlFlow type with binders and setters 100
4.8 Code with and without Control Flow Monad. 101
4.9 Variant of the Figure 4.8 with Exceptions. 103
4.10 The ECMAScript’s GetValue(V) and its Skel formalization 104
4.11 yieldable abstract closure . 108
4.12 TYPES module instantiation . 109
4.13 GetValue 5.1 written in the K framework. 111
4.14 GetValue 5.1 in JSCert . 112
4.15 Example of JS program . 113

5.1 The ServiceInit rule. A client is initialized. The booting call of this client
generate a running web service. 130

5.2 ServiceInit Skel rule. 131
5.3 The ClientStep rule. A web client performs an evaluation step. 132
5.4 ClientStep Skel rule. 132
5.5 The ClientCall rule. A client calls a web service. 133

xviii

LIST OF FIGURES

5.6 ClientCall Skel rule. 133
5.7 The Run rule. When a client finishes to compute, it picks a thunk and

executes it. 134
5.8 Run Skel rule. 135
5.9 The ServiceStep rule. A service performs an evaluation step. 135
5.10 ServerStep Skel rule. 136
5.11 The RetServiceBoot rule. A service related to a booting client finishes

to compute. It returns the result to the client. 137
5.12 RetServiceBoot Skel rule. 138
5.13 The RetService rule. A service realted to a running client finishes to

compute. It returns the result to the client. 138
5.14 RetService Skel rule. 139
5.15 The DeviceSensor rule. A sensor, or a group of sensors detects a phys-

ical event. 139
5.16 DeviceSensor Skel rule. 140
5.17 The DeviceActuator rule. A service issues an actuation order to a de-

vice. The device performs the actuation. 140
5.18 DeviceActuator Skel rule. 141
5.19 The DeviceReading rule. A service issues an reading order to a device.

The device responds, returning a serialized value. 141
5.20 DeviceReading Skel rule. 142
5.21 The pseudo-random interpretation monad 143
5.22 The List interpretation monad . 144
5.23 ServiceInit Skel rule . 145
5.24 The windowManager service definition. 147
5.25 The turnOnOven service definition. 147
5.26 Definition of a client calling the windowManager and the _I_ set. 148
5.27 Type defining the device’s semantics. 149
5.28 The window semantics. The code is written in a simplyfied version of

Skel, which has, for example, strings. 149
5.29 The thermometer semantics and instantiation. 150
5.30 The world oracle. 151
5.31 A sequence of rule applications showing an execution of the initial setting

presented in the previous paragraphs. 152

xix

LIST OF FIGURES

5.32 Two sequences of rule applications showing executions of the new set-
ting that considers two clients. The first one is a trace showing an inter-
action producing an interesting physical event, and the second one does
not show this interaction. 154

5.33 Two diagrams representing the evaluation functions. The diagram A de-
picts the non-deterministic evaluation function, and the diagram B de-
picts the scheduler’s one. 157

5.34 Filtering functions on Π, where lfilter is the classic filter function on
lists in functional programming. 161

5.35 Semantic rules for Step 1 . 162
5.36 Semantic rules for Step 2 . 163
5.37 Semantic rules for Step 3 . 164
5.38 Semantic rules for Step 4 . 165
5.39 Semantic rules for Step 5 . 166
5.40 Semantic rules for Step 6 . 167
5.41 Semantic rules for Step 7 . 168
5.42 At the top of the figure, we show an informal generic definition of the

lemmas. The table shows, for each rule, the rules with which to commute
and the constraints of the commutations. 170

5.43 Two scheduler’s reordered traces behaviorally equivalent to the traces
in Figure 5.32. With equivalent we mean that they produce the same
final WEBI configuration. We annotate the some rules applications with
“o” and “w” to refer to the oven and window service, and “a” and “s” to
refer to the clients adam and steve. 179

xx

A papá, mamma ed Amin,
un enorme piccola famiglia.

Introduction

1

Introduction

« Try not. Do. Or do not. There is no try. »
- Yoda’s unambiguous advice

Every programming language can be seen as a set of rules (semantics) repre-
senting the behavior of its atomic elements (syntax). Given some data (inputs) and a
syntactical instance of a programming language (program), an interpretation is a pro-
cess of returning a result (output) by transforming the data via program manipulations
done according to the language rules.

The latter description is quite natural, as it is essentially similar to what happens with
natural language human interpretation, such as English, Italian, Chinese, etc. In fact,
given hypotheses, a requirement of a natural program (context), the language (defined
by its grammatical rules), the meaning of a speech, or a thesis, is derived depending
on each one’s subjective understanding. Everyone has a slightly different interpreta-
tion of it, as subjectivity is inevitable for human beings. Indeed, while interpreting a
natural program, everyone introduces some biases, such as misunderstandings from a
lack of knowledge of the language, cultural background, personal judgment about the
speaker/writer, and so on. Moreover, sentences like “I saw someone on the hill with
a telescope” are syntactically and semantically/grammatically correct. Still, a certain
ambiguity is intrinsically related to the sentence and the language itself. Indeed, one
might ask who actually carried the telescope, the subject or the person on the hill?
To sum up, the difference between programming and natural languages is the ambigu-
ity that the latter intrinsically has. Something that a programming language interpreta-
tion cannot afford. In the case of programming languages, if a program is syntactically
and semantically correct, we should be able to say that we can expect a result of a
specific type. Even non-deterministic programming languages, unclear in their behav-
ior, must have a precise formal definition. For example, the parallel construct is defined
in terms of non-deterministic interleavings between two programs or instructions.

Over the years, many works tried to formalize the behavior of programming lan-
guages in different styles and with various technologies, trying to make the definitions
precise to enable studies spreading from proving the formal properties of a language
to security or analysis of programs. The need to write a mathematical formalization
pushed the definition of different semantic styles in which it is possible to capture the
language features and technologies in which a language can be formally encoded.
These technologies go from the classic paper to the use of the machine, all with some
advantages and disadvantages. Still, the trend is to simplify both the complexity and

2

Introduction

the learning curve to access one of these methods.

Writing a formalization on paper works great on small calculi, as scientists can
directly provide a formal meaning to the syntactical elements of a language by writing
the behavior in a semantic style. Still, the complexity of writing full-scale programming
languages on paper is challenging. These definitions become easily massive, non-
manageable, or writable, and coherence can be challenging to maintain. Then informal
proofs, the ones made by hand, can be pretty unreliable as the language formalization
grows. Assuming that the work is safe and sound after tremendous efforts, it is difficult
to derive an implementation from it, making it hard to test concretely. We would like
to recall that this scientific area aims to find formalisms and technologies to reduce
deficiencies in programming language specifications and implementations, goal that
we cannot be sure to be hit by simply unit-test interpreters or compilers.

The machines’ support has been an important breakthrough for semanticists. For
example, via machine, one can automatically check the coherence of the formaliza-
tion while writing it. In the last three decades, different tools and techniques machine-
checked spread out. We can factorize them in two different macro-approaches: Se-
mantics via proof assistants, such as Coq [70], HOL [29], Isabelle [30], or Twelf [71,
27], and Semantics via specification languages, such as Ott [66], Lem [55], K [63], or
PLT [36].

The use of proof assistants allows to formally verify that programming languages
uphold certain language-specific properties. In general, these frameworks are designed
to reason about formal properties of mathematical objects. Excellent work has been
done on the proof assistants; CompCert [18, 5, 4] for C, CakeML [12, 48, 69] for Stan-
dardML [68, 44], and JSCert project [7, 6] for JavaScript are some strong examples.
Nevertheless, these technologies, despite their great power, work with their own logic,
making the portability of a work, from a proof assistant to another almost impossible.
The sources are cluttered with syntactic noise and generally, one needs to know at best
the tool. Moreover, these are complex tools, making hard to be fluent in more than one
tool, as the learning curve is steep. The result is a lack of exchange between different
communities of proof assistants, as these technologies have created different schools
of thought. This impacts collaboration between scientists, not being able to port these
accomplishments into different platforms, even automatically. Indeed, these languages
are complex, making mechanisms of executable code extraction hard to design and to
be proven correct. For example, works such as the JSCert project put trust on the Coq

3

Introduction

extraction method to OCaml [19], without having any formal guarantee of semantics
mismatches.

This thesis is set in the context of semantics via specification languages. These
languages, generally meta-languages, are built on theoretical frameworks, each with its
peculiarities, to provide an intuitive way to implement the semantics of a programming
language. Generally tiny languages, these works offer tools to generate artifacts to
execute and formally study a formalization.

In the thesis, we will focus on the Skeletal Semantics framework. After providing a
bit of background about semantic styles and how to use them to encode the behavior of
a variant of a Vanilla While language in Chapter 1, in Chapter 2 we present the Skeletal
Semantics and the tools for producing artifacts. These two chapters will offer a solid
background to the thesis.

Then, in Chapter 3, we will present an approach for writing semantics in Skel, the
language for writing Skeletal Semantics. This work is currently under major revision by
the authors[35]. We claim our techniques produce concise, readable, and maintainable
semantics. This novel approach to specification languages allows exploiting continu-
ations in our meta-language to design carefully chosen monad and hide side-effects
in the programming language formalizations. Formalizations are structurally solid, and
extending them means encoding the evaluation behavior of the language constructs
and updating the monads. The core of the language stays immutated.

Chapter 4 presents the work published in the proceedings of the 24th International
Symposium on Principles and Practice of Declarative Programming and of the 32nd
Journées Francophones des Langages Applicatifs [34, 33]. We apply the technique
presented in Chapter 3 by providing a formal semantics of ECMAScript and showing
how to use our monadic approach to build a solid and extensible formalization of the
JavaScript specification.

Finally, in Chapter 5, we present a model that aims to embody the behavior of a dis-
tributed system for IoT applications. This orchestrating semantics, tiny in size, models
complex interactions between tiers, and writing it in Skel is still a challenge. Never-
theless, we propose the semantics and a naïve implementation. Then, to constrain
the model’s non-determinism, we produce a scheduling policy easily implementable in
Skel, proven correct and complete.

4

Part I

Background

5

Chapter 1

SEMANTIC STYLES

Contents
1.1 A While Language . 8

1.2 Operational Semantics . 10

1.2.1 Structural Operational Semantics 11

1.2.2 Big-Step Operational Semantics 15

1.3 Abstract Machines . 18

1.4 Pretty-Big-Step Semantics . 21

« A thing named, misnamed, unnamed, or renamed is still itself. »
- Mokokoma Mokhonoana

Introduction

We define a programming language by its syntax, which is related to the grammatical
structure of programs, and semantics, which is more concerned with expressing the
meaning of a program. As the thesis presents an efficient and concise approach for
capturing semantics, this chapter provides some background on general techniques
that have historically and recently been used for defining the behavior of program-
ming language constructs. Generally speaking, the goal of a formal semantics is to de-
fine rigorously/mathematically the meaning of the programs written in the considered
programming language. The task is quite challenging, especially considering complex
programming languages. Nevertheless, the implications are interesting, as formaliza-
tions can be declined in multiple applications of interest. For example, a formalization
helps reveal ambiguities or inconsistencies in a programming language specification.
It can also be a valid support for writing ground-truth implementations of interpreters.

7

Semantic Styles

Syntax of the While Language

Num n ∈ Z, extensionally {. . . ,−1, 0, 1, . . .}
Bool b ∈ {T, F}, respectively true and false

Value v ::= n | b
Var x ∈ Σ+, where Σ is an alphabet of our choice. i.e. {a, b, . . . , z}

Store σ : Var→ Value
Expr e ::= v | x | e1 � e2 | e1 ◦ e2 | e1 � e2 |!e
Cmd c ::= skip | x := e | c1; c2 | if(e){c1} else {c2}

while(e){c}

Figure 1.1: Definition of the While language grammar.

Moreover, often tools are built around these representations to perform, for example,
analysis of programs and formal verification.

In this chapter, we introduce different ways of describing formally programming lan-
guages semantics and the notation used throughout all thesis. In detail, Section 1.1
presents a simple While language. Then, we present first the two operational seman-
tics (Section 1.2), in Sections 1.2.1, 1.2.2, respectively, the Plotkin’s Structural Oper-
ational Semantics (SOS), the Natural Semantics (NS), moving then to the Abstract
Machines (AM) in Section 1.3, and the non-classical Pretty-Big-Step Semantics (PBS)
in Section 1.4. For each of the semantic styles, we embed the While language variant
presenting semantic rules for the expressions and statements, highlighting the limita-
tions of each formal framework. This chapter aims to show textbook approaches to
semantics as we base the design of the languages we present in the thesis on these
semantic styles.

1.1 A While Language

The While language is a simple imperative language. In Figure 1.1 we define its syntax
via a simplified Backus–Naur form [3] (BNF).

A VALUE can be either an integer or a booleans. We define the store as a partial
map from variables to values. If a variable x is not bound in σ, the operation σ(x) fails.

8

Semantic Styles

Otherwise, it returns the bound value. Given a variable x, we define σ + x → v as the
environment extension or update, binding x to a value v.

Expressions can be values, variables, binary arithmetic operations (denoted as �),
logical binary operations (denoted as ◦), or the ! operator. We define � ∈ {+,−, ∗, /}
and ◦ ∈ {≥, >,≤, <,=,∧,∨}. We call the concrete logical binary operations on inte-
gers and booleans, respectively ◦Z and ◦B, to denote comparisons between integers
or between booleans. Similarly, we define �Z and �B as the concrete operations for
computing arithmetic and unary expressions, respectively, between integers and on
booleans. Notice that we partially define these operators, as we only allow evaluations
producing values of the type denoted by the subscript. By design, a legal program can
be an expression that reduces to, for example, T+4. We can freely decide on a strategy
to evaluate the binary expressions. An approach can be one that does not allow such a
thing to happen. We can define a partial function that only produces a result when the
two subexpressions reduce to the same type. T + 4 fails in this case, as we chose to
define operators partially. Otherwise, one can enrich the language, making the evalua-
tion return either the expected result or an exception. This approach can be interesting
for capturing non-allowed behaviors, such as division by 0. Finally, one can allow these
mixed expressions to happen. This approach is more related to dynamically typed lan-
guages. A naïve strategy can be to evaluate the two subexpressions and give the result
according to the type of the first value argument. This evaluation strategy must treat
unsafe coercions—implicit operations that change the values’ type-.

For simplicity, we present a partial semantics, meaning that if no rule reduces a
language constructor, the evaluation becomes stuck.

Once we reduce the two subexpressions for arithmetic operators, we can check
both values to ensure type concordance. The result of an arithmetic expression is a
numeric value. The result of an arithmetic expression is a numeric value.

We define the evaluation only with type concordance for the comparative logical ex-
pressions, concretely represented by ◦Z and ◦B, while for the pure logical expressions,
we allow only boolean values to be elements of the expression, concretely �B. We per-
mit boolean comparison by saying that the relation (T > F) = T , and (T 6= F) = T . For
what concerns the ! operator, if we negate a boolean, the function returns its comple-
ment. We proceed with the partial approach, allowing only the negation of a boolean.

To gently introduce evaluation descriptions, in Figure 1.2, we present a simple par-
tial function φ that evaluates the expressions of the While language. Further encodings

9

Semantic Styles

φ : Expr× Store→ Value

φ(e, σ) =



σ(x), if e = x, a variable
v, if e = v, a value.
n1 �Z n2, if e = (e1 � e2) and φ(e1, σ) = n1 and φ(e2, σ) = n2.

n1 ◦Z n2, if e = (e1 ◦ e2) and φ(e1, σ) = n1 and φ(e2, σ) = n2.

b1 ◦B b2, if e = (e1 ◦ e2) and φ(e1, σ) = b1 and φ(e2, σ) = b2.

b1 �B b2, if e = (e1 � e2) and φ(e1, σ) = b1 and φ(e2, σ) = b2.

!b, if e =!e′ and φ(e′, σ) = b.

Figure 1.2: Expression evaluation function φ

n := 3;b := 3;r := 1;
while(n > 0){

r := r * b;
n := n - 1

}

Figure 1.3: Example

of the expression’s behavior will match the one described by this function.
The CMD syntactic production describes the commands of the language. These can

be a skip, a variable assignment, a command sequencing, a conditional if-else, or a
loop statement while.

In the listing in Figure 1.3, we show an example of a program. It computes in r the
n-th power of a number b, 33 in the example.

1.2 Operational Semantics

An Operational Semantics of a programming language describes how programs exe-
cute. The approach consists in formally defining the meaning of each of the syntactic
constructs of the language via logical relations. The abstraction helps avoid details
related to the description of the machine that is supposed to execute a program. In-
deed, concepts like the memory model, the machine architecture, and the implemen-

10

Semantic Styles

tation details of an interpreter are irrelevant, as the goal is to describe how to derive
meaning from a language construct rather than a concrete implementation. To resume,
operational semantics only describes what happens if a construct of the language is
evaluated.

In general, for the operational semantics, a transition relation produces a judgment
from one program configuration to another by applying an inference rule.

An inference rule has a set of premises on top of the line and the conclusion below
the line. The conclusion is valid if all the premises are satisfied. Then, an inference rule
without premises is called axiom, which is always true. We show them below.

RULE

premise premise premise

conclusion

AXIOM

conclusion

A judgment is the result of a derivation built as a derivation tree. This structure
represents the evaluation of an expression of the language. The root of this tree is
the original expression, and each premise is a subtree of the derivation tree, justifying
the evaluation of the expression. The conclusion is the resulting semantic judgement
(evaluation) when the premises are satisfied. A conclusion is placed as the root of the
derivation tree.

In the following two sections, we will present the Structural Operational Seman-
tics and the Natural Semantics operationally, meaning that we will introduce them by
formalizing the While language.

1.2.1 Structural Operational Semantics

The Structural Operational semantics goal is to describe computations in terms of
their individual steps. Indeed, SOS is also known as Small-Step semantics. In 1981,
Plotkin wrote the famous “Aarhus” notes [61], which first presented the Structural ap-
proach for defining the “operational”– the meaning of the program - semantics via log-
ical statements rather than partial functions, as done by using the denotational se-
mantics [73, 43]. The intention behind proposing this formal approach was to provide
logical-relational meaning to the constructs of a programming language rather than a
functional one. Indeed, the operational behavior of a programming language then is
considered to be an abstraction, rather than a description, that could be used for proof

11

Semantic Styles

Store× Expr ↓e Store× Expr− Store× Expr ↓e Value

Variable
σ(x) = v

(σ, x) ↓e v

ArithExprL
(σ, e1) ↓e (σ, e′1)

(σ, e1 � e2) ↓e (σ, e′1 � e2)

ArithExprR
(σ, e2) ↓e (σ, e′2)

(σ, n1 � e2) ↓e (σ, n1 � e′2)

ArithExpr
n = n1 �Z n2

(σ, n1 � n2) ↓e n

CompExprL
(σ, e1) ↓e (σ, e′1)

(σ, e1 ◦ e2) ↓e (σ, e′1 ◦ e2)

CompExprR
(σ, e2) ↓e (σ, e′2)

(σ, v1 ◦ e2) ↓e (σ, v1 ◦ e′2)

CompExprN
n = n1 ◦Z n2

(σ, n1 ◦ n2) ↓e n

CompExprB
b = b1 ◦B b2

(σ, b1 ◦ b2) ↓e b

logExprL
(σ, e1) ↓e (σ, e′1)

(σ, e1 � e2) ↓e (σ, e′1 � e2)

logExprR
(σ, e2) ↓e (σ, e′2)

(σ, b1 � e2) ↓e (σ, b1 � e′2)

logExpr
b = b1 �B b2

(σ, b1 � b2) ↓e b

NegE
(σ, e) ↓ (σ, e′)

(σ, !e) ↓e (σ, !e′)

NegB

(σ, !b) ↓e ¬b

Figure 1.4: Small-Step expression evaluation. This description matches the behavior defined in
Figure 1.2.

of correctness, safety, or security.

Usually, a language construct’s semantics can be defined in terms of the behavior
of its parts, driving the evaluation by its syntactic structure. Then, the SOS program’s
evaluation can be seen as a sequence of transition relations that reduce the program
to its final result. Indeed, each syntactic construct of a language has a set of inference
rules that define its behavior–set of valid judgments- and each valid judgment, in this
example, modifies and reduces the shape of the program. The program finishes evalu-
ating when it is not possible to perform another transition. Thus, small-step semantics
are ideal for watching the program execute step by step.

We define two different transition relations, one for evaluating expressions and the
other for commands.

In the case of expressions, ↓e is a semantic judgment expressed as a relation be-
tween expression configurations (σ, e) ↓e (σ, e′), or a relation between an expression
configuration and a value (σ, e) ↓e v. A configuration is a pair (STORE,EXPR). In Fig-
ure 1.4, we present a small-step operational semantics for evaluating expressions, ac-
cording to the equational definition depicted in Figure 1.2.

12

Semantic Styles

Store×CMD ↓c Store×CMD− Store× Expr ↓c Store

Skip

(σ, skip) ↓c σ

Assign
(σ, e) ↓e (σ, e′)

(σ, x := e) ↓c (σ, x := e′)

AssignV

(σ, x := v) ↓c σ + (x→ v)

SeqL
(σ, c1) ↓c (σ′, c′1)

(σ, c1; c2) ↓c (σ′, c′1; c2)

SeqR
(σ, c1) ↓c σ′

(σ, c1; c2) ↓c (σ′, c2)

If
(σ, e) ↓e (σ′, e′)

(σ, if(e){c1}else{c2}) ↓c (σ′, if(e′){c1}else{c2})

IfT

(σ, if(T){c1}else{c2}) ↓c (σ, c1)

IfF

(σ, if(F){c1}else{c2}) ↓c (σ, c2)

While

(σ, while(e){c}) ↓c (σ, if(e){c; while(e){c}}else{skip})

Figure 1.5: Small-Step commands evaluation.

Regarding commands, we define the relation ↓c to be either a relation between com-
mand configurations (σ, c) ↓c (σ′, c′) or a relation (σ, c) ↓c σ′. Similarly, a configuration is
a couple (STORE,CMD). Regarding the store, we define two operations. The first is for
getting a binding from the store: given a store σ and a variable x, σ(x) returns a value.
The second operation is the store extension/update: given a store σ, variable x, and a
value v, σ + (x → v) returns the store σ updated with the binding x → v. We present
the definition of the While language behavior in Figure 1.5.

If we consider the if-else construct rules, we notice that for evaluating it, first, we
have to evaluate the guard condition. As we know, it might take several steps. Once the
condition is evaluated to a value, the rules IFT and IFF put the first or second branch
into evaluation. No reductions are yet done on c1 or c2. For the while command evalua-
tion, we notice that the WHILE rule changes only the program’s structure to an if-else.
This judgment changes the structure of the initial syntactic construct without perform-
ing any reduction of the statement itself. It is one of the reasons that this semantics is
called structural, as it reasons on the structure of the program, sometimes by reducing

13

Semantic Styles

it, and sometimes by transforming it to something equivalent.

In the following listing, we show concretely the use of a small-step semantics to
reduce a program. We consider the program presented in Figure 1.3, initially having an
empty store σ, denoted as ∅.
(∅, n := 3; b := 2; r := 1; while(b > 0){ r := r * n; b := b - 1 })
Then, the following shows the program reductions.
↓c ([n→3], b := 2; r := 1; while(b > 0){ r := r * n; b := b - 1 })

↓c ([n→3,b→2], r := 1; while(b > 0){ r := r * n; b := b - 1 })

↓c ([n→3,b→2,r→1], while(b > 0){ r := r * n; b := b - 1 })

↓c ([n→3,b→2,r→1], if(b > 0){ r := r * n; b := b - 1; while(b > 0){...}}else{skip})

↓c ([n→3,b→2,r→1], if(2 > 0){ r := r * n; b := b - 1; while(b > 0){...}}else{skip})

↓c ([n→3,b→2,r→1], if(T){ r := r * n; b := b - 1; while(b > 0){...}}else{skip})

↓c ([n→3,b→2,r→1], r := r * n; b := b - 1; while(b > 0){ r := r * n; b := b - 1 })

↓c ([n→3,b→2,r→1], r := 1 * n; b := b - 1; while(b > 0){ r := r * n; b := b - 1 })

↓c ([n→3,b→2,r→1], r := 1 * 3; b := b - 1; while(b > 0){ r := r * n; b := b - 1 })

↓c ([n→3,b→2,r→1], r := 3; b := b - 1; while(b > 0){ r := r * n; b := b - 1 })

↓c ([n→3,b→2,r→3], b := b - 1; while(b > 0){ r := r * n; b := b - 1 })

↓c ([n→3,b→2,r→3], b := 2 - 1; while(b > 0){ r := r * n; b := b - 1 })

↓c ([n→3,b→2,r→3], b := 1; while(b > 0){ r := r * n; b := b - 1 })

↓c ([n→3,b→1,r→3], while(b > 0){ r := r * n; b := b - 1 })

↓c ([n→3,b→1,r→3], if(b > 0){ r := r * n; b := b - 1; while(b > 0){...}}else{skip})

↓c ([n→3,b→1,r→3], if(1 > 0){ r := r * n; b := b - 1; while(b > 0){...}}else{skip})

↓c ([n→3,b→1,r→3], if(T){ r := r * n; b := b - 1; while(b > 0){...}}else{skip})

↓c ([n→3,b→1,r→3], r := r * n; b := b - 1; while(b > 0){ r := r * n; b := b - 1 })

↓c ([n→3,b→1,r→3], r := 3 * n; b := b - 1; while(b > 0){ r := r * n; b := b - 1 })

↓c ([n→3,b→1,r→3], r := 3 * 3; b := b - 1; while(b > 0){ r := r * n; b := b - 1 })

↓c ([n→3,b→1,r→3], r := 9; b := b - 1; while(b > 0){ r := r * n; b := b - 1 })

↓c ([n→3,b→1,r→9], b := b - 1; while(b > 0){ r := r * n; b := b - 1 })

↓c ([n→3,b→1,r→9], b := 1 - 1; while(b > 0){ r := r * n; b := b - 1 })

↓c ([n→3,b→1,r→9], b := 0; while(b > 0){ r := r * n; b := b - 1 })

↓c ([n→3,b→0,r→9], while(b > 0){ r := r * n; b := b - 1 })

↓c ([n→3,b→0,r→9], if(b > 0){ r := r * n; b := b - 1; while(b > 0){...}}else{skip})

↓c ([n→3,b→0,r→9], if(0 > 0){ r := r * n; b := b - 1; while(b > 0){...}}else{skip})

↓c ([n→3,b→0,r→9], if(F){ r := r * n; b := b - 1; while(b > 0){...}}else{skip})

14

Semantic Styles

↓c ([n→3,b→0,r→9], skip)

↓c [n→3,b→0,r→9]

We can see that this program computes r = nb. For the initial assignments of n = 3,
b = 2, and r = 1, we get r = 9, as expected.

Notice that each small step performed on the program configuration is a derivation
tree for SOS. The sequence of transitions is a sequence of derivation trees, and each
derivation tree is a small-step judgment. Indeed, the number of derivation trees equals
the number of transition relations applied. Then, each tree has as many subtrees as the
premises of the rule applied by that transition relation. Intuitively, an infinite sequence
of derivation steps on a program represents a diverging computation.

1.2.2 Big-Step Operational Semantics

Different from small-step semantics, big-step, originally called natural semantics [32],
is more concerned with the relationship between an execution’s initial and final config-
uration. Indeed, here the description of the semantics focuses on describing the overall
execution of a program rather than tracing each step. Then a big-step judgment can
successfully give a result, gets stuck as no rule applies, or never terminate. Notice that,
as the natural semantics focuses more on representing the overall judgment in one sin-
gle big step, there is no way to understand if a derivation is stuck or does not terminate.
Usually, languages represented in big-step semantics result in a more concise rule-set.

For what concerns expressions, differently from what we have presented in Sec-
tion 1.2.1, we now evaluate expressions in one step. So, first, we re-define the transition
relation ↓e, as ⇓e. The new relation, relates expression configurations (STORE,EXPR)
to values. The VARIABLE rule does not change much, and we present it below.

VARIABLES

σ(x) = v

σ, x ⇓e v

Let us consider comparison expressions, which are the expressions with more re-
lated rules. We can see that the number of rules reduces dramatically by bunching

15

Semantic Styles

Store×CMD ⇓c Store

Skip

(σ, skip) ⇓c σ

Assign
(σ, e) ⇓e v

(σ, x := e) ⇓c σ + (x→ v)

Seq
(σ, c1) ⇓c σ′′
(σ′′, c2) ⇓c σ′

(σ, c1; c2) ⇓c σ′

IfT
(σ, e) ⇓e T
(σ, c1) ⇓c σ′

(σ, if(e){c1}else{c2}) ⇓c σ′

IfF
(σ, e) ⇓e F
(σ, c2) ⇓c σ′

(σ, if(e){c1}else{c2}) ⇓c σ′

WhileT
(σ, e) ⇓e T (σ, c) ⇓c σ′′

(σ′′, while(e){c}) ⇓c σ′

(σ, while(e){c}) ⇓c σ′

WhileF
(σ, e) ⇓e b
b = F

(σ, whilee {c}) ⇓c σ

Figure 1.6: Commands Evaluation in Big-Step

the premises of the rules together.

COMPEXPRB
(σ, e1) ⇓e b1

(σ, e2) ⇓e b2

b = b1 ◦B b2

(σ, e1 ◦ e2) ⇓e b

COMPEXPRN
(σ, e1) ⇓e n1

(σ, e2) ⇓e n2

n = n1 ◦Z n2

(σ, e1 ◦ e2) ⇓e n

Considering the new relation ⇓e,we can immediately notice that a rule now is written
in terms of evaluating its subterms, describing the overall result of the evaluation as a
final judgment. In Figure 1.6, we present the big-step definition of the While language.
The evaluation relation ⇓c is between a configuration (σ, c) and a store σ.

Then, evaluating the program depicted in Figure 1.3 results simply in the following.
(∅, n := 3; b := 2; r := 1; while(e > 0){ r := r * n; b := b - 1 })
⇓c [n→3,b→0,r→9]
Notice that, differently from the small-step semantics, in this case, the overall derivation
is no more a sequence of relation applications. However, it is a unique derivation tree
containing all the other judgements, the ones of its subtrees. We present a partial

16

Semantic Styles

Se
q

A
ss

ig
n

(∅
,3

)⇓
e

3
(∅
,n

:=
3)
⇓ c
∅

+
n
→

3
Se

q
A

ss
ig

n
([n
→

3]
,b

:=
2)
⇓ e

2
(∅
,b

:=
2)
⇓ c

[n
→

3]
+
e
→

2
Se

q
..
.

([n
→

3,
b
→

2]
,r

:=
1;

..
.)
⇓ c

[n
→

3,
b
→

0,
r
→

9]
([n
→

3]
,

b
:=

2;
r

:=
1;

..
.)
⇓ c

[n
→

3,
b
→

0,
r
→

9]
(∅
,

n
:=

3;
b

:=
2;

r
:=

1;
wh

il
e(

b
>

0)
{

r
:=

r
*

n;
b

:=
b

-
1

})
⇓ c

[n
→

3,
b
→

0,
r
→

9]

Fi
gu

re
1.
7:

Fi
rs
t
le
ve
lo

ft
he

bi
g-
st
ep

de
riv

at
io
n
tr
ee

of
th
e
pr
og

ra
m
.W

e
pu

t
..
.
w
he

n
w
e
re
fe
r
to

th
e
re
st

of
th
e
pr
og

ra
m
.

17

Semantic Styles

derivation tree in Figure 1.7.
Moreover, looking back at the rules, different from the SOS, natural semantics

seems more structured on where to place the premises in a rule. Indeed, one can
see premises more like a sequence rather than a set.

The big-step semantics does not perform any syntactic transformation of terms. An
example is the while command, which, differently from the SOS—term transformation
into an if-, is "naturally" evaluated.

1.3 Abstract Machines

The correctness of programming language implementations is an important issue con-
fronting language designers and implementors. Traditionally, such implementations are
handcrafted first and only then proved correct. Unfortunately, keeping a strong relation-
ship between a formal specification and its implementation may be challenging to show.
Indeed, one must relate several details to its formal representation. Alternatively, a lan-
guage implementation can be constructed from the semantic specification so that the
resulting implementation guarantees correctness.

Abstract machines (AM) [38] can provide an intermediate representation of the lan-
guage’s implementation that remains loyal to its operational semantics [26]. As we have
seen in Section 1.2, operational semantics can be defined in terms of inference rules.
An equivalent abstract machine can be built as rewriting rules describing single-step
operations on the state of a computation. Such specifications provide an intermediate
level of representation for many practical implementations of programming languages.
Abstract machines are traditionally constructed by hand, with correctness proofs that
follow independently.

For building an AM for the While language, we first define three states/modes for the
machine. The first two states set the machine to evaluate expressions or statements.
We denote the two respectively as 〈c, π, σ〉CMD or 〈e, π, σ〉EXPR, meaning that a command
or an expression is evaluated in a state σ with a continuation stacked in π. The third
mode signals the result to another computation frame waiting for a result. In the normal
case, it communicates the value to the top pending computation frame, which is the
top of the stack π. We denote two continuation modes. The first continuation mode
[π, σ, r]c propagates a value to the top-continuation stacked in π in a state σ. The second
continuation mode [π, σ]c returns the state—it is similar to return a unit result.

18

Semantic Styles

Expression Evaluation AM

〈v, π, σ〉Expr → [π, σ, v]c (1.1)
〈x, π, σ〉Expr → [π, σ, σ(x)]c (1.2)
〈e1 �C e2, π, σ〉Expr → 〈e1, (� �C e2) :: π, σ〉Expr (1.3)
[(� �C e2) :: π, σ, v1]c → 〈e2, (v1 �C �) :: π, σ〉Expr (1.4)
[(b1 �C �) :: π, σ, b2]c → [π, σ, b1 �C b2]c (1.5)
[(n1 �C �) :: π, σ, n2]c → [π, σ, n1 �C n2]c (1.6)

Figure 1.8: Abstract Machine definition of expression evalauation.

An AM stops evaluating once there are no more things to do. Nothing to do means that
π becomes empty. If no rule is applicable, then the machine gets stops.

For instance, an AM is defined by its rewriting relation→, relating computations.
As we did for the expressions, in Section 1.2.2, Figure 1.8 presents the AM transi-

tion rules for variables, the comparative logical expressions, adding the rule that sig-
nals convergence to a value. For instance, if we consider the evaluation of a value
v, rule 1.1, the transition switches the expression evaluation mode to the continuation
one, signaling to the top of π, the value v. Similarly, evaluating a variable x, rule 1.2,
means to switch to a continuation mode carrying, as a result, the value bound to x in σ,
σ(x). Then, for evaluating a comparative logical expression, when computing the first
argument of e1 � e2 (rule 1.3), we set e1 to be evaluated and push � � e2 onto the stack
as the top pending evaluation. The expression with the hole is a frame stating that we
are evaluating a comparative logical expression, and e1 is set to evaluation. Once the
evaluation of e1 is complete, applying the frame � � e2 to the value v1 means switching
back to evaluation mode for e2 with a new stacked frame v1 � � (rule 1.4) on top of π.
Notice that the frame �� e2 is popped, and the top of the stack now stores the value v1.
Finally, applying v1 � � to a value v2 computes v1 � v2, depending on the type concor-
dance of the values v1 and v2(rules 1.5 to 1.6), as defined in Figure 1.2. If the types of
the values mismatch, the abstract machine gets stuck.

At this point, we can note a similarity to the small-step semantics, as the abstract
machine evolves step by step. For example, rule 1.3, sets e1 to evaluation. Then de-
pending on the expression’s complexity, we need to apply several different rules to
converge to a result.

19

Semantic Styles

Commands Evalaution AM

〈skip, π, σ〉Cmd → [π, σ]c
〈x := e, π, σ〉Cmd → 〈e, (x := �) :: π, σ〉Expr

[(x := �) :: π, σ, v]c → 〈skip, π, (σ + x→ v)〉Cmd

〈c1; c2, π, σ〉Cmd → 〈c1, c2 :: π, σ〉Cmd

〈if(e){c1}else{c2}, π, σ〉Cmd → 〈e, (if(�){c1}else{c2}) :: π, σ〉Expr

[(if(�){c1}else{c2}) :: π, σ, T]c → 〈c1, π, σ〉Cmd

[(if(�){c1}else{c2}) :: π, σ, F]c → 〈c2, π, σ〉Cmd

〈while(e){c}, π, σ〉Cmd → 〈if(e){c; while(e){c}}else{skip}, π, σ〉Cmd

Figure 1.9: Abstract Machine definition of commands evalauation.

If we consider an initial machine 〈1 < 2, ε, []〉EXPR,where ε is the empty stack, then
we can derive the following sequence.

〈1 < 2, ε, []〉EXPR →

〈1, (� < 2) :: ε, σ〉EXPR →

[(� < 2) :: ε, σ, 1]c →
〈2, (1 < �) :: ε, σ〉EXPR →

[(1 < �) :: ε, σ, 2]c →
[ε, σ, 1 < 2]c = [ε, σ, T]c

The expression results in T, as expected. Note that each subexpression is first set to
evaluation, then concretely evaluated.

〈add(1, 1), ε〉EXPR → 〈1, add(�, 1) :: ε〉EXPR →

[add(�, 1) :: ε, 1]c → 〈1, add(1,�) :: ε〉EXPR →

[add(1,�) :: ε, 1]c → [ε, 1]c

Similarly, we can formalize commands semantics via AM. We present the abstract
machine representing the semantics of the language in Figure 1.9.

20

Semantic Styles

1.4 Pretty-Big-Step Semantics

Our While language is dynamically typed, in the sense that there is no check that
undefined operations such as T + 4 are absent, hence a program can become stuck.
Moreover, we know that a big step evaluation of a program can be either infinite, in the
case there is always a rule able to apply, stuck when there is none, or stop when it
reaches a result. The problem for the Natural Semantics (NS) is that it is hard to know
whether the evaluation is converging to a result or is stuck because something wrong
happened—its original goal was to express the semantics of terminating programs.
For example, following our previous language definitions, we have never considered
handling the division by zero by allowing a failure in the evaluation.

If we consider the division by zero in NS, then we need to tweak the syntax and
the semantics to carry the information about a failure to the top level and not simply
get blocked somewhere in the middle of the program evaluation. For example, we can
define an option type and say that a semantic judgment of an expression(⇓e) either
exists, denoted as Some v, where v is the result of evaluating an expression, or None
when a failure, for instance, division by zero, happens. Now, consider the addition and
the division rule considering the new big-step relation for expressions presented in
Figure 1.10. We notice that, by only expressing the failure to the parent node in the
derivation tree, we increase the by a factor of at least three the number of rules. The
description of the addition consists of three rules: the first two, ADDF1 and ADDF2,
state the failure of the evaluation of e1 or e2, and the third evaluates the addition (ADD).
For the division rules, things are pretty similar, having one rule more preventing divi-
sion by 0. Notice the redundancy in the premises. The rules ADDF1 and ADDF2 are
basically the same as DIVF1, and DIVF2.
Moreover, the ADD, and the two DIV and DIV0 share most of the rule premises. To be
precise, the number of ⇓e in the premises of the addition are 5, and 7 for the division.
These redundancies can be really annoying while trying to prove by structural induction
properties of the language. Indeed it leads to consider several times the same transi-
tion relation, proving more than once the same proof sub-tree. To sum up, the handling
of the exceptions is explicit and redundant, making formalizations and proofs grow both
in size and complexity even for one more piece of information carried around through
derivations. So, can we factorize the big-step rules to avoid redundancies?

The answer is yes; we can do it by changing the formal definition of the program-

21

Semantic Styles

Store× Expr ⇓e Opt

AddF1
σ, e1 ⇓e None

σ, e1 + e2 ⇓e None

AddF2
σ, e1 ⇓e Some n1
σ, e2 ⇓e None

σ, e1 + e2 ⇓e None

Add
σ, e1 ⇓e Some n1
σ, e2 ⇓e Some n2
n = n1 + n2

σ, e1 + e2 ⇓e Some n

DivF1
σ, e1 ⇓e None

σ, e1/e2 ⇓e None

DivF2
σ, e1 ⇓e Some n1
σ, e2 ⇓e None

σ, e1/e2 ⇓e None

Div0
σ, e1 ⇓e Some n1
σ, e2 ⇓e Some 0
σ, e1/e2 ⇓e None

Div
σ, e1 ⇓e Some n1
σ, e2 ⇓e Some n2

n2 6= 0 n = n1/n2

σ, e1/e2 ⇓e Some n

Figure 1.10: Expression Evaluation with Option Results in Big-Step

ming language. Arthur Charguéraud introduced the pretty-big-step semantics [15] to
factorize the description of both effectful programming languages and managing to
capture divergent programs while analyzing programs. This semantics preserves the
big-step philosophy by keeping the overall reduction of a program happening in a single
transition relation application. However, the big-step and the pretty-big-step derivation
trees are quite different, as the PBS rules decouple syntactic constructs and effects be-
haviors. Let us try to write the addition and division rules, considering division by zero.
The idea is to decouple the behavior of a syntactic construct from the actual effect that
the evaluation of a subterm carries. We re-define only addition and division, but the
approach must be extended to the rest of the arithmetic and logical expressions.

Expression Syntax in Pretty-Big-Step

OPT o ::= None | Some v

EXPR e ::= o | x | e1 + e2 | o1 +1 e2 | v1 +2 o2 | e1/e2 | o1 /1 e2 | v1 /2 o2

22

Semantic Styles

Store× Expr⇒e Opt

Add
σ, e1 ⇒e o1

σ, o1 +1 e2 ⇒e o

σ, e1 + e2 ⇒e o

AddF1

σ, None +1 e2 ⇒e None

Add1
σ, e2 ⇒e o2

σ, n1 +2 o2 ⇒e o

σ, (Some n1) +1 e2 ⇒e o

AddF2

σ, n1 +2 None⇒e None

Add2
n = n1 + n2

σ, n1 +2 (Some n2)⇒e Some n

Div
σ, e1 ⇒e o1

σ, o1 /1 e2 ⇒e o

σ, e1/e2 ⇒e o

DivF1

σ, None /1 e2 ⇒e None

Div1
σ, e2 ⇒e o2

σ, n1 /2 o2 ⇒e o

σ, (Some n1) /1 e2 ⇒e o

DivF2

σ, n1 /2 None⇒e None

Div0

σ, n1 /2 (Some 0)⇒e None

Div2
n2 6= 0 n = n1/n2

σ, n1 /2 (Some n2)⇒e Some n

Figure 1.11: Expression Evaluation in Pretty-Big-Step

The presented syntax is a reformulation of the previous. This reformulation is a de-
composition that aims to split a few complex and redundant rules into a more significant
number of atomic rules. We show it in Figure 1.11. The pretty-big-step transition relation
for expressions is⇒e, and it relates expression configurations (σ, e) to option values o.
To begin, we can say that now, for both the set of rules for addition and division, we
have only 4 ⇒e transitions in the premises. All these premises produce different proof
sub-trees. Thus, this formalization of the expressions is no more redundant.

Consider the PBS’ addition rules. The ADD rule first evaluates expression e1, which
results in an option value o1, and then evaluates o1 +1 e2. We can say that the rule
formulation does not state any failure of the evaluation, while it simply delegates the
check to another rule. Moreover, notice that the overall evaluation happens in a single
derivation tree that grows in depth. Then, for evaluating o1 +1 e2, one can apply the
rule ADDF1 or ADD1 depending on whether the first expression failed or not. Notice
that the syntactic operators +1 and +2 define intermediate evaluation stages of the

23

Semantic Styles

Expression Syntax in Pretty-Big-Step

Res r ::= Exc σ | σ
Cmd c ::= skip | x := e | x :=1 o | c1; c2 | r;1 c2 | if(e){c1} else {c2}

| if1(o){c1} else {c2} | while(e){c}

Figure 1.12: Syntax definition of the language in Pretty-Big-Step style.

addition, respectively stating if either the first or the second expression evaluates to an
option value. The rules ADDF1 and ADDF2 propagate a None result in case the first or
the second addend fails while evaluating. If the first argument evaluates to Some value
n1, the rule ADD1 evaluates the second expression to o2, and then the result of the
rule is the addition result of evaluating n1 + o2. Finally, ADD2 evaluates the concrete
sum in the case also the second argument evaluates to Some value n2. The division
goes straightforwardly. It only details the case of the division by 0 in the DIV0 rule.
If the second argument reduces to 0, None is propagated to the parent nodes in the
derivation tree. In the original paper, all the None rules where bundled together, to
reduce the number of the rules.

Similar to what we did with expression, we need to update the syntax of commands.
We introduce x :=1 o as an intermediate stage for the assignment evaluation, r;1 c2

for command sequencing, and if1 for the if-else command. We do not have an in-
termediate stage for the while construct, as we do plan to evaluate it as we did in
Section 1.2.1 by transforming the command into an if. The evaluation of the loop
statement will happen following the big-step philosophy, meaning that its evaluation is
contained in a single derivation tree. We present the new Backus-Naur-form syntax in
Figure 1.12. Notice that we have introduced a new syntactic element, RES. This type
defines the output sort of the new command transition relation⇒c. We could have just
kept going on using the option value. This change aims to mark the difference between
expression and commands results. Then, in Figure 1.13, we present the pretty-big-step
rules for this while language. Let us consider the assignment and the sequence rule
set. For the assignment, the rule ASSIGN first evaluates the first expression to an option
value o, then evaluates the new assignment x :=1 o in σ. Notice that after the eval-
uation, the assignment operator is :=1, a syntactic construct made for holding option

24

Semantic Styles

Store×CMD⇒c Res

Skip

σ, skip⇒c σ

Assign
σ, e⇒e o

σ, x :=1 o⇒c r

σ, x := e⇒c r

AssignN

σ, x :=1 None⇒c Exc σ

AssignV

σ, x :=1 Some v ⇒c (σ + x→ v)

Seq
σ, c1 ⇒c r

σ, r ;1 c2 ⇒c r

σ, c1; c2 ⇒c r

SeqN

σ, Exc σ′ ;1 c2 ⇒c Exc σ′

Seq1
σ′, c2 ⇒c r

σ, σ′ ;1 c2 ⇒c r

If
σ, e⇒e o

σ, if1(o){c1}else{c2} ⇒c r

σ, if(e){c1}else{c2} ⇒c r

IfN

σ, if1(None){c1}else{c2} ⇒c Exc σ

IfT
σ, c1 ⇒c r

σ, if1(Some T){c1}else{c2} ⇒c r

IfF
σ, c2 ⇒c r

σ, if(Some F){c1}else{c2} ⇒c r

While
σ, if(e){c; while(e){c}}else{skip} ⇒c r

σ, while(e){c} ⇒c r

Figure 1.13: Commands Evaluation in Pretty-Big-Step

values instead of expressions, allowing for analyzing the expression evaluation result.
Moreover, the result r of σ, x :=1 o⇒c, is the overall result of the assignment. Then, if o
is a None result, the overall result r is an exception Exc σ (rule ASSIGNN). Otherwise, we
update σ with the new binding. The result r is (σ+x→ v). For the sequence command,
the approach is quite similar. Similarly, we also have one more sequence construct ;1
for analyzing the intermediate results of evaluating the first sequenced command c1.
Notice that if the evaluation of c1 is an exception, this is propagated (rule SEQN). Oth-
erwise, r is a store σ′. The rule SEQ1 evaluates in σ the syntactic construct σ′;1 c2.
The store σ′ is the new sigma propagated by r, which has to be used for evaluating
c2. Indeed, σ′ results from evaluating c1 in σ, while σ is the initial store. This process
of updating the store can be related to standard monadic techniques that propagate

25

Semantic Styles

implicitly updated information to some construct’s continuation.

26

Chapter 2

THE SKEL SPECIFICATION LANGUAGE

Contents
2.1 The Skel Language . 28

2.1.1 An Arithmetic Language in Skel 29

2.1.2 The Necro Ecosystem . 32

2.1.3 An Interpreter for The Arithmetic Language 36

2.2 Related Specification Language 39

2.3 Conclusion . 41

« If you cannot get rid of the family skeleton,
you may as well make it dance. »
- George Bernard Shaw

Introduction

In the previous chapter, we presented different semantic styles for formally encoding
the behavior of programming languages. In this chapter, we move the focus to the
meta-languages used to capture semantics.

Section 2.1 informally introduces the meta-language Skel, a tiny functional speci-
fication language for writing Skeletal Semantics [8], by presenting, in Section 2.1.1,
a minimal arithmetic language written in this language. Then, in the following sec-
tion (Section 2.1.2), we broadly present necro, a set of tools designed for generat-
ing artifacts from a Skel mechanization. In the section, we overview the entire necro
ecosystem, focusing on the generation of OCaml interpreters from a Skel. Afterward,
in Section 2.1.3 we present an OCaml instantiation of an interpreter for the arithmetic
language.

27

The Skel Specification Language

eval_stmt (σ, While (e, t)) :=
let b = eval_expr (σ, e) in

let True = b in let σ′ = eval_stmt (σ, t) in
eval_stmt (σ′, While (e, t))

let False = b in σ



Figure 2.1: skeleton for the While constructor

We conclude the chapter by presenting an overview of related specification lan-
guages. The following chapters will discuss the limitations and differences between
these works and Skel, accordingly to the purpose of the chapter.

This chapter contains introductory material [53, 41], which are not contributions of
the author. Nevertheless, works presented in the thesis helped to refine the Skeletal
Semantics formalism and the Skel language.

2.1 The Skel Language

Skeletal semantics is a syntax to define the semantics of programming languages
in a concise yet powerful way, with a light formalism. This provides a way to easily
manipulate the semantics, for instance to convert it into a Coq formalization or an
OCaml interpreter. One of the strengths of Skeletal Semantics is the possibility to leave
some constructions undefined, to let them be implementation dependent or for gradual
specification. The theoretical concept behind Skeletal Semantics was presented in [8],
and summarized in this thesis in the background chapter.

The “Skel” language, which has been defined to describe skeletal semantics, serves
as support for the necro ecosystem [51], which provides, among other things, a genera-
tor of OCaml interpreters [42], a generator of gallina formalization [50], and a debugger
generator [49].

The Skel formalization of the semantics of JavaScript internal algorithms presented
in Chapter 4—which constitutes a main contribution of this thesis-has led us to propose
several improvements to Skel, such as writing a functional meta-language provided
with polymorphism and first-class functions.

28

The Skel Specification Language

Figure 2.1 shows an example of a skeleton for the evaluation of a while block of a
vanilla while language in big-step style. We see all the main elements of Skeletal Se-
mantics and we can observe that they are actually the main elements of any semantics.

• Recursion (eval_stmt and eval_expr) lets us define the semantics depending on
the semantics of other terms (frequently subterms, but not always, as we can see
in this example with the call eval_stmt (σ′, While (e, t))).

• There are auxiliary functions and auxiliary types such as booleans, and possibility
to match a variable against a given constructor (e.g True).

• The let. . . in construct is used to perform a sequence of operations.

• The branching (represented as a parenthesized system in Figure 2.1) is a choice
between two possible rules. Often, the branches are mutually exclusive and a
pattern matching at the start of the branch determines which branch is taken.
Non-mutually exclusive branches also let us represent non-deterministic seman-
tics (such as λ-calculus with no evaluation strategy).

2.1.1 An Arithmetic Language in Skel

We first present a simple arithmetic language in Skel. We keep the language sim-
ple, withouth introducing side effects, as the purpose of this section is to practically
introduce, and show how to define semantics in Skel. Afterward, we will show how to
generate an OCaml interpreter via necroml tool.

2.1.1.1 Syntax and Semantics

Consider the simple arithmetic language defined in Figure 2.2. We now describe its
specification in Skel, depicted in Figure 2.3. First, the set N of natural numbers is re-
quired. As we do not want to specify this set in Skel, we simply state it exists using the
unspecified type declaration type nat. Next, the syntax of terms needs to be given. To
this end, we provide a specified type declaration in the form of an algebraic data type
term with three constructors: Const taking a nat, and Add and Sub taking a tuple of two
expressions.

29

The Skel Specification Language

Abstract syntax of the Arithmetic Language

Nat n ∈ N
Expr e ::= n | (e1 + e2) | (e1 − e2)

Value v ::= n

Expr ⇓ Value

n ⇓ n
Const

e1 ⇓ n1 e2 ⇓ n2 add(n1, n2) = n

(e1 + e2) ⇓ n
Add

e1 ⇓ n1 e2 ⇓ n2 sub(n1, n2) = n

(e1 − e2) ⇓ n
Sub

Figure 2.2: Arithmetic Language

We now turn to the evaluation of this small language. First, we define the type of
values as a specified type value with a single constructor Nat taking a nat. To define
the evaluation of addition and subtraction expressions, we need to be able to actually
compute them on integers. As integers are unspecified in our semantics, we assume
the existence of unspecified terms add and sub by only giving their types. Finally, we
can give the formalization of the ⇓ relation as the specified term eval, on the bottom of
Figure 2.3. This specified term takes an expression e as input and it returns a value. As
there are three rules to define the evaluation of arithmetic expressions, we correspond-
ingly have three branches, introduced using the branch ... or ... or ... end con-
struct. Each branch starts with a pattern matching using a let binding, such as
let Const n = e in This construct only computes if e has the shape Const n
for some m, and if so the continuation of the let binding is evaluated, with n bound to
m. If e does not have this shape, then the branch cannot be taken. The let construct
is also used for sequencing. Let us consider the second branch. First, e is checked to
have the shape Add(e1,e2), then e1 is recursively evaluated, and the result must be
of the form Nat n1. Note that defined terms are by default recursive. Similarly, e2 is
recursively evaluated to Nat n2. Both numbers are added using the unspecified term

30

The Skel Specification Language

type nat

type expr =
| Const nat
| Add (expr,expr)
| Sub (expr,expr)

type value = | Nat nat

val add : (nat,nat) → nat
val sub : (nat,nat) → nat

val eval : (e:expr) : value =
branch let Const n = e in Nat n
or let Add (e1,e2) = e in

let Nat n1 = eval e1 in
let Nat n2 = eval e2 in
let n = add(n1,n2) in Nat n

or let Sub (e1,e2) = e in
let Nat n1 = eval e1 in
let Nat n2 = eval e2 in
let n = sub(n1,n2) in Nat n

end

Figure 2.3: Arithmetic Language Definition in Skel

add and the final result is returned, wrapped in the Nat constructor.

To sum up, a skel program is a list of type declarations, either unspecified or speci-
fied (by giving its constructors), and a list of term declarations, also either unspecified
and containing only a name and type, or specified with an additional term. The possi-
bility to declare non-specified types and terms is a really powerful tool. When defining
a semantics, we sometimes do not want to go into details on how every type and every
function works, or we want to delay giving the actual specification to a later iteration of
the design of the semantics. Partial specifications allow for that.

In the next subsection we show practically how to instantiate the artifact generated
by first presenting necroml tool, and afterwards showing how to produce a working
interpreter.

31

The Skel Specification Language

SkelJavaScript

IMP

λ-calculus

User

Necro ML
Necro Coq
Necro Trans
Necro Debug

. . .

Necro Lib → necro.cma

Coq

OCaml

Debugger

Figure 2.4: The Necro ecosystem.

2.1.2 The Necro Ecosystem

The Skel language by itself is a syntax for describing abstractly programming lan-
guage semantics. The library necrolib and the set of tools necrotrans, necroml,
necrocoq, and necrodebug are built for deriving machine-executable artifacts. In this
section, we present both the library and the tools. We will focus more on the necroml
because it is the main tool used in the thesis, as it allows us to extract an OCaml
interpreter module. We show the necro tools pipeline in Figure 2.4.

necrolib It is the main library supporting the necro ecosystem. The necrolib gener-
ates a .cma OCaml library file, providing a parser, a typechecker, and a series of pretty
printers to build and print the Skel abstract syntax tree (AST). The Skel language def-
inition is small, consisting of almost 110 LOC. The size of the language allows us to
easily define a suite of tools for manipulating Skel ’s AST, generating artifacts in differ-
ent languages.

necrotrans This tool is a part of the necrolib library. As the concrete Skeletal Se-
mantics language is defined to support heavy use of monadic annotations, this tool is
a transformer that, given a Skel file, expands all the binder-like function applications in
the semantics.

32

The Skel Specification Language

necroml The tool is a generator of OCaml interpreters that, given a Skeletal Seman-
tics .sk file, produces an OCaml functor representing its concrete semantics. The func-
tor expects an implementation of unspecified types and terms. Once these are defined,
the result is a working interpreter.

As the Skel language differs from OCaml, i.e., the branch is a non-deterministic
construct representing different computation pathways, the produced artifact is a Skel
shallow embedded in the OCaml’s framework only for the unspecified types and terms.
The behaviour of skeletons is defined by interpretation monads that declare how each
skeleton is concretely computed. This choice fits with the theoretical framework itself,
as the branch non-determinism allows to collect all the possible valid computations.

Executing the tool generates an OCaml file with 4 module types (TYPES, MONAD,
UNSPEC, INTERPRETER) and two functors (Unspec, MakeIntepreter) to be implemented.

The module TYPES defines the names of all the unspecified types defined in the
original .sk file. In this case, a user has to provide a module with a concrete type im-
plementation.
The module MONAD represents the interpretation monad, explaining how the skeletons
are concretely evaluated. Naïvely, a user can define a Skeletal Semantics identity
monad. In Figure 2.5, on the top listing, we show the interpretation monad module
type and its implementation on the bottom.
In this case, branches (branch function) are evaluated sequentially, considering the first
successful branch as the branch to continue to evaluate. It is the closest approach to
a shallow embedding in OCaml, separating the logics of Skeletal Semantics from the
OCaml one. The problem with this implementation of the ID monad is that in case of
future failures, it is impossible to backtrack and choose another branch if any. The bind
and apply terms are pretty similar, but the first is the binder for the let-in skeleton,
binding a fully evaluated term t to a variable x, in the environment of the continuation.
The apply is the concrete term application used while evaluating the OCaml code. We
can resume the differences with an example showing the generated code. Given a
Skel snippet of code, let r =@ f x in (*B*) , where f is a higher-order term defined
in the formalization of type 'a -> 'b, representing a continuation, x a variable name
or a formalization value of type 'a, and @ is a binder named “id_bind” defined in the
skeletal semantics, the generated code can be represented compactly in the following
listing.

33

The Skel Specification Language

module type MONAD = sig
type 'a t
val ret: 'a -> 'a t
val bind: 'a t -> ('a -> 'b t) -> 'b t
val branch: (unit -> 'a t) list -> 'a t
val fail: string -> 'a t
val apply: ('a -> 'b t) -> 'a -> 'b t
val extract: 'a t -> 'a

end

module ID = struct
exception Branch_fail of string
type 'a t = 'a
let ret x = x
let bind x f = f x
let rec branch l =

begin match l with
| [] -> raise (Branch_fail "no match")
| bh::bt -> try bh () with Branch_fail _ -> branch bt
end

let fail s = raise (Branch_fail s)
let apply f x = f x
let extract x = x

end

Figure 2.5: The interpretation monad module and its identity monad instantiation

let* _tmp = apply1 f x in
apply2 id_bind _tmp (function r -> (*B*))

The operator let* and the functions apply1 and apply2 are respectively defined
as:

34

The Skel Specification Language

let (let*) = M.bind
let apply1 = M.apply
let apply2 f arg1 arg2 =

let* _tmp = apply1 f arg1 in
apply1 _tmp arg2

The generated code can be presented extensively as showed below.

M.bind (M.apply f x)
(λ _tmp -> M.bind (M.apply id_bind _tmp)

(λ _tmp1 -> M.apply _tmp1
(function r -> (*B*))))

Notice that the result of f x is encapsulated in the skeletal semantics interpretation
monad. So concretely, f’s signature is defined as 'a -> 'b t as the skeletons eval-
uation is monadic. Hence term evaluation is encapsulated in skeletons monad. The
variable _tmp is a temporary variable name holding a computation result of f applied to
x.
The fail and extract terms respectively return an error message and extract values
from the interpretation monad, usually the computation result. In the necrolib library,
there are already some predefined interpretation monads, each providing Skeletal Se-
mantics with a different meaning1.
The module type UNSPEC contains all the types of the original .sk file, the unspecified
terms signature, and the interpretation monad. The interpretation monad is present
because it can influence the definition of unspecified terms.
Finally, the INTERPRETER module type defines the signatures of all the interpreter’s types
and terms. It is an extension of the module UNSPEC, containing the definition of the spec-
ified terms (the formalization).

Then, regarding the two functors, the Unspec, given an instantiation of the module
TYPES and the interpretation monad instantiations as parameters, produces a concrete
instantiation of the module UNSPEC. Notice that undefined unspecified terms return a
NotImplemented result by default, and the actual implementation can overwrite their

1. Concrete implementation of the default interpretation monads in https://gitlab.inria.fr/
skeletons/necro-ml/-/blob/FSCD2022/necromonads.ml

35

https://gitlab.inria.fr/skeletons/necro-ml/-/blob/FSCD2022/necromonads.ml
https://gitlab.inria.fr/skeletons/necro-ml/-/blob/FSCD2022/necromonads.ml

The Skel Specification Language

definitions. Then, the functor MakeInterpreter takes the instantiations of unspecified
types and terms (the Unspec functor) and produces the interpreter for the formalization.

necrodebug The necro ecosystem also comprehends a debugger, very useful when
writing big formalizations. The tool is an OCaml debugger generator, which given the
Skel formalizations and a program that is written according to the formal syntax defined
in the Skel file, it produces a step-by-step execution file using an abstract machine in-
terpretation of Skel. The debugger provides two user interfaces, a terminal, and an
HTML page generated by js_of_ocaml. An instantiation is needed to execute the de-
bugger, similarly to the necroml. Actually, the same instantiation can be used both for
the interpreter and the debugger. Then, the debugger needs to be extended by a suite
of pretty printers.

necrocoq The necrocoq tool generate a deep embedding coq formalization from a
Skel file. The produced artifact can be used to prove a program to be correct, or to
validate properties of the programming language semantics itself, e.g. properties of
the semantics of JavaScript.

2.1.3 An Interpreter for The Arithmetic Language

Once the skeletal semantics of the arithmetic language is defined, as presented in
Figure 2.3 in a file .sk, an artifact can be produced with the necroml tool.

The TYPES module type This module is a list of declarations of unspecified types. In
the Skel code, only the nat type has been left unspecified. We say that the naturals are
the OCaml integers, defining the Skeletal type in the host language concrete definition
of these numbers. We show the generated module and its instantiation in the listing
below.

36

The Skel Specification Language

(* Generated module TYPES *)
module type TYPES = sig

type nat
end

(* Custom implementation *)
module Types : sig

type nat = int
end = Types

The UNSPEC module type This module is parametrized by a functor that provides de-
fault atomic definitions of the unspecified terms and the implementation of the specified
terms and types. The necroml tool produces the following module type and functor.

In the top listing of Figure 2.6, the module UNSPEC presents the signature of
the terms add and sub. In the central listing of Figure 2.6, we show the default
functor Unspec. Each unspecified term has a default implementation that returns a
NotImplemented result. In the bottom of Figure 2.6, we show the customized imple-
mentation of both these terms.

Notice that the interpretation monad, the ID monad shown in Figure 2.5, and the
functor Types are included for instantiating the module Unspec. The Types module pro-
vides a concrete meaning to the unspecified type nat.

The INTERPRETER module type This module is a declaration of all the terms and
types, either specified or non-specified. This module declares the signatures of all the
interpreter components, and it is instantiated by the functor MakeInterpreter. The
result of the generation is presented in Figure 2.7: on the top, we have the module type
declaration, and on the bottom, the functor. The functor provides an implementation to
the specified terms definition signatures defined on the left listing, a shallow embedding
of the Skeletal Semantics language definition. Hence, by providing the Unspec functor
as an argument to the MakeInterpreter one, one can produce a real interpreter for the
arithmetic language.

module Interp = MakeInterpreter(Unspec)

37

The Skel Specification Language

(* Generated Module Type *)
module type UNSPEC = sig

module M: MONAD
include TYPES
type value = | Nat of nat
and expr = | Sub of (expr * expr) | Const of nat
| Add of (expr * expr)
val add: nat*nat ->nat M.t
val sub: nat*nat ->nat M.t

end

(* Generated Default Functor *)
module Unspec (M: MONAD)(T: TYPES)=struct

exception NotImplemented of string
include T
module M = M
type value = | Nat of nat
and expr = | Sub of (expr * expr) | Const of nat
| Add of (expr * expr)
let add _ = raise(NotImplemented "add")
let sub _ = raise(NotImplemented "sub")

end

(* Custom Implementation *)
module Unspec = struct

include Unspec(ID)(Types)
let add ((a,b) : (nat*nat)) : nat M.t = M.ret (a + b)
let sub ((a,b) : (nat*nat)) : nat M.t = M.ret (a - b)

end

Figure 2.6: The UNSPEC module type and its functors.

Then a program can be written and executed. For example, the program 1 + 1 - 2
can be encoded and executed by writing this code.

open Unspec
open Interp

let _ = M.extract (eval (Sub (Add (Const 1,Const 1), Const (-2))))

38

The Skel Specification Language

(* Generated Module type *)
module type INTERPRETER =
sig

module M: MONAD
type nat
type value = | Nat of nat
and expr = | Sub of (expr * expr) | Const of nat
| Add of (expr * expr)
val add: nat*nat-> nat M.t
val eval: expr-> value M.t
val sub: nat*nat-> nat M.t

end

(* Generated Functor *)
module MakeInterpreter (U: UNSPEC)=
struct

include U
let (let*) = M.bind
let apply1 = M.apply
let rec eval e =

begin match e with
| Const n -> M.ret (Nat n)
| Add (e1, e2) ->

let* Nat n1 = apply1 eval e1 in
let* Nat n2 = apply1 eval e2 in
let* n = apply1 add (n1, n2) in
M.ret (Nat n)

| Sub (e1, e2) -> ...
end

end

Figure 2.7: The INTERPRETER module type and its functor.

2.2 Related Specification Language

In the thesis, we present all the formalizations in Skel by presenting the behavior for-
mally as an inference rule set or some algorithmic steps (in Chapter 4), then show how
to encode them in our language.

To resume, Skel is the language for writing Skeletal Semantics, supported by necro,
a library with a tool suite for manipulating the AST and producing different artifacts. We
structure this section by presenting in each paragraph a different framework without

39

The Skel Specification Language

digging into which is better and why. We leave it to the following chapters. Generally,
the evaluation we make is in terms of conciseness, closeness to the formal or informal
definition of the language, and maintainability, which we think is crucial if we want to
support work over the years when new releases of languages come out.

The properties of Skel rely upon the complexity of the language itself. It is a really
tiny language. As shown in Chapter 1 a formal definition of a language defines the
behavior of a language abstractly by defining premises that an evaluating configuration
must satisfy. The operations held in the premises are usually not defined. For example,
the addition relies on its natural meaning.
Considering the division we present in Figure 1.10, we explicitly write the number 0 in
the Div rule, in its decimal form. Nevertheless, we could have chosen other ways to
encode that number—hexadecimal, binary. A rule is just an abstraction of a behavior,
decoupled from the concrete meaning of data.

In the Skel language, we can write partial specifications by defining unspecified
types and terms without actual implementation.
Moreover, the language does not have native types except for user-defined constructed
types. The unspecified types allow for being abstract enough not to sacrifice the read-
ability of the semantics for constraints dependent on types. Indeed, it can be as abstract
as an inference rule by only declaring unspecified components of the semantics. Then,
the language is tiny, making the language prone to be used for generating artifacts of
different nature. The Skel language definition stays in a couple of hundreds of lines.

In the following paragraphs, we briefly introduce the frameworks related to the the-
sis’ contribution.

Lem Lem [55, 47] is a specification language allowing to extract from the source file
an OCaml interpreter and mechanizations in a proof assistant framework, namely Coq
and Isabelle/HOL. The scope of this specification language is vast, spreading from
communication protocols to weak memory models. The language itself is complex,
allowing complex type inference and constructed modules, making the overall language
quite heavy to manipulate. The language has native types, such as four number types,
and strings.

Ott Ott [66] is a tool for specifying programming languages, allowing to extract from
an Ott source file a LATEX representation, Isabelle/HOL, and Coq files, and an exe-

40

The Skel Specification Language

cutable OCaml file. It also provides ways to derive a Lem mechanization. This tool is
known for its writing style, which is close to the handwritten inference rules.

K K [63] is a formal framework for writing executable semantics in a rewriting style.
The framework is designed to define modular semantics in its components, such as the
state. The K framework has a steep learning curve, making it quite difficult to approach.
Nevertheless, many applications came from this framework, for example formalizations
of JavaScript [56], C [21, 28], Java [10], and PHP [23]. Some work [17] recently pro-
vided methods for proof generation and checking in Isabelle/HOL, but, to our knowl-
edge, no work yet provides proofs of meta-theories of a K formalization. Nevertheless,
the K framework is powerful, and offers tools for analyzing K programs, such as a
symbolic executor, a test-case generator, a runtime monitor, and an interpreter. This
semantic framework has a Isabelle/HOL mechanization of the semantics, to formally
show undesirable behaviours in the current implementations of the language [40].

2.3 Conclusion

In this chapter, we first presented features of the Skel language by implementing the
Skeletal Semantics of a simple arithmetic language. The language can be put in the
same cathegory of semantic frameworks with Ott, Lem, and K, with the difference that
Skel comes with a simple syntax and with no a priori semantics, allowing to manipulate
easily a Skel AST and producing different artifacts. Afterward, we introduced tools for
generating different artifacts from a Skel source. We focused more on the necroml tool
as the thesis relates more with concrete interpretation rather than formal verification of
meta-theories of a formalization. Hence, in Section 2.1.3 we showed how to generate
an OCaml interpreter module of the arithmetic language, and how to instantiate it for
obtaining a working interpreter.

Contributions in this thesis pushed the language to move toward a functional path.
For example, representing JavaScript semantics—see Chapter 4-needed something
more from the language, namely polymorphism and higher-order terms as first-class
language citizens, to capture concisely and faithfully the ECMAScript specification al-
gorithms. Skel development has been strongly influenced by the formalizations pre-
sented in the thesis.

41

The Skel Specification Language

Chapters 1 and 2 presented ways to write semantics, either on paper or on the
machine, and offer the necessary knowledge to appreciate the contributions of this
manuscript. The following chapters will exploit some Skel features for writing concise,
modular, and executable semantics.

42

Part II

Effectful Semantics

43

Chapter 3

DESCRIBING CONCISELY EFFECTFUL

SEMANTICS

Contents
3.1 Effectful Arithmetic Language 47

3.2 PCF . 54

3.3 Adding State to the PCF language 59

3.4 A Fully Monadic Skeletal Semantics 64

3.5 Explicit Contination Manipulation 69

3.5.1 Program Examples . 70

3.5.2 Syntax and Semantics . 71

3.5.3 A Stateful PCF Language with Yield and Exceptions in Skel . 77

3.6 Related Work . 81

« Je n’ai fait cette lettre-ci plus longue que parce que je n’ai pas eu le loisir
de la faire plus courte. »

- Blaise Pascal [60]

Introduction

Writing a formal definition of a programming language specification helps state pre-
cisely the behavior of the language constructs and also derive frameworks in which it
is possible to prove programs and/or language properties. The result of this task must
ensure that the actual semantics of the language is captured.

To ensure that a work written in a semantic framework adequately describes the
meaning of the programming language, one must preserve the following properties:

45

Describing Concisely Effectful Semantics

1. The formalization should be textually close to the specification of the language if
it exists.

2. An executable formalization should be tested against the test suite provided by
the language. Thus, a suitable tool to describe semantics should make it easy
to stay close to language definitions, be they algorithmic or based on inference
rules, and the tool should provide a straightforward way to derive an executable
version of the semantics and run code, including tests.

3. Language definitions written in such a tool should be easy to manipulate, for
instance, to derive a mechanized version in a proof assistant, inspect the seman-
tics, or transform it.

In this chapter, we define a method for structuring the semantics of a sequence toy
languages written in Skel. In Section 3.1, we extend the simple arithmetic language
presented in Section 2.1.1 by introducing the division and multiplication expressions,
a try-catch expression, and a datatype describing the exceptions of the language. We
then structure the chapter in the following way. Section 3.2 extends the effectful arith-
metic language by introducing first-class functions and a fix-point operator. In Sec-
tion 3.3, we continue extending this language by adding a mutable state and extending
the language with some state operators. In Section 3.5, we show how to add delimited
computations and explicitly handle the natural control flow of a program. We show in
each section how to introduce these new features without disrupting the formalization
of the constructs that do not directly use them. The final language we present is syntac-
tically simple, but its behavior is far from trivial. We also provide the semantics and the
interpreter of every language presented in the chapter in a source repository1. Finally,
in Section 3.6, we relate our approach to existing work.

1. https://gitlab.inria.fr/akhayam/programming_skel

46

https://gitlab.inria.fr/akhayam/programming_skel

Describing Concisely Effectful Semantics

The chapter presents:
• a systematic approach to capture multiple side-effects in

Skel formalizations.

• exploit the power of monads to write readable, and main-
tainable semantics in Skel.

• structurally solid evaluation functions. Extending a lan-
guage by introducing new effectful operations does not im-
pact the code describing the previously written core lan-
guage.

Contribution

3.1 Effectful Arithmetic Language

In this section, we first show how to introduce effects in Skeletal Semantics by adding
the division operator to the arithmetic language presented in Section 2.1.1. The evalu-
ation of an expression with a division can fail because of a division by 0 exception. We
first try to handle effects explicitly, and then we show how a monadic approach helps
to structure the language’s formalization. Handling explicitly side effects is transparent
but not scalable when writing a real-world programming language formalization.

If we add division to the language, a program may try to perform a division by zero.
To capture this information, we introduce an exception type. This type is defined by
two constructors, Exc, representing that the computation has failed, and Ok, carrying
type value, which means that the computation is successfully calculated. This type is
similar to OCaml’s option type or Haskell’s maybe type. We show the syntax definition
of the exception type in BNF and Skel in Figure 3.1. We put in the syntax ... for saying
that there are other type constructors defined for the expression type, namely Const,
Add, and Sub.

We present the evaluation rules of this language, inference rules, and Skel in Fig-
ure 3.2 and Figure 3.3. We omit the rules for subtraction and multiplication.
First, we give an alias type output := exc such that the result of eval is always
output, even for more complex languages (we will change the alias when needed). We

47

Describing Concisely Effectful Semantics

Formal Syntax

Exc o ::= Exc

| Ok v
Expr e ::= . . .

| (e1/e2)
| try{e1}{e2}

type exc = | Exc
| Ok value

type expr = | ...
| Div (expr,expr)
| Try (expr,expr)

Figure 3.1: Syntax of the Exception type

e ⇓ o

Const

n ⇓ Ok n

Add
e1 ⇓ Ok n1
e2 ⇓ Ok n2

add(n1, n2) = n

(e1 + e2) ⇓ Ok n

AddF1
e1 ⇓ Exc

(e1 + e2) ⇓ Exc

AddF2
e1 ⇓ Ok n1
e2 ⇓ Exc

(e1 + e2) ⇓ Exc

Div
e1 ⇓ Ok n1
e2 ⇓ Ok n2
n2 6= 0

div(n1, n2) = n

(e1/e2) ⇓ Ok n

Div0
e1 ⇓ Ok n1
e2 ⇓ Ok n2
n2 = 0

(e1/e2) ⇓ Exc

DivF1
e1 ⇓ Exc

(e1/e2) ⇓ Exc

DivF2
e1 ⇓ Ok n1
e2 ⇓ Exc

(e1/e2) ⇓ Exc

TryF1
e1 ⇓ Exc
e2 ⇓ r2

try{e1}{e2} ⇓ r2

Try
e1 ⇓ Ok v

try{e1}{e2} ⇓ Ok v

Figure 3.2: Arithmetic Language Rules Extended with Division and Exceptions

assume two unspecified terms to test for zero and not zero and an unspecified third
term to divide two numbers. We also assume that this last unspecified term should
never be called with a divisor which is zero. We finally extend the syntax of arithmetic
expressions with a division operator and a try with construct to catch exceptions.

As there are 13 rules to evaluate arithmetic expressions with division (the three rules

48

Describing Concisely Effectful Semantics

type output := exc
val zero: nat → ()
val not_zero: nat → ()
val div: (nat,nat) → nat
val mul: (nat,nat) → nat
val eval (e: expr) : output =

branch let Const n = e in (Ok (Nat n))
or let Add (e1,e2) = e in

let o1 = eval e1 in
branch let Exc = o1 in o1
or let Ok (Nat n1) = o1 in

let o2 = eval e2 in
branch let Exc = o2 in o2
or let Ok (Nat n2) = o2 in

let n = add (n1,n2) in
Ok (Nat n)

end
end

or let Div (e1,e2) = e in
let o1 = eval e1 in
branch let Exc = o1 in o1
or let Ok (Nat n1) = o1 in

let o2 = eval e2 in
branch let Exc = o2 in o2
or let Ok (Nat n2) = o2 in

branch zero n2; Exc
or not_zero n2;

let n = div(n1,n2) in
Ok (Nat n)

end
end

end
or let Try (e1,e2) = e in

let o1 = eval e1 in
branch let Exc = o1 in eval e2
or let Ok (Nat r1) = o1 in o1
end

or ...
end

Figure 3.3: Arithmetic Language in Skel Extended with Division and Exceptions

49

Describing Concisely Effectful Semantics

for subtraction being omitted), one might expect 13 branches to be needed. Fortunately,
Skel lets us factorize some of the behavior. Consider the case of addition: in the three
rules shown, the first sub-expression is always evaluated. Hence the corresponding
Skel rule also evaluates it to o1, and then it branches for inspection. If it is an exception,
then it is propagated. Otherwise, it is a number n1, and the computation may continue
with the evaluation of e2. Such factorization may be compared to the one obtained using
Pretty-Big Step Semantics [15], as shown in Section 1.4.

This description is still somewhat naïve because the same code structure must be
repeated for division (in blue) and subtraction (not shown). Before improving the im-
plementation, let us describe the code for division and Try. Regarding division, once
both sub-expressions are successfully computed, the second one is tested against
zero: if it is zero, an exception is raised; if it is not, the division may proceed. Once
again, branches are used to capture a conditional. As branches are inherently non-
deterministic, one must ensure that the required conditions are fully stated. Note that
we use the syntactic sugar foo; rest for let _ = foo in rest, and rely on the par-
tiality of the zero and not_zero unspecified terms.

Regarding the Try term, we first evaluate its first sub-expression. If it results in an
exception, we evaluate the second sub-expression; if it succeeds, we return its value.

One may observe that adding exceptions makes the code significantly bigger and
less readable, with much more of structural duplication.

To capture such effects in Skel, we rely on the classical approach of monads. As a
first approximation, a monad is a triple {M, return, bind}, where

• M is a monadic type constructor, taking a type and returning a type;

• return : α → Mα is a function that takes a pure value of type α and returns the
same value in the monad;

• bind : Mα → (α → Mβ) → Mβ is a function that takes w, a monadic value of
type α, a continuation f of type α → Mβ, and bind w f returns a new monadic
value of type Mβ.

Monads also come with laws that state that ret and bind are inverse of each other in
some sense. These laws can be ignored because we do not prove the properties of
our code.

To write monads in Skel, we introduced‘[52] higher-order terms as first-class citizens
as well as parametric polymorphism. Polymorphism is always explicit: the polymorphic

50

Describing Concisely Effectful Semantics

type exc<a> is parametric in its type parameter a, which can be used in its definition
(as in type exc<a> = | Exc | Ok a). Polymorphic term declarations and polymorphic
constructors also have this typesetting. Examples are the return and bind defined
below.

val return<a> (v:a) : exc<a> = Ok<a> v

val bind<a,b> (w: exc<a>) (f: a → exc) : exc =
branch let Exc = w in throw ()
or let Ok v = w in f v
end

On the other hand, constructors used as patterns do not require polymorphic anno-
tations as they can be locally inferred.

These three declarations actually form the exception monad that we use in Fig-
ure 3.4. They include an additional return always to throw and functions specialized
to the value type (to avoid annotations). We do not include the return and the bind
function in the figure.

In the same figure, below, we give the eval function using the exception monad. As
the bind function expects a function as a second argument, and as we prefer to avoid
defining such functions as top-level terms, we introduce a final part of Skel ’s syntax:
anonymous functions. They are simply written λp:t → s, where p is a pattern, t is a
type, and s is a skeleton. We thus give as a continuation of each bind the remainder
of the code, and there is no need to branch on the status of an evaluation to decide
whether to continue or throw, as the bind takes care of it.

To make the code more readable, we make the use of bind for continuation code
more straightforward. we declare that the higher-order term is a bind and assign it a
symbol by writing binder @ := bind. When this is done, code like bind o (λ(x:t) → s)
can simply be written let x =@ o in s (type annotations are inferred). The result-
ing code is shown in Figure 3.5. We can even abuse this notation to define another
bind-like function exccont, which calls its continuation in the case an exception was
raised and otherwise return the given value to give it a symbol and use it in the code
for Try. We associate this behavior with the symbol ?, which represents the monadic
term exccont. If this code, the construct e1; e2, stands for let _ = e1 in e2, then
eval e1;? eval e2 states evaluating e1, if it returns an exception, then evaluate e2,

51

Describing Concisely Effectful Semantics

val throw<a> (_:()) : exc<a> = Exc<a>

type output := exc<value>

val ret (v:value) : output = return<value> v
val thr (_:()) : output = throw<value> ()

val eval : (e:expr) → output
branch let Const n = e in ret (Nat n)
or let Div (e1,e2) = e in

let o1 = eval e1 in
bind<value,value> o1 (λv1:value →

let Nat n1 = v1 in
let o2 = eval e2 in
bind<value,value> o2 (λv2:value →

let Nat n2 = v2 in
branch let _ = zero n2 in

thr ()
or not_zero n2;

let res = div(n1,n2) in
ret n

end))
or let Add (e1,e2) = e in

let o1 = eval e1 in
bind<value,value> o1 (λv1:value →

let Nat n1 = v1 in
let o2 = eval e2 in
bind<value,value> o2 (λv2:value →

let Nat n2 = v2 in
let n = add(n1,n2) in
ret n))

or ...
end

Figure 3.4: Exception monad in Skel, and its application to the eval function

otherwise return its result. Introducing a symbol for a bind operator is not required; one
may directly use the notation let x =%bind o in s to stand for bind o (λx → s). In
the following listing, we show the implementation of the function exccont.

52

Describing Concisely Effectful Semantics

val eval (e: expr) : output
branch let Const n = e in ret (Nat n)
or let Div (e1,e2) = e in

let Nat n1 =@ eval e1 in
let Nat n2 =@ eval e2 in
branch zero n2; thr ()
or not_zero n2;

let n = div(n1,n2) in
ret (Nat n)

end
or let Try (e1,e2) = e in

eval e1;?
eval e2

or let Add (e1,e2) = e in
let Nat n1 =@ eval e1 in
let Nat n2 =@ eval e2 in
let n = add(n1,n2) in
ret (Nat n)

or ..
end

Figure 3.5: Exception Monad and its Symbolic Application to eval

val exccont<a> (v:exc<a>) (f:() → exc<a>): exc<a> =
branch let Exc = v in f ()
or let Ok v' = v in

return<a> v'
end

binder ? := exccont
binder @ := bind

In this subsection, we showed how to extend a language in Skel, introduced monads
and binders, and used them. We defined a writing pattern that makes the semantics
highly readable and compact.

53

Describing Concisely Effectful Semantics

let zero (a:nat) : unit M.t =
match a with
| 0 -> M.ret ()
| _ -> M.fail "not zero"

Figure 3.6: The zero term implementation

To instantiate an interpreter to the language presented in this sec-
tion, a user can simply, after a necroml run, extend or include the
Unspec functor shown in Figure 2.6. We provide an implementa-
tion to the unspecified terms zero, not_zero, div, and mul. Note
that the zero and the not_zero terms are partial functions. These
function may fail in the Skel interpretation monad. We show the
implementation of the zero term in Figure 3.6.

Instantiation

We remark that the monads we present in this semantics are
not related to the interpretation monads of the ml-instantiation.
The monadic approach we present represents the way we write
semantics.

Remark

3.2 PCF

Even with exceptions, a language for arithmetic expressions is still far from an actual
programming language. We thus extend it with variables, first-class functions, a se-
quencing operator, skip, and a fix-point operator.

54

Describing Concisely Effectful Semantics

Formal Syntax

. . .

ENV σ : VAR → VALUE

VAR x ∈ Σ+

VALUE v ::= n

| (x, tx, σcl)
| (x, tx, σcl, xf)
| ()

EXPR e ::= . . .

| x

| λ x.ex
| e1 e2

| let x = ex in ec
| if0(ec){e1}{e2}

| fix fx.ex | e1; e2

| skip

...
type env
type var
type value =
| Nat nat
| Clos (var,expr,env)
| ClosRec (var,expr,env,var)
| Unit
type expr =
| ...
| Var var
| Lam (var,expr)
| App (expr,expr)
| LetIn (var,expr,expr)
| If0 (expr,expr,expr)
| Fix (var,var,expr)
| Seq (expr,expr)
| Skip

The evaluation of this language requires an environment σ : VAR → VALUE that
maps variables to values. We define the semantic judgement as σ, e ⇓ Exc Value.
In the arithmetic language, Nat was the only possible value. In PCF, we add the unit
value and closures. The value unit represents is a singleton value we use to return
no value. Then, we define two types of closures. The first type represents the result of
evaluating a lambda expression, and this value stores the bound variable x, the body
of the abstraction eb, and the current environment s as Clos (x,eb,s). The second
type of closure represents recursive closed expressions. Similarly to the non-recursive
closure, the recursive one stores x, eb, s, and the name of the recursive expression f
as ClosRec (x,eb,s,f). The environment must specify which values the free variables
of eb are bound to.

The presence of an environment to evaluate an expression means that the eval
function must change its signature: it now takes both an environment and an expres-

55

Describing Concisely Effectful Semantics

sion.The output of this function is a value in the exception monad. The evaluation is
shown in both Figure 3.7 and Figure 3.8. The case of arithmetic operations is un-

σ, e ⇓ Exc Value

Var
σ(x) = v

σ, x ⇓ Ok v

Lam

σ, λx.ex ⇓ Ok (x, ex, σ)

App
σ, e1 ⇓ Ok (x, ex, σcl) σ, e2 ⇓ Ok w (σcl + (x→ w)), ex ⇓ r

σ, e1 e2 ⇓ r

AppRec
σ, e1 ⇓ Ok (x, ex, σcl, f)

σ, e2 ⇓ Ok w (σcl + (x→ w) + (f → (x, ex, σcl, f))), ex ⇓ r
σ, e1 e2 ⇓ r

AppF1
σ, e1 ⇓ Exc

σ, e1 e2 ⇓t Exc

AppF2
σ, e1 ⇓ Ok _ σ, e2 ⇓ Exc

σ, e1 e2 ⇓ Exc

LetIn
σ, ex ⇓ Ok vx (σ + x→ vx), ec ⇓ r

σ, let x = ex in ec ⇓ r

LetInF
σ, ex ⇓ Exc

σ, let x = ex in ec ⇓ Exc

If0True
σ, ec ⇓ Ok nc nc == 0 σ, e1 ⇓ r

σ, if0(ec){e1}{e2} ⇓ r

If0False
σ, ec ⇓ Ok nc nc! = 0 σ, e2 ⇓ r

σ, if0(ec){e1}{e2} ⇓ r

If0F
σ, ec ⇓ Exc

σ, if0(ec){e1}{e2} ⇓ Exc

Fix

σ, fix fx.ex ⇓ Ok (x, ex, σ, f)

Seq
σ, t1 ⇓ Ok_ σ, t2 ⇓ r

σ, e1; e2 ⇓ r

SeqF
σ, e1 ⇓ Exc

σ, e1; e2 ⇓ Exc

Skip

σ, skip ⇓ Ok ()

Figure 3.7: PCF Semantic Rules

changed, except for adding the environment to the recursive call of eval. Variables are
looked up in the environment. The evaluation of an application App(e1,e2) in the en-

56

Describing Concisely Effectful Semantics

val eval (s:env) (e:expr) : output =
branch ...
or let Add (e1,e2) = e in

let Nat n1 =@ eval s e1 in
let Nat n2 =@ eval s e2 in
let n = add(n1,n2) in ret (Nat n)

or let Var x = e in
let v = getEnv s x in ret v

or let Lam (x,ex) = e in
ret (Clos (x,ex,s))

or let App (e1,e2) = e in
let cl =@ eval s e1 in
let w =@ eval s e2 in
branch let Clos (x,eb,sc) = cl in

let sc' = extEnv sc x w in
eval sc' eb

or let ClosRec (x,eb,sc,f) = cl in
let sc' = extEnv sc x w in
let sc'' = extEnv sc' f cl in
eval sc'' eb

end
or let LetIn (x,ex,ec) = e in

let vx =@ eval s ex in
let s' = extEnv s x vx in
eval s' ec

or let If0 (ec,e1,e2) = e in
let Nat nc =@ eval s ec in
branch zero nc; eval s e1
or not_zero nc; eval s e2
end

or let Fix (f,x,ex) = e in
ret (ClosRec (x,ex,s,f))

or let Seq (e1,e2) = e in
eval s e1 ;@
eval s e2

or let Skip = e in ret Unit
end

Figure 3.8: PCF Semantics in Skel

57

Describing Concisely Effectful Semantics

let extEnv (e:env) =
M.ret (fun x -> M.ret (fun v -> M.ret (SMap.add x v e)))

Figure 3.9: extEnv instantiation in OCaml

vironment s first evaluates e1 in s. The result must be a closure Clos(x,ex,sc) or a
recursive closure ClosRec(x,ex,sc,f). The argument e2 is then evaluated in s to w.
Finally, the body of the closure ex is evaluated in the environment sc extended with a
mapping from x to v. In the recursive case, sc is also extended with a binding from f
to ClosRec(x,ex,sc,f). Note that these steps are done in the exception monad: once
one evaluation returns an exception, it is propagated, and the evaluation is interrupted.

We assume that all the arithmetic operations, including multiplication, are described
by our semantics, so in the figure, we show only the evaluation steps for the Add con-
structor. We use integers for conditionals with the If0 operator.

To access and extend the (unspecified) environment, we assume the existence of
the getEnv and extEnv terms. The environment is assumed to be a partial mapping
from VAR to VALUE. In case a mapping does not exist, the result of getting a variable’s
value is a Skel failure. Indeed, we decided not to capture it in the exception monad to
be consistent with other errors, such as applying a number as a function. These errors
could be detected statically by writing a PCF type checker.

Figure 3.8 shows the new eval function for PCF in Skel. The evaluation of the lan-
guage is almost standard. The rules follow the ones from [62] with two exceptions: we
use an environment instead of substitution and provide a big-step semantics. Because
of the former, the Fix operator’s semantics is described as follows. Fix (f,x,ex) is
evaluated to a recursive closure ClosRec (x,ex,sc,f), which is a value. The extension
of the environment with f bound to the recursive closure is delegated to the application
if it happens. Notice that this evaluation is close to the evaluation of a λ-expression. A
PCF program defining and using factorial can be written as follows, in concrete syntax
(in Skel, we would need to use the constructors LetIn, Fix, etc.)

let fact = fix factrec n. if0(n) {1} {n*(factrec (n-1))} in
fact 42

58

Describing Concisely Effectful Semantics

To generate an interpreter, one must extend the Types func-
tor providing a concrete type to variables and the environ-
ment σ. Moreover, The Unspec functor needs a definition for
the functions getEnv and extEnv. We provide a demonstra-
tive implementation of the extEnv in Figure 3.9. The SMap
functor represents the library to manipulate maps from strings
to values. The functor is constructed with the following code,
module SMap = Map.Make(String), and the type env is defined
as Unspec(M)(Types).value SMap.t, a map from strings to the
language value type defined in Skel.

Instantiation

3.3 Adding State to the PCF language

We now extend our language with a state and references. Allocating a new reference
with the operator &v consists of extending a state µ with a new memory location l con-
taining an initial value v. We write the semantic judgement a µ, σ, e ⇓ (Exc Value, µ).
We define two other operations, !l for accessing the contents of a location l (derefer-
encing), and the infix operator l := v for setting a new value v in an existing allocated
location l. Formally, we can extend the syntax as follows.

Formal Syntax

. . .

LOC l

STATE µ : LOC → VALUE

VALUE v ::= · · · | l | ()
ST(α) st ::= µ→ (α, µ)
EXPR e ::= . . . | &e |!e | e1 := e2

...
type loc
type value = | ...

| Loc loc
| Unit

type state
type st<a> := state → (a,state)
type expr = | ... | Ref expr

| Get expr
| Set (expr,expr)

In Skel, we extend the value type with a Loc constructor for location values and

59

Describing Concisely Effectful Semantics

Unit. We leave the loc and state types unspecified and define the monadic state type
(type st<a>). Finally, we extend expr type with three new language constructors: Ref
for &, Get for !, and Set for the infix operator := .

To describe the semantics, we extend our monad to include a state monad. A com-
putation in a state monad is a function that expects the current value of the state to
return its result alongside the updated state. We first define the state bind operator
stbind, denoted with @m. This binder is the regular state binder.

val stbind<a,b> (v:st<a>)(f:(a → st)) : st =
λ s : state → let (v',s') = v s in f v' s'

binder @m := stbind

Next, we combine the state and exception monad, writing its bind operator, denoted
with @. The monadic type considered is v:st<exc<a>>. It means that, given a state µ,
the application v µ returns a tuple (v’, µ’) : (exc<α>, state). We keep exceptions
inside the state as a computation may mutate the state before throwing an exception,
and this mutated state needs to be propagated. We show the new bind in the following
snippet of code.

We chose to combine the state monad and the exception monad
in this order to guarantee the state’s persistence in case of a
failure. In the example, we are interested in cumulating results,
always being able, in case, to inspect the state. We define the
combined monadic type as STATE → (EXC a, STATE). Com-
bining in the other way means having the following signature:
EXC(STATE → (a, STATE)). In case of an exception, the com-
putation loses the most updated state.

Remark

60

Describing Concisely Effectful Semantics

val bind<a,b> (v:st<exc<a>>)(f:(a → st<exc>)) : st<exc> =
let v' =@m v in
branch let Exc = v' in throw ()
or let Ok v'' = v' in f v''
end

binder @ := bind

We update the exccont binder, represented as ?, to take the monad into account.
This lets us keep the Try case of the semantics unmodified. The update is symmetric
to what did with the monadic binder.

val exccont<a> (v:st<exc<a>>)(f:(() → st<exc<a>>)) : st<exc<a>> =
let v' =@m v in
branch let Exc = v' in f ()
or let Ok v'' = v' in return<a> v''
end

binder ? := exccont

Finally, we redefine the return and the throw term. Here again, we inject the exc<a>
return type into the state monad.

val stret<a> (v:a) : st<a> = λ s:state → (v,s)
val return<a> (v:a) : st<exc<a>> = stret<exc<a>> (Ok<a> v)
val throw<a> (_:()) : st<exc<a>> = stret<exc<a>> Exc<a>
val ret (v:value) : output = return<value> v
val thr (_:()) : output = throw<value> ()

In Figure 3.10, we show the semantics of Ref, Get, and Set in Skel and big-step. We
define three concrete atomic operations on memory: alloc is a function for allocating a
new memory location with an initial value, m_r returns the value bound to a reference,
and m_w writes a value in a location. The specified terms newref, get, and set are the
monadic versions of alloc, m_r, and m_w. We show them below.

61

Describing Concisely Effectful Semantics

µ, σ, e ⇓ (Exc Value, µ)

Ref
µ, σ, er ⇓ (Ok v, µ′′) alloc(µ′′, v) = (l, µ′)

µ, σ,&er ⇓ (Ok l, µ′)

RefF
µ, σ, er ⇓ (Exc, µ′)
µ, σ,&er ⇓ (Exc, µ′)

Get
µ, σ, eg ⇓ (Ok l, µ′) µ′(l) = v

µ, σ, !eg ⇓ (Ok v, µ′)

GetF
µ, σ, eg ⇓ (Exc, µ′)
µ, σ, !eg ⇓ (Exc, µ′)

Set
µ, σ, el ⇓ (Ok l, µ′′) µ′′, σ, ev ⇓ (Ok v, µ′′′) µ′′′(l, v) = µ′

µ, σ, el := ev ⇓ (Ok (), µ′)

SetF1
µ, σ, el ⇓ (Exc, µ′)

µ, σ, el := ev ⇓ (Exc, µ′)

SetF2
µ, σ, el ⇓ (Ok l, µ′′) µ′′, σ, ev ⇓ (Exc, µ′)

µ, σ, el := ev ⇓ (Exc, µ′)

val output := st<exc<value>>
val eval (s:env)(e:expr) : output =

branch ...
or let Add (e1,e2) = e in

let Nat n1 =@ eval s e1 in
let Nat n2 =@ eval s e2 in
let n = add(n1,n2) in ret (Nat n)

or let Ref er = e in
let v =@ eval s er in
newref(v)

or let Get eg = e in
let Loc l =@ eval s eg in
get(l)

or let Set (el,ev) = e in
let Loc l =@ eval s el in
let v =@ eval s ev in
set(l,v)

end

Figure 3.10: PCF with References

62

Describing Concisely Effectful Semantics

val alloc: value → st<loc>
val m_r: loc → st<value>
val m_w: (loc, value) → st<()>
val newref (v:value) : output =

let l =@m alloc v in ret (Loc l)
val get (l:loc) : output =

let r =@m m_r l in ret r
val set ((l,v):(loc,value)) : output =

m_w(l,v);@m ret Unit

Note that the three concrete functions alloc, m_r, and m_w are left unspecified. In
case of a failure of a memory reading via the m_r function, this function will fail in the
skeletal semantics interpretation monad. Then, the following operators use these to
encapsulate the result in the new PCF monad. The evaluation of the new constructors
is straightforward. Note that the evaluation of pure terms (such as Add) does not need
to be modified: defining the correct bind is sufficient to upgrade the semantics to the
new monad.
If we compare to related frameworks—namely K [63], Ott [66], and Lem [55]-, there
is no evidence that these languages can easily access the continuation of a program,
hence introducing new features, such as the state, would mean cluttering the code with
operations for handling them. Otherwise, if we consider the work of Wadler [72], we
cannot reproduce the approach as Skel does support modules and functors. Neverthe-
less, the purpose of the languages we are writing is a substantial difference between
the two works. Our approach shows how to write formalizations in a tiny framework,
not interpreters in some complex meta-language such as OCaml or Haskell.
An affinity exists with the modular SOS [46], but we underline a substantial difference:
we write machine code while modular SOS is a paper technique.

63

Describing Concisely Effectful Semantics

Again, to generate a working interpreter, after a run of necroml,
one must only extend the Types functor with a definition to the
location type, and the state, which is a map from locations to val-
ues. The state type is defined similarly to the environment, relying
on the OCaml Map module type. Then, one needs to provide an
implementation of the three concrete operations for manipulating
the state concretely.

Instantiation

3.4 A Fully Monadic Skeletal Semantics

We now show how to extend the Skel definition in the previous section by introducing
the reader monad to handle environment effects—the goal is to have a fully monadic
Skel definition of the language of Section 3.3-. We will alter the evaluation function to
consider the monadic environment operations. However, this approach makes a for-
malization more solid to further extensions. Indeed, this approach is convenient while
writing large-scale formalizations, showing how one can gradually introduce under-
the-hood behaviors in a semantic description by only adding or changing a few lines of
code.

We want to make the environment manipulation happen implicitly.
First, we define the reader monad type and redefine the bind and the exccont

binders. We show the bind code in the following snippet.

type reader<a> := env → a
val bind<a,b> (v:reader<st<exc<a>>>)(f:(a → reader<st<exc>>)) :

reader<st<exc>> =
λs:env -> λm:state →

let (v',m') = v s m in
branch let Exc = v' in let r = throw () in r s m'
or let Ok v'' = v' in f v'' s m'
end

binder @ := bind

64

Describing Concisely Effectful Semantics

The reader monad, also called environment monad, serves to write programs in
which all the operations may read data from an environment. In the bind shown above,
we decided to combine the state, the exception, and the reader monad to obtain the
following signature: ENV → STATE → (EXC a, STATE), which in Skel is written as
reader<st<exc<a>>>. Similarly to the bind, we write the exccont.

Then, as the reader monad is used to read an environment to provide data, we
define a function ask on the computation of type reader<st<exc<env>>>. This function
provides an environment to a program.

val ask : reader<st<exc<env>>> = λs:env → λm:state -> ((Ok<env> s),m)

We can provide, to the continuations, manipulations of the environment via the
usual local function. We write this function’s signature similarly to the bind’s and the
exccont’s ones.

val local<a> (s:reader<st<exc<env>>>) (f: () → reader<st<exc<a>>>) :
reader<st<exc<a>>> =

λs_prev:env →
λm:state → let (Ok s_new,m') = s s_prev m in

f () s_new m'

Accordingly, we update the output alias type to be the one of the combination with
the reader monad, and all the functions with the output sort of type output. Figure 3.11
shows the four monadic operations: return that returns a value in the output type,
newref for a new allocation in the state, and envGet and envExt, the equivalent of the
getEnv and extEnv functions, but returning a computation.

One of the purposes of updating the semantics is to manipulate the environment
implicitly. Hence, we also define two functions for producing closures, either “normal”
closures (makeClosure) or recursive ones (makeRecursiveClosure), and a function to
get the environment from a closure (closureEnv). We show these three functions in
Figure 3.12.

Finally, we update the evaluation function semantics. Let’s start from its signature,
which now changes to val eval (e:expr) : output. The reader can notice that we
do not explicitly mention the environment (see Figure 3.10 for the old signature). Then,
regarding the body of the eval function, we update only the constructors code manip-

65

Describing Concisely Effectful Semantics

type output := reader<st<exc<value>>>
val return<a> (v:a) : reader<st<exc<a>>> =
λ_:env -> λm:state -> (Ok<a> v,m)

val newref (v:value) : output =
λ_:env ->
λm:state -> let ls = alloc v in

let (l,m') = ls m in
(Ok<value> (Loc l),m')

val envGet (x:var) : output =
let s =@ ask in
let v = getEnv s x in ret v

type env_output := reader<st<exc<env>>>
val envExt ((x,v):(var,value)) : env_output =

let s =@ ask in
let s' = extEnv s x v in
return<env> s'

Figure 3.11: Sample of the updated functions

ulating the environment, which are the variable term evaluation, the λ-term definition,
the application, the let-in construct, and the fixed-point operator.

Let us start with the variable assignment Var. The semantics shown in Figure 3.8
is using the getEnv function to get the mapping of a variable x to a value v in an
environment s, if any. Then return the value as a computation by applying the ret
function to v. With the reader monad, we can return the result directly by applying the
monadic function envGet to x, returning a value encapsulated in the monadic type.

let Var x = e in envGet x

Then, we modify the λ-term’s eval semantics. Evaluating λx.eb means to create a
closure for x,eb,s, where s is the current environment. As the environment is no more
explicit, we must ask for it, and only then create the closure. We designed a function
to deal with this before, makeClosure. The constructor evaluation simply results in the
following snippet.

66

Describing Concisely Effectful Semantics

val makeClosure ((x,b):(var,expr)) : output =
let s =@ ask in
ret (Clos (x,b,s))

val makeRecursiveClosure ((x,b,f):(var,expr,var)) : output =
let s =@ ask in
ret (ClosRec (x,b,s,f))

val closureEnv (v:value) : env_output =
branch let Clos (_,_,s) = v in return<env> s
or let ClosRec (_,_,s,_) = v in return<env> s
or let Nat _ = v in throw<env>()
or let Unit = v in throw<env>()
or let Loc _ = v in throw<env>()
end

Figure 3.12: Functions for creating closures. The output is a computation in the monad.

let Lam (x,eb) = e in makeClosure(x,eb)

Regarding the application e1 e2, in Figure 3.8, we first evaluated e1 in the current
environment s, then evaluated e2 in s and extended the environment accordingly on the
resulting closure whether e1 is recursive or not. In the fully monadic semantics, we do
the same, feeding the new current environment to the continuation via the local local
monadic binder, and using closureEnv and envExt to “automate” respectively reading
an environment from a closure and extending or updating it. We show the code below.

67

Describing Concisely Effectful Semantics

let App (e1,e2) = e in
let cl =@ eval e1 in
let w =@ eval e2 in
branch let Clos (x,eb,_) = cl in

closureEnv cl;%local
envExt(x, w);%local
eval eb

or let ClosRec (x,eb,_,f) = cl in
closureEnv cl;%local
envExt(x, w);%local
envExt(f, cl);%local
eval eb

end

For the let-in construct, in the PCF semantics, first, we evaluated the expression to
a value v to be mapped to a variable name x in an environment s, then extended the
environment s with the mapping x→ v, calling it s', and finally returned the evaluation
of the continuation in s'. The new code results in the following listing, where the eval
call does not have the environment parameter anymore, and the computation contains
the new environment, resulting from the application envExt (x, v), which is directly
bound to the continuation eval eb.

let LetIn (x,ex,ec) = e in
let v =@ eval ex in
envExt(x, v);%local
eval ec

Finally, similarly to what we did with the application case, modifying the fixed-point
eval code means simply using the makeRecursiveClosure. We show this below.

let Fix (f, x, ex) = e in
makeRecursiveClosure(x,ex,f)

The rest of the evaluation function stays the same to what depicted in Figure 3.8
and 3.10. Concretely, the code evaluating the addition stays the same, as the rest of

68

Describing Concisely Effectful Semantics

the operations. One has only to delete the environment parameter from the eval calls.

let Add (e1,e2) = e in
let Nat n1 =@ eval e1 in
let Nat n2 =@ eval e2 in
let n = add(n1,n2) in ret (Nat n)

Introducing a posteriori the reader monad needed some effort to define some new
monadic helper functions and rewrite the parts of the semantics involving the envi-
ronment. Nevertheless, the semantics presented will not change in the next section,
showing that the approach is highly maintainable. The only change in writing the lan-
guage extension of the next section is how we will deal with the monads, as we intro-
duce one more new effect. The two language semantics presented in Section 3.3 are
behaviourally equivalent. We did not prove this property formally.

Introducing the reader monad in the semantic definition does not
impact the instantiation of the interpreter. Indeed, we did not in-
troduce any other new unspecified type or term. Hence, a user
must only run necroml again and then use the same instantiation
file of the stateful PCF.

Instantiation

3.5 Explicit Contination Manipulation

This section presents our most involved example by adding delimited computations to
the language, following [31]. This complex transfer of control flow lets one start a com-
putation, and this computation can suspend itself (yield) to return control to the calling
computation, which can later resume the suspended computation. We combine this ex-
tension with exceptions and stateful computations. To this end, we use a continuation
monad described in Section 3.5.2. To present the expected semantics, we describe it
in the form of an abstract machine. Before these technical details, we give an intuition
of the desired semantics through a series of examples in pseudo-code. The concept
presented in the section finds a concrete use-case as future additions to OCaml [67].

69

Describing Concisely Effectful Semantics

1 let x = {yield 1; yield 2; 3} in
2 handle x [
3 ret v1: v1,
4 cont v1 k1: let y = resume k1 in
5 handle y [
6 ret v2: v2,
7 cont v2 k2: let z = resume k2 in
8 handle z [
9 ret v3: (100*v1 + 10*v2 + v3),

10 cont v3 _: v3
11]]]

Figure 3.13: Delimited Sequence of Yield

In the latter, the authors define language constructs for handling non-local control flow
by manipulating stacked continuations.

3.5.1 Program Examples

Our first example is described in Figure 3.13. In Line 1, we assign the evaluation
of the delimited computation {yield 1; yield 2; 3} to x (delimited computations are
enclosed by curly braces). In this evaluation, yield 1 suspends the computation and it
returns both the value 1 and the continuation {yield 2; 3}. An output is thus a finished
computation (with an actual value), or a suspension (with a value and a continuation).
The handle operator takes such an output and two expressions, one to be executed if
the computation is finished (field ret), and one if it is suspended (field cont). This can
be seen in line 2 to 4. As x holds a suspension, the cont field is selected. It binds the
value 1 to v1 and the continuation to k1. This continuation is then resumed with the
resume operator. Control is now passed to the continuation k1 which corresponds to
the code {yield 2; 3}. Evaluating this returns once again a suspended computation
with value 2 and continuation {3}, which is bound to y. This suspended computation is
handled one line 5, and the code on line 7 is then called. The continuation is once again
resumed, and this time the delimited computation terminates with value 3. Handling this
output is done on line 8, and as it is finished, the ret case is selected. The expression
(100*v1 + 10*v2 + v3) is then computed, returning 123.

An intuitive way to consider such computations is to imagine them as a stack, where

70

Describing Concisely Effectful Semantics

1 let x ={let y = 1 in let z = yield y in (100*y + 10*z + yield 0)} in
2 handle x [
3 ret v1: v1,
4 cont v1 k1: let y = resume (k1, (v1 + 1)) in
5 handle y [
6 ret v2: v2,
7 cont v2 k2: let z = resume (k2, 3) in
8 handle z [
9 ret v3: v3;

10 cont v3 _: v3
11]]]

Figure 3.14: Two Ways Communication through Yield

the top of the stack is currently being executed. Creating a delimited computation {e}
adds it to the stack and evaluates it. Since e may itself start a delimited computation,
the stack can be arbitrarily tall. Once a computation returns, either suspended because
of yield or finished, the next computation in the stack starts evaluating. If the stack is
empty, then the program ends.

This example shows that the delimited section may communicate values to its con-
text (the next computation in the stack) using yield. We can make this communication
bidirectional by also passing a value when resuming a continuation. We show it in Fig-
ure 3.14. Now each time we resume a continuation, we send back a resumption value.
Indeed, the first yield in the example returns the value 1, which is the value the vari-
able y is bound to, and the rest of the delimited computation as continuation. When we
resume, in line 4, we resume the continuation k1, with a resumption value (v1 + 1),
with v1 bound to 1. The expression let z = yield y in on line 1 creates the binding
[z→ 2]. The delimited section suspends again at the evaluation of yield 0. Line 7 re-
sumes the computation communicating back the value 3. Finally, the delimited section
finishes computing returning to the handler the value 123, returned as final value of the
program.

3.5.2 Syntax and Semantics

To formally capture this semantics, we need to explicitly manipulate stacks of continu-
ations. We thus extend the syntax of the language presented in Section 3.4.

71

Describing Concisely Effectful Semantics

Formal Syntax

. . .

COUT o : ST(EXC(VAL))

CONT(α) κ : α→ CSTACK(α) → α

CSTACK(α) π ::= ε | κα :: πα
VALUE v ::= · · · | (v, κo) | κo

CONTM(α) ρ : CONT(α) → CSTACK(α) → α

EXPR e ::= · · · | {e} | yield e | handle eh [ret xvr:er,cont xvc xk:ec]

| resume(eκ, ev)

...
type out := st<exc<value>>
type cont<a> := a → cstack<a> → a
type cstack<a> = | Nil | Cons (cont<a>, cstack<a>)
type value = | ... | Susp (value, cont<out>) | Cont cont<out>
type contM<a> := cont<a> → cstack<a> → a
type expr = | ... | Run expr | Yield expr
| Handle (expr, (var,expr), (var,var,expr))
| Resume (expr, expr)

CONTM(α) is the monadic type constructor for the continuation monad. Given ρ of
type CONTM(α), κ of type CONT(α) and π of type CSTACK(α), ρ κ π produces a value
of type α, the result type of the program.

The CONT(α) type represents continuations: it is a function that expects a value
and a stack of continuations to return a value. The type CSTACK(α) represents a stack
of continuations. The stack may be empty, denoted with ε, or containing a continuation
and the rest of the stack, represented as κ :: π.

We extend also the VALUE type with suspension depicted as a tuple (v, κ), with
a value v and a continuation κ. We also add to values continuation themselves. For
instance, the evaluation of the sequence (yield e1; e2) returns a suspension value
(v1, k2), where v1 is the result of evaluating e1, and k2 corresponds to the suspended

72

Describing Concisely Effectful Semantics

evaluation of e2.

〈x, κ, π, µ, σ〉e → [κ, π, µ, σ,Ok v]c with v = σ(x) (3.1)
〈e1 + e2, κ, π, µ, σ〉e → 〈e1, (�+ e2) :: κ, π, µ, σ〉e (3.2)
〈n, κ, π, µ, σ〉e → [κ, π, µ, σ,Ok n]c (3.3)
[(�+ e2) :: κ, π, µ, σ,Ok n1]c → 〈e2, (n1 +�) :: κ, π, µ, σ〉e (3.4)
[(n1 +�) :: κ, π, µ, σ,Ok n2]c → [κ, π, µ, σ,Ok n]c with n = n1 +Z n2 (3.5)
[f :: κ, π, µ, σ, Exc]c → [κ, π, µ, σ, Exc]c ∀e2, f 6= try{�}{e2} (3.6)
[try{�}{e2} :: κ, π, µ, σ, Exc]c → 〈e2, κ, π, µ, σ〉e (3.7)
[try{�}{e2} :: κ, π, µ, σ,Ok v]c → [κ, π, µ, σ,Ok v]c (3.8)
〈eclev, κ, π, µ, σ〉e → 〈ecl,�ev :: κ, π, µ, σ〉e (3.9)
[�ev :: κ, π, µ, σ,Ok (x, ex, σcl)]c → 〈ev, (x, ex, σcl)� :: κ, π, µ, σ〉e (3.10)
[(x, ex, σcl)� :: κ, π, µ, σ,Ok v]c → 〈ex, κ, π, µ, (σcl + x→ v)〉e (3.11)
[�ev :: κ, π, µ, σ,Ok (x, ex, σcl, f)]c → 〈ev, (x, ex, σcl, f)� :: κ, π, µ, σ〉e (3.12)
[(x, ex, σcl, f)� :: κ, π, µ, σ,Ok v]c →
〈ex, κ, π, µ, (σcl + ((x→ v) + (f → (x, ex, σcl, f))))〉e

(3.13)

〈el := ev, κ, π, µ, σ〉e → 〈el,� := ev :: κ, π, µ, σ〉e (3.14)
[� := ev :: κ, π, µ, σ,Ok l]c → 〈ev, l := � :: κ, π, µ, σ〉e (3.15)
[l := � :: κ, π, µ, σ,Ok v]c → [κ, π, µ′, σ, Ok ()]c µ(l, v) = µ′ (3.16)
〈{e}, κ, π, µ, σ〉e → 〈e, id, κ :: π, µ, σ〉e (3.17)
[id, κ :: π, µ, σ, r]c → [κ, π, µ, σ, r]c (3.18)
〈yield e, κ, π, µ, σ〉e → 〈e, yield � :: κ, π, µ, σ〉e (3.19)
[yield � :: κ, κ′ :: π, µ, σ,Ok v]c → [κ′, π, µ, σ,Ok (v, κ)]c (3.20)
〈handle eh [ret xvr:er,cont xvc xk:ec], κ, π, µ, σ〉e →
〈eh, handle � [ret xvr:er,cont xvc xk:ec] :: k, π, µ, σ〉e

(3.21)

[handle � [ret xvr:er,cont xvc xk:ec] :: k, π, µ, σ,Ok v]c →
〈er, handle v :: κ, π, µ, (σ + xvr → v)〉e

v pure (3.22)

[handle � [ret xvr:er,cont xvc xk:ec] :: κ, π, µ, σ,Ok (v, k)]c →
〈ec, handle v :: κ, π, µ, (σ + xvc → v + xk → k)〉e

(3.23)

〈resume(ek, ev), κ, π, µ, σ〉e → 〈ek, resume(�, ev) :: κ, π, µ, σ〉e (3.24)
[resume(�, ev) :: κ, π, µ, σ,Ok κ′]c → 〈ev, resume(κ′,�) :: κ, π, µ, σ〉e (3.25)
[resume(κ′,�) :: κ, π, µ, σ,Ok v]c → [κ′, κ :: π, µ, σ,Ok v]c (3.26)

Figure 3.15: Abstract Machine for PCF + state + delimited continuations.

73

Describing Concisely Effectful Semantics

We extend the expressions with the following language constructors:

• yield e, for suspending a computation while returning the evaluation of e;

• {e}, for starting a delimited computation;

• handle eh[ret xvr: er, cont xvc xk: ec], to inspect the result of the evalua-
tion of e, distinguishing between a normal return or a suspension;

• resume (ek,ev), where ek evaluates to a continuation, to resume it with the re-
sumption value computed from ev.

To give a formal definition of our language, we need to switch paradigms, intro-
duced in Section 1.3, as big step semantics are not convenient to describe suspended
computations. To this end, one typically uses context-based reduction semantics or
abstract machines. We choose the latter as the continuations are made explicit in that
model. Our abstract machine is defined in Figure 3.15, with some similar rules omitted.

The abstract machine may be in one of two modes, one for evaluating expressions,
and one for applying continuations. The evaluation mode, written as 〈e, κ, π, µ, σ〉e, eval-
uates e with a continuation κ, a continuation stack π, a state µ and an environment σ.
Similarly, the continuation mode, denoted by [κ, π, µ, σ, r]c applies the continuation κ

to the computed result r. A result is either an exception Exc or a normal result Ok v,
where v is either a pure value as before or a suspension (v, κ).

A continuation is a stack of frames f that contain an expression with a hole. For
instance, when computing the first argument of an addition t1 + t2, the frame is � + t2

(rule 3.2). When evaluating a constant, the machine switches to continuation mode
(rule 3.3). Applying the frame � + t2 to a value n1 switches back to evaluation mode
for t2 with frame n1 + � (rule 3.4). Finally, applying this frame to a value n2 computes
n1 + n2 and passes it to the next frame by staying in continuation mode (rule 3.5).

Rules 3.6 to 3.8 show how exceptions are handled: if an exception is raised, it is
caught by the first try frame. Otherwise, applying a try frame to a value simply passes
control to the rest of the continuation.

Rules 3.9 to 3.13 deal with function and recursive function application. Rules 3.14
to 3.16 show how the heap may be mutated.

We now turn to two programs that involve delimited computations: {1+2} + 3 and
{(yield 1)+2}. The initial configuration of the abstract state machine for the first pro-
gram is 〈{1+2} + 3, id, ε, µ, σ〉e, where id represents the empty continuation. Applying

74

Describing Concisely Effectful Semantics

rule 3.2 results in 〈{1 + 2}, (� + 3) :: id, ε, µ, σ〉e. Next, the machine uses rule 3.17
to enter the delimited computation. It push the current continuation on the continuation
stack and starts evaluation 1+2 with a new empty continuation, resulting in the con-
figuration 〈1+2, id, ((� + 3) :: id) :: ε, µ, σ〉e. The addition is then evaluated as above,
before reaching configuration [id, ((� + 3) :: id) :: ε, µ, σ,Ok 3]c. The delimited compu-
tation is finished as only the empty continuation remains, so the previous continuation
is restored with the computed value (rule 3.18): [(� + 3), id, ε, µ, σ, Ok 3]c. The com-
putation then proceeds to the final state [id, ε, µ, σ, Ok 6]c.

The second program starts with configuration 〈{(yield 1)+2}, id, ε, µ, σ〉e. The deriva-
tion proceeds in a similar way as the previous example till we reach the yield with a
configuration 〈yield 1, (�+2) :: id, id :: ε, µ, σ〉e. Now by applying rule 3.19, we first
evaluate the constant expression 1 in the configuration 〈1, yield � :: (�+2) :: id, id ::
ε, µ, σ〉e. Hence, we end up in the continuation configuration [yield � :: (�+2) ::
id, id :: ε, µ, σ,Ok 1]c. Rule 3.20 restores the continuation at the top of the stack as
current continuation (here id), and a suspension as result:
[id, ε, µ, σ, Ok (1, (�+2) :: id)]c. As the suspension is not resumed, the computation
ends here and the addition is not performed.

We next turn to two examples using the handle construct.

(* A *)
handle ({1 + 2} + 3) [

ret v1: v1,
cont _ _: skip

]

(* B *)
handle {yield 1 + 2} [

ret v1: v1,
cont v1 k1: let x = resume (k1,v1 + 3) in

handle x [
ret v2: v2,
cont v2 _: v2]]

Consider the following as initial configuration for listing A.

〈handle ({1 + 2} + 3) [ret v1:v1,cont v1 _:v1], id, ε, µ, σ〉e

By applying rule 3.21, the expression {1 + 2} + 3 is first evaluated, resulting in a
continuation configuration of the form:
[handle � [ret v1:v1,cont _ _:skip] :: id, ε, µ, σ, Ok 6]c. This time the evaluation
is not yet complete, as the current continuation holds the remainder of the handle
construct. The value in the continuation configuration is 6, a pure value, so the next

75

Describing Concisely Effectful Semantics

thing to do is to evaluate the expression in the ret field of the handler. By rule 3.22,
this result in 〈v1, id, ε, µ, (σ + v1 → 6)〉e. The next step accesses the environment—
rule 3.1-to lead to a final configuration [id, ε, µ, σ, Ok 6]c.

We now turn to listing B. After evaluating the yield construct, we reach the following
configuration.

[handle � [ret v1:v1,cont v1 k1:...] :: id, ε, µ, σ, Ok (1, (�+ 2) :: id)]c

The evaluation of the expression {yield 1 + 2} returns a suspension which is a pair
with a value 1 and the reminder of the delimited section computation (� + 2) :: id.
As the suspension is not a pure value, the evaluation proceeds by applying rule 3.23
on the latter configuration. We obtain the following, where σ′ is σ + (v1 → 1) + (k1 →
(�+ 2) :: id).

〈let x = resume(k1,v1 + 3) in ..., id, ε, µ, σ′〉e

We first apply the evaluation rule for let (not shown), yielding this configuration.

〈resume(k1,v1 + 3), (let x = � in ...) :: id, ε, µ, σ′〉e

We apply rule 3.24 to start the evaluation of k1, then rule 3.25 to start the evaluation of
v1 + 3. We then reach the following configuration, the first square of the resume is part
of the stored continuation k1, whereas the second square is waiting for the resumption
value.

[resume((�+ 2) :: id,�) :: (let x = � in ...) :: id, ε, µ, σ′, Ok 4]c

Resuming a continuation means evaluating in, passing to it the last value computed.
The current continuation ((let x = � in ...) :: id) is itself stored at the top of the
stack. After applying rule 3.26, we obtain the following configuration.

[(�+ 2) :: id, ((let x = � in ...) :: id) :: ε, µ, σ,Ok 4]c

After evaluating the addition and applying rule 3.18 for the identity continuation, we

76

Describing Concisely Effectful Semantics

type output := reader<contM<st<exc<value>>>>
val eval (e:expr) : output =
branch ...
or let Add (e1,e2) = e in

let Nat n1 =@ eval e1 in
let Nat n2 =@ eval e2 in
let n = add(n1,n2) in ret (Nat n)

or let Run e' = e in ();%pushCont
eval e'

or let Yield e' = e in
let v =@ eval e' in susp v

or let Handle (eh,(xvr,er),(xvc,xk,ec)) = e in
let v =@ eval eh in
branch let v = getPure v in

envExt(xvr, v);%local eval er
or let (v,k) = getSusp v in

envExt(xvc, v);%local envExt(xk, (Cont k));%local
eval ec

end
or let Resume (ek,ev) = e in

let kv =@ eval ek in
let v =@ eval ev in
let k = getCont kv in resume k v

end

Figure 3.16: Yield Language in Skel

obtain the following configuration.

[let x = � in handle x [ret v2: v2, cont v2 _: v2], id, ε, µ, σ, Ok 6]c

The rest of the derivations follows the pattern of the first handle example, leading
to a final configuration [id, ε, µ, σ, Ok 6]c.

3.5.3 A Stateful PCF Language with Yield and Exceptions in
Skel

We now present the Skel formalization of the language described in Section 3.5.2.
As before, we change the meaning of monadic binders and returns, to keep the main

77

Describing Concisely Effectful Semantics

description of the semantics unchanged.

Our semantics is described in Figure 3.16. We highlight the addition rule, showing
it is not modified. As before, the behavioral complexity of dealing with continuations for
previously existing constructs is delegated to the monadic binders binder @ := bind
and binder ? := exccont.

The bind function works as follows. It expects a computation w in the monad
reader<contM<st<exc<a>>>>, a function f to apply after the computation, and it should
return a term in the same monad. To do so, we first request (using λ abstractions) the
environment s, the continuation k to apply after w and f, the current continuation stack
ks, and the current state m. We then execute w with a new continuation, detailed below,
the stack ks, and the state m. The intuition behind the new continuation is that it should
proceed with f if the result is not an exception, passing k to it as continuation, otherwise
it should return the exception using k. The new continuation is defined as follows. It first
take a computation vse in the state and exception monad, the current stack ks1, and
the current state m1. It then applies vse to m1 to obtain an exception value ve and a
new state m2. The exception value is then inspected. If it is an exception, it is passed
(embedded in the state monad) to the continuation k with stack ks1 and updated state
s2. Otherwise, it is a value v which we pass to f, with the environment s, continuation
k, stack ks1, and state m2.

The behavior of extcont is similar, reversing the two inner branches. Note that we
could simplify the code for the binders by removing some eta-expansions for state m
and stack ks, we keep them for clarity. We show the code of the bind function below.

78

Describing Concisely Effectful Semantics

val bind<a> (w:reader<contM<st<exc<a>>>>)
(f:a → reader<contM<st<exc<a>>>>) :
reader<contM<st<exc<a>>>> =

λs:env →
λk:cont<st<exc<a>>> →
λks:cstack<st<exc<a>>> →
λm:state → w s (λvse:st<exc<a>> →

λks1: cstack<st<exc<a>>> →
λm1:state →

let (ve,m2) = vse m1 in
branch let Exc = ve in

k (λm3:state → (Exc<a>,m3)) ks1 m2
or let Ok v = ve in

let w' = f v in w' s k ks1 m2
end) ks m

The rule for a new delimited computation {e} is defined in the Run branch. It pushes
the current continuation on the continuation stack and runs e using the identity contin-
uation (Similar to rule 3.17). To simplify the code, we use the monadic binder pushCont
to push the continuation. We show the code below.

val id (v:out)(ks:cstack<out>):out =
λm:state →
branch let Nil = ks in v m
or let Cons (k, ks') = ks in k v ks' m
end

val pushCont (_:())(f:()→output):output =
λ_:env → λk:cont<out> → λks:cstack<out> →

f () id (Cons<out>(k,ks))

This snippet also contains the code for the identity continuation, which returns the
final value if the stack is empty, otherwise it passes this value to the next continuation
on the stack, as in rule 3.18 of Figure 3.15.

79

Describing Concisely Effectful Semantics

The Yield rule is straightforward with our monad. We first evaluate its argument
expression to v, then we call susp to suspend the current computation k. This function
extracts the continuation k' at the top of the stack and calls it with the value Susp(v,k).
We present its definition in the following listing.

val susp (v:value):output =
λ_:env ->
λk:cont<out> →
λks:cstack<out> →
let Cons(k',ks') = ks in
k' (λs:state →(Ok<value>(Susp (v,k)),s)) ks'

The Handle construct defines two cases, depending on the result of the evaluation
of eh. In the pure case v, the environment s is extended with a binding xvr → v and
we evaluate er. This case corresponds to the abstract machine rule 3.22. In the sus-
pension case (v,k), the environment is extended by xvc → v and xk → k, then er is
evaluated. This follows rule 3.23.

Finally, Resume(ek,ev) is the constructor for resuming a suspended computation.
We first evaluate ek to a continuation k (rule 3.24) and ev to a value v (rule 3.25). Then,
the resume k v call performs the behavior of rule 3.26. Basically, it puts k as current
computation to evaluate, and pushes the actual current continuation on top of the stack.
The continuation k is resumed with the value v and the new stack. We show the code
below.

val resume (kv:cont<out>)(v:value):output =
λ_:env ->
λk:cont<out> →
λks:cstack<out> →
kv (λm:state →(Ok<value> v,m))

(Cons<out> (k,ks))

In Figure 3.17, we show a final example of program. In this example, we interleave
state updates in a delimited computation and in the calling code. This program shows
that the state is global. Communication between delimited code is bidirectional, both
in an explicit way, through suspensions and resumption values, and in an implicit way

80

Describing Concisely Effectful Semantics

1 let x = { let y = &1 in
2 let x1 = !y in
3 let x2 = !(yield y) in
4 yield(y := 1);
5 (100*x1 + 10*x2 + (!y)) } in
6 handle x [
7 ret v1: v1,
8 cont r k1:
9 r := 2;

10 handle (resume (k1,r)) [
11 ret v2: v2,
12 cont _ k2:
13 r := !r + 2;
14 handle (resume (k2,r)) [
15 ret v3: v3,
16 cont v3 _: v3]]]

Figure 3.17: Ping-Pong State Updates through Yield

through state updates. The result of the program is again 123.

Once the user generate via necroml the file .ml, it can just use
the same instantiation file defined for the stateful PCF (Sec-
tion 3.3).

Instantiation

3.6 Related Work

There are many criteria to evaluate the formalization of a programming language: it
should be easy to write and to reuse, it should be close to the specification if there
is one, it should be executable to be tested, and it should be usable, for instance to
prove properties of programs or the language itself, or to mechanically manipulate
the semantics. In this Chapter, we do not directly address the last two points, but we
remark that skeletal semantics can be translated to OCaml interpreters using [42], and
to Coq formalizations using [50]. Recent work uses this approach to derive a certified

81

Describing Concisely Effectful Semantics

interpreter [1].

The formalization of a language may take several forms: it can be given as an
interpreter, it can be defined in a proof assistant, or it can be described in a framework
providing a meta-language and tools to manipulate the formalization.

An interpreter may be considered to be a formalization of a language if it is writ-
ten in a clear way and if the host language has itself a clear semantics. Consider for
instance engine262 [22]: the code is very close to the specification of JavaScript, but
the host language is JavaScript itself, which is quite complex. In fact, engine262 uses
JavaScript’s generators to formalise them,2 hence it does not clarify how they work.
Implementations as specifications can be useful to give an intuition of the semantics
of a language, but they do not provide a simple way to manipulate the semantics or to
prove properties.

Many languages have been directly formalised in Coq [70], such as C in the setting
of CompCert [39] or JavaScript [6], while others have been formalised in Isabelle/HOL [29],
such as ML in the setting of CakeML [37]. Using extraction mechanisms, some of these
semantics can be made executable. These works are impressive achievements, but
they suffer from two shortcomings. First, replicating them for a new language requires
a significant effort. Second, the semantics defined cannot be easily manipulated, for
instance to mechanically transform them.

To alleviate these issues, one may use a framework in which the language is de-
scribed, and from which implementations or formal definitions in proof assistants may
be derived. These generated implementations may not be as elegant as when done
by hand, but they can be easily adapted when needed, for instance switching from a
big-step semantics to a small-step one, or going from a shallow embedding to a deep
embedding. This is the approach followed by skeletal semantics, as well as many other
frameworks such as Ott [66], Lem [55], and K [63]. The distinguishing feature of skele-
tal semantics is how simple the meta-language is: it does not come with any prede-
fined semantics nor does it try to deal with complex syntactic features such as binders.
The cost of this choice is that a skeletal semantics description of a language may re-
quire more work—complexity of the approach relies in monadic function definitions-,
but the benefits is that skeletal semantics can be easily extended in the language itself,
through the use of monads as illustrated in this Chapter. This is because skeletal pro-

2. https://github.com/engine262/engine262/blob/206928332324f0ae95485aee9784dbf19e525b36/
src/abstract-ops/generator-operations.mjs#L245

82

https://github.com/engine262/engine262/blob/206928332324f0ae95485aee9784dbf19e525b36/src/abstract-ops/generator-operations.mjs#L245
https://github.com/engine262/engine262/blob/206928332324f0ae95485aee9784dbf19e525b36/src/abstract-ops/generator-operations.mjs#L245

Describing Concisely Effectful Semantics

grams are almost in Administrative Normal Form [64], thus removing the need to use a
CPS transformation to have access to continuations [24]. It is not clear how one would
add delimited computations to the previously cited frameworks. Another benefit, pre-
sented in Chapter 2, is the existence of a simple API to manipulate skeletal semantics,
enabling the creation of many tools based on the same input language.

83

Chapter 4

A FAITHFUL DESCRIPTION OF

ECMASCRIPT IN SKELETAL SEMANTICS

Contents
4.1 ECMAScript Algorithms in Skel 87

4.1.1 ECMAScript . 87

4.1.2 Challenges of the Formalization 88

4.1.3 Completion Record and the ECMAScript Error Handling (?!)
monad . 97

4.1.4 A Control-Flow monad . 100

4.1.5 A Real Example in Skel . 103

4.1.6 Current Status . 106

4.2 Interpreter Evaluation . 109

4.2.1 Interpreter Instantiation . 109

4.2.2 Evaluation . 110

4.3 Related Work . 113

« Ora et labora »
- Saint Benedict

Introduction

This chapter shows that the Skeletal Semantics framework [8, 54] is suitable for mech-
anizing a real-world specification. To this end, we describe the ongoing formalization

85

A Faithful Description of ECMAScript in Skeletal Semantics

of ECMAScript—formal semantics of JavaScript-algorithms in Skel. Differently from
Chapter 3, the document presenting the language defines the evaluation as algorithms,
allowing us to show that our approach is suitable also to mechanize this type of defini-
tion. We show that the resulting description is very close to the specification. In addition,
we have formalized enough algorithms to be able to run simple JavaScript programs
and thus test our approach.

The project is the first formalization of a real-world programming language in Skel,
the meta-language used to write Skeletal Semantics. This work strongly supported
the evolution of Skel, from the introduction of the notion of polymorphism to the ad-
dition of monads and first-class functions. This evolution is motivated by the need to
have a formal semantics and a language expressive enough to capture the behav-
ior of ECMAScript algorithms, ensuring a visual and a behavioral match between the
formalization and the specification.

Our main effort is presenting the description of the mechanization of a core EC-
MAScript algorithm in Section 4.1, where we also present some crucial features of
Skeletal Semantics, which significantly improve the readability of the mechanization,
inspired by the approach presented in Chapter 3. In Section 4.2, we evaluate our ap-
proach, and finally, in Section 4.3, we discuss previous work on JS semantics.

In this chapter we present:
• the design of a concise, readable, maintainable and textu-

ally close writing approach to model complex algorithmic
specifications in Skel, namely ECMAScript.

• an ongoing formalization of ECMAScript in Skel.

• an instantiation of a JavaScript interpreter generated from
a semantic framework.

• some executions of small JavaScript programs.

The contributions of this chapter are part of a national [34] and an inter-
national(PPDP’22) [33] publication.

Contribution

86

A Faithful Description of ECMAScript in Skeletal Semantics

4.1 ECMAScript Algorithms in Skel

In this section, we illustrate how we formalize ECMAScript(ES) algorithms in Skel.
In Section 4.1.1, we provide some context about the ES specification. Then, in Sec-
tions 4.1.2, 4.1.3, and 4.1.4, we introduce methods to use the tiny Skel language for
handling and combining ECMAScript’s side-effects, ending up in a structured and sys-
tematic way for describing the algorithms. In Section 4.1.5, we present the formaliza-
tion of the GetValue1 Internal Method as representative of our approach. The GetValue
method is one of the most referenced in ES, and is also enough complex to describe
our systematic approach to formalizing of ES algorithms. Finally, in Section 4.1.6, we
detail the current state of the work.

4.1.1 ECMAScript

ECMAScript is a large vernacular specification written in an imperative style. It is di-
vided into 28 chapters and six appendices. Despite its complexity and verbosity, it
provides a complete specification of the behavior of JS. However, some choices are
left to the implementation, so a formalization must consider these unspecified pieces.
We will explain later how we deal with them.

After an introductive part in chapters 1 to 5, where the notational and algorith-
mic conventions are defined, the document can be divided into three main functional
groups.

Chapters 6, 7, and 9 give a taxonomy of ES Data Types and Values, providing each
taxon with a definition of its operations and related invariant, followed by the definition
of abstract operations (type conversion, comparison, object, and iterator operations),
the runtime environment, and detailed classification of the type Object and its internal
methods. This block of chapters gives a complete overview of the execution environ-
ment in which an ES program should be executed. Formalizing any language construct
first requires a formalization of this execution environment.

Chapter 8 defines some syntax-directed operations. The central part of the spec-
ification, chapter 10 to chapter 16, describes the actual ES programming language.
Chapters 10 and 11 focus on lexical units. Language constructs are given in chapters
12 to 15, where each construct is given with its syntactic specification and its eval-

1. https://tc39.es/ecma262/2021/#sec-getvalue

87

https://tc39.es/ecma262/2021/#sec-getvalue

A Faithful Description of ECMAScript in Skeletal Semantics

uation. These describe expressions, statements, functions, and scripts. Modules are
defined in chapter 16.

Chapters 17 to 27 introduce the default components of the Global Object. In addi-
tion, a memory model is given in Chapter 28.

4.1.2 Challenges of the Formalization

The first step of the mechanization in the purely functional Skel language is to deal with
the imperative nature of the specification, raising two issues.

First, there is a notion of an implementation-dependent state that can be mutated.
More precisely, we define by state the aggregation of all the imperative data manipu-
lated by the specification. We design it as a record that includes the Execution Context
stack, a strictness boolean flag, and a pool of Maps holding Execution Contexts, Envi-
ronment Records, Realms, Script Records, and Objects. In the Skel artefact, we have
fully defined both the state and its helper functions. To remain close to the imperative
specification, we design a Skel state monad in Figure 4.1. This monad lets us implicitly
pass the state around, similarly to what we showed in Section 3.3. Note that we could
have left these “implementation-dependent” elements of the specification unspecified,
providing an implementation to this type and its function after generating an artefact.

Second, the specification often breaks the usual control flow by having a return in
the middle of algorithms. We can capture such control flows by using nested branches
(see below), but this significantly reduces the legibility of the mechanization. We thus
define a control flow monad to simplify the mechanization. In addition, the specification
itself introduces operators that behave much like an exception monad to deal with
break, function returns, or exceptions.

We thus propose in Section 4.1.3 an exception monad that captures the behavior of
ES monadic shorthands ? and !,2 and in Section 4.1.4, its extension to handle control-
flow features. We claim the combination of the state monad with the control-flow and
the exception ones dramatically simplifies our code, making the Skel description of ES
algorithms easy to write and maintain. The result is close to the specification, as shown
in Section 4.1.5.

2. https://tc39.es/ecma262/2021/#sec-returnifabrupt-shorthands

88

https://tc39.es/ecma262/2021/#sec-returnifabrupt-shorthands

A Faithful Description of ECMAScript in Skeletal Semantics

type state (* specified in the artefact *)
type st<a> := state → (a, state)

val st_bind<a,b> (v:st<a>) (f:(a → st)) : st =
λs: state →
let (v', s') = v s in f v' s'

val st_ret<a>: (v: a) : st<a> = λs: state → (v, s)

Figure 4.1: State Monad in Skel

Example of Implementation Dependent Choices: The State

The state is fully defined in the artefact, represented as a Skel record with eight fields.
In the following paragraphs, we present a broad explanation of how we implemented
data stored in the state. Most of the elements in the ES memory are left “implemen-
tation dependent”, which gives much space for misinterpretation or different correct
implementations. We tried to study the manuscript to describe these structures by re-
trieving information from the ES document.

Execution Contexts An execution context is an ES specification data structure used
to keep track of the runtime evaluation of executable code by an ES implementation.
In the document, there is a broad description of what concretely is this specification
device. We quote its definition.

ECMAScript

An execution context contains whatever implementation specific state
is necessary to track the execution progress of its associated code.

This definition is complemented with a table providing a broad definition of how one
can implement it. Indeed the table defines four fields:

• Code evaluation state: “Any state needed to perform, suspend, and resume eval-
uation of the code associated with this execution context”.

• Function: “If this execution context is evaluating the code of a function object, then
the value of this component is that function object. If the context is evaluating the
code of a Script or Module, the value is null.”

89

A Faithful Description of ECMAScript in Skeletal Semantics

• Realm: “The Realm Record from which associated code accesses ECMAScript
resources.”

• ScriptOrModule: “The Module Record or Script Record from which associated
code originates. If there is no originating script or module, as is the case for the
original execution context created in InitializeHostDefinedRealm, the value is null.”

Accordingly to the definition in the table, in Skel, we define a record defining eight
fields, one for each bullet of the previous list plus three extra fields not defined in the
table but accessed and modified by some algorithmic steps in the document.

type executionContext = (
CodeEvaluationState: codeEvaluationState,
_EC_Function_: maybeNull<loc_Object>,
Realm : option<loc_realmRecord>,
ScriptOrModule : maybeNull<scriptOrModule>,
VariableEnvironment : option<loc_EnvironmentRecord>,
LexicalEnvironment: option<loc_EnvironmentRecord>,
Generator: maybeNull<loc_Object>

)

The type maybeNull is an option value similar to the classic maybe type in Haskell or
the option type in OCaml. The difference is that, in this case, the options for maybeNull
are between being MN_Null, referring to the ECMAScript value null, or being the poly-
morphic constructor MN_NotNull of type a, to say that the value is not null. Throughout
the formalization, we define types similar to this to create an option between an EC-
MAScript pure value and different kinds of data. Another option is to reify by defining
a sum type containing all the types in the formalization. This choice has been ignored
as it is complicated to give a precise number of the types in the ES document as it
is untyped. The type executionContext is extended with three extra fields retrieved
while reading and writing the formalization. Making choices happens quite often as the
internal data structures are broadly defined, being “implementation dependant”. We
reference the execution contexts in the Skel implementation. This structure is stored in
a mapping in the state itself, relating locations to execution contexts.

90

A Faithful Description of ECMAScript in Skeletal Semantics

Execution Context Stack In the specification, the execution context stack is defined
textually as:

ECMAScript

The execution context stack is used to track execution contexts. The
running execution context is always the top element of this stack. A
new execution context is created whenever control is transferred from
the executable code associated with the currently running execution
context to executable code that is not associated with that execution
context. The newly created execution context is pushed onto the stack
and becomes the running execution context.

In Skel, we do not have any implementation of this data structure, so we chose to
represent the type stack as an unspecified type. We also define the type helper func-
tions to manipulate the stack. The execution contexts held in the stack have a status
field. In case of an execution context suspension, some algorithmic steps of the spec-
ification may be suspended too. In this case, before resuming, the latter suspended
execution context resumes the suspended code, possibly altering the state, and then
evaluates the algorithmic steps following its resumption. This mechanism is quite com-
plex and, in the context of the thesis, causes problems in handling the execution context
stack, as continuations manipulate the normal LIFO behavior of the stack data struc-
ture. Indeed, in the following text, we present sentences of the specification which hint
at the more complex control flow of the algorithmic steps.

ECMAScript

Evaluation of code by the running execution context may be suspended
at various points defined within this specification. Once the running ex-
ecution context has been suspended a different execution context may
become the running execution context and commence evaluating its
code. At some later time a suspended execution context may again be-
come the running execution context and continue evaluating its code
at the point where it had previously been suspended. Transition of the
running execution context status among execution contexts usually oc-
curs in stack-like last-in/first-out manner. However, some ECMAScript
features require non-LIFO transitions of the running execution context.

We plan to change the actual formalization, including the work shown in Section 3.5.

91

A Faithful Description of ECMAScript in Skeletal Semantics

An execution context can be seen as a delimited code section, which can yield, pro-
ducing a non-linear behavior of the executable specification code. In Section 4.1.6, we
will describe how these non-LIFO manipulations of the execution context stack can in-
validate some of our ES formalization features, such as a simple function call with at
least one argument.

Environment Records The Environment Record is a specification type used to de-
fine the association of Identifiers to specific variables and functions based upon the
lexical nesting structure of ECMAScript code. Usually, an Environment Record is as-
sociated with some specific syntactic structure of ECMAScript code, such as a Func-
tionDeclaration, a BlockStatement, or a Catch clause of a TryStatement. Each time
such code is evaluated, a new Environment Record is created to record the identifier
bindings created by that code.

This record, merely a specification mechanism, cannot be accessed and modified
by programs, as it is considered internal to an interpreter. The specification does not
provide directions on how to implement this data structure as it is unnecessary, giving
free will in describing it. As the project’s goal is a loyal formalization of the specifica-
tion, we tried to collect every possible information about the execution contexts in the
document to provide a reference implementation. We must say that the specification
provides a classification of this record.

This record can be a Declarative Record, used to define the effect of ECMAScript
language syntactic elements such as FunctionDeclarations, VariableDeclarations, and
Catch clauses that directly associate identifier bindings with ECMAScript language val-
ues (Null, Undefined, Boolean, Number, BigInt, String, Symbol, and Object). A Declara-
tive Record can be a Function Environment Record, storing information about bindings
for the top-level declarations within that function and establishing a new this binding.
Also, it captures the state necessary to support super method invocations, or a Module
Environment Record, containing the bindings for the top-level declarations of a mod-
ule. This work focused more on the semantics of evaluating the scripts rather than JS
modular code and modules. Hence, we did not represent the latter category. Then, the
record can be an Object Environment Record or a Global Environment Record. For
the first category, the record defines the effects of some ECMAScript elements that
associate identifier bindings with the properties of some object.
An example can be the relation between Object Environment Records and the With-

92

A Faithful Description of ECMAScript in Skeletal Semantics

Statement. This Environment Record type associated with a with statement can pro-
vide its bound object as an implicit argument of a function call. This argument is the
this value of the called function.
The second record type is used for the script’s global declarations. It may be prepop-
ulated with identifier bindings and includes an associated global object, the standard
library of JavaScript.

The Environment Records have a field called [[OuterEnv]], a mechanism that en-
ables the hoisting feature—default behavior of moving all declarations to the top of
the current scope. This mechanism is similar to accessing properties via the proto-
type chain, a link between objects that establishes a hierarchy between objects and
prototypes that define them.

The record we design is a record containing all the fields of all the possible cat-
egories of environment records. Then, we can identify the type of a given environ-
ment record by defining an extra field providing the type. We decided not to rely on
the typical duck-typing3 of languages such as JavaScript, which is not convenient be-
cause of Skel being a strongly typed language. Non-mandatory fields are defined as
option-type fields, according to our understanding of the specification. The record is
too big to be reported in this thesis. It can be inspected at the following URL: https:
//gitlab.inria.fr/skeletons/jskel/-/blob/matches/semantics/js.sk#L4479.

We also provide getter and setter functions that manipulate the mapping between
locations (numbers) and environment records in the state. In the Skel implementation,
we always reference the environment records, resolving the mapping only if we need
to manipulate the referenced record’s contents.

In the record, we define a field for each one of the internal methods. These are
higher-order fields. An instance of the Environment Record has each function instanti-
ated with its location, allowing one to apply the method by only passing the arguments
defined in the specification. For example, given an environment record er, if we want to
call its internal method _Method_ with parameter par, we do er._Method_ par. Implicit
in the call is the location of the record er.

Realm Records This record consists of a set of intrinsic objects, an ECMAScript
global environment, all of the ECMAScript code executing within the scope of that
global environment, and some other associated resources.

3. “If it walks like a duck, and it quacks like a duck, then it must be a duck.”

93

https://gitlab.inria.fr/skeletons/jskel/-/blob/matches/semantics/js.sk#L4479
https://gitlab.inria.fr/skeletons/jskel/-/blob/matches/semantics/js.sk#L4479

A Faithful Description of ECMAScript in Skeletal Semantics

The intrinsic objects are the standard library of the language. They are the proto-
type of all the possible features that a custom-defined object might have. We design
the intrinsic object field as a record in which each field is labeled after the specification
name of each intrinsic object (%ObjectName%) and has the object’s location as its value.
Then, the record contains a reference to the environment of the global object, the first
environment created while instantiating program interpretation. The ECMAScript code
field has the AST of the program currently being evaluated. Then there are additional
pieces of information, such as the [[TemplateMap]], which we do not currently con-
sider, and the [[HostDefined]] field, providing some additional features to the language,
extending what the standard defined. For example, NodeJS implements the server lan-
guage extension as host-defined features. These custom features are more related to
implementations of the language rather than the standard itself. We do not consider
this field in our formalization.

In the implementation, we map locations to Realm Records, as with the other
records stored in the state. Then the state field is a map. Realm Record does not have
internal methods, but it is often manipulated. For that, we design a set of accessors
and modifiers to manipulate the actual Realm Record stored in the state.

Script Records The Script Record is a specification mechanism containing informa-
tion about the evaluation of a script. It is implemented similarly to the other records.
It references the Realm Record in which the script is evaluated, the environment in
which the top-level bindings of the script are stored, the ES AST representing the pro-
gram, and some host-defined additional information related to the script evaluation. Its
implementation goes straightforwardly with the one of the Environment Record.

Objects ECMAScript objects are not fundamentally class-based such as those in
C++, Smalltalk, or Java. Instead, objects may be created in various ways, including
via a literal notation or via constructors. These create objects and execute code that
initializes all or part of them by assigning initial values to their properties. Each con-
structor is a function that has a property named “prototype”, which is used to implement
prototype-based inheritance and shared properties.

Like the Environment Records, also the objects are categorized. We implement the
object type as a record containing all the object types’ fields and properties, turning
on and off an object field via option-like type values. All the internal methods store the

94

A Faithful Description of ECMAScript in Skeletal Semantics

object’s location, providing uniformity to the overall formalization approach. We again
do not rely on the duck-typing by adding an extra field describing the type of the instan-
tiated object. In Figure 4.2, we present the object’s internal representation {n : 42}.
This output is produced after interpreting the program via the OCaml interpreter gen-
erated from Skel. The field _ObjectType_ shows object type, an OrdinaryObject. The
binding of the property n to 42 is the first element of the property list—field _Properties_.
Each internal method of the object is instantiated with a this value, a reference to the
object itself.

We handle the objects stored in the state as we did with the previous records,
making the state field _Objects_ a mapping between locations and the actual type
encoding objects.

In the artefact, we provide a complete description of all the categories of objects.
We do not list them here, as presenting them does not provide additional informa-
tion on the approach to formalizing the ES document. Nevertheless, the type def-
inition is available at https://gitlab.inria.fr/skeletons/jskel/-/blob/matches/
semantics/js.sk#L1714.

A Local Environment The local environment is not defined in the document but is
necessary for our approach. The specification style is pseudo-algorithmic. It often hap-
pens that a new name not existing in the upper scope of an algorithmic step is created
inside an inner scope and then propagated to the top-level contexts. The specification
implicitly defines a hoisting method in the context of single ES steps. We add to the
state a local environment to hoist these bindings outside the scope of an algorithmic
step. In Figure 4.3, we provide an example of these algorithmic steps. In the first step,
a new name bar is set to false if foo is true. In the second step, the bar is inspected,
but in the case of foo being false, generally, the specification considers the bar value
undefined. We use the local environment first to set all the inner-scope instantiated
names as undefined. Then we manipulate these names in this special context, outside
the skeletal semantics’ one.

95

https://gitlab.inria.fr/skeletons/jskel/-/blob/matches/semantics/js.sk#L1714
https://gitlab.inria.fr/skeletons/jskel/-/blob/matches/semantics/js.sk#L1714

A Faithful Description of ECMAScript in Skeletal Semantics

{__ThisMode__ = VNone; __StringData__ = VNone; __Strict__ = VNone;
__SourceText__ = VNone; __SetPrototypeOf__ = <fun>;
__ScriptOrModule__ = MN_Null; __Realm__ = VNone;
__ProxyTarget__ = VNone; __ProxyHandler__ = VNone;
__InitialName__ = VNone; __GetPrototypeOf__ = <fun>;__Prototype__ =
MN_NotNull (ObjectLocation_Intrinsic IntrinsicObjectPrototype);

__PreventExtensions__ = <fun>; __ParameterMap__ = VNone;
__OwnPropertyKeys__ = <fun>; __Name__ = VNone;
__IsExtensible__ = <fun>;__IsClassConstructor__ = VNone;
__HomeObject__ = VNone; __HasProperty__ = <fun>;
__GetOwnProperty__ = <fun>; __GeneratorState__ = VNone;
__GeneratorContext__ = VNone; __GeneratorBrand__ = VNone;
__FormalParameters__ = VNone; __Extensible__ = VSome T;
__Environment__ = VNone; __Env__ = VNone; __ECMAScriptCode__ = VNone;
__Delete__ = <fun>; __DefineOwnProperty__ = <fun>;
__ConstructorKind__ = VNone; __Construct__ = VNone; __Call__ = VNone;
__BoundThis__ = VNone; __BoundTargetFunction__ = VNone;
__BoundArguments__ = VNone; __AsyncGeneratorState__ = VNone;
Properties =
List.(::)
({_PropertyKey_ = Str "n";

Descriptor =
{__Writable__ = VSome T;
__Value__ = VSome (Numeric (Number (Float 42.)));
__Set__ = VNone;__Get__ = VNone; __Enumerable__ = VSome T;
__Configurable__ = VSome T}},

[]);
ObjectType = OrdinaryObject; _O_Set__ = <fun>; _O_Get__ = <fun>;
ConstructorSteps = VNone; _AdditionalSlots_ = List.[]}

Figure 4.2: Internal representation of the object {n : 42}.

1. If foo is true

• Let bar be false

2. If bar is . . .

Figure 4.3: Example of algorithmic steps in which a local environment is necessary.

96

A Faithful Description of ECMAScript in Skeletal Semantics

type completionType=
| Normal
| Break
| Continue
| Return
| Throw

type completionValue<a>=
| Ok a
| Abruption maybeEmpty<value>

type completionTarget:=
maybeEmpty<string>

type completionRecord<a> =(_Type_: completionType,
Value: completionValue<a>,
Target: maybeEmpty<string>)

Figure 4.4: Skel Formalization of ES Completion Records

4.1.3 Completion Record and the ECMAScript Error Handling
(?!) monad

Most ES operations do not directly return values, they return completion records4 in-
stead. A Completion Record describes the runtime propagation of values and control
flow. This record is composed of three fields: a kind (either a result, a break out of a
loop, a return of a function, or an exception being thrown), an optional value, and in the
case of a break or continue, a target.

In theory, a completion record should only hold ES language values (Null, Unde-
fined, Boolean, Number, BigInt, String, Symbol, and Object) or be empty. In practice,
it is used to return many other constructions.5 If we consider the getValue(V) abstract
operation, the completion record given as input can hold either a Value or a Reference
in its _Value_ field. Many such examples litter the specification. Hence, we consider
completion records to be polymorphic in what their “value” field holds. We declare such
completion records as type completionRecord<a>. Figure 4.4 defines the types cor-
responding to the contents of this record: the completionType holds the kind of the
record, and the completionValue is either an Ok polymorphic constructor that con-
tains the value of a non-abrupt computation or an abruption. An ES abrupt Completion
Record is one whose type is not normal. For instance, a throw record has an exception

4. https://tc39.es/ecma262/2021/#sec-completion-record-specification-type
5. In early 2022, the specification changed to accept any value and not just language values, see

https://github.com/tc39/ecma262/pull/2547

97

https://tc39.es/ecma262/2021/#sec-completion-record-specification-type
https://github.com/tc39/ecma262/pull/2547

A Faithful Description of ECMAScript in Skeletal Semantics

type out<a> =
| Success completionRecord<a>
| Anomaly anomaly

type anomaly =
| AbruptAnomaly completionRecord<()>
| StringAnomaly string
| NotImplemented

Figure 4.5: Out and Anomaly Declarations

object as completion value, a return record has an optional value, and a break record
has empty. Due to the aforementioned specification issues where non-values may be
returned, we store the optional value in a separate constructor to be able to return it
independently of the completion type. Finally, the completionTarget holds the optional
string representing the target, typically used for a break to a label. An ES completion
record for values has type completionRecord<maybeEmpty<value>>.

We next define a type out (Figure 4.5) composed of two constructors, Success for
successful computations and Anomaly for anomalies, which intuitively corresponds to
a failure of the specification, e.g., when an assertion does not hold. A successful com-
putation is one that returns an ES completion record, either Normal or Abrupt. The
Anomaly constructor captures incorrect computations. In the specification, anomalies
can be raised by assertion failures or when it is explicitly written that an abstract opera-
tion call must not return an Abruption. The specification authors informally guarantee
that these failures never occur.

The Anomaly constructor is of type anomaly. It has three type constructors:
AbruptAnomaly holding a completion record in case an evaluation returns an unex-
pected abruption, StringAnomaly that contains textual information about an anomaly—
when an assertion of the specification is broken or when an implementation-dependent
operation fails, and the NotImplemented signaling that we have not yet implemented
some feature.

ES abruptions are propagated through an abstract method called ReturnIfAbrupt.
Basically, this method gets a completion record and either returns the value of the
Value field in case of a normal completion, or it propagates the abruption.

In cases of an abstract operation or a recursive evaluation, the specification uses
the prefix ? to indicate that ReturnIfAbrupt has to be applied to the resulting comple-
tion. This operator is a monadic bind for a variant of the classic exception monad. The
other operator used in the specification is !: it behaves similarly to ? on a normal result,
but it asserts an abruption cannot occur. We thus model it as transforming an abrup-

98

A Faithful Description of ECMAScript in Skeletal Semantics

out q〈α,β〉 v f out b〈α,β〉 v f

let v′ =%st bind v

Success? let Success v′′ = v′

let Anomaly e = v′

retAnomaly〈β〉(e)

Normal?

let e = AbruptAnomaly
(abruptionCoerce〈α,()〉

v′′)

let e =
abruptionCoerce〈α,β〉 v

′′
let v′′′ = getNormal〈α〉 v

′′

f v′′′
st ret〈out〈β〉〉 (Success e)

` v′ : out〈α〉

no yes

` e : anomaly

` v′′ : completionRecord〈α〉

no

` e : anomaly

yes

` v′′′ : α
no

` e : completionRecord〈β〉

Figure 4.6: The Model of ? and !.

tion into an anomaly. These behaviors are reflected in the flow-chart presented in Fig-
ure 4.6, presenting respectively out_q〈α,β〉(red arrows) for the ?, and out_b〈α,β〉(orange
arrows) for the !.

We define them as the monadic binders of the combination of st and out. We put
the state monad outside as we want to return a state in the case of an exception.

val out_q<a,b>: st<out<a>> → (a→st<out>) → st<out>
val out_b<a,b>: st<out<a>> → (a→st<out>) → st<out>
val out_ReturnIfAbrupt<a,b> : out<a> → (a → st<out>) → st<out>
binder ?out = out_q
binder !out = out_b

We also define getters (getNormal, getAbrupt, . . .) to extract values from a
completionRecord, and return functions (retAnomaly, retAbrupt, retNormal, . . .) for
successful and anomaly computations. Note the use of the abruptionCoerce operation
that is only defined for completion records that are abruptions. It is the identity, but it
changes the type parameter of the completion record. What follows shows how faithful
is the translation of these types of algorithmic steps in Skel. The annotation τbar is the
type of bar.

99

A Faithful Description of ECMAScript in Skeletal Semantics

type cf<a> =
| ReturnControl a
| ContinueControl

val cf_ret<a> (v:a) → cf<a> =
ReturnControl<a> v

val cf_cont<a> : cf<a> =
ContinueControl<a>

val cf_bind<a> : cf<a> →
(() → cf<a>) →
cf<a>

binder @cf := cf_bind

val cf_res<a> : cf<a> → (a → a) →
a

binder <cf := cf_res

Figure 4.7: The controlFlow type with binders and setters

1. let bar be ? AbstractOperation(foo)

2. Return bar

let bar =?out abstractOperation(foo) in
retNormal<τbar> bar

4.1.4 A Control-Flow monad

As said earlier, the ES specification uses imperative control flow, such as returning
in the middle of an algorithm. In Figure 4.7, we introduce the type cf<a>. It repre-
sents computations that can either continue or that terminate with a result of type
a. It comprises two constructors: ReturnControl, to return a result of type a, and
ContinueControl to continue the execution.

We define a monadic binder cf_bind, a function cf_res to extract the value from
a cf<a> term, a function cf_ret to break the control-flow and return a value, and a
function cf_cont to signal the execution should continue.

We illustrate in Figure 4.8 the translation of algorithmic steps in Skel, with and with-
out the control-flow monad. We recall that we use the forms let True = ... in ...
to test whether a value is true, and let False = ... in ... to test whether it is
false. We also write foo;@ bar for let _ =@ foo in bar. Despite the slight overhead
in notation, the control-flow approach is closer to the algorithmic steps and can be con-
sistently applied to deal with the typical case of a conditional that returns without an
else branch. One can achieve a similar behavior without the control flow monad at the

100

A Faithful Description of ECMAScript in Skeletal Semantics

1. If foo is true Return 1

2. If bar is true Return 2

3. If baz is true Return 3

4. Return 4

(* n o c o n t r o l - f l o w m o n a d *)
branch let True = foo in 1
or let False = foo in

branch let True = bar in 2
or let False = bar in

branch let True = baz in 3
or let False = baz in 4
end

end
end

(* c o n t r o l - f l o w m o n a d *)
let result =<cf

branch let True = foo in cf_ret<int> 1
or let False = foo in cf_cont<int>
end;@cf

branch let True = bar in cf_ret<int> 2
or let False = bar in cf_cont<int>
end;@cf

branch let True = baz in cf_ret<int> 3
or let False = baz in cf_cont<int>
end;@cf

cf_ret<int> 4
in result

Figure 4.8: Code with and without Control Flow Monad.

cost of nested branching. It is possible to avoid the nesting of branching by hoisting all
the branches at top-level. This results in the following code.

101

A Faithful Description of ECMAScript in Skeletal Semantics

branch let True = foo in 1
or let False = foo in let True = bar in 2
or let False = foo in let False = bar in let True = baz in 3
or let False = foo in let False = bar in let False = baz in 4
end

The reason previous conditions are repeated is because there is no guarantee that
the evaluation of a branching will consider branches in declaration order. In addition,
using a collecting semantics (where all branches are considered) would give the wrong
result if we did not restate all conditions.

We define st<cf<out<a>>> type as the combination of the three monadic types, and
accordingly, the definitions of the binders and return functions as bind (@), cf_out (<),
cont, and ret. Our general approach is to encapsulate all the algorithmic steps in this
type, returning an st<out<a>> at the end of every function that may raise an exception.
To this end, we start each algorithm with let result =< to enter the full monad with
control, and we exit the control monad at the end of the algorithm with in result.
Figure 4.9 gives a variant of Figure 4.8 with exceptions. Notice that the only thing that
changes is the first step and the use of the appropriate monadic binders for the type
st<cf<out<a>>>.

Despite the closeness to the algorithmic steps, the latter figure, in lines 3, 5, and 7,
shows redundancy of code in the or branches. Indeed, each time the condition is not
satisfied, we have to explicitly state that the evaluation continues. To avoid doing so, we
define two boolean binder-like functions, ifTrue and ifFalse, for introducing partiality
in branchings. The ifTrue binder, denoted as @t, evaluates the rest of the branch when
given the True value and directly returns a ContinueControl when given the False
value. The following code applies the ifTrue binder to the example in Figure 4.9.

let result =<
branch foo;@t throw<int> fooError end;@
branch bar;@t ret<int> 2 end;@
branch baz;@t ret<int> 3 end;@
ret<int> 4

in result

102

A Faithful Description of ECMAScript in Skeletal Semantics

1. If foo is true throw FooError

2. If bar is true Return 2

3. If baz is true Return 3

4. Return 4

1 let result =<
2 branch let True = foo in throw<int> fooError
3 or let False = foo in cont<int> () end;@
4 branch let True = bar in ret<int> 2
5 or let False = bar in cont<int> () end;@
6 branch let True = baz in ret<int> 3
7 or let False = baz in cont<int> () end;@
8 ret<int> 4
9 in result

Figure 4.9: Variant of the Figure 4.8 with Exceptions.

4.1.5 A Real Example in Skel

In this section, we show the effectiveness of the design choices introduced in the pre-
vious sections. We proceed by presenting the formalization of the GetValue abstract
method as an example. This method, presented at the top of Figure 4.10, is one of
the most used methods in the specification, as it is often called after the evaluation of
syntactic constructors of the language. It takes V as input, a completion record contain-
ing either a value or a reference, and returns a value as output. In a nutshell, if V is a
value, GetValue returns it, and if it is a reference, GetValue acts like a binding resolver
to obtain a primitive value from an Object or an Environment Record.

The reference6 type is a record that contains four fields, including the [[Base]] field
that holds an environment record or an ES value and three other fields not relevant
here. Our mechanization in Skel specifies references as records too.

We now describe step-by-step how we formalize this method (the code is collected
as a single function at the bottom of Figure 4.10). The type mixing values and ref-
erences is the specified type valref defined as | Val value | Ref reference. The
argument of GetValue thus has type out<valref>. We highlight the code that does not

6. https://tc39.es/ecma262/2021/#sec-reference-record-specification-type

103

https://tc39.es/ecma262/2021/#sec-reference-record-specification-type

A Faithful Description of ECMAScript in Skeletal Semantics

1. ReturnIfAbrupt(V).

2. If Type(V) is not Reference, return V.

3. If IsUnresolvableReference(V) is true, throw a ReferenceError exception.

4. If IsPropertyReference(V) is true, then

a Let base be V.[[Base]].
b Let baseObj be ! ToObject(base).
c Return ? baseObj.[[Get]](V.[[ReferencedName]], GetThisValue(V)).

5. Else,

a Let base be V.[[Base]].
b Assert: base is an Environment Record.
c Return ? base.GetBindingValue(V.[[ReferencedName]], V.[[Strict]]).

1 (* 1*) let v =%returnIfAbrupt v in
2 (* 2*) branch valref_Type(v,T_Ref);@f let Val v = v in ret<value> v end;@
3 (* N *) let Ref v = v in
4 (* 3*) branch isUnresolvableReference(v);@t
5 throw<value> referenceError end;@
6 (* 4*) branch let True = isPropertyReference(v) in
7 (* a *) let R_Val base = v.base in
8 (* b *) let baseObj =! toObject(base) in
9 (* N *) let baseObj =/o baseObj in

10 (* c *) let thisVal =? getThisValue(v) in
11 (* c *) let r =? baseObj._Get_(v.__ReferencedName__, thisVal) in
12 (* c *) ret<value> r
13 (* 5*) or let False = isPropertyReference(v) in
14 (* a *) let base = v.base in
15 (* b *) assert_true<(reference,type_ref)> ref_Type (base, T_R_ER);@
16 (* N *) let R_ER base = base in let base =/er base in
17 (* c *) let r =? base._GetBindingValue_(v.__ReferencedName__,
18 v.__Strict__) in
19 (* c *) ret<value> r
20 end

Figure 4.10: The ECMAScript’s GetValue(V) and its Skel formalization

correspond to the ES algorithmic steps, i.e., code that is an overhead of the Skel for-
malization. It is necessary for typing reasons (extracting a value from a variant type) or

104

A Faithful Description of ECMAScript in Skeletal Semantics

transforming a heap location into its contents.

The first step of the abstract method applies ReturnIfAbrupt on V. In case it is
an abruption, the method propagates the completion record to the caller. Otherwise, it
extracts the completionValue. To model this, we use the /\%/returnIfAbrupt monadic
binder. We could directly write let v =@ returnIfAbrupt<(valref,value)>(v), but
this requires specifying the polymorphic type components, which is not necessary for
binders as they are inferred. We are working on extending the type inference to make
polymorphic annotations unnecessary and thus be closer to the specification. If V is a
normal completion, the newly bound V will have type valref.

The next ES step inspects the type of V. If it is not a reference, hence a value, we
return it. Otherwise, the @f implicitly continues the execution. Then, in Skel ’s line 3, we
can safely extract v from the Ref type constructor. Now v has type reference.

Step 3 follows the same pattern as step 2: An unresolvable reference is one that has
Undefined or Null as [[Base]]. In this case, a ReferenceError is thrown. In Skel, we
proceed straightforwardly. If the reference is unresolvable, we throw a referenceError
of type value. The throw<a> function takes an error object constructor as an argument.
Then, it returns an abrupt completionRecord that contains as a completionValue a
reference error object.

In case the reference is resolvable, step 4 inspects whether V is a property refer-
ence. A property reference is a reference that has a non-null, defined base value of
type value. Step 4.a.assigns the base value stored into the reference to the variable
V. In line 6 of the Skel formalization, we access the record field. In the same line, we
make an inline pattern matching, expecting the base value to be of type value (R_Val).
Now base is a primitive value, meaning one of type Boolean, String, Symbol, BigInt,
or Number. Then, line 7 describes Step 4.b. The primitive value in base is cast to an
object. The method ToObject, transforms a primitive value into an object, raising an
exception when the value is Undefined or Null. This operation call is prefixed by !,
meaning that this method should never raise an exception. Indeed, dealing with prim-
itive objects prevents from getting an exception7 as a result of the cast operation. In
Skel, the result of toObject is an object location. In line 8, we take the object value
from the state with the monadic binder /o. Finally, Step 4.c. returns the result of the
baseObj’s [[Get]] object internal method applied to a name representing the refer-
enced value’s name and to a value resulting from the call to the GetThisValue method.

7. In case of an exception, a specification anomaly is then raised.

105

A Faithful Description of ECMAScript in Skeletal Semantics

In Skel, we split this step into three. First, the method getThisValue is called on the
reference v, assigning its result to the variable thisVal. Note that we make explicit the
call to getThisValue, as Skel requires function application to consider fully computed
terms as arguments. The call to getThisValue is not pure as the assertion there8 is not
captured by typing (although we have checked that the reference is indeed a property
reference at step 4). We thus use the ? binder, in that case, to extract the pure value or
propagate the abruption, if any. Second, once baseObj is set, we call its _Get_ internal
method. This method takes v.__ReferencedName__ and thisVal as arguments. The
call is prefixed by ?, meaning, again, that if an abrupt result happens, it is propagated
to the caller. Finally, we return the result of the call.

If V is not a property reference, then base must be an Environment Record. The
Skel else branch, namely Step 5., follows the structure of Step 4. Notice that in 5.b,
there is an assertion that we capture in line 14. It can be read as “assert that is true
that the reference base-value base is an Environment Record”. The ref_Type is a
function that takes a tuple of type (reference, type_ref), returning a boolean. The
type_ref type constructor T_R_ER represents references with Environment Records
as base values. The assert_true is a function that takes as arguments a function f
and its arguments a. It propagates an anomaly when the application f a is False or
continues to compute in case of a True judgment.

As with most of the algorithms in the Skel mechanization, we need to return a result
that is out of the control-flow monad type. The following piece of code thus surrounds
the whole algorithm.

let result =< (* GetValue's algorithmic steps *) in
result

4.1.6 Current Status

We defined a three-steps entry-point to the mechanization. First, we create the environ-
ment in which the code will be evaluated by initializing the interpretation environment9.
This operation creates the Realm, a record to which all the evaluated ECMAScript
code is associated, the Intrinsic Objects, the main Execution Context, the Global Envi-

8. https://tc39.es/ecma262/2021/#sec-getthisvalue
9. https://tc39.es/ecma262/2021/#sec-initializehostdefinedrealm

106

https://tc39.es/ecma262/2021/#sec-getthisvalue
https://tc39.es/ecma262/2021/#sec-initializehostdefinedrealm

A Faithful Description of ECMAScript in Skeletal Semantics

ronment, and the Global Object, which can be considered as the standard library of JS.
Second, we parse the script10, and finally, we evaluate the script11. To execute these
three steps, it is required a significant implementation of the specification, mostly from
[20, Chapters 6 to 10, 18, 19, 20]. Once the runtime environment of the specification is
defined, extending the Skel mechanization comes strightforward.

Concerning the language itself, we defined in Skel a significant subset of ES Syntax
and its evaluation. Unfortunately, no existing parser of JS provides a faithful represen-
tation to ES Syntax. We thus had to choose between implementing our own parser or
translating the AST provided by on-the-shelf parsers. We chose the latter. More pre-
cisely, we use a parser that conforms to the SpiderMonkey ’s Parser API12, which is
followed by all parsers we have found. We chose the Flow Parser13 library because it
is written in OCaml, which is the language we can instantiate our interpreter into, and
because it is used to manipulate JS in industrial setting. When instantiating the inter-
preter, we define transformations that, given a Flow AST, produces a well-typed ES
AST.

We implemented most of the Statements, and LexicalDeclarations([20, Chapter
14]). Indeed, these two syntactic production define what a script is([20, Section 16.1]).

For what concerns the Expressions([20, Chapter 13]) of the language, we formal-
ized most of the chapter. We are still working on the semantics of some CallExpres-
sions and of the function definitions([20, Sections 13.3, 15.5, 15.6, 15.8, 15.9]), as their
evaluation explicitly manipulates continuations of the interpreter code. This prevents us
from start testing interpreter via the ES262 test suite, as function calls are required for
testing. Nevertheless, understanding how the function calls are specified led to the dis-
covery of some places where the manipulation of execution contexts were not properly
described or handled. 14

Intuitively, an ECMAscript function call first evaluates the actual arguments, bind-
ing them to local variables, before executing the core of the function in this new
environment. The algorithmic steps for processing all the inputs of a function and
then binding them in the function environments are defined in the internal method

10. https://tc39.es/ecma262/2021/#sec-parse-script
11. https://tc39.es/ecma262/2021/#sec-runtime-semantics-scriptevaluation
12. https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Parser_API
13. https://github.com/facebook/flow
14. https://github.com/tc39/ecma262/issues/2400, https://github.com/tc39/ecma262/

issues/2409

107

https://tc39.es/ecma262/2021/#sec-parse-script
https://tc39.es/ecma262/2021/#sec-runtime-semantics-scriptevaluation
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Parser_API
https://github.com/facebook/flow
https://github.com/tc39/ecma262/issues/2400
https://github.com/tc39/ecma262/issues/2409
https://github.com/tc39/ecma262/issues/2409

A Faithful Description of ECMAScript in Skeletal Semantics

(a) For each element E in list, do

(i) Perform ? Yield(E)

(b) Return undefined

Figure 4.11: yieldable abstract closure

FunctionDeclarationInstantiation15. In step 24 of this method, there is a call to
CreateListIteratorRecord16 with argumentsList as a parameter, a list of the ar-
guments of the function. An abstract closure closure, shown in Figure 4.11, is
then defined. It corresponds to a delimited computation that yields the next ar-
gument each time it is resumed (the ? in the code is a monadic binders that
intuitively propagates an exception if one happens). The specification then cre-
ates an iterator through the call of the method CreateIteratorFromClosure17.
Parameters of the call are closure, that is a piece of code that will be asso-
ciated to the iterator iterator, and %IteratorPrototype%, prototype of the object
that the method creates. The object is extended with some extra internal slots
(step 3-OrdinaryObjectCreate18) [[GeneratorState]], [[GeneratorContext]], and
[[GeneratorBrand]]. A new execution context is then created, similar to using Run
in Section 3.5, and GeneratorStart19 is called in this context. In the particular
case of function calls, this method sets a call to closure as a resumption handler.
The iterator is then suspended, and CreateIteratorFromClosure returns it. Then,
CreateListIteratorRecord binds it to iterator and it returns an iterator record with it-
erator as the iterator object and %GeneratorFunction.prototype.prototype.next% as
next method of the (suspended) iterator. Back to FunctionDeclarationInstantiation,
the next step is the call to IteratorBindingInitialization20. This uses the iterator to repeat-
edly call its next method, which itself calls GeneratorResume21. This makes a context
switch that puts the generator context as the running execution context, and it resumes
it by calling the closure stored in the context code evaluation state. This is similar to

15. https://tc39.es/ecma262/#sec-functiondeclarationinstantiation
16. https://tc39.es/ecma262/#sec-createlistiteratorRecord
17. https://tc39.es/ecma262/#sec-createiteratorfromclosure
18. https://tc39.es/ecma262/#sec-ordinaryobjectcreate
19. https://tc39.es/ecma262/#sec-generatorstart
20. https://tc39.es/ecma262/#sec-runtime-semantics-iteratorbindinginitialization
21. https://tc39.es/ecma262/#sec-generatorresume

108

https://tc39.es/ecma262/#sec-functiondeclarationinstantiation
https://tc39.es/ecma262/#sec-createlistiteratorRecord
https://tc39.es/ecma262/#sec-createiteratorfromclosure
https://tc39.es/ecma262/#sec-ordinaryobjectcreate
https://tc39.es/ecma262/#sec-generatorstart
https://tc39.es/ecma262/#sec-runtime-semantics-iteratorbindinginitialization
https://tc39.es/ecma262/#sec-generatorresume

A Faithful Description of ECMAScript in Skeletal Semantics

module IntMap = Map.Make (Int)

module rec T : sig
type bigInt = Big_int.t
and float = Float.t
and int = Int.t
and 'a intMap = 'a IntMap.t
and 'a list = 'a List.t
and string = String.t

end = T

Figure 4.12: TYPES module instantiation

calling resume in Section 3.5. Running the closure results in the call to the Yield in it,
providing the next argument.

Understanding how the function calls are specified led to the discovery of some
places where the manipulation of execution contexts were not properly described or
handled22,23. This resulted into some clarifications and bug fixes, such as the creation
of a new execution context for the generator.24 Links to the specification above are
to the current version where the clarifications are included. To read the 2021 version,
replace https://tc39.es/ecma262/ with https://tc39.es/ecma262/2021/.

4.2 Interpreter Evaluation

4.2.1 Interpreter Instantiation

To instantiate an interpreter generated by necroml, we need to provide an implemen-
tation to the unspecified types and terms.

Regarding the unspecified types, although the ES specification in Skel consists of
15k LOC, only 6 types need a definition. We show the instantiation of the TYPES module
in Figure 4.12. Notice that we could have left unspecified four data types out of six, by
writing a library defining the list and intMap in Skel.

22. https://es.discourse.group/t/execution-context-suspension-and-resumption/756
23. https://github.com/tc39/ecma262/issues/2400
24. https://github.com/tc39/ecma262/pull/2398

109

https://tc39.es/ecma262/
https://tc39.es/ecma262/2021/
https://es.discourse.group/t/execution-context-suspension-and-resumption/756
https://github.com/tc39/ecma262/issues/2400
https://github.com/tc39/ecma262/pull/2398

A Faithful Description of ECMAScript in Skeletal Semantics

Concerning terms, we have 450 of these unspecified elements in our skeletal se-
mantics. We instantiate some of the unspecified functions—the ones that the inter-
preter uses-, leaving the others returning NotImplemented. Finally, we define a parsing
method to transform a JavaScript program into an ECMAScript AST. To this end, we
rely on the Flow Parser AST and convert the result to the (much more complex) AST
used by ECMAScript. We are then ready to run examples.

As we said in Section 4.1.6, we have gradually implemented core functionalities of
the ES to crash test our specification language Skel and see if it is expressive enough
to represent such complex semantics faithfully.

4.2.2 Evaluation

We propose two ways of evaluating this work. The first one is to compare our work
with previous ones (Framework Comparison), and the second is to describe what JS
programs we can execute (Program Execution).

4.2.2.1 Framework Comparison

One of the goals of this work is to show visual closeness and maintainability of the pro-
posed formalization. We compare our work with KJS [56] and JSCert [6] by considering
the formalization of of the GetValue internal algorithm. Note that both these formaliza-
tions are based on ECMAScript 5.1, an older version of the standard. The ECMAScript
standard tripled in size since then and its algorithms are much more complex, including
explicit continuation manipulation.

KJS is a set of rewriting rules representing the ES semantics. This means that
given an internal method, there are a subset of whole rewriting rules set, matching the
method’s behaviour. To simplify, we can say that the left hand side component of the
rule is rewritten into the right hand side when the conditions allow it. The correctness
of KJS is attested by a great coverage of the ES262 test suite. Consider the GetValue
algorithmic steps in ECMAScript 5.125. One can notice the differences between the
method of the 2021 standard and the one of version 5.1. The old rule can be split in
four cases defined by the types that the GetValue’s parameter V can take. Indeed, V
can be either a reference, an object, the undefined value, or a primitive value. In Fig-
ure 4.13, we present the KJS implementation. The 4 rules concisely cover all the cases.

25. https://262.ecma-international.org/5.1/#sec-8.7.1

110

https://262.ecma-international.org/5.1/#sec-8.7.1

A Faithful Description of ECMAScript in Skeletal Semantics

rule GetValue(@Ref(E:Eid,N:Var, Strict:Bool)) =>
GetBindingValue(E,N,Strict)

rule GetValue(@Ref(O:Oid,P:Var, _)) => Get(O,P)
rule GetValue(@Ref(Undefined, P:Var, _)) =>

@Throw(@ReferenceError("GetValue",P))
rule GetValue(@Ref(B:Primitive,P:Var, _)) =>

GetPrimitive(B,P)

Figure 4.13: GetValue 5.1 written in the K framework.

In case of V being a reference, the GetValue is rewritten in a GetBindingValue. If it is
an object, the definition is rewritten to an object Get. In the latter two cases, instead
of using the method IsUnreasolvableReference and HasPrimitiveBase, the authors
define two rules, one in which V is Undefined, which corresponds to an unresolvable
reference, and the other by matching the input parameter with a Primitive label, repre-
senting a subtype of the ES value type.

We argue our Skel formalization is better for the following reasons. First, we are very
close to the textual description of the standard. In fact, when translating it to Skel, we do
not need to fully understand its behavior. This suggests that an automated translation,
as done in [59], could be achieved. Second, the formalization has not been updated
since 2015. Third, the formalization in itself is not easily manipulated by external tools.
In contrast, our Skel definition can be used to generate a Coq description, which is not
possible with K.

We show a part of the formalization of GetValue in JSCert in Figure 4.14.26 The for-
malization is a Coq shallow embedding of ES, in pretty-big-step semantics style [15].
As said before, the two main issues with JSCert are maintainability and usability. Re-
garding the latter, the semantics is too big to be used in the context of Coq induction
and inversion (Coq runs out of memory). Using a deep embedding (where the recursive
evaluation of the language semantics is not captured using Coq’s induction) would help
avoid the issue, but doing so requires rewriting the semantics. As Coq descriptions are
not easily manipulated by outside tools, this motivated us to redo the semantics in a
framework where this issue could be circumvented, hence the current work.

To conclude, neither KJS nor JSCert are easily maintainable, as their approaches
are too much embedded in the tools they are using. By having a simple but powerful

26. Full code at https://github.com/jscert/jscert/blob/master/coq/JsPrettyRules.v#L5112

111

https://github.com/jscert/jscert/blob/master/coq/JsPrettyRules.v#L5112

A Faithful Description of ECMAScript in Skeletal Semantics

(** Get value on a reference (returns value) (8.7.1) *)

| red_spec_ref_get_value_value: forall S C v, (* Step 1 *)
red_spec S C (spec_get_value v) (ret S v)

| red_spec_ref_get_value_ref_a: (* Steps 2 and 3 *)
forall S C r (y:specret value),

ref_is_unresolvable r ->
red_spec S C (spec_error_spec native_error_ref) y ->
red_spec S C (spec_get_value r) y

| red_spec_ref_get_value_ref_b_has_primitive_base:
(* Steps 2 and 4 *)
forall v S C r o1 (y:specret value),

ref_is_property r ->
ref_base r = ref_base_type_value v ->
ref_has_primitive_base r ->
red_expr S C (spec_prim_value_get v (ref_name r)) o1 ->
red_spec S C (spec_get_value_ref_b_1 o1) y ->
red_spec S C (spec_get_value r) y

Figure 4.14: GetValue 5.1 in JSCert

specification language, we are able to systematically write code that is very close to
the standard and easy to maintain. We migrated from ECMAScript 2020 to ECMAScript
2021 in less that a week of work, by only changing the algorithmic steps that have been
modified.

4.2.2.2 Program Execution

After instantiating the interpreter, we started to test it gradually. We show, in Fig-
ure 4.15, an example of such a test program: a non-trivial manipulation of an object, by
defining an object and modifying its properties via property accessors. In the first line
of the program, we define an array by assigning to the variable a an array literal with
elisions. The right part evaluate as an array object value that does not have a mapping
to values in positions 0, 2, 3, and 5. The indices 1, 4, and 6 are respectively mapped
to the string "one", the string "two", and to the number 3. Then, in the second line, we
create a new ordinary object and assign it to the variable o. We define two properties in

112

A Faithful Description of ECMAScript in Skeletal Semantics

1 let a = [,"one",,,"two",,3];
2 let o = new Object();
3 o.name = "o";
4 o["vec"] = a;
5 (o["vec"])[0] = "modified in line 5";
6 o.vec[0] == a[0]

Figure 4.15: Example of JS program

the following lines. The property "name" is mapped to the string value "o". We write the
access to the property in dot notation style, where o.name where o.name is a way to
access the property "name". As the objects are partial mappings from property names
to values, when a property is not yet defined, inspecting it would result in an undefined
result. Then, the property "vec" maps to a reference to the array object a, instantiated
in the second line of the program. We modify the value of the property "vec" at index 0
by assigning it the string "modified in line 5". Note that we used different kinds of
property accessor to test most of them. By modifying the value of the "vec" property,
we add a property 0 to the referenced array object a. The property 0 is a mapping to
the string value. The evaluation of the comparison expression in line 6 result in true.

We wrote different programs, similar in size, to test non-trivial features of the se-
mantics of expressions and statements we implemented. The programs results are
correct.

4.3 Related Work

We first motivate why we chose JavaScript(JS) to evaluate the mechanization of a
language using Skeletal Semantics. The three defining features of JavaScript in this
regard are the following. First, it is complex, hence a good candidate to see if our
solution scales up. Second, it has a precise specification, called ECMAScript (ES),
and a large suite of test cases, hence we do not have to guess what its semantics is.
And third, it has been mechanized in several frameworks [56, 25, 6, 59, 58, 57], which
facilitates the comparison to other approaches.

There has been a previous experience to mechanize JS in Coq, called JSCert [6].
Defining a semantics in a proof assistant is the most direct way of mechanizing it.

113

A Faithful Description of ECMAScript in Skeletal Semantics

It has a major drawback, however. If the design choices are not correct, one cannot
manipulate the mechanization to modify it, and one must instead redo it using different
choices. JSCert is a pretty-big-step [15] Coq definition of ECMAScript 5.1. It consists
of an inductive definition, a recursive definition, and a correctness proof showing they
match. The goal of the inductive definition is to prove properties of the language and of
JS programs, whereas the recursive definition can provide an OCaml interpreter using
Coq’s extraction mechanisms. The mechanization is fairly close to the specification
for people who can read Coq code, and the test suite can be run using the extracted
interpreter. JSCert has two flaws, unfortunately. It is difficult to maintain, as one has to
update two formalizations and a proof. In addition, and most importantly, JSCert uses
Coq’s induction to represent the recursive evaluation of the language. This shallow
embedding results in a definition of a semantics as an inductive definition consisting
of about 1000 rules, which is too large to prove properties of the language. Some
authors of JSCert built upon this work to derive systematic and reusable definition of
semantics [9, 8].

An other approach to the formalization of JavaScript is to translate it to a much sim-
pler language, whose semantics is less complex. This is done for instance in the setting
of [25], where JavaScript programs are translated to a simple language called λJS. This
work is based on ECMAScript versions 3 and 5. The authors empirically show that the
translation of JS programs is correct by running the JS test suite. As this formalization
is not textually close to the specification, it is difficult to assess whether it actually cap-
tures the language beyond running the tests. In addition, the translation has not been
updated since 2015, in particular it does not include the many changes to the core
data structures and algorithms from ECMAScript 6 (or ECMAScript 2015). Attempts to
formalize λJS in Coq27 uncovered several issues with the desugaring process that were
not witnessed by testing. It did not lead to a formal mechanization of the language.

Alternatively, one may use an existing framework designed to describe and ma-
nipulate semantics. KJS [56] is a complete mechanization of ECMAScript 5.1 in the K
framework. It provides an executable interpreter of JS directly from the semantics with
no additional effort. This framework is not suitable to analyse the language itself as
it only provides tools to reason about the execution of programs. In addition, there is
no evidence that the mechanization can be easily maintained: although JS has sig-
nificantly evolved since ES 5.1 (the specification has more than doubled in size), the

27. https://github.com/tilk/LambdaCert

114

https://github.com/tilk/LambdaCert

A Faithful Description of ECMAScript in Skeletal Semantics

mechanization has not been updated. Indeed, works such as JSExplain [16], a JS in-
terpreter written in OCaml, show that updating an ES formalization is far from being a
trivial issue. The power of the K framework comes at the cost of additional complexity
in the description of languages in it, which hinders maintainability and closeness to the
specification.

115

Part III

Distributed Semantics

117

Chapter 5

AN EXECUTABLE SEMANTICS FOR

DISTRIBUTED IOT APPLICATIONS

Contents
5.1 Context . 121

5.2 WEBI: A Formal Semantics to IoT Applications 123

5.2.1 The WEBI Configuration . 123

5.2.2 Semantics . 127

5.2.3 Example: The Cost of Non-Determinism 145

5.3 A Scheduler for WEBI . 155

5.3.1 Semantics . 155

5.3.2 Equivalence of the Scheduler and the WEBI Semantics 168

5.3.3 Executing the Example of Section 5.2.3 in Skel 177

« Mi muovo! So parlare! Cammino! »
- Pinocchio, C. Collodi

Introduction

In Chapter 4, we applied the approach presented in Chapter 3 to describe a Skele-
tal Semantics of JavaScript’s specification, handling the effects of the language by
carefully choosing monads and combining them, hiding most of the information in the
meta-environment of Skel. Nevertheless, despite JavaScript’s intrinsic complexity, the
model is mainly deterministic. Indeed, except for the for-in construct, which loops on
a set of ECMAScript’s values, the rest of the language constructs behave sequentially.

119

An Executable Semantics for Distributed IoT Applications

Essentially, until now, we dealt with formalizing programming languages, reasonably
complex to represent but deterministic.

In this chapter, we investigate Skel from another perspective. We want to explore
and study a non-deterministic model with more behavioral complexity than the lan-
guages we described before. In particular, we write a Skeletal Semantics of a model
representing the behavior of distributed systems. The model represents interactions
among the server tier, the client tier, and smart devices, describing the Internet of
Things (IoT). Indeed, connected devices interact with the physical world, possibly chang-
ing its state. The goal is to derive an interpreter from this model’s Skeletal Semantics
and study its usability.

To this end, we present first a small-step semantics of a distributed model we call
WEBI. We also set design choices for writing an interpreter-oriented version of WEBI in
Skel. This model is complex in its evolution, producing possibly infinite execution traces.
Hence, the interpreter we generate using necroml does not scale, possibly never pro-
ducing an output on non-trivial programs. Thus, to execute and study it, we tame its
non-deterministic behavior. We define constraints and a scheduling policy for making
it executable. The scheduling policy we describe exploits interleaving invariants be-
tween the tiers’ code execution. These invariants permit factorizing different equivalent
traces by permuting trace elements when possible. We say that two different traces are
equivalent if they manipulate the world’s state in the same way—a world manipulation
results from an interaction between devices and the real world. For example, turning on
a connected heater in the living room changes the temperature read by a thermome-
ter, making this new digital value representative of the world state. Then, the order of
these actions matters. Opening a window before or after activating the heater changes
the state of the world. We define these invariants to preserve the ordering between
sensitive world manipulations resulting from the tiers’ code execution.

This chapter has a double interest:

1. Show that Skeletal Semantics and Skel easily capture non-deterministic models,

2. Pave the way to further formal analyses on distributed IoT applications.

We structure the chapter in the following way. Section 5.1 provides context and dis-
cusses the previous work. Section 5.2.1 introduces the model by discussing its compo-
nents, and Section 5.2.2 introduces both WEBI’s small-step and Skel semantics. More-
over, we present a design for the evaluation function that exploits Skel features for writ-

120

An Executable Semantics for Distributed IoT Applications

ing non-deterministic semantics. Afterward, we show how to derive a non-deterministic
concrete interpretation, using a particular interpretation monad and a way to obtain col-
lecting semantics. Section 5.2.3 shows a simple example of an application that does
not scale on this model, forcing us to tame the non-deterministic behavior. The moti-
vation comes with the writing of the evaluation function, which is ineffective with the
collecting behavior, essential for moving towards applying analysis techniques. Hence,
Section 5.3.1 proposes a scheduler for WEBI, which bounds the evaluation function’s
non-determinism. We conclude with Sections 5.3.2 and 5.3.3, respectively presenting
an equivalence theorem for the scheduled semantics alongside the sketch of its proof.

• a Skel formalization of WEBI.

• a scheduler for constraining the non-determinism of the
model.

• a proof sketch of equivalence of the scheduler semantics.

• an OCaml interpreter of the model.

Contribution

5.1 Context

Several questions related to security and safety spawned as soon as the interest of
private companies grew toward IoT devices and applications. Many IoT products are
available on the market, making such distributed systems part of our daily life. Every
device connected to the internet can be attacked, making academic studies on IoT
relevant. In this context, formal methods and the security scientific community are in-
terested in finding ways to detect and prevent security flaws. To summarize, we can
factorize the scientific question into the following: How can an attacker exploit these
systems to gain information or control?

Many works define desugaring of the semantics of existing languages for analyzing
IoT applications. For example, SaiNT [13], Soteria [14], and ProvThings [74], among
many others, perform static analysis techniques on these distributed programs that rely
on real-world languages, such as Groovy [2]. These works aim to detect information

121

An Executable Semantics for Distributed IoT Applications

about security flaws concerning this software category. Their analysis techniques are
standard, comprehending mostly taint analysis and some abstract interpretation and
symbolic execution. Nevertheless, the focus of these works is more directed toward
security. Indeed the languages they formalize fit the security purpose, not aiming to be
either a correct or a complete implementation of the semantics.
Moreover, if one wants to use the same techniques of analysis in other languages
means redefining the tools without guarantees that the approach can scale. Indeed,
modeling distributed systems is a problem far from being trivial. The complexity of dis-
tributed systems comes when each actor/tier (server, client, database) uses a different
language, and programs run on different execution contexts. The cost of analyzing
these programs individually and putting together intermediate results is computation-
ally expansive. Additionally, some attacks are not detectable on these models, such
as the cyberphysical ones. These non-digital and indirect attacks trigger a cascade of
events in the physical world that leads to some malfunction.

Formal models to capture the semantics of distributed systems exists, and they are
concerned more with client/server models. For example, the semantics of hop.js [11]
elegantly describes the semantics of the language. Still, this is a semantic definition
of a language with no other purpose than mathematically explaining the programming
language’s behavior and its programs. Indeed, not defining other tiers, such as the
device one, makes it impossible to use the model to represent some non-deterministic
interleavings that may provoke cyberphysical attacks.

This chapter proposes a novel semantics called WEBI, implemented in Skel. This
model is an extension of the essence of [11], and it is designed to capture the be-
havior of IoT programs executing in a unique execution context. This choice alleviates
some issues related to the analysis of distributed systems. What we describe in the
manuscript relates more to semantics than analysis, discussing issues and limits. Nev-
ertheless, we show that we can exploit Skel to define collecting semantics, paving the
way for future studies toward program analysis. The model is parametric on the tier
languages; we instantiate it with toy languages. However, this does not limit its use, as
the model can be instantiated with some JavaScript extensions [34, 33], describing the
semantics of multi-tier languages such as hop.js.

122

An Executable Semantics for Distributed IoT Applications

5.2 WEBI: A Formal Semantics to IoT Applications

This section presents a small-step semantics of WEBI, designed for capturing interac-
tions between different tiers in the context of IoT applications. The actors we consider
are:

• Web services that provide services to the clients.

• Web clients that request services.

• Smart objects, which are objects connected to the web. We consider devices with
sensors—electronic components that transform physical data into digital data–
and actuators—electronic components that transform digital data into physical
data.

5.2.1 The WEBI Configuration

A WEBI configuration is a 7-uple containing all the information about the actors in the
model, namely clients, services, and devices. We write the configuration as conf, and
its extensively represented as:

{WebServices,L, I, HM, SS,CC, IC}

In the following paragraphs, we explain all the WEBI configuration in detail. In Table 5.1,
we summarize the notation.

WebServices. The WebServices component is a function

WebServices : url→ (service, hostname)

mapping urls, which we conceive as a generic way to encode the unique address
of a web service, to the actual service and hostname. The hostname is an identifier
for the server hosting the service. We let the WebServices to be implicit in the WEBI
configuration, because it is never changed by the WEBI rules.

World’s Events Record L. The L component is a record of the world’s events. With
world events, we mean statements or data representing some natural condition of an

123

An Executable Semantics for Distributed IoT Applications

Symbol Description Skel type
wo world oracle (L, E)→ (pe, t)
E set of possible events that can occur in the world list<event>

conf a webi configuration 〈L, I, HM, SS,CC, IC〉 webiConfiguration
WebServices mapping between urls and related services url→((var,sr_stmt),hostName)

L list of located physical events: either actuator-produced
events a, d, t or sensored-events pe, d, t

logEvents

I set of initializers initializers
CC set of web clients (cc) webClientConfigurations
SS set of web server configurations (ss) runningServiceConfigurations
IC set of smart objectconfigurations (ic) deviceConfigurations
HM hosts memory: h→ µh hostMemories

Π sequence of WEBI rule applications trace
h name of a host hostName
µh memory of the host of name h hostMemory
u url url
va serialized value serializedValue
vc client value (va ⊆ vc) cl_val
vs server value (va ⊆ vs) sr_val
P program (client or server), note that a value may be a

program
cl_stmt, sr_stmt

cc a running web client configuration in CC (〈cc, B, T 〉(j,u)) webClientConfigurations
ss a running service state in SS (ss(h,j),i) runningServiceConfiguration
sc a running service configuration (ss) runningServiceState
B set of call-backs callbacks
T set of thunks thunks
pe located physical event physicalEvent
l event location location
t absolute time time
d device ID deviceID

Table 5.1: WEBI summary of notation

object or an environment in the real world, or an action changing its state. Examples
could be the statements: “The temperature in the kitchen at 8:00 p.m. is 18◦” or “Light
turned on at 10:30 p.m. in the bedroom”. We can represent this record as a list of all
the actuations and sensor’s detections performed by devices.
On the one hand, an actuation is an action performed by a device through its actua-
tors. This kind of action forcibly changes the state of the world. Indeed, consider the
heater example presented in the introduction. The action that turns on the device is an
actuation, and the effect (change of the world’s state) is the living room’s temperature
increase. We see this as a digital action transformed into a concrete one.
On the other hand, a device that detects physical data from world does not change it;
it “queries” it. This operation can be seen as the inverse of an actuation, transforming

124

An Executable Semantics for Distributed IoT Applications

concrete data, the world’s natural state, into its digital representation.
The L record, intuitively, is empty before running the WEBI model. We represent it with
the usual empty list notation, []. Each time a rule needs to record an operation on this
list, we write it as op :: L, where op is either an actuation or a device sensor result. If op
is an actuation, we write it as (a, d, t), where a is the action, d is the device identifier, and
t is the time this actuation happened. Otherwise, we write a sensor detection as (pe, t),
where pe is the physical event that the device sensed from the world. An example of pe
could be: “The living rooms’s temperature is 18◦ Celsius”. Concerning the time, we do
not provide a specific mapping between real-world time and its digital representation.

Initializers I. The I element of the configuration is a collection of the initial clients’
calls; we call them initializers. We write the model initializer as ((j, u), va), where j is a
unique identifier for the client, u is the URL that the booting client j is calling, and va is a
value put as a parameter of the initial call. To run the model, we need this set not to be
empty in the initial WEBI configuration. Without booting clients, also called initializers,
the model will not evolve. We denote the empty I as ∅, like the set notation. Indeed, I
is a set.

Host Memories HM . The third element of the WEBI’s conf is HM , a mapping be-
tween host-names h and host-memories µh, which are memories shared among dif-
ferent web services executing on the same host. The letter µ refers to the actual data
structure acting as memory. The subscript h is the name of the host. We write mappings
in the usual functional way: h 7→ µh. We do not specify if the host-memory mappings
are total or partial.

Running Services SS. The SS component is the set of running services. We write
the element of this set as ss, calling it running web service state. The running web
service state can be either a value or some running program, and we write them re-
spectively as 〈sv〉 and 〈sc〉. The first is a final running service configuration, a couple
(vs, µs), where vs is a value in the server language and µs is the service’s memory. The
second represents a running service configuration. It is a couple (Ps, µs), where Ps is a
program and µs is the local memory of the service. Both the 〈vs〉 and 〈sc〉 have unique
identifiers ((h, j), i), written as a superscript of the running web service state ss. This
identifier is three-folded:

125

An Executable Semantics for Distributed IoT Applications

• h is the host-name on which the service is running.

• j is a reference to the client who called the service.

• i is the identifier of the client’s callback that will handle the service return.

Web Clients CC. The CC component is the set of web clients. We write CC ’s ele-
ments as 〈boot〉(j,u) for the booting clients, and 〈cc, B, T 〉(j,u) for the non-booting ones.
We use two combined identifiers as the client’s ID: the j is the client’s unique identifier,
and u is the URL the client called when booting. The special keyword boot in the boot-
ing client configuration is a special client’s callback waiting for the service’s response
to initialize the client. Then, the non-booting client is a client that has been already
initialized. It is a web client configuration holding three pieces of information: the client
program state cc, and two sets B and T . The cc can either be a couple composed of
a client value vc and a memory µc, or a couple (Pc, µc), where Pc is a client program
still executing. Then, B and T are the callback’s set—containing all the client’s (j, u)
call handlers still waiting for their related service response–and the thunk’s set—the
callbacks which have already received a result from their related services. Intuitively,
we define a callback as a program b = λx.P , where x is a free variable waiting to be
bound to the result of the related service. Then, given va, the result of the client call,
a thunk t of the callback b is the substitution of va in all x’s occurrences in λx.P . We
write the thunks as (λx.P, va). The purpose of not substituting directly the value into the
program is to not give the idea of substituting and executing the program P . The substi-
tution can also be written as the η-expansion of the program, resulting in the following:
(λx.λz.P) va. The variable z is a free variable in P of type unit. To run the program,
then one must only apply () to λz.P [x→ va]. To resume, the variable x is bound to the
value returned by the service, and P is not run.
Each callback and thunk is identified by i. We remark that if we pick a callback bi from
the B of the client (j, u), and imagine a function resolving the URLs and returning the
host-name (i.e., solveURL(u) = h), then we can produce the related service identifier:
((h, j), i).

Device Configurations IC. Finally, the IC component is the set of device config-
urations. A device configuration 〈µd, S, A, perm〉d is defined by µd the device memory,
S a set sensor, a set of actuators A, and a set of permissions perm—for interacting

126

An Executable Semantics for Distributed IoT Applications

with other tiers, namely the server-tier. Each element of IC is signed by d, a unique
identifier for the device.

5.2.2 Semantics

The section presents the formal semantics of the WEBI distributed system model. We
present the rules in a small-step style alongside their Skel implementation. Regard-
ing Skel, we present some design choices to make the semantics more precise and
suitable for building an interpreter.

Regarding the non-deterministic evaluation function in Skel, we know that the imple-
mentation would come pretty straightforward, because we exploit the non-determinism
intrinsic in the Skel’s branch construct. Intuitively, the interpreter will be instantiated
with a pseudo-random interpretation monad, which shuffles the branch’s list before
interpreting its head.

To present the semantics, we structure the following subsections in this way. First of
all, we briefly introduce the WEBI transition relation in Section 5.2.2.1. Then, we present
the rules and the instantiation of the model. Indeed, in Section 5.2.2.2, we define a set
of client-driven rules. The ruleset represents either the client evaluation progression
or describes an interaction between the client and server tier. Then, Section 5.2.2.3
proposes rules for handling service-driven rules, and Section 5.2.2.4 describes the
device-driven ones, handling interactions between services, devices, and the world’s
state. We will not discuss the client, the server and the device transition relation, be-
cause it would mean to introduce a semantics for each one of the tier’s languages.
We will only describe some of the main features that the client1 and the server2 lan-
guage must have. In the example languages, we wrote variants of the WHILE language
presented in Chapter 1.

Finally, Section 5.2.2.5 presents the non-deterministic evaluation function and the
OCaml interpreter instantiation.

Implementation Choices in Skel. In the Skel implementation we partition the SS

and the CC—written as _SS_ and _CC_ in Skel- WEBI configuration components. We

1. https://gitlab.inria.fr/skeletons/webi-in-skel/-/blob/refactor/semantics/webi/
clientLanguage.sk

2. https://gitlab.inria.fr/skeletons/webi-in-skel/-/blob/refactor/semantics/webi/
serverLanguage.sk

127

https://gitlab.inria.fr/skeletons/webi-in-skel/-/blob/refactor/semantics/webi/clientLanguage.sk
https://gitlab.inria.fr/skeletons/webi-in-skel/-/blob/refactor/semantics/webi/clientLanguage.sk
https://gitlab.inria.fr/skeletons/webi-in-skel/-/blob/refactor/semantics/webi/serverLanguage.sk
https://gitlab.inria.fr/skeletons/webi-in-skel/-/blob/refactor/semantics/webi/serverLanguage.sk

An Executable Semantics for Distributed IoT Applications

partition the functionally, in order to pick elements from the correct partition efficiently.
The choice we made is to be sure, if any, to make the rules pick the correct web client
and/or web service, avoiding failure.

We define _CC_ as a set of four subsets:

• _CC_r is a subset of _CC_ (or CC) containing all the web clients that can step or
that are booting. In math-mode, we write it as CCr.

• _CC_c is a subset of _CC_ (or CC) containing all the web clients that call. In math-
mode, we write it as CCc.

• _CC_t is a subset of _CC_ (or CC) containing all the web clients that with a non-
empty set B or T . In math-mode, we write it as CCt.

• _CC_e is a subset of _CC_ (or CC) containing all the web clients that have B and
T empty. In math-mode, we write it as CCe. These web clients become inactive
in WEBI, meaning their webClientConfiguration will never change again.

We define the following invariant for the subsets in Definition 1.

Definition 1 It holds that CCr ∪CCc ∪CCt ∪CCe = CC, and the intersection between
each couple of the subsets of CC is the empty set.

Moreover, by design, we know that in case of no active web clients in the WEBI config-
uration, we can terminate the model’s execution. We show this in Definition 2

Definition 2 If all the clients are in the subset CCe, no client is active in WEBI.
Then, WEBI can terminate.

Symmetrically, we define subsets of _SS_ as:

• _SS_r is a subset of _SS_ (or SS) containing all the running web services that can
step. In math-mode, we write it as SSr.

• _SS_a is a subset of _SS_ (or SS) containing all the running web services that
have to issue an actuation request to a device. In math-mode, we write it as SSa.

• _SS_g is a subset of _SS_ (or SS) containing all the running web services that
have to issue a reading request to a device. In math-mode, we write it as SSg.

128

An Executable Semantics for Distributed IoT Applications

• _SS_e is a subset of _SS_ (or SS) containing all the running web services that
finished computing. In math-mode, we write it as SSe.

We define the following invariant for the subsets of _SS_ in Definition 3.

Definition 3 It holds that SSr ∪ SSa ∪ SSg ∪ SSe = CC, and the intersection between
each couple of the subsets of SS is the empty set.

Moreover, we argue about services being active. The web services run if a client called
them. We present this property in Definition 4.

Definition 4 If no client is active, then no service is running.

5.2.2.1 WEBI Transition Relation

We say that a WEBI’s transition relation relates configurations presented in Section 5.2.1;
we write it in the following way.

wo, E ` conf conf′

Note that the WEBI transition relation has two parameters that model the transition. The
first parameter is the world oracle wo, and the second one is E , a list of all the possible
physical events that might happen in the world. Regarding the wo, it is a function mod-
eling the world. This function provides a new event happening in a particular context.
The parameters of this function are the world’s events log L and the E , producing a
physical event pe happening at a specific time t.

5.2.2.2 Client-Driven Rules

ServiceInit. The first rule we present is the ServiceInit. This rule instantiates a
booting client and its related booting service picking an element from the set I. We
present it in Figure 5.1.

Given an initializer, the rule resolves the URL via the function WebServices, return-
ing a couple (serviceinit, h). The serviceinit is the service initializer, and h is the host-
name of the host providing the service. The function application serviceinit(va) returns a
service configuration sc, a program encoded in the service language and a fresh pro-
gram memory, with a local variable x bound to va. The WEBI configuration is updated

129

An Executable Semantics for Distributed IoT Applications

ServiceInit

I = ((j, u), va) ∪ I ′ WebServices(u) = (serviceinit, h)
sc = serviceinit(va) CC ′ = CC ∪ {〈boot〉(j,u)} SS ′ = SS ∪ {sc((h,j),0)}

wo, E ` conf{I, CC, SS} conf{I ′, CC ′, SS ′}

Figure 5.1: The ServiceInit rule. A client is initialized. The booting call of this client generate
a running web service.

accordingly. We write it as conf{I ′, CC ′, SS ′}, meaning that the configuration conf mod-
ifies only the I, the CC, and the SS components.

We want to remark the id signing the booting service (((h, j), 0)). The i identifier
is explicitly set to 0. By convention, we set 0 as the callback identifier of the special
booting client callback boot.

In Figure 5.2, we present the Skel formalization of the ServiceInit rule. The evalu-
ation function takes the world setting, an alias for the pair (wo, E), a WEBI configuration
conf, and returns a configuration. We design the Skel WEBI configuration as a record.
We present the type below.

type webiConfiguration = (
L : logEvents,
I : initializers,
HM : hostMemories,
SS : runningServiceConfigurations,
CC : webClientConfigurations,
IC : deviceConfigurations)

The body of the Skel term defines the rule. Thus, we get an element from the
initializers set. The pick function randomly chooses an element from I. It returns a
pair (((u,v_a), j), _I_, where the first element is an initializer, and the second is
I \ ((j, u), va).
Then, we define the webservices function as a mapping url -> (serviceInits,hostname).
The serviceInits is a function that, given a value, returns a service configuration.
Thus, similarly to the rule in Figure 5.1, we generate a service configuration sc and up-

130

An Executable Semantics for Distributed IoT Applications

1 type webClientConfiguration =
2 | Boot (identifier,url)
3 | Run ((webClient,callbacks,thunks)(identifier,url))
4

5 val eval_ServiceInit ((wo,_E_):worldSetting)
6 (conf:webiConfiguration):
7 webiConfiguration =
8 let (((j,u),v), _I_') = pick<webClientBoot> conf._I_ in
9 let (serviceinit,h) = webservices(u) in

10 let sc = serviceinit(v) in
11 let _CC_' = _CC_add conf._CC_ (Boot (j,u)) in
12 let _SS_' = _SS_add conf._SS_ (sc,((h,j),zero)) in
13 (conf <- (_I_ = _I_', _CC_ = _CC_', _SS_ = _SS_'))

Figure 5.2: ServiceInit Skel rule.

date the WEBI configuration conf. To update a Skel record we use the following syntax:

(recordName <- (field1 = newValue))

On the left-hand side of the arrow, we have the record name (a variable named
recordName), and on the right-hand side, we assign a new value (newValue) to a field
(field1) only in the case we are actually updating it. The rest of the fields keep their
old value. In Figure 5.2, we update only the fields related to I, SS, and CC. Note that
on top of the figure, we present extensively the webClientConfiguration. The Boot
constructor represents booting clients and the Run constructor represents the running
ones.

ClientStep. The ClientStep rule describes what happens in the WEBI conf when
a client performs a single evaluation step on its program. The client transition is
parametrized by C, the client language semantics. We write this transition relation as
 c, relating a web-client configuration cc to another. To apply this rule, the client must
be running.

In Figure 5.3, we present the small-step ClientStep rule. In Figure 5.4, we present
the skeletal semantics of this rule. In line 10, we pick one of the running web clients
from _CC_r, a partition of the webClientConfigurations CC containing only the clients

131

An Executable Semantics for Distributed IoT Applications

ClientStep

CC = {〈cc, B, T 〉(j,u)} ∪ CC ′ cc = (Pc, µc) cc C cc
′

CC ′′ = {〈cc′, B, T 〉(j,u)} ∪ CC ′

wo, E ` conf{CC} conf{CC ′′}

Figure 5.3: The ClientStep rule. A web client performs an evaluation step.

1 type clientStatus =
2 | Ok
3 | NotifyCall (url,cl_val,(var, cl_stmt))
4 type cl_out =
5 | CL_Value cl_val
6 | CL_STMT (cl_stmt,clientStatus)
7 val eval_ClientStep ((wo,_E_):worldSetting)
8 (conf:webiConfiguration):
9 webiConfiguration =

10 let (Run (((CL_STMT (cp, OK),mu_c),_B_,_T_),(j,u)),_CC_r') =
11 pick<webClient> conf._CC_._CC_r in
12 let cc' = eval_client cp mu_c in
13 let _CC_'' = _CC_add (conf._CC_ <- (_CC_r = _CC_r'))
14 (Run ((cc',_B_,_T_),(j,u))) in
15 (conf <- (_CC_ = _CC_''))

Figure 5.4: ClientStep Skel rule.

that have to step. Note that we edulcorate the semantics, by designing and using the
constructed type webClientConfiguration—presented in Figure 5.1)-for respectively
saying that a client is booting—〈boot〉(j,u)–or running—〈cc, B, T 〉(j,u). The picked ele-
ment signals the evaluation function whether the client can or cannot step. Note that on
top of the figure we show the type clientStatus. In this rule we show, after the pattern
matching, that the web client has a signal Ok stored in the webClientConfiguration.
This constructor is a signal meaning that the web client can step. The type constructor
CL_STMT is another signal, presented in the type cl_out definition, which signals that
the client still has something to compute. All the elements of _CC_r are web clients that
are programs (CL_STMT) that signal Ok to WEBI.

132

An Executable Semantics for Distributed IoT Applications

ClientCall

CC = {〈cc, B, T 〉(j,u)} ∪ CC ′

cc u′?va,bi

C cc′ WebServices(u′) = (serviceinit, h) sc = serviceinit(va)
B′ = B ∪ {bi} CC ′′ = {〈cc′, B′, T 〉(j,u) ∪ CC ′} SS ′′ = {sc((h,j),i)} ∪ SS

wo, E ` conf{CC, SS} conf{CC ′′, SS ′′}

Figure 5.5: The ClientCall rule. A client calls a web service.

1 val eval_ClientCall ((wo,_E_):worldSetting)
2 (conf:webiConfiguration):
3 webiConfiguration =
4 let (Run (((CL_STMT (cp,Notify (u',v_a,(b,i))),mu_c), _B_,_T_),
5 (j,u)),_CC_c') = pick<webClient> conf._CC_._CC_c in
6 let (serviceinit,h) = web services(u') in
7 let sc = serviceinit(v_a) in
8 let _B_' = _B_add _B_ (b,i) in
9 let _CC_'' = _CC_add (conf._CC_ <- (_CC_c = _CC_c'))

10 (Run (((CL_STMT (cp,OK),mu_c),_B_',_T_),(j,u))) in
11 let _SS_' = _SS_add conf._SS_ (sc,((h,j),i))) in
12 (conf <- (_CC_ = _CC_'', _SS_ = _SS_'))

Figure 5.6: ClientCall Skel rule.

In line 12 of Figure 5.4, the client’s program performs an evaluation step, and
in line 13, the _CC_ set is updated by first updating _CC_r with the partition with-
out the picked webClient (j,u) ((conf._CC_ <- (_CC_r = _CC_r'))), and finally
adding the new webClientConfiguration in _CC_. Finally, in line 15, we update the
webiConfiguration.

ClientCall. A client calls a service. The call occurs on a client step that sends a
value va on a URL u while preparing a handler b, signed with a unique callback identifier
i. On the server-side, a service is ready to respond to this URL. We show the rule in
Figure 5.5. A web client is picked from the partition set _CC_c, containing all the clients
performing a call. Note that all the calling clients have NotifyCall as clientStatus.
We show this in lines 4 and 5 of Figure 5.6. Then, similarly to the ServiceInit rule,

133

An Executable Semantics for Distributed IoT Applications

Run

CC = {〈〈v′c, µ〉, B, {(λx.P, vc)i} ∪ T 〉(j,u)} ∪ CC ′
CC ′′ = {〈〈(P{x 7→ vc}, µ〉, B, T 〉(j,u)} ∪ CC ′

wo, E ` conf{CC} conf{CC ′′}

Figure 5.7: The Run rule. When a client finishes to compute, it picks a thunk and executes it.

lines 6 and 7 create an instance of the service referenced by the URL u. In the Skel
specification, we decided to evaluate with a client step the call construct of the client,
producing a webClientConfiguration with the adequate clientStatus. This makes
the implementation not represent the client relation u′?va,bi

C . Afterwards, we update the
sets _B_, _CC_, and _SS_ by adding the new callback bi, the client with the OK status,
and the new running web service signed by ((h,j),i). This web service is unique.
Finally, in the last line, we return the updated WEBI configuration.

Run. A client finished computing, returning a value. If any, one of its thunks is picked,
is put as the current client’s code, and run. The client’s memory stays unchanged. We
show the rule in Figure 5.7. The Run only applies if a client has finished executing—
returning a value–and has a thunk to be run.

In Figure 5.8, we show the skeletal semantics of this rule. We first pick a WebClient
from _CC_t, if it exists. The latter is a partition of _CC_ containing every client that
finished computing and has a thunk ready to be executed or, in case of none, at least a
callback. Then, we pick one of the thunks of the web client; we substitute the parameter
of the callback program with the value stored in the thunk. Note that we discard the
value returned by the client. Imagine that the value is the serialization of an HTML
page. In that case, the result is local and meaningless regarding this orchestrating
semantics. Finally, the set _CC_ is updated, returning the new WEBI configuration. The
implementation can fail in line 6, as the elements of _CC_t can have an empty set _T_.
In this case, no client is ready to execute a thunk, as their callback still did not receive
a value due to service execution.

134

An Executable Semantics for Distributed IoT Applications

1 val eval_Run ((wo,_E_):worldSetting)
2 (conf:webiConfiguration):
3 webiConfiguration =
4 let (Run (((CL_Value _, mu_c),_B_,_T_),(j,u)),_CC_t') =
5 pick<webClient> conf._CC_._CC_t in
6 let ((((x,_P_),v_c),_T_'),i) = pick<thunk> _T_ in
7 let _P_' = subst _P_ x v_c in
8 let _CC_'' = _CC_add (conf._CC_ <- (_CC_t = _CC_t'))
9 (Run (((CL_STMT (_P_', OK),mu_c),_B_,_T_'),(j,u))) in

10 (conf <- (_CC_ = _CC_''))

Figure 5.8: Run Skel rule.

5.2.2.3 Service-Driven Rules

ServiceStep. One of the running services makes an execution step; its host memory
updates accordingly. We present the small-step rule in Figure 5.9. In the implementa-
tion depicted in Figure 5.10, we first use the usual pick<a> function to extract an ele-
ment from the partition set of interests—_SS_r. In case of success, the element picked
from _SS_r is a client that runs normally its code. Indeed, symmetrically with the client’s
partitioning, the _SS_r is a partition of _SS_ containing all the running services that can
step. The service picked is one that evaluates code different from an actuation or a get
from a device. These two operations are designed as blocking operations in the Skel
implementation. For being able to do a ServiceStep, we design a type serviceStatus
stored in sc (lines 10 and 11) that must be either Ok, similarly to the client status type,
or GetDone v_s. We allow the web services signed by GetDone v_s to step because
this constructor means that the get operation finished succesfully returning a result.

ServiceStep

SS = {〈sc〉((h,j),i)} ∪ SS ′ 〈sc,HM(h)〉 S 〈sc′, µ′h〉 HM ′ = HM [h 7→ µ′h]
SS ′′ = {〈sc′〉((h,j),i)} ∪ SS ′

wo, E ` conf{SS,HM} conf{SS ′′, HM ′}

Figure 5.9: The ServiceStep rule. A service performs an evaluation step.

135

An Executable Semantics for Distributed IoT Applications

The service step in this case acts for communicating to the service the value v_s. We
show the serviceStatus on top of the listing—type serviceStatus.

The _SS_add function adds the runningServiceState to the correct partition of
SS. In line 12 of Figure 5.10, we get the host memory mu_h and perform a single
server evaluation step. The parameters are the server computation sc, the local mem-
ory mu_ls, and the host memory mu_h. The result of the evaluation step is a triple with
a new server computation sc', local memory mu_ls', and host memory mu_h'. Finally,
the host memories map _HM_ and the set _SS_ are updated, returning the new WEBI
configuration.

RetServiceBoot and RetService. One server reaches a state where its code re-
turns an immediate serialized value while the associated client is already running and
has some handler ready to take a response; the handler becomes a thunk after inter-
pretation of the serialized value response by the server. We remove this service from
the WEBI configuration. Two rules depend on the client’s state, whether a booting client
or a running one. First, we discuss the rule for booting clients, depicted in Figure 5.11.
Once the service related to a booting client converges to a value, the special callback

1 type serviceStatus =
2 | Ok
3 | ActCall (sr_actuator, sr_deviceID, sr_permission)
4 | GetCall (sr_deviceID, sr_permission)
5 | GetDone sr_val
6

7 val eval_ServiceStep ((wo,_E_):worldSetting)
8 (conf:webiConfiguration):
9 webiConfiguration =

10 let (((sc,mu_ls),((h,j),i)),_SS_r') =
11 pick<runningServiceState> conf._SS_._SS_r in
12 let mu_h = _HM_r(conf._HM_,h) in
13 let ((sc',mu_h'),mu_ls') = eval_server sc mu_h mu_ls in
14 let _HM_' = _HM_w(conf._HM_,h,mu_h') in
15 let _SS_'' = _SS_add (conf._SS_ <- (_SS_r = _SS_r'))
16 ((sc',mu_ls'),((h,j),i)) in
17 (conf <- (_HM_ = _HM_',_SS_ = _SS_'')

Figure 5.10: ServerStep Skel rule.

136

An Executable Semantics for Distributed IoT Applications

RetServiceBoot

SS = {〈vs〉((h,j),0)} ∪ SS ′
CC = {〈boot〉(j,u)} ∪ CC ′ gencc(vs) = cc CC ′′ = CC ′ ∪ {〈cc, ∅, ∅}〉(j,u)}

wo, E ` conf{SS,CC} conf{SS ′, CC ′′}

Figure 5.11: The RetServiceBoot rule. A service related to a booting client finishes to compute.
It returns the result to the client.

boot becomes the actual value returned by the service. We assume that a service al-
ways returns code to a booting client. The function gencc takes the service execution
result as a parameter and generates a client configuration. The rule is abstract enough
to hide information about a possible client’s local memory.

In Figure 5.12, we show the semantics in Skel. In this case, we choose to be more
precise in defining how to generate the first running client signed by j and u. First, we
pick a service that has finished executing from the partition set _SS_e (lines 4 and 5).
This subset contains all the services that have finished computing.
In line 6 the booting client signed by j is extracted from _CC_. The function pick_by_j
is a specialized function that looks for a client by identifier. Afterwards, we use the
parsing function gencc to transform the server value result into a client program. This
emulates the fact that in a web application, the server sends an HTML page which
will be parsed and executed—for example, the JavaScript parts-on the client side—
browser. The client program generation happens in line 7; the web client configuration
is completed by a fresh new client memory and two empty sets, one of the callbacks
and the other of thunks. Finally, we update the set _CC_ and return the final WEBI con-
figuration. Note that we discard the service (h,j). This rule fails if a service returns a
value to a booting client.

If the client is a running web client, things go slightly differently. First, services re-
turn values to the clients (pure values). Note that the URL u signing the client never
changes. We present the rule for running clients in Figure 5.13. In this case, the value
vs returned by the service ((h, j), i) is transformed into a client value vc. It is associ-
ated with the callback bi of the client j waiting for that result. The callback becomes a
thunk, as it can now be associated with a client value, represented as a pair (b, vc)i. The
Skel code goes straightforward with what we did for the booting case but is consistent

137

An Executable Semantics for Distributed IoT Applications

1 val eval_RetServiceBoot ((wo,_E_):worldSetting)
2 (conf:webiConfiguration):
3 webiConfiguration =
4 let (((SR_Value vs,_),((h,j),zero)),_SS_e') =
5 pick<runningServiceState> conf._SS_._SS_e in
6 let (Boot (j,u),_CC_r') = pick_by_j conf._CC_._CC_r j in
7 let CL_STMT cc = gencc(vs) in
8 let _CC_'' = _CC_add (conf._CC_ <- (_CC_r = _CC_r'))
9 (Run (((CL_STMT cc,cl_init_state),

10 empty_set<callback>,
11 empty_set<thunk>),(j,u))) in
12 (conf <- (_SS_ = (conf._SS_ <- (_SS_e = _SS_e')), _CC_ = _CC_''))

Figure 5.12: RetServiceBoot Skel rule.

RetService

SS = {〈vs〉((h,j),i)} ∪ SS ′ CC = {〈cc, B ∪ {bi}, T 〉(j,u)} ∪ CC ′
gencc(vs) = vc CC ′′ = CC ′ ∪ {〈cc, B, T ∪ {(b, vc)i}〉(j,u)}

wo, E ` conf{SS,CC} conf{SS ′, CC ′′}

Figure 5.13: The RetService rule. A service realted to a running client finishes to compute. It
returns the result to the client.

with the RetService rule. We show it in Figure 5.14. This rule fails in case the service
returns some code to the client.

5.2.2.4 Device-driven Rules

DeviceSensor. A device or a group of devices detects a physical event from the world.
This physical event is stored in the world log L. To model the sensor detection, we use
the world oracle wo. It takes the world log L and the set of possible events E , and it
forecasts a physical event pe at a particular time t′. The notion of time we use is dis-
crete, providing an order to the different logs in L. The new physical event and the time
it happens are stored in the log. We present the small-step rule in Figure 5.15, and
provide the Skel implementation in Figure 5.16. In Skel, we first produce a physical

138

An Executable Semantics for Distributed IoT Applications

1 val eval_RetService ((wo,_E_):worldSetting)
2 (conf:webiConfiguration):
3 webiConfiguration =
4 let (((SR_Value vs,_),((h,j),i)),_SS_e') =
5 pick<runningServiceState> conf._SS_._SS_e in
6 let (Run ((cc,_B_,_T_),(u,_)),_CC_') =
7 _CC_pick_by_j conf._CC_ j in
8 let ((b,i),_B_') = _B_get_by_i _B_ i in
9 let CL_Value vc = gencc(vs) in

10 let _T_' = _T_add _T_ ((b,vc), i) in
11 let _CC_'' = _CC_add _CC_' (Run ((cc,_B_',_T_'),(u,cid))) in
12 (conf <- (_SS_ = (conf._SS_ <- (_SS_e = _SS_e')), _CC_ = _CC_''))

Figure 5.14: RetService Skel rule.

DeviceSensor

last-time(L) ≤ t′ wo(L, E , t′) = pe IC sens(pe)
D IC ′

L′ = (pe, t′) :: L
wo, E ` conf{L, IC} conf{L′, IC ′}

Figure 5.15: The DeviceSensor rule. A sensor, or a group of sensors detects a physical event.

event pe at a specific time t. We could use the Skel existential construct to produce a
time t' that satisfies last-time(L) ≤ t′, meaning that t' is the present. We decided to
rely on the implementation of the world oracle to produce this parameter. Then we per-
form a transition on the device semantics, add the new physical event to the list L, and
update the WEBI configuration. We remark that the eval_device evaluation function is a
parameter of the model. Hence we decide to leave it dependent on the implementation
for now. In the current language example, this transition inspects the devices’ memory
returning the physical event resulting from these readings.

We remark that this rule always applies and is independent of service calls such
as get or act. Notice that the difference between sensing and getting a value is that
the first only logs the resulting physical event in the L list, while the result of a get is
returned to a web service.

139

An Executable Semantics for Distributed IoT Applications

1 val eval_DeviceSensor ((wo,_E_):worldSetting)
2 (conf:webiConfiguration):
3 webiConfiguration =
4 (*we do not use last-time*)
5 let (pe,t') = world.wo(conf._L_, world._E_) in
6 let (_IC_',_) = eval_device conf._IC_ (DV_Sens pe) in
7 let _L_' = list_add<logEvent>(conf._L_,(Log_PE (pe,t'))) in
8 (conf <- (_L_ = _L_',_IC_ = _IC_'))

Figure 5.16: DeviceSensor Skel rule.

DeviceActuator

SS = {〈sc〉((h,j),i)} ∪ SS ′

〈sc,HM(h)〉 act(a,d,p)
S 〈sc′, µ′h〉 HM ′ = HM [h 7→ µ′h] IC act(a,d,p)

D IC ′

SS ′′ = {〈sc′〉((h,j),i)} ∪ SS ′ last-time(L) ≤ t′ L′ = (a, d, t′) :: L
wo, E ` conf{L, SS,HM, IC} conf{L′, SS ′′, HM ′, IC ′}

Figure 5.17: The DeviceActuator rule. A service issues an actuation order to a device. The
device performs the actuation.

DeviceActuator. A service orders a device d to do an action a with permission to-
ken p. To act, the device of name d should have the action a in its allowed actions
set. Moreover, the permission p token should hold. While acting, the device’s state
is updated, and the action is recorded in the world state. The relation IC a,d,p

D IC ′

does precisely that. The actual/concrete actuation cannot happen if one of these re-
quirements does not hold. In Figure 5.18, we show the Skel implementation of the
small-step rule presented in Figure 5.17. In the lastfigure, we implement the premises
of the rule straightforwardly. First, we pick a service from the _SS_a partition set, which
contains web services requesting an actuation to a device. Then we apply the device
transition relation. Finally, we update the WEBI’s sets _SS_, produce a discrete actua-
tion time t', and add the log to the world log _L_. We update the WEBI configuration
accordingly. Note that we use a similar approach to the one used for the ClientCall,
not performing the service transition but changing the serviceStatus from ActCall to
Ok. We design the act as a blocking operation in the service language, and changing

140

An Executable Semantics for Distributed IoT Applications

1 val eval_DeviceActuator ((wo,_E_):worldSetting)
2 (conf:webiConfiguration):
3 webiConfiguration =
4 let (((SR_STMT (sc,ActCall (a,d,p)),mu_ls),((h, j),i)),_SS_a') =
5 pick<runningServiceState> conf._SS_._SS_a in
6 let _IC_' = eval_device conf._IC_ (DV_Act (a,d,p)) in
7 let _SS_'' = _SS_add (conf._SS_ <- (sr_act = _SS_act))
8 ((SR_STMT (sc,SR_OK),mu_ls),((h, j),i)) in
9 let t' = last_time(conf._L_) in

10 let _L_' = list_add<logEvent>(conf._L_,(Log_Act (a,d,t'))) in
11 (conf <- (_L_ = _L_', _SS_ = _SS_'', _IC_ = _IC_'))

Figure 5.18: DeviceActuator Skel rule.

DeviceReading

SS = {〈sc〉((h,j),i)} ∪ SS ′ 〈sc,HM(h)〉 get(d,p,va)
S 〈sc′, µ′h〉

IC get(d,p,va)
D IC ′ HM ′ = HM [h 7→ µ′h] SS ′′ = {〈sc′〉((h,j),i)} ∪ SS ′

wo, E ` conf{SS,HM, IC} conf{SS ′′, HM ′, IC ′}

Figure 5.19: The DeviceReading rule. A service issues an reading order to a device. The device
responds, returning a serialized value.

the status allows the service to step again.

DeviceReading. A web service requests a value stored in a device’s memory. Sim-
ilarly to the DeviceActuator rule, the service must have the correct permission p to
perform this operation. The device reading happens if all these requirements are satis-
fied. We show the small-step rule in Figure 5.19.

In the implementation, presented in Figure 5.20, after picking a service requesting
a get, an element of the partition set _SS_g (status GetCall), we perform a device
transition issuing the order of reading the memory of the device d. The result of the step
in line 6 is a pair (_IC_',VSome v_a), where IC' is the new deviceConfigurations
set, and v_a is the serialization of the read value. We do not make the service step,
and again we manipulate the computation status from GetCall to GetDone v_a, the
constructor designed to notify the service of the result of the device reading.

141

An Executable Semantics for Distributed IoT Applications

1 val eval_DeviceReading ((wo,_E_):worldSetting)
2 (conf:webiConfiguration):
3 webiConfiguration =
4 let (((SR_STMT (sc,GetCall (d,p)),mu_ls),((h, j),i)),_SS_g') =
5 pick<runningServiceState> conf._SS_._SS_g in
6 let (_IC_', v_a) = eval_device conf._IC_ (DV_Get (d,p)) in
7 let _SS_'' = _SS_add (conf._SS_ <- (_SS_g = _SS_g'))
8 ((SR_STMT (sc,GetDone v_a),mu_ls),((h, j),i)) in
9 (conf <- (_SS_ = _SS_'', _IC_ = _IC_'))

Figure 5.20: DeviceReading Skel rule.

5.2.2.5 The Evaluation Function

In the introduction of the section we mentioned how easy would have been to imple-
ment a non-deterministic scheduling policy for WEBI. Withouth digging into the client,
server and device language instantiation, in this subsection we present how to straight-
forwardly implement WEBI in Skel.

While introducing Skel in Chapter 2, we discussed about the interpretation monad
and the way we deeply embedd the Skeletal Semantics in OCaml via the necroml tool.
Hence, because of the definition of Skel [8], we can provide different interpretations
to our specification language, delagating the bahaviour to the interpreter monad. We
are interested in two behaviors. The first one is to have a monad that defines a non-
deterministic (actually pseudo-randomic) semantics to the branch construct. Each time
the branch is evaluated we want that the list of branches shuffles. In this way we do
not know a priori which is the head of the branch list. Then, we are interested to exploit
the collecting semantics behavior of the Skeletal semantics, collecting all the possi-
ble successful executions. The latter is a first technique that paves the way to formal
analysis.

In Figure 5.21 we present the pseudo-random interpreter monad. From the figure
we see the Rand module expecting another interpreter monad definition as a parameter.
For example, if we provide the identity monad ID presented in Figure 2.5, the behavior
of the latter monad would be changed only when dealing with branches, not evaluating
anymore sequentially the list of branches. In the following snippet we show the actual
instantiation of this monad.

142

An Executable Semantics for Distributed IoT Applications

1 let shuffle l =
2 let () = Random.self_init () in
3 let lrand = Stdlib.List.map (fun c ->
4 (Random.bits (), c)) l in
5 Stdlib.List.sort compare lrand |> Stdlib.List.map snd
6

7 module Rand (M: MONAD) = struct
8 include M
9 let branch l =

10 branch (shuffle l)
11 end

Figure 5.21: The pseudo-random interpretation monad

1 open Necromonads
2 module IDRand = Necromonads.Rand(Necromonads.ID)

The file Necromonads.ml3 is the one containing some predefined interpretation
monads provided with the necrom tool. To instantiate the collecting semantics behavior,
we have a list monad which collects all the possible valid execution paths. We show
this in Figure 5.22.

To write the actual evaluation function of WEBI in Skel, we just need to write a branch,
each case having one of the rule’s evaluation function. We present its structure in Fig-
ure 5.23. The code presented is pretty trivial. The terminateWEBI, is a function that
exploits the aforementioned termination conjecture, stopping the WEBI evaluation as
soon as no client is active. Otherwise, the model would work forever, ending a enu-
merable number of infinite traces, because of the DeviceSensor rule. The latter always
apply producing a physical event added to the world log list L. Concerning the inter-
est we have towards this model, we think that whatever happens after the termination
conjecture is not of our interest.

3. https://gitlab.inria.fr/skeletons/necro-ml/-/blob/master/necromonads.ml

143

https://gitlab.inria.fr/skeletons/necro-ml/-/blob/master/necromonads.ml

An Executable Semantics for Distributed IoT Applications

1 module List = struct
2 type 'a t = 'a list
3 let ret x = [x]
4 let branch l =
5 Stdlib.List.concat (Stdlib.List.map (fun f -> f ()) l)
6 let fail _ = []
7 let rec union_two l = function
8 | [] -> l
9 | a :: q -> (if Stdlib.List.mem a l then (fun x -> x)

10 else (Stdlib.List.cons a)) (union_two l q)
11 let rec union = function
12 | [] -> []
13 | a :: q -> union_two a (union q)
14 let bind l f = union (Stdlib.List.map f l)
15 let apply f x = f x
16 let extract x =
17 begin match x with
18 | a :: _ -> a
19 | [] -> failwith "No result"
20 end
21 end

Figure 5.22: The List interpretation monad

The non-deterministic concrete interpretation uses the IDRand
module.a

a. https://gitlab.inria.fr/skeletons/webi-in-skel/-/tree/
master/semantics/webi

Remark

We exploit the termination conjecture to stop executing the
model. If there are no clients and services manipulating the
state of the world, then the physical events produced by the
DeviceReading would be always the same. We deal with finite
traces.

Remark

144

https://gitlab.inria.fr/skeletons/webi-in-skel/-/tree/master/semantics/webi
https://gitlab.inria.fr/skeletons/webi-in-skel/-/tree/master/semantics/webi

An Executable Semantics for Distributed IoT Applications

1 val eval_WEBI ((wo,_E_):worldSetting)
2 (conf:webiConfiguration):
3 webiConfiguration =
4 branch let T = terminateWEBI conf in conf
5 or let F = terminateWEBI conf in
6 let conf' =
7 branch eval_ServiceInit (wo,_E_) conf
8 or eval_ClientStep (wo,_E_) conf
9 or eval_ClientCall (wo,_E_) conf

10 or eval_Run (wo,_E_) conf
11 or eval_ServiceStep (wo,_E_) conf
12 or eval_RetServiceBoot (wo,_E_) conf
13 or eval_RetService (wo,_E_) conf
14 or eval_DeviceSensor (wo,_E_) conf
15 or eval_DeviceActuator (wo,_E_) conf
16 or eval_DeviceReading (wo,_E_) conf
17 end in
18 eval_WEBI (wo,_E_) conf'
19 end

Figure 5.23: ServiceInit Skel rule

5.2.3 Example: The Cost of Non-Determinism

This section presents a simple example of how our model executes. We want to initial-
ize WEBI with one client, two services, and three devices that can interact.To initialize
the model, we need to provide semantics in Skel for both the client and server lan-
guage. As mentioned and linked in the introduction, these languages are variants of
the While language presented in Chapter 1.

The client language is a While language extended with a call statement for calling
web services. The server language is more complex than the client’s. For the sake of
simplicity, we describe the language as an extension of a While language with an act
and get statements, and a special expression ∼. The act and the get are statements
to interact with devices. The tilde expression is of the form ~(p), where p is a program
written in the client language syntax. The program p may contain special variables—
called $-variables. These variables bind variable names to values in the server memory.
The whole ~(program) expression produces a server value—in the server semantics-
with $-variables occurrences resolved. For the client, this server value is a program to

145

An Executable Semantics for Distributed IoT Applications

be. The Skel semantics of these languages must be included on top of the WEBI source,
using the keyword include. Thus, it is simple to write the WEBI semantics parametrized
by the tiers languages. A limitation is that all the interpreters generated by the necroml
tool need to use the same interpretation monad because of the bind function. Indeed,
to bind different computations produced by the three interpreters means to extrapolate
different notions of pure values and pass them to the continuations. 4

5.2.3.1 Initial WEBI Configuration Setting

To provide an initial setting to the model, we introduce in the following paragraphs
how we define the two services, the client, the definition of the three devices, and the
definition of the two WEBI parameters: the world oracle wo and the set of the possible
events _E_. Afterward, we show how this model executes, discussing its strengths and
limitations.

Services. We define two services, one for handling the kitchen’s window—opening
or closing it- depending on the temperature in the room, and the other for turning on
and off a connected oven in the same room. For example, a simple interaction of the
oven with the kitchen’s environment is to heat the room. We show the code of the two
services, respectively, in Figures 5.24 and 5.25.

4. A concrete example is binding the resulting computation of the ID monad with the List one.
Binding a pure value—an integer, for example- is different from binding a list of results—which is the
pure value type for the latter monad.

146

An Executable Semantics for Distributed IoT Applications

1 (x,
2 i = 0;
3 get(t,("Thermometer","kitchen"),"A");
4 while (i <= x) {
5 if (t > 26) {
6 act("open",("Window","kitchen"),"B");
7 } else {
8 act("close",("Window","kitchen"),"B");
9 };

10 i = i + 1;
11 get(t,("Thermometer","kitchen"),"A");
12 };
13 return ~(return $t)
14)

Figure 5.24: The windowManager service definition.

1 (_,
2 act("on",("Oven","kitchen"),"C");
3 return ~(return true)
4)

Figure 5.25: The turnOnOven service definition.

1 (c,
2 i = 0;
3 while (true) {
4 get(presence, (("presenceSensor", "appt256"),''A''))
5 if (presence = "present") {
6 act("on",("switch", "appt256"),"B");
7 act("unlock",("door", "appt256"),"C");
8 } else {
9 act("off",("switch", "appt256"),"B");

10 act("lock",("door", "appt256"),"C");
11 get(time,(("clock","appt256"),"D"));(* not sure *)
12 if (time >= 800 & time <= 1800) then {
13 act("sendSMS",("phone", "appt256"),"E")
14 (* Extend Webi ACT with param *)
15 }}})

147

An Executable Semantics for Distributed IoT Applications

We say that a service is defined by a couple (var,sr_stmt), where var is a free
variable in the program of type sr_stmt. The program is written according to the syn-
tax of the server language. The windowManager service executes for a number x of
iterations, given as a parameter by the caller. Each iteration of the service gets the tem-
perature from a connected thermometer. Then, if the temperature is higher than 26◦C, it
opens. The program returns the final temperature got from the thermometer. Note that
act has as parameters: an action a, a device identifier d—i.e. ("Window","kitchen")-,
and a permission token p. The turnOnOven service only turns on the oven and returns
true.

Each service is identified by an url and a hostname of the machine on which this
service executes. We write them below.

1 let windowManagerUrl = "windowManager.com/kitchen"
2 let hostWindowManager = "HostA"
3 let turnOnOvenUrl = "turnOnOven.com/kitchen"
4 let hostTurnOnOven = "HostB"

Client. We define one client: a client wanting to use the windowManager service to
handle the window behavior automatically. While instantiating the model, these clients
are initializers of the WEBI configuration. The client is an initializer of the initial WEBI
configuration. We show the definition of the client and the initializer set _I_ instantiation
in Figure 5.26. Note that a client’s browser call is written as windowmanager.com/
kitchen?x=1, where ?x=1 is the way to pass the parameter via a url. This parameter
represents the number of iterations the windowManager will perform. To define _I_, we
simply add the client to a list, the concrete type to implement sets.

Devices. We define three devices: the window, the thermometer, and the oven. We
show how we design the window, then the others follow. To simplify, we design the
device semantics as a record containing the operations that it offers and the device

1 let client = (("adam","windowmanager.com/kitchen"),Some 1)
2 let _I_ = [client]

Figure 5.26: Definition of a client calling the windowManager and the _I_ set.

148

windowmanager.com/kitchen?x=1
windowmanager.com/kitchen?x=1

An Executable Semantics for Distributed IoT Applications

1 type dv_step = (device : deviceName,
2 _GET_ : option<deviceMemory -> dv_val>,
3 _ACT_ : option<deviceMemory -> actuator -> deviceMemory>,
4 _SENS_ : option<deviceMemory -> dv_val -> deviceMemory>)

Figure 5.27: Type defining the device’s semantics.

1 val window_step : dv_step =
2 (device = "window",
3 _GET_ = (Some<deviceMemory -> dv_val>
4 (λ mu_d:deviceMemory -> dv_mem_get(mu_d,"window_status"))),
5 _ACT_ = (Some<deviceMemory -> actuator -> deviceMemory>
6 (λ mu_d:deviceMemory -> λ a:actuator ->
7 branch let DV_T = str_eq(a,"window open") in
8 dv_mem_set(mu_d, window_status, (Bool T))
9 or let DV_T = str_eq(a,"window close") in

10 dv_mem_set(mu_d, window_status, (Bool F))
11 end)),
12 _SENS_ = None<deviceMemory -> dv_val -> deviceMemory>)

Figure 5.28: The window semantics. The code is written in a simplyfied version of Skel, which
has, for example, strings.

name. Figure 5.27 shows the Skel type definition of the structure containing the de-
vice semantics. The three operations we consider are get, act, and sens. The three
fields are optional, meaning that devices might have only some of them defined. For
example, a thermometer does not act. We show the actual implementation of the se-
mantics of the window in Figure 5.28. The window has two actuators—window_open
and window_close- and we handle them in the _ACT_ field of the figure. We simply say
that if the actuation is "window open", the memory is updated to accordingly opening it;
otherwise, to close it. The device’s memory is a mapping from variables to device val-
ues. We store in the memory only one variable called window_status, which stores the
actual status of the window. Because the window has no sensors, we set the _SENS_
field to None. We define the _GET_ to read the memory and return a value. We create
the device’s instance kitchen_window in the following listing.

149

An Executable Semantics for Distributed IoT Applications

1 (*Semantics*)
2 val thermometer_step :dv_step =
3 (device = "thermometer",
4 _GET_ = (Some<deviceMemory -> dv_val>
5 (λ mu_d:deviceMemory -> dv_mem_get(mu_d, "temp"))),
6 _ACT_ = None<deviceMemory -> actuator -> deviceMemory>,
7 _SENS_ = (Some<deviceMemory -> dv_val -> deviceMemory>
8 (λ mu_d:deviceMemory -> λ v:dv_val ->
9 dv_mem_set(mu_d, "temp", v)))

10)

1 (*Instantiation*)
2 (state = thermometer_init_memory(),
3 _S_ = ["temp"],
4 _A_ = [],
5 perm = "A",
6 id = ("thermometer","kitchen"))

Figure 5.29: The thermometer semantics and instantiation.

1 (state = window_init_memory(),
2 _S_ = [],
3 _A_ = ["window open","window close"],
4 perm = "B",
5 id = ("Window","kitchen"))

In detail, the term window_init_memory returns a fresh memory for the device,
becoming the window’s initial state. The state has only one binding, the name
"window_status" bound to "closed". The set of sensors _S_ is empty, as none ex-
ists. The field _A_ is a set of the permitted actuators for the device. The field perm
contains the permission token, and the field id represents the device identifier d. The
other device definitions follow the window’s one. We show the thermometer in Fig-
ure 5.29, which features one sensor but no actuators. We define the semantics of the
SENS operation in the semantics, updating the thermometer memory in the case of a
DeviceSensor. The _GET_ reads the device memory.

150

An Executable Semantics for Distributed IoT Applications

1 val wo ((_L_,_E_):(logEvents,list<event>)): (physicalEvent,time) =
2 let t' = log_time l in
3 branch let T = query_oven_kitchen_on l in
4 ((("thermometer","kitchen"),Nat 28),t')
5 or let F = query_oven_kitchen_on l in
6 ((("thermometer","kitchen"),Nat 24),t')
7 end
8

9 type event =
10 | PE physicalEvent
11 | ACT actuator

Figure 5.30: The world oracle.

World Oracle and Events. We define these parameters of WEBI in Figure 5.30.
The world oracle we describe is a function that returns the temperature depending on
the state of the oven. Indeed, the oracle function inspects the oven’s status, detecting
"oven off" and returning the temperature of 24◦C; otherwise, 28◦C. This simple oracle
models the influence of the oven on the environment in which it is placed. Notice that
wo is a parameter of the semantics. Hence, one can design a more complex oracle, for
example, one that models the physical world more accurately.

The _E_ parameter is a set of events possible in the world we describe. This means
that only the events defined in the set _E_ can happen.

We define an event as a physical event or an actuator. A physical event represents
the action of detecting a specific state in the world, and in Skel is represented by the
type constructor PE. For example, the detection result of a thermometer can be "At time
t, the temperature of the kitchen is 28◦C".
In Skel it is written as PE ((("thermometer","kitchen"),Nat 28), t). An ac-
tuator’s action is a modification of the state of a device. An example is "At
time t, the kitchen’s oven has been turned on". We represent it with the
type constructor ACT, and we write the actuator action described before as
ACT (("turn_on",("thermometer","kitchen")),t). We show the event type in Fig-
ure 5.30.

151

An Executable Semantics for Distributed IoT Applications

Initializing client "adam"
→ ServiceInit
Execution of the windowManager
→ ServiceStep → ServiceStep → DeviceSensor → DeviceReading → ServiceStep → Ser-
viceStep→ ServiceStep→ ServiceStep→ DeviceSensor→ DeviceReading→ ServiceStep
→ ServiceStep → ServiceStep
Returning the service result to the webclient "adam"
→ RetServiceBoot
Evaluating the result of the booting callback
→ ClientStep

Figure 5.31: A sequence of rule applications showing an execution of the initial setting presented
in the previous paragraphs.

5.2.3.2 Execution

We are now ready to describe how the model executes. Concretely, we execute the
initial configuration using the interpreter generated by the necroml tool, and the in-
terpretation monad used is the RandID. Because of the evaluation function defined in
Figure 5.23, we can theoretically obtain finite and infinite traces—for example, an infi-
nite trace that contains an infinite number of DeviceSensor applications. As we test on
a real interpreter, the interpreter quickly runs out of memory with this kind of trace.

Execution 1. Figure 5.31 presents an execution trace of the initial setting we
previously defined. The figure shows a sequence of rule applications that reproduce
the execution. For simplicity, we improperly refer to the sequences as traces. Hence,
we consider a client, two services, and three devices. While booting, the client calls
the windowManager service to handle the kitchen window. The first rule applied to
the initial WEBI configuration is the ServiceInit. The client is a booting client whose
related service is created and ready to execute. The booting call parameter of the
client is the number 1, meaning that the service will perform only one iteration of
the windowManager. This value is bound in the service’s memory. At this point of the
execution, only two rules can apply. The ServiceStep and the DeviceSensor rules.
The trace we are considering applies the latter rule before each get or act interaction
in the service code. Hence, after applying a service step, bounding the variable i to 0,
the trace shows a get.
This changes the serviceStatus of the service to
GetCall (("Kitchen","window"),"B"). As before, there are only two rules which

152

An Executable Semantics for Distributed IoT Applications

can be applied, the DeviceSensor and the DeviceActuator. The trace first does
a DeviceSensor, adding to _L_ the physical event produced by the world oracle—
((("thermometer","kitchen"),Nat 24),t')-and then applies a DeviceActuator.
The temperature returned to the service is 24◦C. This physical event is stored in the
memory of the thermometer, accordingly to the _SENS_ rule presented in Figure 5.29.
The physical event produced by the rule reflects the world’s state: the oven is off.
Afterward, the service keeps evaluating its code by applying the ServiceStep rule,
evaluating the while and the if construct—with the related guards-. The second
branch is evaluated, as the while’s condition is satisfied, but not the if’s. The case we
are considering is when the temperature is ≤ 26◦C. Because of the guard not satisfied,
the else branch of the if statement is executed. Finally, a series of service steps
evaluate the increment of the variable i, and a device sensor happens again before
the get. The condition of the while is not satisfied anymore, so a series of service
steps happen, evaluating the rest of the code and the return. The server expression
~(return t) evaluates to (return (Nat 24)). Afterward, the RetServiceBoot rule is
applied. It instantiates the running client, putting the service-generated program as
the client’s current program. After evaluating the return via a ClientStep, the WEBI
evaluation function executes the term terminateWEBI, which is satisfied, returning the
final WEBI configuration.

Execution 2. Now let us consider a variant of the initial setting, where we add a
second client with permission tokens for interacting with the client’s services in the
previous setting. Indeed, we want the new client to call the turnOnOven service. We
show the changes done to the initializers set _I_ in the following snippet.

1 let client1 = (("adam","windowmanager.com/kitchen"),Some 1)
2 let client2 = (("steve","turnonoven.com/kitchen"),None)
3 let _I_ = [client1,client2]

Execution traces A and B are finite, like trace A presented in Figure 5.31. Both the
traces first do two ServiceInit to introduce the booting clients and running services
into the WEBI configuration. Then, the evolution of the traces is different. The trace A
first consumes the steps of the turnOnOven, by doing a service step, a device sensor,
and a device actuation which turns on the oven. Afterward, it consumes, similarly to
the previous execution example, the service windowManager. The result of executing

153

An Executable Semantics for Distributed IoT Applications

Rule Sequence A.
Initializing client "adam" and "steve"
→ ServiceInit → ServiceInit
Execution of the turnOnOven service
→ ServiceStep → DeviceSensor → DeviceActuator → ServiceStep → ServiceStep
Returning the turnOnOven result to the webclient "steve"
→ RetServiceBoot
Execution of the windowManager service
→ ServiceStep → ServiceStep → DeviceSensor → DeviceReading → ServiceStep →
ServiceStep → ServiceStep → DeviceSensor → DeviceActuator → ServiceStep → Ser-
viceStep→ DeviceSensor→ DeviceReading→ ServiceStep→ ServiceStep→ ServiceStep
Returning the windowManager result to the webclient "adam"
→ RetServiceBoot
Evaluating the result of the booting callbacks
→ ClientStep → ClientStep

Rule Sequence B.
Initializing client "adam" and "steve"
→ ServiceInit → ServiceInit
Execution of the windowManager service
→ ServiceStep → ServiceStep → DeviceSensor → DeviceReading → ServiceStep → Ser-
viceStep→ ServiceStep→ ServiceStep→ DeviceSensor→ DeviceReading→ ServiceStep
→ ServiceStep → ServiceStep
Returning the windowManager result to the webclient "adam"
→ RetServiceBoot
Execution of the turnOnOven service
→ ServiceStep → DeviceSensor → DeviceActuator → ServiceStep → ServiceStep
Returning the turnOnOven result to the webclient "steve"
→ RetServiceBoot
Evaluating the result of the booting callbacks
→ ClientStep → ClientStep

Figure 5.32: Two sequences of rule applications showing executions of the new setting that
considers two clients. The first one is a trace showing an interaction producing an interesting
physical event, and the second one does not show this interaction.

the latter service, differently from before, is to open the window, as the oven has been
turned on. This interaction between the two services and the related devices is indirect
and implicit. Indeed, the window actuation happens because of the temperature of the
kitchen raised by the oven, which is on. All the physical events and the actuations are
logged in _L_, and as we can see in the figure, result in the state of the window as

154

An Executable Semantics for Distributed IoT Applications

"window open". Trace B consumes the services the other way around by consuming all
the execution steps of the windowManager and then consuming the turnOnOven ones.
This results in not observing the interaction between the oven and the window, the one
produced by the execution trace A.

Discussion. By using the RandID monad, we can only observe one trace of a non-
deterministic execution of WEBI. Suppose we are now interested to collect all the pos-
sible traces produced by an initial WEBI configuration. Collecting all possible traces can
be useful, for example, for detecting malicious behaviors. In theory we can use the List
monad to make the Skel WEBI execution collect all possible traces, but this approach
does not scale because of non-determinism—the interpreter runs out of memory.

This motivates the following section, a scheduler for WEBI, in which we stipulate
under which hypotheses we can build an interpreter that collects all traces for a given
initial WEBI configuration.

5.3 A Scheduler for WEBI

We propose a scheduled version of the WEBI semantics, which tames the non-
determinism inherent in the model by defining an efficient order in which the WEBI rules
are applied.

Section 5.3.1 presents the scheduler’s semantics by introducing the hypotheses
under which the scheduler semantics is equivalent to the non-deterministic semantics
given in Section 5.1. Section 5.3.2 formally describes some properties the scheduler
exploits to be equivalent to the non-deterministic semantics. Section 5.3.2.3 presents
an equivalence proof sketch of the scheduler semantics concerning the observations
made in the non-deterministic semantics. Finally, we conclude with Section 5.3.3,
showing the example in Section 5.2.3 executed by the scheduler.

5.3.1 Semantics

To build the scheduler, we first discuss the shape of the scheduler’s evaluation func-
tion. We draw two diagrams in Figure 5.33, one reflecting the behavior of the non-
deterministic evaluation function depicted in Figure 5.23—which spans horizontally-
and the other showing the behavior of the scheduler’s evaluation function—which spans

155

An Executable Semantics for Distributed IoT Applications

vertically. We want to bind the non-deterministic behavior of the evaluation function by
providing an execution order to the rules that are not interdependent. Hence, commut-
ing two rules’ applications does not change the produced WEBI configuration. In the
Skel code, if a branch fails, then another branch is picked for evaluation. Diagram B of
the figure graphically presents the scheduler’s evaluation function.

The scheduler’s first iteration consumes all the ServiceInits upfront to introduce
all the initializers of the configuration at once, emptying _I_. Afterward, the sched-
uler consumes all the ServiceSteps, elements of _SS_r. Once this partition is empty,
we know that the configuration might have services that have finished computing—
elements of _SS_e-, waiting to act—elements of _SS_a-, and waiting to get—elements
of _SS_g. The scheduler first handles the finished services, repeatedly applying the
RetServiceBoot, and creating the running web clients. Once the partition set of _SS_—
_SS_e-is empty, the scheduler consumes elements of the partitions _SS_a and _SS_g.
The current step makes the interaction between services and devices happen, if any.
We design this step of the scheduler to act, get, or to skip this step. If the scheduler
applies a device interaction rule, before applying it, performs a DeviceSensor to up-
date the devices’ memories with the physical events generated by the world oracle. In
this way, the device memories reflect the status of the physical world. Otherwise, the
scheduler moves to the next step. Note that the scheduler can also move to the client-
driven rules if the partition sets _SS_a and _SS_g are empty. The next step consumes
all the elements of the partition set _CC_r by repeatedly applying the ClientStep rule.
Afterward, it consumes the client calls by repeatedly applying the ClientCall rule to
the elements of _CC_c. Finally, if any, it runs the thunks of the web clients elements of
_CC_t.
Once all the elements of _CC_t are processed, the scheduler completes its first itera-
tion.

The successive iterations are slightly different. They do not do the ServiceInit
step, which applies the RetService or the RetServiceBoot rule depending on which
type of client the services are returning—booting or running.

5.3.1.1 Assumptions for the Scheduler

To tame the non-determinism, we must put constraints on the WEBI and tiers’ semantics.
The following hypotheses allow us to prove the equivalence between the scheduler and
the WEBI non-deterministic semantics.

156

An Executable Semantics for Distributed IoT Applications

Figure 5.33: Two diagrams representing the evaluation functions. The diagram A depicts the
non-deterministic evaluation function, and the diagram B depicts the scheduler’s one.

157

An Executable Semantics for Distributed IoT Applications

Concerning the server and client language, we assume that they rely on a deter-
ministic semantics. Moreover, the services are concurrent, modifying the host memory
of the server they are executing on. We assume that a running service never touches
the host memory. We present these constraints in Hypotheses 1, 2, and 3.

Hypothesis 1 Given a web service configurations sc and a host memory µh, two dif-
ferent executions result in the same final configuration.

∀〈sc, µh〉 :
(〈sc, µh〉 S 〈sc′, µ′h〉)∧

(〈sc, µh〉 S 〈sc′′, µ′′h〉)⇒ (sc′ = sc′′) ∧ (µh = µ′h)

Hypothesis 2 The client semantics is deterministic.

∀cc, cc′, cc′′ : (cc C cc
′) ∧ (cc C cc

′′)⇒ (cc′ = cc′′)

Hypothesis 3 Given a web service configurations sc and a host memory µh, executing
one step of the semantics does not change the host memory.

∀〈sc, µh〉 :
(〈sc, µh〉 S 〈sc′, µ′h〉)⇒

(µh = µ′h)

To avoid ambiguity in choosing clients or services, we define two hypotheses con-
cerning the uniqueness of the web services and web clients in a WEBI configuration.
Every client and service running in a WEBI configuration is unique. We present these
properties of the running model in Hypotheses 4 and 5.

Hypothesis 4 Every running web service in a WEBI configuration is uniquely identified.

∀〈sc〉((h,j),i), 〈sc′〉((h′,k),l) ∈ SS :
h = h′ ∧ j = k ∧ i = l⇒

sc = sc′

158

An Executable Semantics for Distributed IoT Applications

Hypothesis 5 Every web client in a WEBI configuration is uniquely identified.

∀cc(j,u), cc′(j
′,u′) ∈ CC :

j = j′ ∧ u = u′ ⇒

cc = cc′

5.3.1.2 Scheduler Configuration

We first introduce a set of labels to represent WEBI rules:

• SS is the label representing the ServiceStep. The label can hold indices (j, i),
written as SS(j,i), for making step the service identified by (j, i).

• RS is the label representing either the RetService or RetServiceBoot. The label
can hold indices (j, i), written as RS(j,i), for making return the service identified
by (j, i).

• CS is the label representing the ClientStep. The label can hold an index j, written
as CSj, for making step the client identified by j.

• IN is the label representing the ServiceInit. The label does not hold indices.

• CCj is the label representing the ClientCall. The label can hold an index j,
written as CCj, for making call the client identified by j.

• RN is the label representing the Run. The label can hold indices (j, i), written as
RN(j,i), to run the thunk i of the client identified by j.

• DS is the label representing the DeviceSensor. The label does not hold indices.

• DA is the label representing the DeviceActuator. The label can hold indices (j, i),
written as DA(j,i), for making a service (j, i) issuing an actuation.

• DR is the label representing the DeviceReading. The label can hold indices (j, i),
written as DR(j,i), for making a service (j, i) issuing a reading.

• DV is a generic device label. DV ∈ {DS,DA,DR}.

159

An Executable Semantics for Distributed IoT Applications

We add a special label end to signal that the WEBI’s scheduler has finished comput-
ing. We let X range over labels, i.e. X ∈ {SS,RS,CS, IN,CC,RN,DS,DA,DR,DV, end}.

We define a scheduler transition as a relation between the scheduler’s configura-
tions. A scheduler configuration is an extended WEBI configuration enclosed in a sched-
uler’s context [[]].

The WEBI configuration defined in Section 5.2.1 is extended with Π, written
〈L, I, HM, SS,CC, IC,Π〉, where Π is a finite list of labels. Intuitively, the sequence
Π represents a WEBI execution trace and it will be useful for proving equivalence. We
define in Definition 5 how an initial WEBI configuration is formed.

Definition 5 A well-formed WEBI initial configuration, is a configuration
〈L, I, HM, SS,CC, IC,Π〉, where:

• Lists L and Π are empty lists.

• Sets SS and CC are empty sets.

• Set I is a non-empty set of clients that are booting.

• Mapping HM is a pre-instantiated map of host-memories hostname →
hostmemory.

• Set IC is a set of intial device configurations.

The scheduler context holds three parameters, a label representing a rule name—
meaning the current scheduling step executing-and two filtering of the trace Π—one
containing device rule applications and the other having the order of the Run rule ap-
plications. The two filterings ensure the execution of the scheduler semantics to repro-
duce a final WEBI configuration equivalent to the one produced by WEBI.

We can write a scheduling context configuration as [[conf]]X, with the X denoting the
generic scheduling step. For example, to write the scheduling step of the ServiceStep
we write [[conf]]SS. Moreover, we use these labels to annotate the non-deterministic WEBI
transition relation. Intuitively, X keeps the abstraction of the model, and SS(j,i) states
the application of a service step on a web client signed by (j, i).

Device and Thunk Filterings. We introduce two parameters which are lists of la-
bels: L for the device rule applications and T for the Run rule applications. The purpose

160

An Executable Semantics for Distributed IoT Applications

Filtering Functions for Generating L

πL = λΠ. lfilter Π (λx.x ∈ {DS,DA,DR})

Filtering Functions for Generating T

πT = λΠ. lfilter Π (λx.x ∈ {RN})

Figure 5.34: Filtering functions on Π, where lfilter is the classic filter function on lists in
functional programming.

is to drive the scheduler’s execution and obtain a trace equivalent to the one produced
by the non-deterministic execution of the model. Figure 5.34 presents the algorithms
for generating the two execution guides, L and T. We call the two filtering functions πL
and πT, which return a sub-trace given a trace Π.

Scheduler Transition Relation. We write the scheduler relation as S. Thus, the
relation between scheduler’s configurations has the following form:

wo, E ` [[conf]](L,T)
X S [[conf′]](L

′,T′)
X′

5.3.1.3 Small-Step Semantics

We present the scheduler’s semantics by presenting each step in a paragraph. Given
an initial WEBI configuration conf, an initial configuration for the scheduling is [[conf]](L,T)

IN ,
for some L and T.

Step 1, IN. The first iteration of the scheduler starts evaluating all the initializers.
This approach introduces all the booting clients and the related booting services. We
show the semantic rules in Figure 5.35.

The rule Init performs a ServiceInit transition—Figure 5.1-in case the set I is
not empty. Note that the left-hand side of the conclusions of the inference rule keeps
the label IN, stating that the scheduler step does not change.

161

An Executable Semantics for Distributed IoT Applications

Step 1

Init
I 6= ∅ wo, E ` conf{I} IN conf′

wo, E ` [[conf{I}]](L,T)
IN S [[conf′]](L,T)

IN

InitDone
I = ∅

wo, E ` [[conf{I}]](L,T)
IN S [[conf{I}]](L,T)

SS

Figure 5.35: Semantic rules for Step 1

The rule InitDone makes the scheduler transit to the next step in case the set of
initializers is empty. As we deal with a finite number initializing of clients, once the I
set is emptied, it will not have new elements to initialize the next iteration. Step 1 of the
scheduler is performed only at the first iteration. Note that this rule makes the scheduler
transit to the second scheduler step by changing the label IN to SS in the context.

Step 2, SS. The second step of the scheduling policy consumes all the possible
ServiceSteps. This means that each time the rule is applied, an element of SSr per-
forms an execution step. The step finishes as soon as no more services can step. We
present the semantics in Figure 5.36.

The ServiceChosen rule picks a service that can step and updates the scheduler.
The rule label is set to context with SS(j,i), meaning that the service (j, i) is the one
chosen to step.

The MultiServiceSteps rule makes step the web service (j, i). If the service can
do one more step, the label is left unchanged, updating only the configuration.

The OneServiceStep acts closely to the MultiServiceStep rule. The service per-
forms one small evaluation step, and the rule label is set to SS. This means that the
service (j, i) cannot step again. Another service has to be chosen or, in case, transit to
the next scheduling step.

The ServicesDone rule makes the scheduler transit to the next scheduling step.
Hence, the SSr partition set is empty, and the rule label changes to RS.

Generally, the running service executing on a host are concurrent, as they share
the host memory. In this preliminary study of WEBI, we decided to put constraints,
saying that the running services never touch the host memory. This permits the
MultiServiceStep to be correct. Moreover, we constrain the server language and con-
sider only deterministic languages. These constraints are formally presented in Hy-

162

An Executable Semantics for Distributed IoT Applications

Step 2

ServiceChosen
SS = {SSr, SSa, SSg, SSe}
SSr 6= ∅ 〈sc〉((h,j),i) ∈ SSr

wo, E ` [[conf{SS}]]L,TSS S [[conf{SS}]]L,TSS(j,i)

MultiServiceSteps
wo, E ` conf{SS} SS(j,i)

conf′{SS ′}
SS ′ = {SSr, SSa, SSg, SSe} 〈sc〉(((h,j),i) ∈ SSr

wo, E ` [[conf{SS}]]L,TSS(j,i)
 S [[conf′{SS ′}]]L,TSS(j,i)

OneServiceStep
wo, E ` conf{SS} SS(j,i)

conf′{SS ′}
SS ′ = {SSr, SSa, SSg, SSe} 〈sc〉((h,j),i) /∈ SSr

wo, E ` [[conf{SS}]]L,TSS(j,i)
 S [[conf′{SS ′}]]L,TSS

ServicesDone
SS = {SSr, SSa, SSg, SSe} SSr = ∅
wo, E ` [[conf{SS}]]L,TSS S [[conf{SS}]]L,TRS

Figure 5.36: Semantic rules for Step 2

potheses 3 and 1.

Step 3, RS. The third step consumes all the elements of SSe, and only RetService
and RetServiceBoot apply.
We present the semantics in Figure 5.37.

The RetServiceChosen rule picks a service in SSe. This service is related to a boot-
ing or a running client. Hence, one of the two applies. The WEBI configuration is updated
accordingly.

The RetServiceDone rule makes the scheduler transit to the next step because of
SSg = ∅. The rule label changes to DV. The WEBI configuration conf, L, and T are
immuted.

163

An Executable Semantics for Distributed IoT Applications

Step 3

RetServiceChosen
SS = {SSr, SSa, SSg, SSe}
SSe 6= ∅ 〈sc〉((h,j),i) ∈ SSe

wo, E ` conf{SS} RS(j,i)
conf′{SS ′}

wo, E ` [[conf{SS}]]L,TRS S [[conf′{SS ′}]]L,TRS

RetServicesDone
SS = {SSr, SSa, SSg, SSe}

SSe = ∅
wo, E ` [[conf{SS}]]L,TRS S [[conf{SS}]]L,TDV

Figure 5.37: Semantic rules for Step 3

Step 4, DV. The fourth step of the scheduler consumes all the services interacting
with devices. We are considering the DS, DA, and DR rules, and trace L guides the
application of these rules. We present the semantics in Figure 5.38.

The DevSens rule applies a DeviceSensor in case the head of the device-trace L

is DS. The WEBI configuration conf is updated accordingly. Regarding the scheduler
context, the new context contains the list L without its head, and the rule label stays
unchanged.

The DevAct rule, if the head of the L is an actuator, applies the DeviceActuation
rule to the WEBI configuration. The service requesting the act is (j, i), and must be an
element of SSa. The WEBI configuration and the L are updated, and the rule label stays
unchanged.

Similarly, the DevRead performs a DeviceReading requested by the service (j, i) in
case the service belongs to SSg. The head of the L is removed, the configuration is
updated, and the rule label does not change.

The DevNoAct and DevNoRead apply when respectively:

• The head of L is an actuator request done by a service (j, i), but the service is
not an element of SSa.

• The head of L is a read request done by a service (j, i), but the service is not an
element of SSg.

164

An Executable Semantics for Distributed IoT Applications

Step 4

DevSens
L = DS :: L′ wo, E ` conf DS conf′

wo, E ` [[conf]]L,TDV S [[conf′]]L
′,T

DV

DevAct
L = DA(j,i) :: L′ SS = {SSr, SSa, SSg, SSe}

〈sc〉((h,j),i) ∈ SSa wo, E ` conf{SS} DA(j,i)
conf′{SS ′}

wo, E ` [[conf{SS}]]L,TDV S [[conf′{SS ′}]]L
′,T

DV

DevRead
L = DR(j,i) :: L′ SS = {SSr, SSa, SSg, SSe}

〈sc〉((h,j),i) ∈ SSg wo, E ` conf{SS} DR(j,i)
conf′{SS ′}

wo, E ` [[conf{ß}]]L,TDV S [[conf′{SS ′}]]L
′,T

DV

DevNoAct
L = DA(j,i) :: L′ SS = {SSr, SSa, SSg, SSe} 〈sc〉((h,j),i) /∈ SSa

wo, E ` [[conf{SS}]]L,TDV S [[conf{SS}]]L,TCS

DevNoRead
L = DR(j,i) :: L′ SS = {SSr, SSa, SSg, SSe} 〈sc〉((h,j),i) /∈ SSg

wo, E ` [[conf{SS}]]L,TDV S [[conf{SS}]]L,TCS

DevStepDone
SS = {SSr, SSa, SSg, SSe} L = []⇒ (SSa = ∅ ∧ SSg = ∅)

wo, E ` [[conf{SS}]]L,TDV S [[conf{SS}]]L,TCS

Figure 5.38: Semantic rules for Step 4

In this case, for keeping the device-rules application order, the rule makes the sched-
uler context transit to the next step to the scheduler. The rule label is set to CS.

Finally, The DevStepDone applies when the list L is empty. We know that if this trace
is empty, then both the partition sets SSa and SSg are empty.
This rule application only changes the rule label to CS.

Step 5, CS The fifth step handles the ClientStep application. We present the small-
step semantics in Figure 5.39.

165

An Executable Semantics for Distributed IoT Applications

Step 5

ClientChosen
CC = {CCr, CCc, CCt, CCe} CCr 6= ∅ cc(j,u) ∈ CCr

wo, E ` [[conf{CC}]]L,TCS S [[conf{CC}]]L,TCSj

MultiClientSteps
wo, E ` conf{CC} CSj

conf′{CC ′}
CC ′ = {CCr, CCc, CCt, CCe} cc(j,u) ∈ CC ′

wo, E ` [[conf{CC}]]L,TCSj
 S [[conf′{CC ′}]]L,TCSj

OneClientStep
wo, E ` conf{CC} CSj

conf′{CC ′}
CC ′ = {CCr, CCc, CCt, CCe} cc(j,u) /∈ CCr

wo, E ` [[conf]]L,TCSj
 S [[conf′]]L,TCC

ClientsDone
CC = {CCr, CCc, CCt, CCe} CCr = ∅ |CCe| 6= |CC|

wo, E ` [[conf{CC}]]L,TCS S [[conf{CC}]]L,TCC

WebiDone
CC = {CCr, CCc, CCt, CCe} CCr = ∅ |CCe| = |CC|

wo, E ` [[conf{CC}]][],[]CS S [[conf{CC}]][],[]end

Figure 5.39: Semantic rules for Step 5

The ClientChosen rule picks a client to step from the partition set CCr. If there is a
client (j, u), the rule label is set to CSj.

The MultiClientSteps rule performs an execution step on the web client signed by
(j, u). The client, still a member of CCr in conf′, is set again for evaluation. Hence, the
rule label does not change, and the WEBI configuration is updated.

The OneClientStep rule performs an execution step on the web client (j, u). The
client is no more in CCr of conf′. Hence, the rule label is set back to CC. The label
change permits choosing another client to make an execution step, to go to the next
scheduling step, or to terminate WEBI, according to Definition 2, page 128. The WEBI
configuration is updated.

The rule ClientsDone applies if there are no more clients in the partition set CCr.

166

An Executable Semantics for Distributed IoT Applications

Step 6

CallChosen
CC = {CCr, CCc, CCt, CCe} CCc 6= ∅

cc(j,u) ∈ CCc wo, E ` conf{CC} CCj
conf′{CC ′}

wo, E ` [[conf{CC}]]L,TCC S [[conf′{CC ′}]]L,TCC

CallsDone
CC = {CCr, CCc, CCt, CCe} CCc = ∅
wo, E ` [[conf{CC}]]L,TCC S [[conf{CC}]]L,TRN

Figure 5.40: Semantic rules for Step 6

In this case, the rule label of the scheduler execution context is set to CC. Note that the
last premise is |CCe| 6= |CC|, meaning the cardinality of the partition and the whole set
CC differ. There are still clients that might call or have a thunk to run.

If the last premise is |CCe| = |CC|, then the last rule applies, namely WebiDone.
The rule label is set to end, meaning that the scheduler must stop executing, and conf
becomes the final configuration.

Step 6, CC This scheduling step is concerned with applying, wherever possible, the
CLIENTCALL rule. We provide the small-step rules in Figure 5.40. The CallChoosen
rule picks a client j from the partition set CCc.
The client performs a ClientCall step, returning an updated configuration. The sched-
uler context is updated with the new configuration conf′.

Otherwise, the CallsDone applies when the partition set CCc is empty, meaning
there are no more calls to evaluate this iteration. Hence, this rule updates the rule label
to RN for going to the next step.

Step 7, RN In the last step of the scheduler, we present rules for handling the Run rule
application. Similarly to the device’s rules, the order in which thunks execute matters.
For example, consider two thunks of a client, one that wants to call a service that opens
the window and one that calls the one that closes it—the observations made on the final
L of the final WEBI configuration change depending on the order of the thunk choice.
Hence, this step is guided by T, the filtering of the non-deterministic trace describing

167

An Executable Semantics for Distributed IoT Applications

Step 7

RunChosen
T = (j, i) :: T′ CC = {CCr, CCc, CCt, CCe}

〈cc, B, T 〉(j,u) ∈ CCt ti ∈ T wo, E ` conf{CC} RN(j,i)
conf′{CC ′}

wo, E ` [[conf{CC}]]L,TRN S [[conf′{CC ′}]]L,T
′

RN

RunNotFound
T = (j, i) :: T′ CC = {CCr, CCc, CCt, CCe}

〈cc, B, T 〉(j,u) ∈ CCt ti /∈ T
wo, E ` [[conf{CC}]]L,TRN S [[conf{CC}]]L,TSS

RunDone
CC = {CCr, CCc, CCt, CCe}

T = [] ∧ CCt = ∅
wo, E ` [[conf{CC}]]L,TRN S [[conf{CC}]]L,TSS

Figure 5.41: Semantic rules for Step 7

the order of the RN rule application.

The rule RunChosen applies the RN WEBI transition, executing the thunk (j, i), which
is the head of the list T. A constraint is that the thunk i of the client j must exist. The
rule returns the new WEBI configuration and updates the scheduler context with the T

deprived of its head.

Otherwise, the rule RunNotFound applies if the thunk does not belong to the client’s
set T . It means that the thunk is still a callback, or the client has not yet called the
service (j, i). In this case, the rule label of the scheduler context changes to SS. We
keep the order of the RN applications. We remark that step 1 of the scheduler is exe-
cuted only in the first iteration. Afterward, the scheduler does not consider further client
initializations.

Finally, if the list T is empty, no other client’s thunk will ever be executed. The sched-
uler directly passes to the second step.

5.3.2 Equivalence of the Scheduler and the WEBI Semantics

The scheduler semantics we propose must achieve two goals:

168

An Executable Semantics for Distributed IoT Applications

• All the traces produced must be correct, by preserving the original behavior of
the model.

• Reproduce all the traces that provide observations of sensitive events.

We define Theorem 1 saying that given an initial WEBI configuration setting conf,
after a finite number of steps n, the model execution will produce a final configuration
confn only if exists a number of finite steps on conf—n+k-that the scheduler can execute
producing a final configuration conf(n+k) equivalent to confn.
Intuitively, every WEBI non-deterministic execution produces the same observations as
the ones resulting from a scheduler execution and vice versa.

Theorem 1 (Scheduler’s Equivalence to WEBI) Considering the constraints presented
by Hypotheses 1, 2, 3, 4, and 5 given a well-formed initial WEBI configuration conf:

∀ wo, E , n,Π, confn,L,L′, confn.
∃ k :

wo, E ` conf{[], []} n confn{L,Π}
⇔

(wo, E ` [[conf]](πL(Π),πT(Π))
IN (n+k)

S [[conf(n+k)]][],[]) ∧ confn = conf(n+k)

Considering the ⇐ direction of the proof, the proof is trivial; the other direction is
challenging. Indeed, we must prove that given it exists a transformation of every WEBI
trace to an equivalent scheduler trace. It follows that, if the new trace is executed by
the WEBI then it is executed also by the scheduler. The transformation of the trace is
obtained via trace permutations. Hence, we define two series of lemmas:

• A series of lemmas representing an order relation among WEBI rule transitions—
Section 5.3.2.1.

• A series of lemmas for constructing intervals that represent the scheduling
steps—Section 5.3.2.2.

5.3.2.1 Commutation Lemmas

To achieve the goal of transforming a non-deterministic trace into a scheduler’s one,
we must define the commutation of consequent WEBI transition relations. We define

169

An Executable Semantics for Distributed IoT Applications

Generic form of the lemmas

∀conf, conf′, conf′′,X.
conf X conf′′ Rule conf′ ∧
Constraints
⇒
∃conf′′′.
conf Rule conf′′′ X conf′

Rule X Constraints
IN {IN, SS,RS,CS,CC,RN,DV} ×
SS(j,i) {SS,RS(j′,i′),CS,CC,RN,DS,DA(j′,i′),DR(j′,i′)} (j 6= j′ ∨ i 6= i′) ∧ conf{CC} ∧

(〈cc, bi ∈ B, T 〉(j,u) ∈ CC ∨
〈boot〉(j,u) ∈ CC)

RS(j,i) {RS(j′,i′),CS,CC,RN,DS,DA(j′,i′),DR(j′,i′)} (j 6= j′ ∨ i 6= i′) ∧ conf{CC} ∧
(〈cc, bi ∈ B, T 〉(j,u) ∈ CC ∨
〈boot〉(j,u) ∈ CC)

DS {CC,RN,DS} ×
DA(j,i)
DR(j,i)

{CS,CC,RN} conf{CC}∧ 〈cc, bi ∈ B, T 〉(j,u) ∈ CC

CSj {CS,CCj′ ,RN(j′,i)} j 6= j′

CCj {CC,RN} j 6= j′

Figure 5.42: At the top of the figure, we show an informal generic definition of the lemmas.
The table shows, for each rule, the rules with which to commute and the constraints of the
commutations.

a series of lemmas to provide a commutation relation between rule applications. In
Table 5.42, we present this series of lemmas, showing on the first column the rule we
want to commute, on the second column the set of rules commuting with it, and on the
third column constraints if any. We formally present only the commutation lemmas for
the ServiceInit, ServiceStep, and the device rules—DeviceSensor, DeviceActuator,
and DeviceReading-. All the lemmas that concern the other rules follow the ones we
describe.

First, we define the commutation lemma for the IN rule, as it is the rule repeatedly
applied in the first execution step of the scheduler (Lemma 1).

170

An Executable Semantics for Distributed IoT Applications

Lemma 1 (Trace commutativity(IN)) A ServiceInit transition relation can commute
with all the other transitions. Commuting transitions results in the same final configura-
tion.

∀conf, conf′, conf′′,X :
X ∈ {IN,SS,RS,CS,CC,RN,DV} ∧ wo, E ` conf X conf′′ IN conf′

⇒

∃conf′′′ : wo, E ` conf IN conf′′′ X conf′

We proved this lemma by case analysis on X, showing that commuting the transi-
tion relation does not change the terminal configuration conf′. We show that, for each
case we can commute the transition relation obtaining the same final configuration.
Hence, repeatedly applying this lemma to a trace, batches all ServiceInits present
in the trace in the beginning. The transformation does not change the overall meaning
of the trace. Indeed, the final configuration produced by executing WEBI following the
reordered trace is equivalent to the original.

Similarly, we define a lemma for commuting the ServiceStep transition relation with
a subset of X. We present this commutation property in Lemma 2.

Lemma 2 (Trace commutativity(SS)) Given conf, a WEBI configuration, and assuming
limitations on the model described in the Hypotheses 1, 3, and 4:

∀conf, conf′, conf′′,X, j, i, cc(j,u), bi, CC

X ∈ {SS,RS(j′,i′),CS,CC,RN,DS,DA(j′,i′),DR(j′,i′)} ∧ (j 6= j′ ∨ i 6= i′) ∧

conf{CC} ∧ (〈cc, bi ∈ B, T 〉(j,u) ∨ 〈boot〉(j,u) ∈ CC) ∧

wo, E ` conf′′ X conf′′ SS(j,i)
conf′

⇒

∃conf′′′ : wo, E ` conf SS(j,i)
conf′′′ X conf′

The lemma’s proof is similar to the Lemma 1, obtaining the same result. There are
three particular cases we want to discuss: commutation with another SS(j′,i′)—where
j 6= j′ ∧ i 6= i′-, with an RS(j,i), and with the device rules. Regarding the commutation
with another service, we know it is possible commute with the SS(j,i) service, even if
running on the same host. This is allowed because of the hypotheses regarding the

171

An Executable Semantics for Distributed IoT Applications

determinism of the server language and the untouched host memory. The RS(j,i) never
commutes with a future service step on the service (j, i). The reason is that the service
(j, i) returns a value to the client. Afterward, it cannot step anymore. Hence, does
not exist a trace that has a segment produced by the following sequence of transition
relations: wo, E ` conf′′ RS(j,i)

conf′′ SS(j,i)
conf′. Regarding devices, the service step

can commute only with the device sensor transition, and the device actuator or reading
signed by j 6= j′ ∧ i 6= i′. Allowing commutation with an actuator or reading application
of the same service means concretely to swap the service’s lines of code.

Finally, we present three lemmas, one for each device rule—DS (Lemma 3), DA
(Lemma 4), and DR (Lemma 5).

Lemma 3 (Trace commutativity(DS)) Given conf, a WEBI configuration:

∀X, conf, conf′, conf′′.

X ∈ {DS,CS,CC,RN} ∧ wo, E ` conf X conf′′ DS conf′

⇒

∃conf′′′ : wo, E ` conf DS conf′′′ X conf′

Lemma 4 (Trace commutativity(DA)) Given conf, a webi configuration

∀X, conf, conf′, conf′′.

X ∈ {CS,CC,RN} ∧ conf{CC} ∧ 〈cc, bi ∈ B, T 〉(j,u) ∈ CC ∧

wo, E ` conf X conf′′ DA(j,i)
conf′

⇒

∃conf′′′ : wo, E ` conf DA(j,i)
conf′′′ X conf′

Lemma 5 (Trace commutativity(DR)) Given conf, a webi configuration:

∀X, conf, conf′, conf′′.

X ∈ {CS,CC,RN} ∧ conf{CC} ∧ 〈cc, bi ∈ B, T 〉(j,u) ∈ CC ∧

wo, E ` conf X conf′′ DR(j,i)
conf′

⇒

∃conf′′′ : wo, E ` conf DR(j,i)
conf′′′ X conf′

172

An Executable Semantics for Distributed IoT Applications

Also for these three lemmas, the proof approach is similar to the IN and SS lem-
mas. Regarding the device sensor lemma, we allow commutation among DSs, but
not with DA and DR. For an actuation or a reading, putting a DS before or after
changes the meaning of the world record L. For example, allowing a commutation
with a DR(j,i) would probably mean reading a different value from the device memory,
as the DeviceSensor rule produces a physical event and updates some devices’ mem-
ories. For Lemma 4 and Lemma 5, we permit commutations only with the following
client-driven rules: CS, CC, and RN.

5.3.2.2 Interval Lemmas

The lemmas presented in Section 5.3.2.1 can be seen as the definition of order re-
lations between WEBI labeled transitions wo, E ` (X R X′), for some X, X′, wo,
E , and an order relation R. These relations are fundamental for reordering the non-
deterministic trace, obtaining an equivalent reordered one. The intuition behind the de-
sign of these lemmas is to reorder the trace using a sorting-like algorithmic approach.

In this section, we show two lemmas, one for creating an interval of ServiceInits
(step 1), and one for creating an interval of device rule applications (step 4). The other
lemmas—one for each scheduler step-follow the two we define in the section.

Concerning step 1, we present the proposition in Lemma 6. To provide some no-
tation, Π1 :: Π2 represents the concatenation of two traces, n denotes multiple WEBI
execution steps, k

Π denotes k WEBI execution steps guided by the trace Π, and |Π|
represents the length of a trace.
We say that we can reorder a finite final trace Πn, obtaining two traces, ΠIN and Π¬IN,
respectively, the trace of the IN rules application and the rest of the trace. A WEBI ex-
ecution guided by the trace ΠIN :: Π¬IN results in a final configuration equal to the one
produced by executing the trace ΠIN :: Π¬IN.

Lemma 6 (IN Interval) Given a well-formed initial WEBI configuration conf and a final

173

An Executable Semantics for Distributed IoT Applications

configuration confn produced after n steps of executing WEBI:

∀wo, E , conf, I, HM, IC, n, confn, CCeL, IC ′,Π.
I 6= ∅ ∧ conf = 〈[], I, HM, {∅, ∅, ∅, ∅}, {∅, ∅, ∅, ∅}, IC, []〉

∧ wo, E ` conf n confn ∧

confn = 〈L, ∅, HM, {∅, ∅, ∅, ∅}, {∅, ∅, ∅, CCe}, IC ′,Π〉 ∧ |I| = |CCe|
⇒

∃confk1, conf′n, k1, k2,ΠIN,Π¬IN.
|ΠIN|+ |Π¬IN| = k1 + k2 = n = |Π| ∧ |Π¬IN| < |Π| ∧
confk1 = 〈[], ∅, HM, {SSr, ∅, ∅, ∅}, {CCr, ∅, ∅, ∅}, IC,ΠIN〉

∧ SSr 6= ∅ ∧ CCr 6= ∅ ∧ wo, E ` conf k1
ΠIN confk1

k2
Π¬IN conf′n ∧

conf′n = 〈L, ∅, HM, {∅, ∅, ∅, ∅}, {∅, ∅, ∅, CCe}, IC ′,ΠIN :: Π¬IN〉

We proved Lemma 6 by strong induction on the length of the trace. We repeatedly
apply Lemma 1 to every proof sub-case. Note that we deal with finite traces. Hence, we
need a notion of reduction. On the right-hand side of the arrow, the condition |Π¬IN| <
|Π| is satisfied, as reordering a portion of the trace makes the unordered part smaller
than the original Π.

Regarding devices, we present the interval reordering in Lemma 7. We say that
there always exists a reordering ΠDV :: Π¬S′ of a non-ordered sub-trace Π¬S such that
an execution of a trace ΠIN :: ΠS :: Π¬S results in a final WEBI configuration equivalent
to the one produced by executing ΠIN :: ΠS :: ΠDV :: Π¬S′.

The portion ΠDV of the trace is an interval of device rules.

Lemma 7 (DV Interval) Given conf, an initial well-formed WEBI configuration, a finite
portion of a trace Π, ΠIN :: ΠS, where ΠIN represents the step 1 reordering and ΠS

174

An Executable Semantics for Distributed IoT Applications

some other reordering steps, Π¬S a finite non-reordered part of the trace:

∀wo, E , k1, k2, n, conf, confk1, confn, I, HM,SSa, SSg,

CCr, CCe, CC
′
e, IC, IC

′, IC ′′,L,L′,ΠIN,ΠS,Π¬S.

|ΠIN|+ |ΠS| = k1 ∧ k1 + |Π¬S| = n ∧

conf = 〈[], I, HM, {∅, ∅, ∅, ∅}, {∅, ∅, ∅, ∅}, IC, []〉 ∧

wo, E ` conf k1
(ΠIN::ΠS) confk1

k2
Π¬S confn ∧

confk1 = 〈L′, ∅, HM, {∅, SSa, SSg, ∅}, {CCr, ∅, ∅, CC ′e}, IC ′′,ΠIN :: ΠS〉

∧ confn = 〈L, ∅, HM, {∅, ∅, ∅, ∅}, {∅, ∅, ∅, CCe}, IC ′,ΠIN :: ΠS :: Π¬S〉

∧ |I| = |CCe| ∧ |CC ′e| < |I|

⇒

∃k1′, k2′, conf(k1+k1′), conf′n, SSr, SS′a, SS′g, IC ′′′,L′′,Π(DV),Π¬S′
.

|Π¬S| = k2 = k1′ + k2′ = |Π(DV)|+ |Π¬S′ | ∧ |Π¬S′ | ≤ |Π¬S| ∧

wo, E ` conf k1
(ΠIN::ΠS) confk1

k1′

Π(DV) conf(k1+k1′)
k2′

Π¬S′ conf′n ∧

conf(k1+k1′) = 〈L′′, ∅, HM, {SSr, SS′a, SS′g, ∅}, {CCr, ∅, ∅, CC ′e}, IC ′′′,ΠIN :: ΠS :: ΠDV〉 ∧

conf′n = 〈L, ∅, HM, {∅, ∅, ∅, ∅}, {∅, ∅, ∅, CCe}, IC ′,ΠIN :: ΠS :: ΠDV :: Π¬S′〉

We use Lemmas 3, 4, and 5 to prove this lemma for applying commutations on
the non-ordered trace Π¬S, resulting in a trace with a segment of DV rules (step 4),
equivalent to the original—producing the same final WEBI configuration. We proceed by
strong induction on the trace Π¬S. We can always create an interval of DVs when SSg
or SSa is not empty. Note that this interval could be empty if no device commutation
lemma applies. In this case, the trace segment Π¬S does not reduce. The postcondition
|Π¬S′ | ≤ |Π¬S| reflects this case.

5.3.2.3 Proof Sketch of Theorem 1

⇐ This direction is trivial. The non-deterministic WEBI semantics can always imitate
a scheduler’s step. Indeed, if the scheduler semantics can step, it is possible to
do a step with non-deterministic WEBI.

⇒ We divide the proof into two steps. The first step reorders a non-deterministic
trace by applying the commutation lemmas presented in Section 5.3.2.2 to cre-

175

An Executable Semantics for Distributed IoT Applications

ate a sequence of intervals in the trace. We show that the trace Πn and the re-
arranged (partially-ordered) trace Π′n produce equivalent executions. We prove
this step by defining two trace reordering iterations: one for the first iteration of the
scheduler, comprehending the ServiceInits, and the other for the successive it-
erations, which do not consider the scheduler’s first step. For each sub-case, the
final configuration is equivalent to the one obtained by executing the WEBI on the
original one. Hence, the trace transformation is correct for the non-deterministic
WEBI semantics. The proof comes almost in an algorithmic fashion. Despite its
size, this proof step comes straightforward, as we rely on the commutation and
the interval lemmas. The initial hypotheses we consider are the following.

wo, E ` conf n confn
conf = 〈[], I, HM, {∅, ∅, ∅, ∅}, {∅, ∅, ∅, ∅}, IC, []〉
confn = 〈L, [], HM, {∅, ∅, ∅, ∅}, {∅, ∅, ∅, CCe}, IC ′,Πn〉

Moreover, the hypotheses we consider are the one listed in Section 5.3.1.1.

For the second step, we consider an ordered trace equivalent to Πn, called Π′n =
ΠIN :: ΠS. Knowing that they produce equivalent executions, we show that both
the scheduler and WEBI can simulate the ordered trace. We rewrite the theorem
in the following proposition.

∀ wo, E , n,ΠIN :: ΠS, confn, conf′n. ∃ t :
wo, E ` conf{[]} n confn{ΠIN :: ΠS}

⇒

(wo, E ` [[conf]]πL(ΠIN::ΠS),πT(ΠIN::ΠS)
IN (n+t)

S [[conf′(n)]]
[],[]
end) ∧ conf′n = confn

For simplicity, we rename ΠIN :: ΠS as Π′S, where |Π′S| = n. If the trace size
n is 0, the proof is trivial. Otherwise, we define an induction predicate stating
that the scheduler can always imitate the reordered trace for some generic k + t

steps, where t is the number of scheduler transitions that do not change the

176

An Executable Semantics for Distributed IoT Applications

configuration. We show the induction predicate in the following proposition:

∀n, k,Π′S,ΠIN :: ΠS, conf, confk.

ΠIN :: ΠS = Π′S ∧ |Π′S| = n ∧ conf k
Π′S

[0,k]
confk

⇒

∃t,X.

[[conf]]πL(Π′S),πT(Π′S)
IN (k+t)

S [[conf′k]]
πL(Π′S

[k+1,n]),πT(Π′S
[k+1,n])

X ∧

conf′k = confk

, where Π′S[0,k] is the subtrace of Π′S from the index 0 to k.

We assume that this predicate hold for k steps. We show that it also holds for
every next step k+1. We go by case analysis on k, showing that the scheduler and
the non-deterministic semantics can do k + t and k steps respectively, following
the trace Π′S[0,k].
Then, for each possible sub-case, we show that both the semantics can perform
one more execution step to produce the same k + 1 configuration.
The induction predicate holds for every subcase; hence we conclude the proof
by saying that the scheduler’s execution can produce every final configuration
generated by a WEBI execution, making the semantics equivalent.

5.3.3 Executing the Example of Section 5.2.3 in Skel

In the section, we show how the implementation of the scheduler in Skel is suitable for
executing the example presented in Section 5.2.3.

Skel Implementation. The scheduler semantics we proposed is one designed for
proving the equivalence theorem. To implement the scheduler, we could have imple-
mented it by providing as input L and T. However, the usability of the scheduler would
then be complex. Thus, we relax the input that should be provided and implement a
scheduler such that :

• Scheduling step 4 does not follow the trace L.

177

An Executable Semantics for Distributed IoT Applications

• Scheduling step 7 does not follow the trace T.

To observe the possible interaction in the scheduler’s execution, we design steps 4
and 7 to be non-deterministic, similarly to diagram B in Figure 5.33. Indeed, we exploit
the Skel branch construct for deciding whether to pick and execute configurations with
elements from SSa, SSg, or CCt, or not.

All the other steps are immuted, emptying the related partition set before passing
to the next scheduling step.

We derive two interpreters from the Skel definition, one using the RandID inter-
pretation monad and the other using the List monad. One can find the examples
in the following repository: https://gitlab.inria.fr/skeletons/webi-in-skel/-/
tree/master.

Two Scheduler Executions. We showed that reducing the non-determinism of the
model does not affect the expressiveness of WEBI. The OCaml interpreter generated
from the scheduler’s semantics produces all the possible traces generated by the orig-
inal semantics interpreter’s executions. This section presents two traces equivalent to
traces A and B described in Figure 5.32. The result of executing these traces produces
final WEBI configurations congruent to the ones presented in Section 5.2.3. We remark
that the interpreter follows the behavior of the diagram shown in Figure 5.33.

Figure 5.43 presents the equivalent traces resulting from a concrete interpretation.
These two traces perform four scheduler iterations.

The first iteration starts on both cases with two ServiceInits, and the order of
the initializations is not essential. Afterward, both the services perform ServiceSteps,
choosing to do two steps on a row on the windowManager and one on the tunOnOven
service. The resulting configuration contains the oven actuation and the thermometer
reading in the partition sets _SS_a and _SS_g. These devices’ interactions belong to the
execution of the windowManager and the tunOnOven running services. The first iteration
ends with the device rules applications. Trace A first executes the device actuator of
the oven after a device sensor, meaning that the following DeviceSensor will update the
thermometer memory to 26◦, making the DeviceReading reading a temperature higher
than 24◦C. Differently, trace B first executes the DeviceSensor and the DeviceReading,
making the read temperature being a value lower than 24◦C.

The second iteration is substantially different between traces A and B. Trace A
first makes the window and the oven service code progress via ServiceSteps. This

178

https://gitlab.inria.fr/skeletons/webi-in-skel/-/tree/master
https://gitlab.inria.fr/skeletons/webi-in-skel/-/tree/master

An Executable Semantics for Distributed IoT Applications

Scheduler’s execution equivalent to rule se-
quence A.
1st Iteration.
ServiceInit Step
→ IN → IN
ServiceStep Step
→ SSw → SSw → SSo
DevRules Step
→ DS → DAo → DS → DRw

2nd Iteration.
ServiceStep Step
→ SSo → SSo → SSw
→ SSw → SSw → SSw
→ SSw
RetService Step
→ RSo
DevRules Step
→ DS → DAw

ClientStep Step
→ CSs
3rd Iteration.
ServiceStep Step
→ SSw → SSw → SSw
DevRules Step
DS → DRw

4th Iteration.
ServiceStep Step
→ SSw → SSw → SSw
RetService Step
→ RSw
ClientStep Step
→ CSa

Scheduler’s execution equivalent to rule se-
quence B.
1st Iteration.
ServiceInit Step
→ IN → IN
ServiceStep Step
→ SSw → SSw → SSo
DevRules Step
→ DS → DRw

2nd Iteration.
ServiceStep Step
→ SSw → SSw → SSw
→ SSw → SSw
DevRules Step
→ DS → DAw → DS → DAo

3rd Iteration.
ServiceStep Step
→ SSo → SSo → SSw → SSw
→ SSw
RetService Step
→ RSo
DevRules Step
→ DS → DRw

ClientStep Step
→ CSs
4th Iteration.
ServiceStep Step
→ SSw → SSw → SSw
RetService Step
→ RSw
ClientStep Step
→ CSa

Figure 5.43: Two scheduler’s reordered traces behaviorally equivalent to the traces in Figure 5.32.
With equivalent we mean that they produce the same final WEBI configuration. We annotate the
some rules applications with “o” and “w” to refer to the oven and window service, and “a” and
“s” to refer to the clients adam and steve.

series of ServiceSteps concludes the oven service evaluation in trace A. Indeed, in
the next step, a RetServiceBoot happens, creating a running client. Afterward, a device
actuator happens for the windowManager service, and finally, the client is created by the
oven service steps, concluding the second iteration. For trace B, things work differently.

179

An Executable Semantics for Distributed IoT Applications

Only the windowManager steps because the oven actuation is still pending. Afterward,
a series of device rules happen by performing an actuation—and closing it-and turning
on the oven after a device sensor application. Trace B does not produce a configuration
with a detectable interaction between the two devices.

The two traces also differ in the third iteration. Trace A performs some service steps
on the windowManager service before reaching the thermometer get. Afterward, the
trace records a device sensor followed by the reading of the only service executing.
Trace B completes the execution of the turnOnOven service and continues the one of
the windowManager—similarly to trace A. It follows that the window service reads the
thermometer temperature, and finally oven’s service returns, creating a running client,
ending this iteration.

The fourth iteration of the scheduler is identical for both traces, concluding the exe-
cution of the window service, which by returning creates a running client, which with a
client step ends its execution too.

Collecting Semantics. Execution traces A and B produce the only two final con-
figurations the model can derive. We executed the same program with the collecting
semantics monad, obtaining different permutations of the traces, meaning that device
rule applications are located differently in the resulting L. Nevertheless, the two final
configurations are always equivalent to the ones produced by executing the traces in
Figure 5.43.

180

Conclusion

181

Conclusion

In this thesis, we defined a practical approach to represent the semantics of pro-
gramming languages via Skel [41], a specification language that concretizes Skeletal
Semantics [8]. In Chapter 3, we have shown how this simple, purely functional meta-
language can easily capture complex target language features by leveraging monadic
operators. We claim the descriptions written in Skel are easy to read and maintain.
Indeed, new meta features (such as the need to manipulate continuations) are seldom
introduced, and when they are, only the monadic binders need to be adapted; existing
descriptions not relying on the feature may be left unchanged.
In addition, existing tools such as necroml [42] let us derive an OCaml interpreter from a
Skeletal Semantics. We have used it to obtain executable versions of the toy languages
presented in this chapter—the arithmetic language and its extension with exceptions,
the PCF, the stateful PCF, and the yield language.5

In Chapter 4, we have described how can the Skel language be used to mechanize
complex semantics. In particular, we have shown how carefully chosen monads can
help to have a formal description close to the specification while still describing the
complex behaviors of ES. This work applied on a larger scale the technique presented
in Chapter 3. We decided to formalize JavaScript because of two main reasons. First,
we have previous experience dealing with the ES specification [6]. Second, the ES
specification is both very precise and very complex. Hence we do not have to guess
the behavior of the language while making sure Skel can scale. In addition to imple-
menting parts of ES in Skel, we also provide boilerplate code to integrate with existing
JS parsers and implement all the unspecified terms in OCaml. Using necroml, we gen-
erate an OCaml executable semantics.
Our main effort stood in mechanizing the foundations of the language, of which GetValue
is a good example. We can now easily extend our formalization by following the same
systematic approach for other abstract algorithms and language constructs.
We have also evaluated the maintainability of the approach. This project began with the
formalization of ECMAScript 2020, but after a few months, we switched to the newer
ECMAScript 2021. This process took only a few days of work. Naturally, this will change
once we complete the formalization of the standard. Nevertheless, we can produce a
list of differences between specifications (as a textual diff), making the amount of work
proportional to the extent of changes and not to the specification’s size. In particular,
unlike other work [6], we only have one mechanization to change instead of many. The

5. https://gitlab.inria.fr/akhayam/programming_skel

182

https://gitlab.inria.fr/akhayam/programming_skel

Conclusion

standard changes quite often, not only by modifying algorithmic steps but also by intro-
ducing side-effects into the specification.
The work of this chapter is a real-world language application of the work of Chapter 3).
We showed that it is possible to systematically introduce side-effects into a formal-
ization by delegating all the necessary machinery to handle them to some carefully
designed monads. It is a well-known result [72], but it is unclear how it could be applied
in the context of Skel. The monadic approach lets us introduce a new behavior through-
out the specification by simply changing the monad we use. Indeed, a short-term goal
is to implement a new monad for manipulating delimited continuations and combining
it with the ones presented in this paper. As discussed in Section 4.1.6, we will then be
able to implement generators whose execution can be suspended (using yield) and
resumed. This feature is necessary to implement function calls as its algorithmic de-
scription uses a generator. Once function calls are implemented, we can directly run
the ECMA-262 test suite.
In the long run, we plan several developments for this work. The first goal is to validate
that we can use our mechanized semantics to prove some properties of the language.
One property of interest is the guarantee that assertions in the specification are always
satisfied. To this end, we will use the necrocoq tool [50]. As the formalization of JS
helped us refine the Skel language, we believe the generation of a Coq semantics will
provide many opportunities to suggest improvements for necrocoq. Another goal is to
exploit our systematic approach to produce a Skeletal Semantics directly from the ES
document, using a tool similar to the one presented by J. Park et al. [59]. Finally, we
plan to apply our expertise to formalize other complex languages in Skel. An example
could be Python, for which formal semantics has been described on paper [45].

In Chapter 5, we studied Skel from another perspective. We wanted to see if the
language is suitable for designing a non-deterministic model. The model describes the
behavior of distributed systems, which consider connected devices, for writing IoT ap-
plications. Hence, after explaining WEBI extensively, we provided a refined small-step
operational semantics of this pre-existing model and its Skel implementation.
From this implementation, we derived two interpreters on which we showed and ex-
ecuted examples of programs. The first instantiation of the interpreter evaluates pro-
grams returning a result, and the second instantiation collects all the possible execution
traces. However, the collecting interpretation was not executable, as the traces to col-
lect on the naive implementation of WEBI are infinite, making the interpretation run out

183

Conclusion

of memory.
For this reason, we tamed the non-determinism intrinsic in this model by designing
a scheduled semantics of WEBI equivalent to the original under certain assumptions.
We showed that from a non-deterministic trace, there is always a trace transformation
to build an equivalent scheduler trace for each execution trace. This equivalence re-
sult is vital for enabling preliminary studies on this model. Indeed, at the end of the
chapter, we showed that we executed both the concrete and the collecting semantics
interpreter with the scheduler semantics without having any memory issues. Especially
the collecting semantics is interesting, as it paves the way for analysis of the execu-
tion of programs on WEBI. It is a significant result, as the model, passing its embryonal
phase, is ready for further formal studies, both in program analysis and programming
language semantics. Indeed, a plan for the future is to use a server and a client variant
of the ECMAScript semantics proposed in Chapter 4 to provide formal semantics to a
multi-tier language, such as Hop.js [65]. Thus, we would be able to derive a certified
version of the language, which relies on the certifications of the clients and the service
languages, and write and analyze IoT applications that we will define as secure con-
cerning some security properties. The path is long, but this thesis provides modular
work that can be merged for formally reasoning on IoT applications. As said, the two
directions are to design scalable static analysis techniques on the Skel version of WEBI
and to complete the ECMAScript formalizations for developing a multi-tier language we
will use for writing programs. We will rely on the correctness of the work of Chapter 4
once it is finished.

Final Considerations. The approach presented in Chapter 3 and the semantics
of JavaScript described in Chapter 4 pushed the Skel language to evolve. The Skel
evolution and the works presented in the thesis went in parallel, showing how a more
applicative version of a theoretical framework can lead to the growth of a language that
was more of an academic tool for representing toy languages. This consideration is
positive, as the goal was to have a language and a set of tools reflecting a theoretical
framework usable by programming language designers and programmers. We did not
change the essence of the original Skeletal Semantics framework [8], edulcorating it
for being intuitive to use for real language formalizations. We claim that our technique
leads to building solid formalizations. Moreover, at the time of the writing, we have
stable tools for deriving a concrete interpretation [42].

184

Conclusion

However, the necrocoq tool is not yet ready. Once necrocoq is complete, Skel will be a
powerful tool for encoding and certifying programming language semantics.

The original paper states a result of consistency regarding different interpretations,
namely the concrete and the abstract interpretation. Skel’s tool environment is evolv-
ing to include derivations of annotated artefacts for performing abstract interpretation,
making the development of such tool essential to transform Skel into a complete lan-
guage for semanticists.

Finally, the work done for WEBI is introductory. Still, we have all the intents to use the
Skel tools to study this model for studying IoT security properties, an actual research
problem, as these devices are increasingly part of our everyday life. The aim is to be
able to explore IoT application’s security via instantiations of the Skel semantics of
WEBI.

I am confident that Skeletal Semantics and Skel are the perfect cost-effective formal
framework and specification language for reaching these goals.

185

BIBLIOGRAPHY

[1] Guillaume Ambal, Sergueï Lenglet, and Alan Schmitt, “Certified Abstract Machines
for Skeletal Semantics”, in: Certified Programs and Proofs, Philadelphia, United
States, Jan. 2022.

[2] APACHE Groovy, A multi-faceted language for the Java platform, url: https:
//groovy-lang.org.

[3] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H.
Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, M.
Woodger, and P. Naur, “Revised Report on the Algorithm Language ALGOL 60”,
in: Commun. ACM 6.1 (1963), pp. 1–17, issn: 0001-0782, doi: 10.1145/366193.
366201, url: https://doi.org/10.1145/366193.366201.

[4] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy, “Formal Verification of a C
Compiler Front-End”, in: FM 2006: Int. Symp. on Formal Methods, vol. 4085,
Lecture Notes in Computer Science, Springer, 2006, pp. 460–475, url: http://
xavierleroy.org/publi/cfront.pdf.

[5] Sandrine Blazy and Xavier Leroy, “Formal verification of a memory model for C-
like imperative languages”, in: International Conference on Formal Engineering
Methods (ICFEM 2005), vol. 3785, Lecture Notes in Computer Science, Springer,
2005, pp. 280–299, url: http://xavierleroy.org/publi/memory-model.pdf.

[6] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Maffeis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith, “A Trusted Mech-
anised JavaScript Specification”, in: Conference Record of the Annual ACM Sym-
posium on Principles of Programming Languages 49 (Jan. 2014), pp. 87–100, doi:
10.1145/2578855.2535876.

[7] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Maffeis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith, JSCert: Certified
JavaScript, url: https://jscert.org.

187

https://groovy-lang.org
https://groovy-lang.org
https://doi.org/10.1145/366193.366201
https://doi.org/10.1145/366193.366201
https://doi.org/10.1145/366193.366201
http://xavierleroy.org/publi/cfront.pdf
http://xavierleroy.org/publi/cfront.pdf
http://xavierleroy.org/publi/memory-model.pdf
https://doi.org/10.1145/2578855.2535876
https://jscert.org

BIBLIOGRAPHY

[8] Martin Bodin, Philippa Gardner, Thomas Jensen, and Alan Schmitt, “Skeletal Se-
mantics and their Interpretations”, in: Proceedings of the ACM on Programming
Languages 44 (2019), pp. 1–31, doi: 10.1145/3290357, url: https://hal.inria.
fr/hal-01881863.

[9] Martin Bodin, Thomas Jensen, and Alan Schmitt, “Certified Abstract Interpre-
tation with Pretty-Big-Step Semantics”, in: Proceedings of the 2015 Conference on
Certified Programs and Proofs, CPP ’15, Mumbai, India: Association for Computing
Machinery, 2015, pp. 29–40, isbn: 9781450332965, doi: 10.1145/2676724.2693174,
url: https://doi.org/10.1145/2676724.2693174.

[10] Denis Bogdanas and Grigore Roşu, “K-Java: A Complete Semantics of Java”, in:
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’15, Mumbai, India: Association for Comput-
ing Machinery, 2015, pp. 445–456, isbn: 9781450333009, doi: 10.1145/2676726.
2676982, url: https://doi.org/10.1145/2676726.2676982.

[11] Gérard Boudol, Zhengqin Luo, Tamara Rezk, and Manuel Serrano, “Reasoning
about Web Applications: An Operational Semantics for HOP”, in: ACM Trans.
Program. Lang. Syst. 34.2 (June 2012), issn: 0164-0925, doi: 10.1145/2220365.
2220369, url: https://doi.org/10.1145/2220365.2220369.

[12] CAKEML: A Verified Implementation of ML, url: https://cakeml.org.

[13] Z. Berkay Celik, Leonardo Babun, Amit K. Sikder, Hidayet Aksu, Gang Tan, Patrick
McDaniel, and A. Selcuk Uluagac, “Sensitive Information Tracking in Commod-
ity IoT”, in: Proceedings of the 27th USENIX Conference on Security Symposium,
SEC’18, Baltimore, MD, USA: USENIX Association, 2018, pp. 1687–1704, isbn:
9781931971461.

[14] Z. Berkay Celik, Patrick McDaniel, and Gang Tan, “SOTERIA: Automated IoT
Safety and Security Analysis”, in: Proceedings of the 2018 USENIX Conference
on Usenix Annual Technical Conference, USENIX ATC ’18, Boston, MA, USA:
USENIX Association, 2018, pp. 147–158, isbn: 9781931971447.

[15] Arthur Charguéraud, “Pretty-big-step semantics”, in: Proceedings of the 22nd Eu-
ropean Symposium on Programming (ESOP 2013), Springer, 2013, pp. 41–60.

188

https://doi.org/10.1145/3290357
https://hal.inria.fr/hal-01881863
https://hal.inria.fr/hal-01881863
https://doi.org/10.1145/2676724.2693174
https://doi.org/10.1145/2676724.2693174
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1145/2220365.2220369
https://doi.org/10.1145/2220365.2220369
https://doi.org/10.1145/2220365.2220369
https://cakeml.org

BIBLIOGRAPHY

[16] Arthur Charguéraud, Alan Schmitt, and Thomas Wood, “JSExplain: A Double
Debugger for JavaScript”, in: The Web Conference 2018, Lyon, France, 2018, pp. 1–
9, doi: 10.1145/3184558.3185969.

[17] Xiaohong Chen, Zhengyao Lin, Minh-Thai Trinh, and Grigore Roşu, “Towards
a Trustworthy Semantics-Based Language Framework via Proof Generation”, in:
Computer Aided Verification, ed. by Alexandra Silva and K. Rustan M. Leino,
Cham: Springer International Publishing, 2021, pp. 477–499, isbn: 978-3-030-81688-
9.

[18] COMPCERT, url: https://compcert.org.

[19] Coq Program Extraction, url: https : / / coq . inria . fr / refman / addendum /
extraction.html.

[20] ECMA, ECMAScript 2021 Language Specification, 2021, url: https://tc39.es/
ecma262/2021/.

[21] Chucky Ellison and Grigore Rosu, “An Executable Formal Semantics of C with Ap-
plications”, in: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’12, Philadelphia, PA, USA:
Association for Computing Machinery, 2012, pp. 533–544, isbn: 9781450310833,
doi: 10.1145/2103656.2103719, url: https://doi.org/10.1145/2103656.
2103719.

[22] engine262, An implementation of ECMA-262 in JavaScript, url: https://github.
com/engine262/engine262.

[23] Daniele Filaretti and Sergio Maffeis, “An Executable Formal Semantics of PHP”,
in: ECOOP 2014 – Object-Oriented Programming, ed. by Richard Jones, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 567–592, isbn: 978-3-662-44202-
9.

[24] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen, “The Essence
of Compiling with Continuations”, in: Proceedings of the ACM SIGPLAN’93 Con-
ference on Programming Language Design and Implementation (PLDI), Albuquerque,
New Mexico, USA, June 23-25, 1993, ed. by Robert Cartwright, ACM, 1993, pp. 237–
247, isbn: 0-89791-598-4, doi: 10.1145/155090.155113, url: https://doi.org/
10.1145/155090.155113.

189

https://doi.org/10.1145/3184558.3185969
https://compcert.org
https://coq.inria.fr/refman/addendum/extraction.html
https://coq.inria.fr/refman/addendum/extraction.html
https://tc39.es/ecma262/2021/
https://tc39.es/ecma262/2021/
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1145/2103656.2103719
https://github.com/engine262/engine262
https://github.com/engine262/engine262
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/155090.155113

BIBLIOGRAPHY

[25] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi, “The Essence of JavaScript”,
in: ECOOP, Lecture Notes in Computer Science (June 2010), pp. 126–150, doi:
10.1007/978-3-642-14107-2_7.

[26] John Hannan and Dale Miller, “From Operational Semantics to Abstract Machines:
Preliminary Results”, in: Proceedings of the 1990 ACM Conference on LISP and
Functional Programming, LFP ’90, Nice, France: Association for Computing Ma-
chinery, 1990, pp. 323–332, isbn: 089791368X, doi: 10.1145/91556.91680, url:
https://doi.org/10.1145/91556.91680.

[27] Robert Harper, Furio Honsell, and Gordon Plotkin, “A Framework for Defining
Logics”, in: J. ACM 40.1 (1993), pp. 143–184, issn: 0004-5411, doi: 10.1145/
138027.138060, url: https://doi.org/10.1145/138027.138060.

[28] Chris Hathhorn, Chucky Ellison, and Grigore Roşu, “Defining the Undefinedness
of C”, in: Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’15, Portland, OR, USA: Association
for Computing Machinery, 2015, pp. 336–345, isbn: 9781450334686, doi: 10.1145/
2737924.2737979, url: https://doi.org/10.1145/2737924.2737979.

[29] HOL, url: https://hol-theorem-prover.org/.

[30] Isabelle, url: https://isabelle.in.tum.de.

[31] Roshan P. James, A. U.S., and A. Sabry, “Yield: Mainstream Delimited Continua-
tions”, in: 2011.

[32] Gilles Kahn, “Natural Semantics”, in: Proceedings of the 4th Annual Symposium on
Theoretical Aspects of Computer Science, STACS ’87, Berlin, Heidelberg: Springer-
Verlag, 1987, pp. 22–39, isbn: 354017219X.

[33] Adam Khayam, Louis Noizet, and Alan Schmitt, “A Faithful Description of EC-
MAScript Algorithms”, in: Proceedings of the 24th International Symposium on
Principles and Practice of Declarative Programming, PPDP ’22, Tbilisi, Georgia:
Association for Computing Machinery, 2022, isbn: 9781450397032, doi: 10.1145/
3551357.3551381, url: https://doi.org/10.1145/3551357.3551381.

[34] Adam Khayam, Louis Noizet, and Alan Schmitt, “JSkel: Towards a Formalization
of JavaScript’s Semantics”, in: JFLA 2021 - Journées Francophones des Langages
Applicatifs, Virtuelles, France, Apr. 2021, pp. 1–22, url: https://hal.inria.fr/
hal-03509431.

190

https://doi.org/10.1007/978-3-642-14107-2_7
https://doi.org/10.1145/91556.91680
https://doi.org/10.1145/91556.91680
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/2737924.2737979
https://doi.org/10.1145/2737924.2737979
https://doi.org/10.1145/2737924.2737979
https://hol-theorem-prover.org/
https://isabelle.in.tum.de
https://doi.org/10.1145/3551357.3551381
https://doi.org/10.1145/3551357.3551381
https://doi.org/10.1145/3551357.3551381
https://hal.inria.fr/hal-03509431
https://hal.inria.fr/hal-03509431

BIBLIOGRAPHY

[35] Adam Khayam and Alan Schmitt, A Practical Approach for Describing Language
Semantics, Submitted for publication - The Art, Science, and Engineering of Pro-
gramming, May 2022.

[36] Casey Klein, John Clements, Christos Dimoulas, Carl Eastlund, Matthias Felleisen,
Matthew Flatt, Jay A. McCarthy, Jon Rafkind, Sam Tobin-Hochstadt, and Robert
Bruce Findler, “Run Your Research: On the Effectiveness of Lightweight Mech-
anization”, in: SIGPLAN Not. 47.1 (2012), pp. 285–296, issn: 0362-1340, doi:
10.1145/2103621.2103691, url: https://doi.org/10.1145/2103621.2103691.

[37] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens, “CakeML:
A Verified Implementation of ML”, in: Principles of Programming Languages (POPL),
ACM Press, Jan. 2014, pp. 179–191, doi: 10.1145/2535838.2535841, url: https:
//cakeml.org/popl14.pdf.

[38] Peter J. Landin, “The Mechanical Evaluation of Expressions”, in: Comput. J. 6
(1964), pp. 308–320.

[39] Xavier Leroy, “Formal Verification of a Realistic Compiler”, in: Commun. ACM
52.7 (July 2009), pp. 107–115, issn: 0001-0782, doi: 10.1145/1538788.1538814,
url: https://doi.org/10.1145/1538788.1538814.

[40] Liyi Li and Elsa L. Gunter, “A Complete Semantics of K and Its Translation to
Isabelle”, in: Theoretical Aspects of Computing – ICTAC 2021: 18th International
Colloquium, Virtual Event, Nur-Sultan, Kazakhstan, September 8–10, 2021, Pro-
ceedings, Berlin, Heidelberg: Springer-Verlag, 2021, pp. 152–171, isbn: 978-3-030-
85314-3, doi: 10.1007/978-3-030-85315-0_10, url: https://doi.org/10.
1007/978-3-030-85315-0_10.

[41] Noizet Louis and Schmitt Alan, “Semantics in Skel and Necro”, in: Italian Confer-
ence on Theoretical Computer Science, Rome, Italy, September 7-9, 2022, 2022.

[42] Enzo Crance Martin Bodin Nathanael Courant and Louis Noizet, Necro Ocaml Gen-
erator, https://gitlab.inria.fr/skeletons/necro-ml, url: https://gitlab.inria.
fr/skeletons/necro-ml.

[43] Robert Milne and C. Strachey, A Theory of Programming Language Semantics,
99th, USA: Halsted Press, 1977, isbn: 0470989068.

[44] Robin Milner, Mads Tofte, and David Macqueen, The Definition of Standard ML,
Cambridge, MA, USA: MIT Press, 1997, isbn: 0262631814.

191

https://doi.org/10.1145/2103621.2103691
https://doi.org/10.1145/2103621.2103691
https://doi.org/10.1145/2535838.2535841
https://cakeml.org/popl14.pdf
https://cakeml.org/popl14.pdf
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/978-3-030-85315-0_10
https://doi.org/10.1007/978-3-030-85315-0_10
https://doi.org/10.1007/978-3-030-85315-0_10
https://gitlab.inria.fr/skeletons/necro-ml
https://gitlab.inria.fr/skeletons/necro-ml

BIBLIOGRAPHY

[45] Raphaël Monat, “Static Type and Value Analysis by Abstract Interpretation of
Python Programs with Native C Libraries”, PhD thesis, Sorbonne University, 2021.

[46] Peter D Mosses, “Modular structural operational semantics”, in: The Journal of
Logic and Algebraic Programming 60-61 (2004), Structural Operational Seman-
tics, pp. 195–228, issn: 1567-8326, doi: https://doi.org/10.1016/j.jlap.
2004.03.008, url: https://www.sciencedirect.com/science/article/pii/
S156783260400027X.

[47] Dominic P. Mulligan, Scott Owens, Kathryn E. Gray, Tom Ridge, and Peter Sewell,
“Lem: Reusable Engineering of Real-World Semantics”, in: Proceedings of the 19th
ACM SIGPLAN International Conference on Functional Programming, ICFP ’14,
Gothenburg, Sweden: Association for Computing Machinery, 2014, pp. 175–188,
isbn: 9781450328739, doi: 10.1145/2628136.2628143, url: https://doi.org/
10.1145/2628136.2628143.

[48] Magnus O. Myreen and Scott Owens, “Proof-Producing Synthesis of ML from
Higher-Order Logic”, in: SIGPLAN Not. 47.9 (2012), pp. 115–126, issn: 0362-1340,
doi: 10.1145/2398856.2364545, url: https://doi.org/10.1145/2398856.
2364545.

[49] Louis Noizet,Necro Debugger Generator, https://gitlab.inria.fr/skeletons/necro-debug,
url: https://gitlab.inria.fr/skeletons/necro-debug.

[50] Louis Noizet, Necro Gallina Generator, https://gitlab.inria.fr/skeletons/necro-coq,
url: https://gitlab.inria.fr/skeletons/necro-coq.

[51] Louis Noizet, Necro Library, https://gitlab.inria.fr/skeletons/necro, url: https:
//gitlab.inria.fr/skeletons/necro.

[52] Louis Noizet and Alan Schmitt, “Semantics in Skel and Necro”, in: ICTCS 2022 -
Italian Conference on Theoretical Computer Science, CEURWorkshop Proceedings,
Rome, Italy, Sept. 2022, pp. 1–17, url: https://hal.inria.fr/hal-03784478.

[53] Louis Noizet and Alan Schmitt, Stating and Handling Semantics with Skel and
Necro, Research Report RR-9449, Inria Rennes - Bretagne Atlantique, Jan. 2022,
pp. 1–23, url: https://hal.inria.fr/hal-03543701.

[54] Louis Noizet and Alan Schmitt, Stating and Handling Semantics with Skel and
Necro, Research Report, Inria Rennes - Bretagne Atlantique, Jan. 2022, p. 20, url:
https://hal.inria.fr/hal-03543701.

192

https://doi.org/https://doi.org/10.1016/j.jlap.2004.03.008
https://doi.org/https://doi.org/10.1016/j.jlap.2004.03.008
https://www.sciencedirect.com/science/article/pii/S156783260400027X
https://www.sciencedirect.com/science/article/pii/S156783260400027X
https://doi.org/10.1145/2628136.2628143
https://doi.org/10.1145/2628136.2628143
https://doi.org/10.1145/2628136.2628143
https://doi.org/10.1145/2398856.2364545
https://doi.org/10.1145/2398856.2364545
https://doi.org/10.1145/2398856.2364545
https://gitlab.inria.fr/skeletons/necro-debug
https://gitlab.inria.fr/skeletons/necro-coq
https://gitlab.inria.fr/skeletons/necro
https://gitlab.inria.fr/skeletons/necro
https://hal.inria.fr/hal-03784478
https://hal.inria.fr/hal-03543701
https://hal.inria.fr/hal-03543701

BIBLIOGRAPHY

[55] Scott Owens, Peter Böhm, Francesco Zappa Nardelli, and Peter Sewell, “Lem: A
Lightweight Tool for Heavyweight Semantics”, in: Interactive Theorem Proving,
ed. by Marko van Eekelen, Herman Geuvers, Julien Schmaltz, and Freek Wiedijk,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 363–369, isbn: 978-3-642-
22863-6.

[56] Daejun Park, Andrei Stefănescu, and Grigore Roşu, “KJS: A Complete Formal
Semantics of JavaScript”, in: ACM SIGPLAN Notices 50 (June 2015), pp. 346–356,
doi: 10.1145/2813885.2737991.

[57] Jihyeok Park, Seungmin An, and Sukyoung Ryu, “Automatically Deriving JavaScript
Static Analyzers from Specifications Using Meta-Level Static Analysis”, in: Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE 2022, Singa-
pore, Singapore: Association for Computing Machinery, 2022, pp. 1022–1034, isbn:
9781450394130, doi: 10.1145/3540250.3549097, url: https://doi.org/10.
1145/3540250.3549097.

[58] Jihyeok Park, Seungmin An, Wonho Shin, Yusung Sim, and Sukyoung Ryu, “JS-
TAR: JavaScript Specification Type Analyzer using Refinement”, in: 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
2021, pp. 606–616, doi: 10.1109/ASE51524.2021.9678781.

[59] Jihyeok Park, Jihee Park, Seungmin An, and Sukyoung Ryu, “JISET: JavaScript
IR-based Semantics Extraction Toolchain”, in: 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2020, pp. 647–658.

[60] Blaise Pascal, The Provincial Letters, 1657.

[61] Gordon D Plotkin, A structural approach to operational semantics, Aarhus univer-
sity, 1981.

[62] Gordon D. Plotkin, “LCF Considered as a Programming Language”, in: Theoretical
Computer Science 5.3 (1977), pp. 223–255, doi: 10.1016/0304-3975(77)90044-5,
url: https://doi.org/10.1016/0304-3975(77)90044-5.

[63] Grigore Roşu and Traian Şerbănuţă, “An Overview of the K Semantic Framework”,
in: The Journal of Logic and Algebraic Programming 79 (Aug. 2010), pp. 397–434,
doi: 10.1016/j.jlap.2010.03.012.

193

https://doi.org/10.1145/2813885.2737991
https://doi.org/10.1145/3540250.3549097
https://doi.org/10.1145/3540250.3549097
https://doi.org/10.1145/3540250.3549097
https://doi.org/10.1109/ASE51524.2021.9678781
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1016/j.jlap.2010.03.012

BIBLIOGRAPHY

[64] Amr Sabry and Matthias Felleisen, “Reasoning About Programs in Continuation-
Passing Style”, in: Proceedings of the Conference on Lisp and Functional Program-
ming, LFP 1992, San Francisco, California, USA, 22-24 June 1992, ed. by Jon
L. White, ACM, 1992, pp. 288–298, isbn: 0-89791-481-3, doi: 10.1145/141471.
141563, url: https://doi.org/10.1145/141471.141563.

[65] Manuel Serrano, Hop, multitier Web Programming, 2006, url: http://hop.inria.
fr.

[66] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge,
Susmit Sarkar, and Rok Strniša, “Ott: Effective Tool Support for the Working Se-
manticist”, in: Proceedings of the 12th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’07, Freiburg, Germany: Association for Computing
Machinery, 2007, pp. 1–12, isbn: 9781595938152, doi: 10.1145/1291151.1291155,
url: https://doi.org/10.1145/1291151.1291155.

[67] KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil
Madhavapeddy, “Retrofitting Effect Handlers onto OCaml”, in: Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, PLDI 2021, Virtual, Canada: Association for Computing Ma-
chinery, 2021, pp. 206–221, isbn: 9781450383912, doi: 10.1145/3453483.3454039,
url: https://doi.org/10.1145/3453483.3454039.

[68] Standard ML Family GitHub Project, url: https://smlfamily.github.io.

[69] Yong Kiam Tan, Scott Owens, and Ramana Kumar, “A Verified Type System for
CakeML”, in: IFL ’15, Koblenz, Germany: Association for Computing Machinery,
2015, isbn: 9781450342735, doi: 10.1145/2897336.2897344, url: https://doi.
org/10.1145/2897336.2897344.

[70] The Coq proof assistant, url: https://coq.inria.fr.

[71] The Twelf Project, url: http://twelf.org/wiki/Main_Page.

[72] Philip Wadler, “The Essence of Functional Programming”, in: Conference Record
of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Albuquerque, New Mexico, USA, January 19-22, 1992,
1992, pp. 1–14, doi: 10.1145/143165.143169, url: https://doi.org/10.1145/
143165.143169.

194

https://doi.org/10.1145/141471.141563
https://doi.org/10.1145/141471.141563
https://doi.org/10.1145/141471.141563
http://hop.inria.fr
http://hop.inria.fr
https://doi.org/10.1145/1291151.1291155
https://doi.org/10.1145/1291151.1291155
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/3453483.3454039
https://smlfamily.github.io
https://doi.org/10.1145/2897336.2897344
https://doi.org/10.1145/2897336.2897344
https://doi.org/10.1145/2897336.2897344
https://coq.inria.fr
http://twelf.org/wiki/Main_Page
https://doi.org/10.1145/143165.143169
https://doi.org/10.1145/143165.143169
https://doi.org/10.1145/143165.143169

BIBLIOGRAPHY

[73] C.P. Wadsworth, Semantics and Pragmatics of the Lambda-calculus, University of
Oxford, 1971.

[74] Qi Wang, Wajih Hassan, Adam Bates, and Carl Gunter, “Fear and Logging in the
Internet of Things”, in: Jan. 2018, doi: 10.14722/ndss.2018.23291.

195

https://doi.org/10.14722/ndss.2018.23291

	Introduction
	I Background
	Semantic Styles
	A While Language
	Operational Semantics
	Structural Operational Semantics
	Big-Step Operational Semantics

	Abstract Machines
	Pretty-Big-Step Semantics

	The Skel Specification Language
	The Skel Language
	An Arithmetic Language in Skel
	Syntax and Semantics

	The Necro Ecosystem
	An Interpreter for The Arithmetic Language

	Related Specification Language
	Conclusion

	II Effectful Semantics
	Describing Concisely Effectful Semantics
	Effectful Arithmetic Language
	PCF
	Adding State to the PCF language
	A Fully Monadic Skeletal Semantics
	Explicit Contination Manipulation
	Program Examples
	Syntax and Semantics
	A Stateful PCF Language with Yield and Exceptions in Skel

	Related Work

	A Faithful Description of ECMAScript in Skeletal Semantics
	ECMAScript Algorithms in Skel
	ECMAScript
	Challenges of the Formalization
	Completion Record and the ECMAScript Error Handling (?!) monad
	A Control-Flow monad
	A Real Example in Skel
	Current Status

	Interpreter Evaluation
	Interpreter Instantiation
	Evaluation
	Framework Comparison
	Program Execution

	Related Work

	III Distributed Semantics
	An Executable Semantics for Distributed IoT Applications
	Context
	WEBI: A Formal Semantics to IoT Applications
	The WEBI Configuration
	Semantics
	WEBI Transition Relation
	Client-Driven Rules
	Service-Driven Rules
	Device-driven Rules
	The Evaluation Function

	Example: The Cost of Non-Determinism
	Initial WEBI Configuration Setting
	Execution

	A Scheduler for WEBI
	Semantics
	Assumptions for the Scheduler
	Scheduler Configuration
	Small-Step Semantics

	Equivalence of the Scheduler and the WEBI Semantics
	Commutation Lemmas
	Interval Lemmas
	Proof Sketch of Theorem 1

	Executing the Example of Section 5.2.3 in Skel

	Conclusion
	Bibliography

