
THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Duy-Phuc Pham
Leveraging side-channel signals for IoT malware classification and
rootkit detection

Thèse présentée et soutenue à Rennes, le 13/01/2022
Unité de recherche : IRISA, UMR 6074

Rapporteurs avant soutenance :

Lejla BATINA Professeur, Université Radboud de Nimègue, Pays-Bas
Davide BALZAROTTI Professeur, EURECOM, France

Composition du Jury :

Examinateurs : Yerom-David BROMBERG Professeur, Université de Rennes 1, France
Damien COUROUSSÉ Ingénieur de recherche, CEA-LIST, Grenoble, France.

Rapporteurs : Lejla BATINA Professeur, Université Radboud de Nimègue, Pays-Bas
Davide BALZAROTTI Professeur, EURECOM, France

Dir. de thèse : Pierre Alain FOUQUE Professeur, Université de Rennes 1, France
Co-encadrant de thèse : Annelie HEUSER Chargeé de Recherche, CNRS, IRISA, France

Olivier ZENDRA Chargeé de Recherche, INRIA Rennes, France

This page intentionally left blank

Acknowledgement

I would like to express my deepest appreciation to my supervisor, Annelie Heuser,
for her energy and for giving me the opportunity and freedom to work on this thesis.
I would also like to thank Olivier Zendra for the guidance and advice he provided
throughout my PhD journey and for encouraging me to finalize my work.

It was a pleasure and a joy to work with great researchers at TAMIS, EMSEC and
CAPSULE of INRIA and IRISA laboratory in Rennes. I want to express my grati-
tude to everyone on the team, especially Damien Marion, for their encouragement
and thoughtful comments during my research. I would further like to thank Ronan
Lashermes, Matthieu Mastio and Nicolas Aragon for their insightful support.

A special thanks to Pierre-Alain Fouque and Jean-Louis Lanet, who generously ac-
cepted me as their PhD student. I very much appreciate that Lejla Batina, Davide
Balzarotti, Yerom-David Bromberg and Damien Couroussé accepted to be part of the
jury for my PhD defense. Yet none are more influential than Aurélien Francillon and
Benoît Gérard who provided valuable comments in my annual CSI meetings.

This PhD thesis would not have been accomplished without my parents and their
constant support and encouragement. The only reason I could have completed this
thesis was the love and support I received from my wife and son. My greatest thanks
go to them.

Lastly, a very special thanks to my friends, Christophe Genevey-Metat, Alexan-
dre Gonzalvez, Cassius Puodzius, Max Kersten, and Quoc-Hung Nguyen. I am really
grateful to Adam Zabrocki for insights from LKRG and Albert Spruyt for enlightening
me about practical SCA. I really appreciate our discussions and the feedback offered
by all of you.

This page intentionally left blank

Table of Contents

Acronyms v

List of Figures viii

List of Tables x

Résumé long en français xi

Introduction xv

Publications xix

1 Background 1
1.1 IoT, embedded devices, and their security challenges 2

1.1.1 IoT attack vectors . 3
1.1.2 IoT malware detection challenges 5

1.2 IoT malware . 6
1.2.1 Generic IoT malware . 6
1.2.2 Malware obfuscation . 7
1.2.3 Rootkits . 8

1.3 Side-channel analysis . 12
1.3.1 Introduction to Side-channel Analysis (SCA) 12
1.3.2 Electromagnetic Emanations (EM) leakage 14

i

1.3.3 Software-defined radio (SDR) . 19
1.3.4 Side-channel leakage: Dimensional reduction, feature extraction

and transformation . 21
1.4 Detection and classification techniques . 22

1.4.1 Malware detection: static and dynamic approaches 22
1.4.2 Machine learning . 26
1.4.3 Deep learning . 29
1.4.4 Classifiers and evaluation metrics 34

2 State of the Art 39
2.1 Malware evasion techniques . 39

2.1.1 Evasion of static code analysis . 39
2.1.2 Evasion of dynamic analysis . 40

2.2 Malware detection . 42
2.2.1 Malware detection from software analysis 42
2.2.2 Malware detection from hardware analysis 43

2.3 Rootkit detection through side-channel 47
2.4 Research problems statement . 51

3 Obfuscation Revealed: Leveraging EM Signals for Obfuscated Malware Clas-
sification 53
3.1 Introduction . 54

3.1.1 Motivation . 54
3.1.2 Our contributions . 56
3.1.3 Roadmap . 58

3.2 Real-world IoT malware collection . 58
3.2.1 Malware dataset . 58
3.2.2 Benign dataset . 60

3.3 Real-world malware analysis framework AHMA 62
3.3.1 IoT malware classification threat model 63
3.3.2 Data acquisition by dynamic malware execution 64
3.3.3 Data analysis and preprocessing 66
3.3.4 Malware classification model architectures 68

3.4 Experiments . 70

ii

3.4.1 Data aquisition components . 70
3.4.2 Classification framework . 74

3.5 Results and discussion . 76
3.5.1 Experimental results . 76
3.5.2 Discussion . 84

3.6 Conclusion and perspectives . 86

4 ULTRA:Ultimate Rootkit Detection over the Air 89
4.1 Introduction . 90

4.1.1 Motivation . 90
4.1.2 Our contributions . 91
4.1.3 Roadmap . 92

4.2 ULTRA: Ultimate Rootkit Detection over the Air framework 92
4.2.1 Threat model and methodology 93
4.2.2 Dataset . 97
4.2.3 Baits to trigger rootkit hooks . 100

4.3 Practical use case of ULTRA . 103
4.3.1 Target devices . 104
4.3.2 Data aquisition . 105
4.3.3 Detection and classification framework 108

4.4 Results and Discussion . 109
4.4.1 Results . 110
4.4.2 Discussion . 117

4.5 Conclusion . 122

Conclusion and Perspectives 123

Bibliography 129

Appendices 151

iii

This page intentionally left blank

Acronyms

AHMA Automated Hardware Malware Analysis. 61

APT Advanced Persistent Threat. xiv

AV Anti-virus. 41

C&C Command and Control. 24

CNN Convolution Neural Networks. 29, 33, 34

CPU Central Processing Unit. 13

DDoS Distributed Denial-of-Service. 45, 62

DPA Differential Power Analysis. 13

EM Electromagnetic Emanations. i, 1, 12, 14, 16, 122

FN False Negative. 35, 36

FP Palse Positive. 35, 36

FPR Palse Positive Rate. 37

GPU Graphical Processing Unit. 74, 76

IoT Internet of Things. i, xiii, 1–5, 40

LDA Linear discriminant analysis. 21, 22

v

Acronyms

MITM Man In the Middle. 4

MLP Multi-layer Perceptron. 29, 34

NAS Network-attached storage. 5

NB Naive Bayes. 26

NICV Normalized Inter-Class Variance. 21

OS Operating System. 58

PC Personal computers. 14

RBF Radial Basis Function. vi, 27, 28

ReLU Rectified Linear Unit. 30

ROC Receiver Operating Characteristics. 37

SCA Side-channel Analysis. i, 1, 12, 14

SDR Software-defined radio. i, 1, 12, 18, 19

SMM System Management Mode. 8, 10

SPA Simple Power Analysis. 13

SVM Support vector machines. 22, 27, 28

TN True Negative. 35, 36

TP True Positive. 35, 36

TPR True Positive Rate. 37

ULTRA Ultimate Rootkit Detection over the Air. 90

VM Virtual Machine. 8, 47

vi

List of Figures

1.1 x86 and x64 CPU privilege levels . 10

1.2 ARM privilege and exception levels . 11

1.3 Examples of physical side channels information 13

1.4 A sinusoidal electromagnetic wave . 16

1.5 The magnetic field given by the Biot–Savart law 16

1.6 Induced emf due to a stationary loop in a time-varying B-field 17

1.7 Near field probe set . 18

1.8 EM-SCA techniques for activity detection acquisition workflow 19

1.9 The Pita handheld prototype . 20

1.10 Data collection from malware samples and interactive analysis of these
data using visual analytics methods. 25

1.11 An example of supervised learning: labeled training dataset for mal-
ware detection . 26

1.12 SVM classifiers using an Radial Basis Function (RBF) kernel show mod-
els trained with different values of hyperparameters 28

1.13 Illustration of a MLP architecture. 30

1.14 Plots of widely used activation functions 31

1.15 Convolution operation example . 32

1.16 Visual example of max pooling. 33

vii

LIST OF FIGURES

2.1 Taxonomy of rootkit detection approaches and positioning our approach
in the state of the art and open source tools. 47

3.1 Illustration of the proposed IoT malware classification framework AHMA. 61
3.2 Generic malware analysis workflow . 64
3.3 Overview of the proposed infrastructure: Experimental setup of mal-

ware testbed and data acquisition. 71
3.4 Probe setup consists of a H-Field probe placed 45 degree above the Rasp-

berry Pi processor . 73
3.5 NICV and the 20 selected frequencies on the mean over the time and the

mean over the frequencies . 74
3.6 CNN type classification . 78
3.7 CNN family classification . 79
3.8 CNN obfuscation classification . 81
3.9 Confusion matrix of a CNN classification into 35 binaries 82

4.1 Illustration of ULTRA framework. 94
4.2 Illustration of execution flow for kill bait 101
4.3 Hardware keyboard emulator bait . 103
4.4 ULTRA framework data acquisition on a Raspberry Pi 105
4.5 Novelty rootkit detection . 113
4.6 Invariant to probe position. Framework setup with 2 probes of the same

type placing contactless at 2 different locations. 120
4.7 ULTRA framework is installed with an handcrafted EM-compatible probe

to detect beurk rootkits on Ci20 target. 121

A.1 Accuracy when computing the mean samples per binary in the test dataset.153
A.2 Balanced accuracy of the Table 4.5 displaying the mean process 156
A.3 Balanced accuracy of the Table 4.7 displaying the mean process 157
A.4 Balanced accuracy of the Table 4.8 displaying the mean process. 157
A.5 Balanced accuracy of the Table 4.9 displaying the mean process. 158
A.6 Balanced accuracy of the Table 4.10 displaying the mean process 158
A.7 Balanced accuracy of the Table 4.12 displaying the mean process 159
A.8 Novelty rootkit detection results with other different baits. 161

viii

List of Tables

1.1 Confusion matrix for two classes. 36

2.1 Common sandbox fingerprinting features 41

2.2 Highlights of techniques used in related works on malware analysis
leveraging side-channel analysis. 44

2.3 Comparison with related works on side-channel malware (SCM) analy-
sis using EM or power consumption. 46

2.4 Comparison with related works on rootkit detection using different side-
channel analysis techniques . 50

3.1 Linux binaries and activities used in the benign dataset 62

3.2 Proposed MLP architecture for ARM malware classification 68

3.3 Proposed CNN architecture for ARM malware classification 69

3.4 Accuracy, recall and the precision results obtained with MLP, CNN, LDA
+ NB and LDA + SVM applied to several scenarios 77

4.1 Benign dataset(Γ): Linux executables and kernel modules 100

4.2 ULTRA’s targeted devices specification, architectures, targeted frequency
leakage and CPU . 104

4.3 Input baits that handled by system calls, network activities and key-
board emulator . 107

4.4 Proposed MLP architecture of ULTRA framework 109

ix

LIST OF TABLES

4.5 Rootkit detection with the same environment between learning and testing111
4.6 Rootkit classification by family and by activity 111
4.7 Detection scenarios on obfuscated rootkits 115
4.8 Detection scenarios of keyloggers unseen during the offline profiling

phase . 116
4.9 Detection of rootkit with additive benign kernel activities during the

learning phase or during the testing phase only. 116
4.10 Detection scenarios with rootkits seen during the learning phase but

with different background benign activity levels: the « quiet » level and
the « noisy » level . 117

4.11 Performance evaluation of rootkit and their obfuscated variants wrt. de-
tection results and execution latency. 119

4.12 Detection scenarios with three distinct probes locations and two differ-
ent types . 119

A.1 AHMA: Malware tag map . 152
A.2 Tuned iteration configuration for bait corresponding with the targeted

devices. 154
A.3 ULTRA’s bill of materials . 154
A.4 Classification scenario distinguishing kernel-space and user-space rootkits155

x

Résumé long en français

Un logiciel malveillant ou maliciel, aussi dénommé programme malveillant de l’anglais
malware, est un programme développé dans le but de nuire à un système informa-
tique, sans le consentement de l’utilisateur dont l’ordinateur est infecté.

Ils perturbent intentionnellement un dispositif numérique ou un réseau informa-
tique, font fuir des informations privées, obtiennent un accès non autorisé à des in-
formations ou à des systèmes, privent les utilisateurs de l’accès à des informations ou
violent la sécurité informatique et la vie privée de l’utilisateur.

La détection des malwares reposant sur des caractéristiques statiques et dynamiques
présente encore diverses difficultés, comme les techniques d’empaquetage ou d’obfuscation,
ou encore la possibilité d’échapper à la surveillance des bacs à sable. En particulier, les
systèmes cyber-physiques embarqués peuvent manquer de ressources ou d’accessibilité
pour des outils anti-malware équivalents à ceux utilisés pour défendre les systèmes in-
formatiques et les serveurs.

Un système embarqué est un système informatique qui remplit une fonction spéci-
fique au sein d’un système mécanique ou électrique plus vaste. Il se compose d’un pro-
cesseur informatique, d’une mémoire informatique et de périphériques d’entrée/sortie.
Les dispositifs embarqués sont utilisés depuis de nombreuses années dans les environ-
nements industriels, les appareils critiques, les systèmes de contrôle militaires et le
secteur automobile. Cependant, ce n’est que récemment qu’ils ont commencé à en-
vahir toutes les facettes de notre société en raison de la révolution de l’Internet des ob-
jets (IoT) et leur nombre et leur complexité augmentent de façon exponentielle. D’ici à

xi

Résumé long en français

2025, nous devrions compter plus de 64 milliards de dispositifs IoT [RHK20] et d’autres
seront produits à mesure que les technologies au-delà du 5G arriveront à maturité. Les
entreprises qui fabriquent ces appareils sont constamment en course pour accroître leur
part de marché, et donnent donc la priorité à une mise sur le marché rapide combinée
à un ensemble de nouvelles fonctionnalités pour attirer de nouveaux clients [CVD+20].
Cela les conduit à remettre à plus tard les questions de sécurité et de confidentialité, car
ils utilisent une variété de logiciels et de micrologiciels personnalisés sans tenir compte
des problèmes de sécurité, ce qui en fait une cible attrayante pour les cybercriminels.

Ces dernières années, nous avons assisté à une recrudescence de la quantité et de la
sophistication des malwares attaquant les systèmes IoT. Les botnets et les outils DDoS
côtoient les crypto-mineurs, les malwares, les ransomwares et les menaces persistantes
avancées (APT) conçus pour réaliser des cyberattaques IoT. Selon le Symantec Threat
Report de 2018 [Ent18], les attaques IoT ont augmenté de 600% entre 2016 et 2017. En
2019 et 2020, le volume des malwares IoT a augmenté de 218% et 66%, respectivement.
Le nombre de frappes de malwares IoT en 2021 a atteint 60 1 millions, le plus grand
nombre jamais enregistré par SonicWall [Son22] en une seule année, a entraîné une
hausse de 6% d’une année sur l’autre. Les chercheurs ont notamment découvert un
record mensuel de 10,8 millions d’échantillons de malwares en octobre 2020. Il est
évident qu’il y a une augmentation significative des malwares IoT basés sur Linux au
cours des dernières années.

Les appareils IoT posent des contraintes de performance, comme une unité de
traitement avec une faible fréquence d’horloge, une mémoire limitée et un faible débit.
Par conséquent, il est difficile de mettre en œuvre des mesures de sécurité exigeantes
en termes de calcul, telles que des solutions antivirus. De nombreux appareils sont
dépourvus d’interface de gestion, ce qui rend difficile la mise en œuvre de correctifs
de sécurité ou de mises à jour de signatures. En raison du grand nombre d’échantillons
de logiciels malveillants IoT dans la nature, il est essentiel que la communauté de la
sécurité soit en mesure de construire des approches modernes pour la détection et la
classification des logiciels malveillants IoT.

L’objectif de cette thèse est de comprendre les techniques et les comportements des
malwares IoT, et d’explorer de nouvelles approches pour utiliser les informations des
canaux secondaires afin d’identifier les types de malwares qui ciblent un dispositif
embarqué. Les contributions de cette thèse de doctorat sont séparées en deux par-

xii

Résumé long en français

ties différentes. Premièrement, nous présentons une nouvelle approche qu’un ana-
lyste de logiciels malveillants peut utiliser pour recueillir des informations exactes
sur le type et l’identité des logiciels malveillants, même en présence de techniques
d’obscurcissement qui peuvent entraver l’analyse. Grâce à cette approche, un an-
alyste de logiciels malveillants est en mesure d’obtenir des connaissances précises
sur le type et l’identité des logiciels malveillants, même en présence de techniques
d’obscurcissement qui peuvent empêcher l’analyse binaire statique ou symbolique.
En outre, nous présentons le cadre ULTRA à faible coût, qui est la première solution
"wave-and-play", où il suffit d’agiter une sonde sur le dispositif pour voir instantané-
ment quel rootkit est infecté. ULTRA a une spécificité qui facilite la découverte des
rootkits dans un système en temps réel sans qu’il soit nécessaire de modifier le dis-
positif ou d’exiger des logiciels, en surveillant deux types distincts d’appâts qui sont
capables d’exposer le comportement des rootkits furtifs.

Liste de publications

Cette thèse est basée sur les travaux de recherche qui ont conduit aux publications
évaluées par les pairs des articles suivants : [PMMH21, PMH21, PMH22]. Une partie
du matériel créé pour ces articles a été adaptée et réutilisée dans cette thèse. Une
autre publication [PVM19] est le résultat d’une collaboration avec un autre doctorant,
et ne constitue donc pas une partie principale de cette thèse de doctorat. Cependant,
il est important de se référer à cet article pour avoir une compréhension générale des
techniques d’évasion des malwares et du contexte de la détection des malwares.

[PMMH21] Duy-Phuc Pham, Damien Marion, Mathieu Mastio, and Annelie Heuser.
Obfuscation Revealed: Leveraging Electromagnetic Signals for Obfuscated Malware
Classification. In Annual Computer Security Applications Conference (ACSAC), 2021

[PMH21] Duy-Phuc Pham, Damien Marion, and Annelie Heuser. Poster: Obfuscation
Revealed-Using Electromagnetic Emanation to Identify and Classify Malware. In 2021
IEEE European Symposium on Security and Privacy (EuroS&P), pages 710–712. IEEE, 2021

[PMH22] Duy-Phuc Pham, Damien Marion, and Annelie Heuser. ULTRA: Ultimate
Rootkit Detection over the Air. In 25th International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2022

xiii

Résumé long en français

[PVM19] Duy-Phuc Pham, Duc-Ly Vu, and Fabio Massacci. Mac-A-Mal: macOS mal-
ware analysis framework resistant to anti evasion techniques. Journal of Computer Vi-
rology and Hacking Techniques, 15(4):249–257, 2019

xiv

Introduction

“Malware" is a portmanteau for malicious software that intentionally disrupt a digi-
tal devices or computer network, leak private information, gain unauthorized access to
information or systems, deprive users access to information or violate the user’s com-
puter security and privacy. Malware detection relying on static and dynamic features
still has various difficulties, such as packer or obfuscation techniques, or sandbox mon-
itoring can be evaded. In particular, embedded cyber-physical systems may lack the
computing resources or accessibility for anti-malware tools equivalent to those used to
defend computer systems and servers.

An embedded system is a computer system that performs a specific purpose within
a larger mechanical or electrical system. It consists of a computer processor, computer
memory, and input/output peripheral devices. Embedded devices have been utilized
in industrial environments, mission-critical appliances, military control systems, and
the automotive sector for many years. However, it is only recently that they have
begun to pervade every facet of our society due to the so-called Internet of Things (IoT)
revolution and they are exponentially growing in number and complexity. By 2025, we
are expecting to have over 64 billion IoT devices [RHK20] and more will be produced
as technologies beyond 5G mature. Companies that make these devices are constantly
racing to grow their market share, consequently they prioritize a quick time-to-market
combined with a set of novel features to attract new customers [CVD+20]. This leads
to the postponement of security and privacy issues such as they utilize a variety of
customized software and firmware without consideration of security concerns, making

xv

Introduction

them an appealing target for cybercriminals.

We have seen an upsurge in both the amount and sophistication of malware attack-
ing IoT systems in recent years. Botnets and DDoS tools live side by side with crypto-
mining, malware, ransomware, and Advanced Persistent Threat (APT) designed to
perform IoT cyber attacks. According to the Symantec Threat Report of 2018 [Ent18]
indicated 600% increase in the IoT attacks from 2016 to 2017. In 2019 and 2020, the
volume of IoT malware increased by 218% and 66%, respectively. The amount of IoT
malware strikes in 2021 reached 60.1 million, the greatest number ever recorded by
SonicWall [Son22] in a single year, resulted in a 6% year-over-year rise. In particular,
researchers discovered a monthly record of 10.8 million malware samples in October
2020. It is evident that there is a significant rise in the Linux-based IoT malware in
recent years.

Malware detection techniques often rely on static and dynamic malware analysis,
with hybrid being some combination of the two, in order to gain information on the
input samples. In particular, static malware analysis investigate code features and
signatures whereas dynamic approaches rely on executing actual code, typically in
some sand-boxed environment or during operational runtime of a system. Static mal-
ware analysis can be trivially evaded by obfuscation techniques such as code meta-
morphism. Dynamic malware techniques based on software level, on the other side,
are OS, resource, and architecture dependent and prone to sandbox evasion. The use
of traditional analysis techniques to IoT malware and IoT systems has its limitations.
IoT devices pose performance constraints, such as processing unit with low clock rate,
limited memory, and low throughput. Therefore, it is difficult to implement security
measures that are computationally demanding, such as antivirus solutions. IoT devices
lack a universal management interface, making them difficult to implement frequent
security patches and updates. Because of the large number of IoT malware samples in
the wild, it is critical for the security community to be able to build modern approaches
for IoT malware detection and classification.

Malware detection techniques for the IoT devices at the software layer are prone to
performance constraints and are vulnerable to sophisticated malware evasion strate-
gies. With advancements in the field of Side-channel Analysis (SCA) to perform side-
channel attack, a new area of research has emerged in malware analysis techniques
that is coming closer to the hardware perspective. In computer security, a Side-channel

xvi

Introduction

Analysis (SCA) is any analysis based on information gained from the implementation
of a computer system, rather than vulnerabilities in the implementation per se (e.g.
cryptanalysis). Side-channel attacks have been first demonstrated via various leakage
channels based on statistical methods (such as [Koc96, KJJR11, KJJ99]). In fact, TEM-
PEST attacks [NAC82] have historically been used to gather information about systems
by leaking emanations, which include unintentional radio or electrical signals, sounds,
and vibrations. A common idea to take advantage of side channel information such
as Electromagnetic Emanations (EM) and energy consumption in anomalies and mal-
ware detecion context is to observe how the system behaves in its normal state, and to
raise an alert when a abnormal behavior is triggered. While it is feasible for malware
developers to obfuscate malicious function calls and behaviors to evade software de-
tection, modifying their device’s power consumption or EM pattern is less likely and
more difficult to achieve [ADCC18].

In the malware analysis context, there are typically two fundamental tasks: mal-
ware detection and malware classification. The term "malware detection" can refer to
either the process of determining whether or not a particular input binary is malicious
or benign, or it can refer to the detection of the presence of malicious applications on
a host system. On the other hand, malware classification is the process of assigning a
malware sample to a specific malware family. Malware within a family has features in
common that may be used to create signatures for further detection and classification.
In particular, signatures can be static or dynamic depending on how their features are
collected by malware analysts. In general, malware detection solutions showed high
detection accuracy, but they were unable to correctly classify malware into specific cat-
egories since their detection techniques did not take into account the characteristics of
each malware category [KKB+21]. Malware analysts are generally able to fully control
and customize their analysis environment and device in the most advantageous way
in malware classification, whereas in real-time IoT malware detection, the target envi-
ronment requires stability and high availability, so interruption and downtime should
be kept to a minimum.

We are able to address both scenarios of IoT malware classification and detection
in this thesis. The goal of this thesis is to understand the techniques and behaviors
of IoT malware, and to explore novel approaches of using side channel information
to identify malware and rootkit that are targeting an embedded device. So that the

xvii

Introduction

contributions of this PhD thesis can be separated into two different parts that solve
the two aforementioned problems of IoT malware detection and classification. First,
we present a novel approach that a malware analyst can use to classify IoT malware
dataset. Using this approach, a malware analyst is able to obtain precise knowledge
about malware type and identity, even in the presence of obfuscation techniques which
may prevent static or symbolic binary analysis. Furthermore, we present the low-cost
ULTRA framework, which is the first wave-and-play solution, where one can simply
wave a probe over the device to instantly see what rootkit is infected. ULTRA is the ul-
timate goal of this thesis in which malware analysts can leverage to detect sophisticated
rootkits on online embedded IoT devices. ULTRA has a specification that facilitates the
discovery of rootkits in a specific system in real-time, without the need for device al-
teration or software requirements by monitoring two distinct types of hardware and
software baits that are capable of exposing the behavior of stealthy rootkits.

Thesis outline

This thesis is organized as follows. In Chapter 1, we recall definitions and presenta-
tion of the necessary subjects of IoT security, malware, and side-channel analysis. We
further introduce the background of detection and classification techniques by using
machine and deep learning. In Chapter 2, we shall present literature research studies
which related to IoT malware analysis evasion techniques with focuses on side-channel
solutions. In chapter 3, we describe AHMA - an automated IoT malware classification
framework using oscilloscope to monitor side-channel signals. Additionally, this chap-
ter mentioned particular obfuscation techniques to investigate the evasion capability
to side-channel method. As described in Chapter 4, we propose a low-cost ULTRA
framework which is the first wave-and-play solution, where one can simply wave a
probe over the device to instantly see what rootkit is infected.

xviii

Publications

This thesis is based on the research work that led to the peer-reviewed publications
of the following papers: [PMMH21, PMH21] for AHMA and [PMH22] about ULTRA.
Parts of the material created for these articles have been adapted and reused in this
work. Another publication [PVM19] was the result of a collaboration with another
doctoral student, and hence is not a main part of this PhD thesis. However, it is impor-
tant to refer to the paper for a general understanding of malware evasion techniques
and malware detection background.

[PVM19] Duy-Phuc Pham, Duc-Ly Vu, and Fabio Massacci. Mac-A-Mal: macOS mal-
ware analysis framework resistant to anti evasion techniques. Journal of Computer Vi-
rology and Hacking Techniques, 15(4):249–257, 2019

[PMH21] Duy-Phuc Pham, Damien Marion, and Annelie Heuser. Poster: Obfuscation
Revealed-Using Electromagnetic Emanation to Identify and Classify Malware. In 2021
IEEE European Symposium on Security and Privacy (EuroS&P), pages 710–712. IEEE, 2021

[PMMH21] Duy-Phuc Pham, Damien Marion, Mathieu Mastio, and Annelie Heuser.
Obfuscation Revealed: Leveraging Electromagnetic Signals for Obfuscated Malware
Classification. In Annual Computer Security Applications Conference (ACSAC), 2021

[PMH22] Duy-Phuc Pham, Damien Marion, and Annelie Heuser. ULTRA: Ultimate
Rootkit Detection over the Air. In 25th International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2022

xix

This page intentionally left blank

1
Background

Today, malware rises and plays a crucial role in technology’s vulnerabilities,
from financial transactions to IoT devices in our "smart" homes, and even to po-
tential "cyberwar" such as energy, and transportation infrastructures [Dwy19].
Malware detection has become critical to safeguarding the internet economy, as
well as state stability, security, and wealth. In this chapter, we recall the defini-
tions needed within its related domains. This encompasses the presentation of
the necessary subjects of IoT security, malware, and side-channel analysis. We
further introduce the background of detection and classification techniques by
using machine and deep learning.

Contents

1.1 IoT, embedded devices, and their security challenges 2
1.1.1 IoT attack vectors . 3

1.1.2 IoT malware detection challenges 5

1.2 IoT malware . 6
1.2.1 Generic IoT malware . 6

1.2.2 Malware obfuscation . 7

1.2.3 Rootkits . 8

1.3 Side-channel analysis . 12
1.3.1 Introduction to Side-channel Analysis (SCA) 12

1.3.2 Electromagnetic Emanations (EM) leakage 14

1.3.3 Software-defined radio (SDR) 19

1.3.4 Side-channel leakage: Dimensional reduction, feature

extraction and transformation 21

1.4 Detection and classification techniques 22
1.4.1 Malware detection: static and dynamic approaches . . . 22

1.4.2 Machine learning . 26

1.4.3 Deep learning . 29

1.4.4 Classifiers and evaluation metrics 34

1

Chapter 1 – Background

1.1 IoT, embedded devices, and their security challenges

IoT devices, which comprise physical objects that are embedded with sensors, soft-
ware, actuators, and computer devices, connect and exchange data with other devices
and systems over the Internet or other communications networks. It allows data to be
sent between things or people automatically and without the need for human interac-
tion. It is common that IoT devices are embedded devices that may have constrained
resources, limited battery or restricted accessibility. Consequently the use of security
policies and processes to reduce the overall risk or impact of cybersecurity threats is
not fully implemented on them.

There are several concerns about the risks associated with the growth of IoT de-
vices and technologies, particularly in the areas of security and privacy. As a result,
industry and government efforts to address these concerns have begun, including the
development of international and local standards, guidelines, and regulatory frame-
works [otCTO21]. Moreover, the network connectivity exposure, diversity of hard-
ware architecture, and diverse operating platforms, all expand the attack surface and
target field for malicious actors. The threat likelihood even rises significantly when
the attacker takes advantage of less secure, vulnerable or exploited devices to launch
a massive-scale attack on critical infrastructure (e.g. Mirai DDoS attack [AAB+17]).
Malware encouraged the response from both academia and industry to keep digital
devices "clean" from malware by creating "anti-virus", and later "endpoint detection"
products that are installed on billions of computing devices worldwide [Dwy19]. Anti-
malware solutions identify, prevent and eliminate these harmful intruders; and in the
process, define, articulate, inform, and detect what is malicious.

Computers and embedded systems, from medical devices to smart homes and in-
dustrial controllers, are increasingly connected to the Internet. By 2025, we are expect-
ing to have over 64 billion IoT devices [RHK20] and more will be produced as beyond
5G technologies mature. The connection of these devices can expose the devices to
malware and malicious code. Many devices are incompatible with anti-malware soft-
ware because they run custom firmware or manufactures may forbid end users from
installing updates or anti-malware software on the device. For example, the device
manufacture may only certify the safety or reliability of a device as long as the end-
user does not modify the device by installing third-party software (which includes
anti-malware software). [MSB22] discussed many open issues and difficulties with

2

1.1. IoT, embedded devices, and their security challenges

tools and techniques for IoT malware analysis, and concluded that the research com-
munity as a whole must solve those shortcomings.

In the following subsections, we will discuss the IoT attack vectors as well as IoT
malware detection challenges.

1.1.1 IoT attack vectors

An IoT attack vector is a specific path, method, or scenario that can be exploited
to break into an IoT system, thus compromising its security. [ACH15] classified IoT
attacks under four distinct classes: physical, network, software, and encryption at-
tacks, excluding environmental attacks (earthquakes, etc.). An attack surface in IoT is
defined as the device vulnerabilities, including both software and hardware vulnera-
bilities, and vulnerabilities of the associated network infrastructure.

In this subsection, we will discuss some of the attack vectors that can lead to the
infection of malware on IoT devices as follows:

• Internal actors: An attacker compromises IoT system by physically injecting ma-
licious code into it, granting administrative access to the IoT system; e.g, a sce-
nario where an internal actor plugging a USB device with malicious software
into the device. Hence, controlling all data flow from and to the device and en-
suring its operation. (e.g. SCADA malware BlackEnergy 3 attack on the Ukraine
grids [Sha16])

• Weak Authentication: IoT manufacturers often provide an easy-to-follow in-
stallation manual where they provide a basic username and password for log-
ging in and configuring the device, that can be exploited brute-force attack or
dictionary-based attack. Because the majority of users do not change their de-
fault credentials, weak authentication becomes an attack vector for IoT attackers
before granting higher privileges to execute malicious code. Moreover, on shared
IoT devices, vendors often increase authentication vulnerabilities through imple-
mentation flaws in device access control schemes [JCO20].

• Hardware/Software vulnerabilities: An attacker compromises IoT system by ex-
ploiting hardware or software vulnerabilities and executing malicious code, fur-
ther to grant higher privilege on the system and to install malware binary. This
attack vector is exploited by 0-day vulnerabilities or when users do not keep their
firmware updated. Ubuntu’s survey [Rou16] worryingly revealed that only 31%

3

Chapter 1 – Background

of consumers that own connected devices perform updates as soon as they be-
come available. A further 40% of consumers have never consciously performed
updates on their devices. Nearly two thirds felt that it was not their responsibil-
ity to keep firmware updated, and 22% believed it was the job of software devel-
opers, while 18% considered it to be the responsibility of device manufacturers.
However, most IoT manufacturers do not prioritize security and can not finance
the efforts. Furthermore, some hardware vulnerabilities can not be patched un-
less the user replaces the device with a newer model (e.g. checkm8 vulnerability
affects all devices from iPhone 4s to iPhone X devices and supports any iOS ver-
sion running on these supported devices). [KVH+20] found that IoT malware
increasingly relies on exploiting vulnerabilities as part of their infection strategy,
and recent malware is much more likely to exploit multiple vulnerabilities.

• Physical device tampering: The IoT device can be tampered during supply chain
progress, and threat actors has gotten into the printed circuit board. For exam-
ple, a known electronic device can be altered at the hardware fabrication level
for malicious purposes, such as accessing stored data or eavesdropping on users’
activities; or a genuine electronic device can be replaced by a counterfeit elec-
tronic device for a malicious objective [SLKS19a]. It is also known as "hardware
trojan" [TK10].

• Insecure Communication: Secure communication across the network requires
the use of cryptography. IoT devices, however have limited resources and are
not equipped with high-performance cryptography computing for secure com-
munication [MSB22]. Implementing strong encryption schemes is a low priority
since it raises the cost of the production. Insecure communication can lead to
Man In the Middle (MITM) attack, where the attacker over the network man-
ages to interfere between two sensor nodes, accessing restricted data, violating
the privacy of the two nodes by monitoring, eavesdropping and controlling the
communication between the two sensor nodes. Furthermore, they can interfere
the device remote update/upgrade process to execute malicious code.

• Social Engineering Social engineering attacks, rather than attacking the techni-
cal weakness of the system, are known to target the human-computer reaction to
allow attackers to persuade a user into completing an action that compromises
a system information security. The attacker manipulates users of an IoT system
in order to obtain private information or to perform actions to achieve his ob-

4

1.1. IoT, embedded devices, and their security challenges

jectives. Until recently, social engineering in computer systems was only limited
to traditional Internet interactions such as email and website platforms. How-
ever, as the threat landscape for the Internet of Things grows, the impacts of this
deception-based attack will no longer be limited to traditional cyberspace, but
can potentially result in physical impact, ranging from industrial plants to nu-
clear power plant destruction, as in the case of Stuxnet [FMC11].

• Device exposure to the Internet: Some manufacturers of embedded IoT devices
keep a few unusual ports and unauthenticated services open for remote access or
to update the firmware periodically. Consumers expose these services publicly
on the public network, so that the attacker takes advantage to exploit the device
or local network using these services.

1.1.2 IoT malware detection challenges

IoT malware analysis and detection have become increasingly vital, but also more
difficult, as a result of of rapidly growing IoT technologies, the inherent attack vectors,
and the sophistication of malware attacks. In this subsection, we will discuss four of
the IoT malware analysis and detection challenges:

• Detection at edge: In general, the malware detection and classification train-
ing model based on machine learning requires a heavy computing infrastructure.
Embedded devices, however, may have limited resources and are not capable of
running anti-malware software. Therefore, side-channel malware detection and
cloud-based malware detection are potential solutions.

• Malware dataset availability: One important challenge is gathering IoT malware
dataset as well as creating a honeypot solution to reproduce specific vulnerabili-
ties. Since it can be difficult to deploy a specific version of the software combined
with the hardware needed to carry out a specific environment to reproduce the
vulnerability. Another difficulty is finding an IoT malware dataset from publicly
available sources.

• Architecture diversity: IoT devices are diverse in terms of instruction set archi-
tecture (Intel, ARM, MIPS, MIPSEL, PPC, etc.), operating system (different dis-
tributions of Linux Operating System), devices (smart-home, wearables, routers,
medical, surveillance, NAS, etc.), and different versions of headers and libraries

5

Chapter 1 – Background

for execution. These variations make it difficult to have an universal solution for
IoT malware detection.

• Inadequate dynamic malware analysis environment: A variety of dynamic sand-
box solutions are available for analyzing Linux malware. However, without root
privilege, many IoT malware behave differently [MSB22]. It is not trivial to grant
a malicious program root privilege, while avoiding the sandbox evasion tech-
niques as well as persistent techniques that are used by IoT malware.

1.2 IoT malware

This section introduces foundations of generic malware, rootkits and obfuscation.

1.2.1 Generic IoT malware

While general-purpose computers are often built around common architectures
such as the x86, embedded IoT devices are being developed within a diverse vari-
ety of architectures such as ARM, MIPS, PowerPC, etc. as well as different endianness
types such as little or big endian. A discussion of the major issues associated with the
diversity of possible target IoT environments can be found in [CGFB18].

Any sort of attack (malware or otherwise) requires the attacker to reach an attack
surface. When an attacker discovers the attack surface, they develop an attack vector
(outlined in Section 1.1.1), which is the path the attacker takes to locate and exploit
susceptible IoT devices on victim’s network, causing the device to do something other
than what it was designed to do. In general, IoT malware has several characteristics,
including the following: IoT malware scans and exploits open ports and services such
as SSH, FTP, or Telnet; IoT malware is used to perform DDoS attacks; IoT malware
performs brute-force attacks to gain access to other devices.

Cross-compiling their own malware source code into multiple architectures is a
well-known technique used by IoT malware developers to get across the target diver-
sity problem in their malware attacks. They infect the target device with all the com-
piled malware binaries at the same time. As a result, there will be only one binary that
is successfully executed within the compatible architecture on the embedded device.

6

1.2. IoT malware

1.2.2 Malware obfuscation

Malicious codes commonly use packers, obfuscators, and polymorphism to hinder
static-analysis and evade detection by making analyses difficult to reverse-engineer.
Binary file obfuscation is defined as any attempt to conceal the true meaning or behav-
ior of binary software [EN20]. Obfuscation can be used by programmers for a variety
of reasons. For example, the protection of proprietary algorithms or the obscuring of
harmful intent. There are numerous tools available to help programmers create obfus-
cated binaries. Obfuscation is used by nearly all types of malware to hinder analysis.

Collberg et.al [CTL97] defines obfuscating transformation as follows:

Definition 1: Obfuscating transformation

Let P T−→ P ′ be a transformation of a source program P into a target program P ′.
P

T−→ P ′ is an obfuscating transformation if

• P and P ′ have the same observable behavior,

• P ′ is harder to analyze than P , and

• P ′ is no more than polynomially slower than P .

More precisely, in order for P T−→ P ′ to be a valid obfuscating transformation, the
following conditions must hold: if P fails to terminate or terminates with an error con-
dition, then P ′ may or may not terminate. Otherwise, P ′ must terminate and produce
the same output as P .

Previous research classifies code obfuscation schemes into three main categories:
data obfuscation, static code rewriting, and dynamic code rewriting. We introduce
a collection of obfuscation transformations with static code rewriting that consists of
Opaque predicates, Bogus control flow, Instructions substitution and Control-flow flattening,
and dynamic code rewriting such as Packer and code Virtualization as follows.

Opaque predicates break up code blocks by inserting obfuscated predicates with an
outcome that is difficult to reverse-engineer without running the binary. Bogus control
flow adds a basic block before the current basic block. This new basic block contains an
opaque predicate and then makes a conditional jump to the original basic block, which
is also filled with random junk instructions. In contrast, Control-flow flattening obscures
links between basic-blocks by flattening the control-flow. In general, it puts the basic-
blocks of a program into one large switch-statement and a next variable to keep track

7

Chapter 1 – Background

of the next block to jump to. Instructions substitution replaces standard operators (e.g.
call, addition, subtraction, or boolean operators) by semantically equivalent but more
complicated sequences of instructions.

On dynamic code obfuscation techniques, for instance, Virtualization turns a func-
tion into an interpreter, whose bytecode language is customized for this function.
Packer hides code by encoding or encrypting its executable sections that make its result
difficult to be interpreted by static analysis. The unpacking routine turns this data back
into original machine code at runtime.

Over the last few years, there has been an arm race between programmers who
want to keep their code secret, malware authors who hinder their malicious code,
against reverse engineers and malware analysts. While there are numerous existing
packers for the PE format, only a limited number of ELF packers have been published.
There are fewer packers for ARM than for the ELF Intel architecture, and most of them
are proof-of-concept projects. The only exception is UPX, a popular open source packer
to compress the size of executables.

1.2.3 Rootkits

Rootkits exist to enable long-term covert access to a system so that they can be
managed and monitored remotely in an undetectable manner. It is a program that is
created to give escalated permissions to a computer whilst also hiding its presence.
However not everything that comes to be seen as malicious rootkit in this way, as
Sony’s Digital Rights Management system demonstrates: Its system installed software
(a rootkit) to stop replication of copyrighted content, quickly considered synonymous
with malware as it illegally installed its rootkit on the victim machines without their
knowledge [Tou16].

In common, types of rootkits are divided into two main categories: user mode and
kernel mode rootkits [Bun04, HL07] regarding the level (ring) of privileges obtained
(e.g. User-space rootkits: beurk [UT17], vlany [mem19] and kernel-space rootkits: di-
amorphine [m0n21], spy [Jan21], maK_it [McN15]). Some rootkits are designed to per-
form both modes of operation and thus work at both levels.

[Blu12] discussed further 2 rootkits living beyond kernel level: System Manage-
ment Mode (SMM) based rootkits and Virtual Machine (VM) based rootkits. System
Management Mode (SMM) is a special-purpose operating mode on x86 and x86-64

8

1.2. IoT malware

processors, intended for use by firmware or BIOS to perform low-level system man-
agement operations while an OS is running. The primary advantage of SMM is that it
provides a distinct and easily isolated processor environment that functions transpar-
ently to the operating system and software applications. Examples of SMM rootkits
rootkit are [ESZ13] and chipset rootkit Thunderstrike [HR15].

A hypervisor is a low-level layer of software that enables a computer to share its
resources in order to run more than one operating system at the same time. A hyper-
visor is also known as a virtual machine monitor. The main idea behind a hypervisor
rootkit is that it could secretly install itself as a hypervisor, conceal the currently run-
ning operating system, which is initially running on bare metal, and trap it within
a virtual machine. The rootkit can then stealthily modify the operating state from the
outside. Examples of hypervisor rootkits are BluePill [Rut06] on x86, and rHV [BVN16]
on ARM).

Commonly, a rootkit is designed to hide running modules and processes, mask the
existence of files, directories, or users, hide network activities, and capture keystrokes.

System protection levels

To understand the attack surface of rootkits, this subsection introduces the back-
ground of system protection levels. The x86 and x64 processor architectures provide 4
privilege levels (or protection rings) to prevent system code and data from being (ma-
liciously) modified by lesser privileges. The privilege levels, as illustrated in Fig.1.1,
range from 0 (most privileged) to 3 (least privileged), with memory, I/O ports, and
the ability to execute particular machine instructions being protected. Furthermore,
[Blu12] discussed further 2 protection levels which are beyond the kernel level: hy-
pervisor and System Management Mode (SMM) based lelves. An x86 CPU’s privilege
level governs what programs can and cannot do.

Windows only employs privilege ring 0 and 3 for kernel and user modes, respec-
tively. OS code (such as system services and device drivers) executes in kernel mode.
Kernel mode allows access to all system memory and all CPU commands. Windows
utilizes just two levels because some hardware architectures, like ARM and MIPS in
the past, only supported two levels [YSI17].

The earlier ARM architecture defined seven execution modes where a privilege
level 0 (PL0) device is unprivileged, whereas the other six are privileged (PL1). Recent
ARMv8 and ARMv9 unify the privileged execution modes, simplifying exception and

9

Chapter 1 – Background

Ring 3

Ring 2

Ring 1

Ring 0

Ring-1

Ring-2
SMM

Kernel
VM

Device drivers

Device drivers

Applications

Least privilegedMost privileged

Figure 1.1 – x86 and x64 CPU privilege levels

interrupt handler code. They also modify the nomenclature by changing PL0 to EL0
(exception level) and PL1 to EL1, but maintain the numbers and meaning the same.
As shown in Figure 1.2, the exception levels are referred to as ELx, with x as a number
between 0 and 3. For example, the lowest level of privilege is referred to as EL0.

As Joanna Rutkowska once stated, “SMM rootkits sound sexy, but, frankly, the bad
guys are doing just fine using traditional kernel mode malware (due to the fact that
AV is not effective)”[Rut09]. The following subsections introduce the user-level and
kernel-level rootkits as far as needed to understand Chapter 4.

User-level rootkit

User-level rootkits operate in the user space and hence do not access the kernel. An
example of this type of rootkit is the replacement of the OS’s important programs such
as ls, ps and login with altered code that filters standard output according to criteria
given by the attacker. Recent user-level rootkits replace or override functionalities in
dynamically linked libraries. They manipulate the mechanism of the dynamic linker,

10

1.2. IoT malware

Application

OS

Hypervisor

Firmware

EL0

EL1

EL2

EL3

In
cr

ea
si

n
g

 p
ri

v
il

eg
e

D
ec

re
as

in
g

 p
ri

v
il

eg
e

Figure 1.2 – ARM privilege and exception levels

or preload loader to intercept calls to library functions and manipulate their execution.
For example, such rootkits may load a malicious DLL into the memory space of a
user process, such as explorer.exe in Windows, or exploit LD_PRELOAD in Linux, in
order to operate in the background. In comparison to kernel-level rootkits, user-level
ones often offer richer features and are commonly used in mass attacks since they are
easier to develop than kernel-mode rootkits as the design requires less precision and
knowledge.

Kernel-level rootkit

Kernel-level rootkits are usually injected into the kernel similar to Loadable Kernel
Modules (LKM), which allow rootkits to modify the kernel without having to recom-
pile it, thus can be installed and uninstalled on the fly. They use various techniques
to accomplish their goals, such as: syscall hooking, function pointer hooking, direct
kernel object manipulation, etc. In common, kernel-level rootkits are more sophisti-
cated and targeted since they are not trivial to detect as well as develop, and any errors
in execution can cause systems to panic, which will reveal the intrusion and allow the
attack to be thwarted. Such rootkits are not trivial to develop, since any errors in execu-
tion can cause system to panic, which will reveal the intrusion and allow the attack to
be thwarted. Therefore, kernel-level rootkits are often seen from strategic groups that
have sufficient technical qualifications and financial capabilities , such as APT groups
that care for information theft, or carry out destructive actions regardless of cost, or
financial motivation [pts21].

11

Chapter 1 – Background

1.3 Side-channel analysis

A correct implementation of a strong protocol is not guaranteed to be secure. For ex-
ample, failures can be caused by defective computations and information leaked dur-
ing protected operations via side-channel. In computer security, a side-channel attack
is any attack based on information gained from the execution on a system, rather than
weaknesses in the implemented algorithm itself (e.g. software remote code execution)
or in the underlying mathematical problem (e.g. cryptanalysis). In fact, Side-channel
Analysis (SCA) must be distinguish from classical cryptanalysis that are purely math-
ematical while SCA rests on side-channel information. Timing information, power
consumption, Electromagnetic Emanations (EM), or sound can provide a side-channel
source of information, which can be exploited.

Side-channel attacks have been demonstrated on numerous cryptographic imple-
mentations and via various leakage channels that are based on statistical methods pi-
oneered (see [Koc96, MOP07, KJJR11]). Some side-channel attacks require technical
knowledge of the system’s internal operation, while others, such as differential power
analysis, work as black-box analysis. Side-channel attacks do not include attempts to
crack a cryptosystem by human deception or coercion with legitimate access, such as
social engineering.

The main concept of SCA is to utilize side channel information to recover (secret)
information leaked during normal operations. More specifically, in the context of this
research, the malware or device activities without analyzing the software algorithm. In
the following subsections, we first introduce the background of SCA, then EM leakage,
and SDR last.

1.3.1 Introduction to Side-channel Analysis (SCA)

[ZF05] divided SCA into passive attacks and active attacks. Passive attacks are
those that do not interfere with the operation of the target system. On the other hand,
the adversary in an active attack exerts some influence on the behavior of the target
system to gain information about the target operation. At least ten kinds of significant
SCA have been explored. For each computation an electronic device is processing, it
generates a set of residual unwanted productions (Fig. 1.3) that are potentially leaking
sensitive information about its internal state. The following are some classes of side-
channel attacks in general:

12

1.3. Side-channel analysis

Figure 1.3 – Examples of physical side channels information

• Timing attacks are based on calculating how long different computations take
such as comparing an attacker’s provided password to the victim’s unknown
password. Timing attacks on critical cryptography implementations, such as find
fixed Diffie-Hellman exponents, factor RSA keys, and break Digital Signature
Standard (DSS) cryptosystem were first introduced in 1996 by Kocher [Koc96].

• Cache attacks: The attacker is able to track the victim’s cache accesses on a mi-
croarchitecture level, in a virtualized environment, a shared physical system, or a
cloud service. Using this side-channel, an attacker may be able to disclose or nar-
row the possible values of secret information stored on the target device [Pag02].
Most of the recent devices employ a cache between the Central Processing Unit
(CPU) and main memory to speed up computing accesses. If the CPU accesses
data that is not ready in the cache, a delay will be generated, i.e. cache miss, since
the target data must be loaded from main memory into the cache. This delay
may enable attackers to determine the occurrence and frequency of cache misses
leaking information. For example, Bernstein [Ber05] demonstrates complete AES
key recovery from known-plaintext using cache timing attack.

• Power consumption: Attacks that take advantage of the hardware’s power usage
during its computation. It was first introduced in 1999 by Kocher [KJJ99]. Power
consumption attacks can be divided into Simple Power Analysis (SPA) and Dif-

13

Chapter 1 – Background

ferential Power Analysis (DPA). The goal of SPA attacks is to deduce from one
power trace which behavior is being executed at a given time and what values
the input and output contain. As a result, in order to mount such an attack, the
adversary needs exact knowledge of the implementation. DPA attacks, on the
other hand, work on black-box scenarios and instead rely on statistical method-
ologies in the analysis process. Power consumption attacks can also be divided
into supervised and unsupervised attacks.

• Electromagnetic Emanations (EM) leakage: Attacks based on electromagnetic
emanations that can directly provide information leaked from the target device.
The electromagnetic side channel research has been first conducted for attacking
smart cards, FPGA and other small devices (e.g. [QS01, GMO01, AARR02]). On
Personal computers (PC), [ZP14] observed electromagnetic leakage of processor-
memory systems from laptops and desktop computers, and the predicted activ-
ities can reliably be received at distances that vary from tens of centimeters to
several meters, including the signals that have propagated through cubicles or
structural walls. [GPT15] demonstrated successful EM attacks on a side-channel
protected PC implementation of the square-and-multiply modular exponentia-
tion algorithms, to achieve RSA and El-Gamal key extraction.

• Fault attacks: Information is discovered by introducing faults in a computation
from software or hardware levels. Generally, a fault model should at least specify
the following characteristics according to [ZF05]: (i) The precision an attacker
can reach in choosing the time and location on which the fault occurs during the
execution of a cryptographic module. (ii) The length of the data affected by a
fault; for example, only one bit, or one byte. (iii) The persistence of the fault;
whether the fault is transient or permanent. (iv) The type of the fault; such as flip
one bit; flip one bit, but only in one direction (e.g. from 1 to 0); byte changed to a
random (unknown) value; and so on.

In the following subsections, only SCA through EM is considered in this thesis.

1.3.2 Electromagnetic Emanations (EM) leakage

History of EM leakage

The ability to leverage electromagnetic emanations has long been recognized in
military circles. For example, the National Security Agency’s declassified TEMPEST

14

1.3. Side-channel analysis

files [NAC82], which explore several compromising emanations such as electromag-
netic radiation, line conduction, and auditory emissions. The TEMPEST attack is not
one that is only confined to cryptographic devices, it is a system problem and is of
concern for all equipment which process security data to spy on information sys-
tems through leaking emanations, including unintentional radio or electrical signals,
sounds, and vibrations. It originally referred to a classified US government program
aimed at studying such emission security (EMSEC) concerns and developing protec-
tion standards.

During World War I, the German army used the earth loop current of allied battle-
field phone lines to successfully eavesdrop on enemy voice communication [Bau99].
To reduce the weight of cable drums that the signal troops had to carry, only a sin-
gle insulated wire was utilized to connect field phones at the time. Eavesdroppers
were able to pick up the resulting voltage drop using valve amplifiers coupled to well-
spaced ground spikes since the return current went through the ground. The French
and British forces became aware of the problem in 1915 and they finally put in place de-
fenses including installing earth connections hundreds (and then thousands) of meters
behind the front trenches, using twisted-pair cables, reducing line currents, and mini-
mizing the sensitivity of information relayed via field phones. In 1985, van Eck [VE85]
demonstrated that the screen content of a video display unit could be reconstructed
at a distance using low-cost home-built equipment, namely a TV set with manually
controlled oscillators in place of sync-pulse generators, brought the concept to the at-
tention of the public.

EM leakage foundations

The components of electrical devices, frequently emit electromagnetic radiation as
part of their operation. An adversary who can obtain these emanations and deduce
their causal relationship to the underlying, may be able to deduce a surprising amount
of information about the computation and data. EM analysis can also be classified
into two types, similar to power analysis attacks: Simple EM Analysis (SEMA) and
Differential EM Analysis (DEMA). The EM fields are produced when current flows
through a conductor, and are composed of an electric field (E-field) component and a
magnetic field (H-field) component. The two are mutually dependent, such that no
moving E-field can exist without an associated H-field. They radiate from a conductor
roughly traveling at right angles to each other (see Fig. 1.4).

15

Chapter 1 – Background

Figure 1.4 – A sinusoidal electromagnetic wave propagating along the positive z-axis,
showing the electric field (E) and magnetic field (B) vectors.

r

r̂

P

ds

dB

θ

I

Figure 1.5 – The magnetic field dB at a point due to the current I through a length
element ds is given by the Biot–Savart law. The direction of the field is out of the page
at P.

To determine the total magnetic field generated by an electric current, the Biot-
Savart law can be applied (illustrated in Fig. 1.5) as follows:

dB = µ0I

4π

∫
C

ds× r
|r3|

(Eq. 1.3.1)

Where the magnetic field dB at position r̂ is produced by a static electric current I , the
magnetic constant is µ0 (permeability of free space) and ds is a vector whose magnitude

16

1.3. Side-channel analysis

is the length r. As variations in the magnetic field occur, an electromotive force emf is
generated within the H-field, according to Faraday’s law of induction:

emf = −
∫
S

dB
dt
.dS (Eq. 1.3.2)

Where, S is the surface area of the loop at the end of the H-field probe. In Fig. 1.6 a
stationary conducting loop is in a time-varying magnetic B field. This emf induced by
the time-varying current (producing the time-varying B-field) in a stationary loop is
referred to as transformer emf in power analysis.

Figure 1.6 – Induced emf due to a stationary loop in a time-varying B-field [SN01].

EM leakage acquisition

In order to capture this EM information, near-field magnetic H-field or electric E-
field probes can be utilized (e.g. Fig. 1.7). An H-field probe has a conductive loop
with a coil at the endpoint, and is usually used to detect magnetic fields produced by
clock signals, serial data streams, control signals, and switching power supplies. While
E-field probes often make direct contact with circuits to find emissions on individual
pins or PCB traces. Because radiated emanation levels can be incredibly low in many
circumstances, a pre-amplifier may be required between the probe and the scope. Oth-
erwise, a sensitive scope or internal pre-amplifier is required if a pre-amplifier is not
used. When it comes to EM leakage acquisition in our research, selecting the right
probe and placing it correctly are critical keys that will be discussed later.

17

Chapter 1 – Background

Figure 1.7 – Near field probe set of 4 Langer H-field probes (left) and one E-field probe
(right).

Magnetic field probes (H-field probes) are generally formed into a loop. When the
loop is 90 degrees to the signal, or when the magnetic field is "flowing" through the
loop, maximum response occurs. When the loop is parallel to the signal, the response
is the weakest. The H-field probe is typically positioned close to the target device,
allowing the magnetic field to induce a voltage through it. An oscilloscope and other
devices such as Software-defined radio (SDR) can measure this voltage. There is a
trade-off between resolution and sensitivity when it comes to loop size: A large loop is
more sensitive, but its spatial resolution is lower. While a smaller loop is less sensitive,
but it makes it easier to identify the location of the signal.

Electric field probes (E-field probes) When E-field probes are oriented parallel to
the observed electric field, they respond at their maximum. Because the E-field of
most conductors is perpendicular to the conductor’s surface, E-field probes are held
perpendicular to the tested conductors. Electric fields emanating from components
with larger surface areas are measured with large area probes. The probe’s top is elec-
trically shielded, and measurements are taken on the probe’s bottom side. Fields from
other nearby structures are suppressed by shielding the smaller near-field E-probes.
The spatial selectivity of these probes is typically less than a millimeter. As a result,

18

1.3. Side-channel analysis

they can commonly be used to isolate a location on a printed circuit board to a single
narrow trace.

Fig. 1.8 illustrates the EM leakage acquisition workflow. After the EM leakage ac-
quisition, a pre-processing of raw traces is needed in common. Thereafter activities are
predicted by using statistical or learning models to recover the information that can be
deduced from the EM traces acquisition.

Figure 1.8 – EM-SCA techniques for activity detection acquisition workflow (adopted
from [SLKS19b])

1.3.3 Software-defined radio (SDR)

The term “software radio" originated from the Division of E-Systems Inc. (now
Raytheon) in 1984 to refer to a digital baseband receiver. This digital baseband receiver
enabled programmable interference cancellation and demodulation for broadband sig-
nals by utilizing several array processors accessing shared memory [Joh85]. The first
SDR device was produced by Ulrich L. Rohde in 1982 using the COSMAC (Comple-
mentary Symmetry Monolithic Array Computer) chip for the US Department of De-
fense [ARR]. Early in the 1990s, J. Mitola separately defined the design principles for
“software radio" [Mit93], as well as described a proposal to develop a GSM-base sta-
tion that would combine a digital receiver with digitally controlled communications
jammers to create a real software-based transceiver.

From a high level, SDR is a minimal hardware component with data processing and
reconfigurability performed mostly in software, controlling the center frequency, band-

19

Chapter 1 – Background

width, gain, and other parameters with a fast analog-to-digital converter (ADC) or, in
some cases, offloads the computation via a Field Programmable Gate Array (FPGA). A
wide variety of SDR hardware is compatible with digital signal processing frameworks
(e.g. HackRF One[GAD21], USRP with GNURadio [Val08, GNU21]). With SDRs, the
software implementation makes its way to the physical layer, which is highly flexible
and allows a system’s behavior to be adjusted with a simple software interface rather
than redesigning and rebuilding a whole new hardware. This is incredibly useful in
terms of research and prototyping.

By leveraging EM signals from SDR, it allows monitoring EM measurement in a
longer time window with a smaller storage requirement compared to general crypto
side-channel attack or anomaly detection using an oscilloscope. Due to its capability to
scan through a wide range of frequencies to locate potential EM leakages, SDR is now
becoming a strong candidate for EM side-channel research due to its scanning capa-
bility. Recent research shows that SDR is an efficient solution to perform side channel
attacks (on AES-128 [FI17], SHA1 [SLKS19b], ElGamal [GPPT15]). Fig. 1.9 illustrates
an example of a 3072-bit ElGamal key attack using SDR presented in [GPPT15]. The
prototype, named Pita "bread", is built of readily-available electronics with a low-cost
setup including a SDR receiver FUNcube Dongle Pro+, small embedded device Riko-
magic MK802 IV, WiFi antenna and AA batteries, which suffice for several hours of
operation.

Figure 1.9 – The Pita handheld prototype measures the target computer (left) at a spe-
cific frequency band and streams the digitized signal over Wi-Fi, in real time, to the
attacker’s computer (right).

Recent attacks over smaller distances, such as screaming channels [CPM+18] which

20

1.3. Side-channel analysis

succeeded in breaking AES by exploiting wireless communication such as Bluetooth
and Wi-Fi. Recent work to detect malware using EM [SNA+20, KSN+19b] demon-
strated that digital oscilloscopes and spectrum analyzers are feasible to monitor and
capture EM traces to detect and classify malware. However, such equipment is costly,
and it is impractical to exploit a more expensive device to monitor a lower-valued tar-
get. To the contrary, SDR is another EM monitor technology that provides flexibility
and low cost that will be further discussed in Chapter 2.

1.3.4 Side-channel leakage: Dimensional reduction, feature extrac-

tion and transformation

Normalized Inter-Class Variance (NICV)

The output of side-channel data acquisition is typically large measurement traces,
which need to be reduced for further processing. Extracting features within large mea-
surement traces can be a challenging step. In the field of physical side-channel analy-
sis of cryptographic algorithms, several methods have been published relying on sta-
tistical measures such as mean and variance, for example, NICV [BDGN14], SOST/
SOSD [GLP06], the Pearson correlation coefficient [MOP07, HZ12], TVLA [SM16]. In
our methodology, we will rely on NICV as it is straightforward to implement, time
efficient, and not model-agnostic (contrary to the TVLA).

NICV is defined as:
NICV(X, Y) = Var[E[X|Y]]

Var[X] (Eq. 1.3.3)

withX being the recorded data, Y being the labels and Var (resp. E) the variance (resp.
the expectation).

A key advantage of NICV over state-of-the-art is that NICV does not need a clone
device nor knowledge of secret features of the target system. NICV has a low computa-
tion requirement and detects leakage using public information such as input plaintexts
or output ciphertexts only. It can also be used to test the efficiency of leakage models,
the quality of traces, and the robustness of countermeasures.

Linear discriminant analysis (LDA)

A popular supervised feature transformation algorithm is the linear discriminant
algorithm (LDA) which finds a linear combination of features separating two or more

21

Chapter 1 – Background

classes [JWHT14]. LDA explicitly tries to model the difference between the classes of
data, which makes it a suitable preprocessing algorithm in case of large data. It fo-
cuses on maximizing the separability among known categories, and the projection will
keep classes as far apart as possible, so that LDA is a good technique to reduce dimen-
sionality before another classification algorithm such as SVM. Note that the features
are transformed into another feature space such that original dependencies (shapes,
patterns) between features do cause information loss. Even though it will speed up
training, it may make the system performs slightly worse. Recent work [MBBB16]
shows that LDA can also be used directly as a classifier.

1.4 Detection and classification techniques

This section presents a background of detection and classification techniques in
malware analysis, with a focus on IoT systems to address both the advantages and
disadvantages of traditional defenses. The proposed techniques include static mal-
ware analysis, in which features are extracted statically from samples, and dynamic
malware analysis techniques, in which features are extracted from behavioral monitor.
Furthermore, we will discuss learning techniques such as machine learning and deep
learning.

1.4.1 Malware detection: static and dynamic approaches

In common, malware defenders rely on signature-based analysis or dynamic sand-
boxes in order to gain information about malicious binaries. In particular, static mal-
ware analysis and signature-based malware detection are performance-wise effective,
but are trivially evaded by obfuscation techniques. Besides, dynamic malware sand-
boxes automatically analyze new suspected binaries in special environments (e.g., vir-
tual machines). The results of sandboxes are very likely to be incomplete due to in-
appropriate environments that are similar to the synthetic ones used in security labs.
Dynamic malware analysis has two major problems: sandbox evasion and unstable
instrumentation solutions, which heavily rely on operating systems and architectures.

22

1.4. Detection and classification techniques

Static malware analysis

Static analysis verifies the sample actions conducted in practice without actually ex-
ecuting them. Additionally, in static malware reverse engineering, analysts must disas-
semble and decompile the binary manually or automatically using reverse-engineering
tools. Fortunately, in some cases, the source code has been leaked or published and is
a very genuine source for analyzing malware (e.g theZoo 1).

In reverse-engineering, two widely-used disassembling algorithms are: linear sweep
and recursive traversal [WF12]. Linear sweep algorithms start from the first byte of the
code section and consecutively analyze each successive instruction. The method is sim-
ple and fast, but it has some serious drawbacks that arise due to variable instruction
size, data, or garbage embedded into the code stream. This algorithm, however, can
mistakenly interpret data as code and, accordingly, propagate disassembling errors
throughout all the following regular instructions. Recursive traversal, on the other
hand, does not using a strictly sequential approach, but starts to disassemble at the
known code entry-points and recursively following each branch instruction. By that,
only valid code is observed, and therefore unaligned instructions or embedded data
will not disturb the process. The main disadvantage of this method is the assumption
that each jump target can be identified by static analysis, which is not always possible
in the case of indirect calls. An improvement to this algorithm is speculative disas-
sembly, which tries to also parse the left-out gaps between the reachable code regions,
using linear sweep for that. Most of the popular reverse engineering tools that support
ELF binaries use recursive traversal, e.g., IDA Pro 2, Hopper Disassembler 3, Binary
Ninja 4, or radare2 5 which supports both algorithms. Based on disassembly output,
the binary analysis framework attempts to reconstruct high-level programming lan-
guage by using decompilation techniques. In fact, it produces approximately pseudo
code since the compilation procedure is a lossy process that strips symbols, optimizes
the code structure, etc. In particular, the Hex-Rays 6 plug-in for IDA is a powerful
decompiler which can produce C-like pseudo code as an output.

The advantages of automated static malware analysis are low resource consump-

1. https://github.com/ytisf/theZoo
2. https://www.hex-rays.com/products/ida/
3. https://www.hopperapp.com
4. https://binary.ninja
5. https://rada.re/
6. https://www.hex-rays.com/products/decompiler/

23

https://github.com/ytisf/theZoo
https://www.hex-rays.com/products/ida/
https://www.hopperapp.com
https://binary.ninja
https://rada.re/
https://www.hex-rays.com/products/decompiler/

Chapter 1 – Background

tion and analysis time for disassembly, which usually depends on the size of the binary.
One outstanding feature is showing an overall view of the malware, since both linear
sweep and recursive traversal techniques can cover all possible binary execution paths,
while traditional dynamic malware analysis can cover only one execution path. How-
ever, an experienced analyst still has difficulties understanding packed, obfuscated, or
junk code:

• Most malware nowadays is written in high level programming languages, a mi-
nor modification in source code will bring on significant changes in the disassem-
bly.

• Malware relying on external or environment dependence values cannot be stati-
cally determined correctly (e.g., Command and Control (C&C) server configura-
tions, current system date, indirect jump instructions, CPU cores, etc.).

• The use of obfuscation may hinder the malware static analysis. Caliskan-Islam
[CIYD+15] mentioned that with the use of some particular compilers that lack
decompilers and produce nonstandard disassembly. For instance, the Movfus-
cator [Dom21] compiles programs into only mov instructions without any self-
modifying code or transport-triggered calculation. This may likewise hinder the
disassembly approach, particularly if the compiler is not generally available and
cannot be fingerprinted.

Dynamic malware analysis

Dynamic malware analysis refers to techniques that execute binary samples, func-
tions, shellcode, etc. to verify actions the malware performs in practice by executing
them. To monitor which functions are called usually means intercepting function calls,
a process known as "hooking." Thereafter, output the results of the invocation to a log
file for further analysis. Common techniques for dynamic malware analysis are de-
scribed as follows:

• Analysis in user or kernel mode: A malware sample is executed under debug-
ger, dynamic binary instrumentation or analysis modules implemented in either
user or kernel space, makes it simple to invoke functions or API calls. However,
because malware analysis should not be done on a live system, this approach is
often performed inside virtual machines.

24

1.4. Detection and classification techniques

• Analysis in emulator: An emulator transforms the CPU instructions required for
one architecture to run them on another. To examine malware sample behaviors,
this technique utilizes memory or CPU emulation (libemu, QEMU, etc.) or full
system emulation (Boshs, etc.).

• Analysis in virtual machine(s): Virtual machines provide the functionality nec-
essary to run full operating systems. A hypervisor utilizes native execution to
share and control hardware, allowing several environments to operate on the
same physical computer while being isolated from one another. To monitor mali-
cious behavior, samples are transferred to VMWare, VirtualBox, or other virtual-
ized containers. Following sample execution, used computers will be restored to
a clean snapshot. Used machines will be restored to a clean snapshot after sample
execution.

• Bare environment analysis: Suspicious samples are transferred to a real hard-
ware environment to investigate malicious behaviors that virtual machine eva-
sion techniques would not be able to evade in this type of environment.

• Network simulation: To monitor network activities, the environment uses a sim-
ulated or filtered network instead of the Internet in order to avoid revealing the
analysis environment information.

In contrast to static analysis, dynamic malware analysis can give only a subset of all
possible execution paths rather than an overview of observed sample. The general
work flow of malware analysis, shown in Fig. 1.10, is a hybrid solution of both static
malware analysis and dynamic malware analysis.

Figure 1.10 – Data collection from malware samples and interactive analysis of these
data using visual analytics[WFL+15].

25

Chapter 1 – Background

1.4.2 Machine learning

In a machine learning paradigm, a computer program is said to learn from experi-
ence E with respect to some class of tasks T and performance measure P if its perfor-
mance at tasks in T, as measured by P, improves with experience E [Mit97]. Perform-
ing machine learning involves building a model that has been trained on some training
data and can subsequently analyze more data to make predictions. For machine learn-
ing systems, several types of models have been utilized and investigated. Machine
learning approaches are traditionally divided into 3 main categories, depending on
the nature of the "signal" or "feedback" available to the learning system: Supervised
learning, unsupervised learning and reinforcement learning.

Supervised learning

Training dataset

 Sample
Label

Test dataset

 New Sample

Infected

Benign

Unlabeled

Trained model Evaluation metrics

Figure 1.11 – An example of supervised learning: labeled training dataset for malware
detection.

A dataset with features is presented to supervised learning algorithms, where each
sample is additionally tagged with a “label". A typical supervised learning problem
is malware classification. It is trained with many samples along with their labels

26

1.4. Detection and classification techniques

(e.g.malicious or benign), and it must learn how to classify new samples. Fig. 1.11
shows an example of supervised learning in malware detection.

Naive Bayes (NB)

In supervised learning, a labeled training set is available to build models that are
used to make predictions on the testing dataset. The NB classifier is based on applying
Bayes’ theorem with a strong (naive) independence assumption between the features.
It is further based on a Gaussian distribution assumption, which is most often not given
in practice, but has still shown comparable performance in the physical side-channel
domain when revealing secret keys [PHG17]. The strong benefits of NB are its low
resource requirement, fast computation, and no requirement for tunable parameters.

Bayes theorem provides a way of calculating the posterior probability, P (y|X), from
P (y), P (X), and P (X|y) as:

p(y|X) = p(y) ∏m
i=1 p(xi|y)
p(X) (Eq. 1.4.1)

where, y is class variable and X = (x1, x2, ..., xm) is a dependent feature vector (of
size m). P (y|X) is the posterior probability of class (target) given predictor (attribute).
P (y) is the prior probability of class. P (x|y) is the likelihood which is the probability
of predictor given class. P (X) is the prior probability of predictor.

Naive Bayes classifier assumes that the effect of the value of a predictor (X) on a
given class (y) is independent of the values of other predictors. For building a classi-
fier model, we find the probability of given set of inputs for all possible values of the
class variable y and take the output with maximum probability. This can be expressed
mathematically as:

classify(x1, x2, ..., xm) = argmaxyP (y)
m∏
i=1

p(xi|y) (Eq. 1.4.2)

Support vector machines (SVM)

Support vector machines (SVM) is a powerful supervised machine learning tech-
nique that is widely used in Machine Learning [JWHT14]. It is based on finding hyper-
planes that maximize the features’ separation in class labels. Using a kernel trick and
transforming features into a higher-dimensional feature space (e.g. by using the Gaus-

27

Chapter 1 – Background

Figure 1.12 – SVM classifiers using an Radial Basis Function (RBF) kernel show models
trained with different values of hyperparameters γ and C [Gér19].

sian radial basis function), SVM is able to perform linear or nonlinear classification,
regression, and outlier detection.

SVM is similar to logistic regression that solves a regression problem. The goal is
to build a system that can take a vector X ∈ Rm as input and predict the class identity.
We define w ∈ Rm is a vector of parameters where w is a set of weights that determine
how each feature affects the prediction.

classify(x1, x2, ..., xm) = wᵀX + b (Eq. 1.4.3)

The SVM predicts that the positive class is present when wTX + b is positive. Like-
wise, it predicts that the negative class is present when wᵀX + b is negative. The kernel
technique is a significant invention connected with SVM [GBC16]. It can be demon-
strated, for example, that the SVM’s linear function can be rewritten as:

wᵀX + b = b+
∑
i=1

αiφ(X, xi) (Eq. 1.4.4)

where xi is a training example, α is a vector of coefficients and kernel function φ. Tech-
nique to tackle non-linear problems is to add features using similarity function. One

28

1.4. Detection and classification techniques

common technique of similarity function is a Gaussian RBF that is defined as:

φγ(x, x′) = exp(−γ||x− x′||2) (Eq. 1.4.5)

where γ is a parameter that sets the “spread” of the kernel φ. Either x or x′ will be the
centre of the radial basis function and γ will determine the area of influence over the
data space. In practice, additional regularization hyperparameter C is used to control
error and trades off correct classification of training examples against maximization of
the margin of decision function. The larger values of C, the smaller margin will be
accepted if the decision function is better at classifying all training points correctly. A
lower C will encourage a larger margin, so that simpler decision function for the cost
of training accuracy (see Fig.1.12).

1.4.3 Deep learning

Artificial neural network was motivated by studying how the human brain func-
tions. Millions of neurons in the human brain use electrical and chemical signals to
communicate with one another. The inputs to a neuron are combined in some way, and
if they are above a threshold, the neuron fires and an output is sent out to other neurons
through the axon. This principle is also used in artificial neural networks [MD11].

Deep learning techniques such as neural networks have been recently applied in
many fields. A generic neural network architecture is a Multi-layer Perceptron (MLP)
which consists only of dense layers, i.e. layers where each neuron has a weighted
connection to all neurons of the next layer. Another popular type of neural networks,
especially in image classification, is Convolution Neural Networks (CNN). It initially
has been developed specifically for image processing. The main components are con-
volution layers, which define a set of filters that are convolved to learn the spacial
relationship between the input features. The benefit of using CNN is their ability to
develop an internal representation of a two-dimensional image. This allows the model
to learn position and scale in variant structures of the data, which is significant when
working with images. Because of the recursive process of learning that happens when
a neural network algorithm detects malware or generates a probability to render soft-
ware as "infected", an author may not be able to understand and explain how that
outcome is achieved[Dwy19]. The weights and dependencies between a neural net-
work’s layers, while adjustable by its author, do not always result in a linear output

29

Chapter 1 – Background

change. In this thesis, we will concentrate on these two architectures.

Multi-layer Perceptron (MLP)

Σ φ

+1
x1

x2

x3

xn

b
w1

w2

w3

w n

φ (∑
XW + b)

...

I1

I2

I3

Input
layer

Activation
function

Hidden
layer

Output
layer

O1

O2

Figure 1.13 – Illustration of a MLP architecture.

A MLP is composed of several layers (1.13). Each neuron that composes a layer has
a weighted connection to all the neurons of the previous layer. As defined in [Gér19],
considering the matrixW of these weights,X the matrix input feature, b the bias vector,
and φ the activation function, the output of a layer is:

hW,b(X) = φ(XW + b) (Eq. 1.4.6)

During the training phase, the MLP is fed with a set of data divided into mini-
batches, and goes through the entire set multiple times (epochs). The weights matrices
of each layer are updated every time a forward pass is over for one batch, in order to
minimize a loss function that measures how far the output (prediction) is from the de-
sired one (actual value). This is done using the back-propagation algorithm [RHW85].
Description of activation functions used in this thesis will be described next.

Activation functions

The activation function of a node defines the output of that node given an input or
set of inputs. Numerous activation functions have been studied in the literature. We
only describe some of them that are widely used in modern neural network architec-
tures (Fig. 1.14) as follows for any input x ∈ R:

30

1.4. Detection and classification techniques

(a) sigmoid (b) Rectified Linear Unit
(ReLU)

(c) Leaky ReLU

Figure 1.14 – Plots of widely used activation functions

• Sigmoid

f(x) = 1
1 + e−x

(Eq. 1.4.7)

This function bounded in range (0, 1), has non-negative derivate and differen-
tiable. It is used in the output layer and mostly for binary classification.

• RELU

f(x) =

0 if x ≤ 0

x if x > 0
(Eq. 1.4.8)

This function continuously unbounded in range [0, inf), keep positive values un-
touched and disregard negative ones. Recently this activation function has be-
come one of the most widely used in machine learning community because it
well performs and being fast to compute.

• Leaky RELU

f(x) =

0.01x if x < 0

x if x ≥ 0
(Eq. 1.4.9)

Leaky ReLU is a variant of ReLU. It allows for a small, non-zero gradient when
the unit is saturated and not active [MHN+13].

• Softmax

This activation functions is not of a single fold x from the previous layer or layers,
but on a vector of values. So that for any input x = (x1, . . . , xJ) ∈ RJ :

softmax(x)i = exi∑J
j=1 e

xj
for i = 1, . . . , J (Eq. 1.4.10)

31

Chapter 1 – Background

The softmax function is often used in various multiclass classification methods
for the output layer, where the function classify input into one of more than 2
classes.

Neural network layers

Typically a neural network model consists of 3 successive layers: input layer, hid-
den layer(s) and output layer. An input layer made of the network’s input values as
well as output layer composed of the network’s output values. Hidden layer(s) are the
internals between the input and output layers, hence they are not directly accessible
from outsiders. The following provides a description of common types of layers:

• Fully connected layer in this kind of layer, all the inputs from one layer are con-
nected to every activation neuron in the other layer(s).

×1 ×0 ×1

×1 ×0 ×1

×1 ×0 ×1

1 0 1 0 1 0 0
0 1 0 1 0 1 1
0 0 1 1 1 1 1
0 1 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 0 0 1 1
0 1 0 1 1 1 1





∗
1 0 1
1 0 1
1 0 1



 =

3 3 4 4 4
2 5 3 6 3
3 5 5 5 3
3 5 3 4 2
2 5 3 4 4





I K I ∗K

Figure 1.15 – Convolution operation example between input I and kernel K with no
padding and stride value of 1.

• Convolutional layers: in this kind of layer, not all elements of the inputs are
connected to every neuron of the convolutional layer. It contains a set of convo-
lutional kernels (or filters), which get convolved with the inputs (N-dimensional
metrics) to generate an output feature map. A kernel is nothing more than a small
matrix of values, where each value is known as the weight. By sliding this kernel
along the input, we can measure the convolution operation product to compute
the output of the layer. A convolution operation is a mathematical calculation on
two functions (f and g) that produces a third function by measuring the integral
of their point-wise multiplication f ∗ g (see Fig. 1.15). The convolution operation

32

1.4. Detection and classification techniques

has deep relationships with the Fourier transform and is heavily used in signal
processing.

In practice, we use the convolution operation with additional parameters such
as padding to the input and with stride to the kernel. By increasing stride, it will
result in a lower-dimensional feature map. The padding handles the border size
information of the input, otherwise without using padding the border side fea-
tures are disregarded.

• Pooling layer: this layer is similar to convolutional layers where not all elements
of the inputs are connected to every neuron of the layer. The goal of the pooling
layer is to shrink the input to a smaller size for summary statistics of the nearby
outputs. Pooling layer parameters have their own size, stride, and padding type
but no weight. All it does is to use an aggregation function to combine the data.
The pooling units can perform various tasks, such as max pooling, average (or
mean) pooling, and L2-norm pooling. Mean pooling was formerly popular, but
lately the max pooling method has been demonstrated to perform better in prac-
tice. Figure 1.16 shows a max pooling layer, which is the most common type of
pooling layer at the time of writing. In this example, we use a max pooling layer
which down-samples the volume spatially, independently in each depth slice of
the input volume with filter size 2 and stride 2 with no padding.

Figure 1.16 – Visual example of max pooling. Left: Pooling the input volume of size
(224,224,64) into output volume of size (112,112,64). Right: Max pooling with a stride
of 2, each max is taken over 4 numbers (little 2x2 square) [CS221].

33

Chapter 1 – Background

Convolution Neural Networks (CNN)

CNNs are based on an architecture inspired by the visual cortex, and thus special-
ized in image processing. They follow the same principles as MLPs for training, but
the neurons in CNN are more sparsely connected between the layers. They take ad-
vantage of the spacial information, and each neuron is connected only to those located
in a small rectangle (the filters) of the previous layer. This allows us to detect more
and more complex patterns the deeper we go through the network. Convolutional
networks are simply neural networks that use convolution in place of general matrix
multiplication in at least one of their layers [GBC16].

CNNs are constituted of different kinds of layers. The main components are the
convolution layers themselves, which define a set of filters that are convolved dur-
ing the forward pass, and produce feature maps that highlight spacial relationship
between the input pixels. The weights of the filter are learned and updated at each
back-propagation pass. They are generally followed by a pooling layer, that uses an
aggregation function (the most widely used nowadays is the max function) and ap-
ply it by sliding a rectangle through the input image. Using pooling layers tends to
reduce overfitting, and allows increasing the computation speed by shrinking the fea-
ture map. A typical CNN architecture is a stack of an input layer, hidden layers, and an
output layer where each hidden layer consists of several convolution and pooling lay-
ers, followed by a regular MLP (few fully connected layers), and normalization layers
to perform the final classification.

1.4.4 Classifiers and evaluation metrics

Learning classifiers

Machine learning and deep learning models are very powerful for classification
tasks. [Gér19] divided learning classifiers into three main categories: binary classifica-
tion, multi-label classification, and multi-class classification.

For a binary classification problem, one just needs a single output neuron using
the sigmoid activation function so that the output will be a number between 0 and 1
(i.e. "infected" or "clean"), which can be interpreted as the estimated probability of the
positive class p. The probability of the negative class is n = 1− p.

A multilabel classification system is a classification system that outputs multiple
binary tags. There are a variety of metrics to use when evaluating a multilabel classi-

34

1.4. Detection and classification techniques

fier, and they depend on the goal of the project. One method is to compute the average
score after measuring the F1-score for each individual label or any other binary clas-
sifier metrics that will be discussed at the end of this subsection. Multi-label binary
classification tasks are likewise solved easily by learning classifiers. We only need two
output neurons in this case, both utilizing the sigmoid activation function. In general,
one output neuron would be assigned to each positive class. It’s worth noting that
the output probabilities might not always add up to 1 so that this allows the model to
output any combination of labels.

Multioutput or multiclass classification is the last form of classification that is basi-
cally a generalization of multilabel classification, in which each label can be classified
into many classes (i.e., it can have more than two possible values rather than a simple
binary tag). In this case, each instance can only belong to one of three or more classes
(e.g., more than 2 possible malware variants classification, or classes 0 through 9 for
digit image classification), then one output neuron per class is required, and the soft-
max activation function should be used for the entire output layer. The softmax function
ensures that all estimated probabilities are in the range of 0 to 1 and that they add up
to 1 which is required so the classes are exclusive.

Evaluation metrics

The goal of classification is to predict class labels based on input data, and com-
monly, there are two potential output classes in binary classification. In multi-class
case scenarios, there are more than two possible classes Malware detection problem is
an example of binary classification, where the input data may include binary samples
or behaviors (e.g. API calls, file accesses, network logs, etc.), and the output label is
either "infected" or "benign." (see Figure 1.11) The two classes are sometimes referred
to as "positive" and "negative." There are several methods for assessing categorization
performance. Some of the most prominent measures are accuracy, confusion matrix,
log-loss, and AUC.

For binary classification problems during this thesis, the following evaluation met-
rics notations will be proposed:

Condition positive (p): The number of real positive cases in the data

Condition negative (n): The number of real negative cases in the data

True Positive (TP): A test result that correctly indicates the presence of a condition or

35

Chapter 1 – Background

characteristic

True Negative (TN): A test result that correctly indicates the absence of a condition
or characteristic

Palse Positive (FP): A test result which wrongly indicates that a particular condition
or attribute is present

False Negative (FN): A test result which wrongly indicates that a particular condition
or attribute is absent

Accuracy

The accuracy of a classifier is simply the frequency of classifier which produces the
correct prediction. The number of right predictions divided by the total number of
predictions (the number of data points in the test dataset) is the Accuracy ratio:

Accuracy = # correct predictions
total data points

= TP + TN

TP + TN + FP + FN
(Eq. 1.4.11)

Confusion matrix

Accuracy does not differentiate between classes, where the results for classes in-
fected and benign are regarded equally. Because the cost of wrong classification may
differ for the two classes, for example one may have a lot more number of samples in
dataset of one class than the other, so that one would want to look at how many cases
failed for class infected vs class benign. A confusion matrix (Table 1.1) shows a more
detailed analysis of correct and incorrect classifications for each class.

Table 1.1 – Confusion matrix for two classes.

Predicted class

True Class Positive Negative Total

Positive TP FN p

Negative FP TN n

Total p′ n′ N

We distinguish between the two classes in some two-class scenarios, and hence the
two types of errors: FP and FN. Consider a false negative scenario of malware detection

36

1.4. Detection and classification techniques

where a malicious sample is incorrectly whitelisted to execute, while a false positive
occurs when benign software is refused. Obviously, the two types of errors are not
equivalent, with the false negative case being far more serious. The true positive rate,
also known as the hit rate, is the percentage of real malware we detect, whereas the
false positive rate, also known as the false alert rate, is the percentage of samples we
denied incorrectly.

Precision-Recall

The confusion matrix provides a lot of information, but one might prefer a more
simple metric. The classifier precision, which is the accuracy of positive predictions, is
a useful tool to use in classification problems. The precision (Eq. 1.4.12) for a class is the
number of true positives divided by the total number of elements labeled as belonging
to the positive class (i.e. the sum of true positives and false positives).

Precision = TP

TP + FP
(Eq. 1.4.12)

Making only one positive prediction and ensuring it is right (precision = 1/1 =
100%) is a simple way to achieve perfect precision. And this would be insignificant
since the classifier would discard all except one good example. As a result, accuracy is
sometimes combined with another statistic known as recall, also known as sensitivity
or the true positive rate (TPR). Recall (Eq. 1.4.13), in a classification task, is defined
as the number of true positives divided by the total number of elements that actually
belong to the positive class (i.e. the sum of true positives and false negatives).

Recall (= TPR) = TP

TP + FN
(Eq. 1.4.13)

In binary classification, precision is also known as positive predictive value, while
recall is also known as sensitivity. When one needs a straightaway method to compare
these two metrics, it’s typically easier to combine precision and recall into a single
statistic called the F1 score. F1 score (Eq. 1.4.14) is calculated using the harmonic mean
of precision and recall . As a result, the classifier will only earn a high F1 score if it has
high recall and accuracy.

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

= 2 ∗ TP
2 ∗ TP + FP + FN

(Eq. 1.4.14)

37

Chapter 1 – Background

Other related measures used in classification include true negative rate and bal-
anced accuracy. True Negative Rate (TNR) is also called specificity.

TNR = TN

TN + FP
(Eq. 1.4.15)

For imbalanced data sets, accuracy might be a misleading metric. Consider a dataset
that contains 99 negative samples and 1 positive sample. In this situation, classifying
all values as negative yields a 0.99 accuracy score. Balanced Accuracy (BA) is not af-
fected by this issue. It normalizes true positive and true negative predictions by the
number of positive and negative samples, respectively, and divides their sum by two:

BA = TPR + TNR

2 (Eq. 1.4.16)

38

2
State of the Art

This chapter presents a review of the related studies on malware evasion
techniques to address both advantages and disadvantages of traditional malware
defenses. Thereafter, we focus on the existing work of malware detection and rootkit
detection techniques, specifically on the side-channel perspective.

Contents

2.1 Malware evasion techniques . 39

2.1.1 Evasion of static code analysis 39

2.1.2 Evasion of dynamic analysis . 40

2.2 Malware detection . 42

2.2.1 Malware detection from software analysis 42

2.2.2 Malware detection from hardware analysis 43

2.3 Rootkit detection through side-channel 47

2.4 Research problems statement . 51

2.1 Malware evasion techniques

2.1.1 Evasion of static code analysis

Malware developers often attempt to pack or compress their samples for a smaller
size malware, to hinder the real malicious code section, or to obfuscate malware to
make static analysis process more time-consuming using a variety of methods. A
typical example is static code obfuscation using packers to generate numerous mal-

39

Chapter 2 – State of the Art

ware variants automatically, whilst using the same malware source code. One ef-
fective obfuscation technique against static analysis has been studied by Moser et al.
[MKK07b] that presented an obfuscation scheme based on opaque constants which are
hidden in processor registers, and manipulate the control flow of a program. Hence,
it is becoming non-trivial to investigate malware behaviors by static analysis and re-
verse engineering. Many IoT malware is packed by popular packer UPX or its vari-
ant [Lab21]. Static analysis was the preferred technique for malware analysis until
researchers demonstrated that the widespread use of packing and obfuscation made it
inadequate in the malware domain.

2.1.2 Evasion of dynamic analysis

Dynamic malware analysis sandboxes generally operate samples within a jail en-
vironment such as debugger, virtualized or emulated environment and therefore ex-
posed some information which is different from normal user machine. The interest
in dynamic malware analysis is not only limited to malware researchers, but also
spreads to malware developers to find ways to mitigate malware analysis. Chen et
al. [CAM+08] grouped evasion techniques by the system abstractions of how they op-
erate: Hardware, Environment, Application and Behavior. Table 2.1 derives a survey of
common sandbox fingerprint techniques from previous research [CAM+08, LKMC11,
BCK+10, Fer07, YIT+16, Lin11] that compares multiple evasion techniques, their ac-
curacy in detecting dynamic malware analysis environments, and the level of anti-
evasion difficulties.

Several research studies [CAM+08, LKMC11, BCK+10] have been carried out to
detect whether a malware program behaves differently between an analysis environ-
ment and a normal user environment. This involves comparing the runtime behav-
iors of each analysis system. Chen et al. [CAM+08] analyzed malware samples on
native machines, virtual machines, and debuggers separately. They detect any differ-
ence in persistent behavior to indicate malware evasion. In their experiments amongst
6222 Windows samples, 40% showed less malicious behavior with a debugger and
4% demonstrated less malicious behavior in a virtual machine. However, Lindorfer et
al. [LKMC11, Lin11] argue that this approach might lead to a high number of samples
being incorrectly classified as evasive. Their Disarm executes samples 3 times in each
of the 4 sandboxes to establish a baseline for the sample’s variation in behavior. Their

40

2.1. Malware evasion techniques

Table 2.1 – Common sandbox fingerprinting features (adopted from [PVM19]) consist
of multiple evasion techniques, their accuracy to detect dynamic malware analysis en-
vironment, and the level of anti-evasion difficulties

Abstraction Artifacts Accuracy Counter-
measure

Hardware Device information
Includes device ID and manufacturer of Ether-
net, VGA adapter, mouse etc. Device specifica-
tions which often have distinguished capability
such as low disk space, display resolution, pro-
cessor cores, RAM, etc.

high easy

Particular Drivers
Drivers initially installed with virtualized guest
such as QEMU, VMWare Tools, VirtualBox Guest
Additions, kvmnet, debugger kernel driver, etc.

high medium

Environment Network configuration
Default gateway, external IP address, ARP list,
MAC address, DNS servers

high easy

System
Artifacts located in system memory such as host-
name, OS information, owner name,

medium easy

CPU instructions
Leak information by using CPUID, Interrupt De-
scriptor Table –IDT.

high hard

Application Storage
Look for special files only belongs to virtualized
machine, debugger, analysis tools in drive stor-
age or registry keys.

high easy

Process name
Look for debuggers, analysis running process high hard

Side-channel Timing attacks
Check for local time source, such as Time Stamp
Counter– TSC; Time from boot to start

low medium

Side-channel information
Sensor’s information e.g. temperature, fan
speed, etc.

high hard

Behavioral User interaction
Mouse clicks, keyboard capture.

medium easy

41

Chapter 2 – State of the Art

experiments show that 25% of malware samples produced different persistent changes
between multiple executions in the same sandbox.

Moser et al. [MKK07a] proposed a multiple path exploration system that allows
exploring multiple execution paths and identifying malicious actions that are executed
only when certain conditions are met. This tool recognizes a branching point whenever
a control flow decision is based on data outside the monitored process. Then it is
detected if a control flow decision is based on the return value of a system call (e.g., the
current system time). Multiple path exploration is a countermeasure to logic bombs
and can obtain a more complete picture of malware actions.

A. Klein et al. [KK17] have demonstrated that Anti-virus (AV) sandbox execution
can be exploited to exfiltrate data from endpoint machines by “burning” the data into
the binary to be scanned in the cloud. As one part of this research, the authors made
observations on the sandboxes and discovered several fingerprints of sandboxes, such
as computer name, performance counter frequency, CPU, MAC address, etc., amongst
3 cloud-based analysis services and 4 cloud AV sandboxes. Obviously, these artifacts
are useful indicators for malware evasion.

2.2 Malware detection

We will first describe the traditional methods of performing automatic malware
classification by means of software. We will then focus on methods closer to the hard-
ware perspective, to present the relatively new area of analyzing side channels to ob-
serve malicious and abnormal activity.

2.2.1 Malware detection from software analysis

Using the power of machine learning to identify and classify the behavior of malev-
olent software is a common approach in the literature. Schultz et al. [SEZS01] were the
first to introduce big data analysis to detect Windows PE malware, using various clas-
sifiers such as Naive Bayes and Ripper. It paved the way for later work evaluating the
efficiency of different learning algorithms, supervised or not, for the same purpose.

The majority of the works discussed here use well-known machine learning algo-
rithms, such as k-means, random forests, and support vector machines. The first at-
tempts at machine learning malware detection and classification were mainly based on

42

2.2. Malware detection

analyzing software information. Some techniques dissect the monitored binary itself
For example, in [SEZS01, KM06, RZC+18], the authors use directly the byte code us-
ing n-grams as features for the classification. Another class of works [NKJM11, HLI13,
LWYZ17] that revealed itself very efficient is based on visualization of the binary as a
gray-scale image, before applying classification algorithms. Structural representations
of the binary have also been successfully implemented. In [KY13], the authors present
a framework for automated malware classification based on function call graph, while
in [EH11], they extract control flow graphs and use them as a feature vector. Both of
them compared the efficiency of this approach by testing different classifiers.

Instead of analyzing the code of the binary directly, it is also possible to dynamically
observe how its execution interacts with the system to try to catch suspicious activity.
This is the path followed, for example, by [TIBV10] and [CTY13], where the authors
examine the traces of the API calls to automatically classify the monitored executables.
Following a similar idea, [AQN+11] presented a classification method using Markov
chains constructed from dynamically collected instruction traces.

In [BSRB15], they showed that it is also possible to exploit the network traffic to
detect malicious behaviors. If we look at the instruction traces or network activity of
the executables that are being monitored, like in [TIBV10], [CTY13], [AQN+11] and
[BSRB15], we can automatically classify them. More recent works are using similar
techniques, but focus on taking advantage of the developments made in the deep
learning field, that can surpass limitations encountered by other machine learning al-
gorithms. For example, [KZWE16] outperforms previously used methods using con-
volution and recurrent networks to analyze system call sequences. [LBMNS18] and
[KRM+18] also uses convolution networks, but apply it to one or two-dimensional
representation of the binary, which is similar to the grayscale visualization.

2.2.2 Malware detection from hardware analysis

Since the aforementioned works perform at the software level, they are vulnerable
to advanced malware evasion techniques, as discussed in section 2.1. This following
section reviews a summary of techniques used in related works on malware analysis
using side-channel (Table 2.2) over the years. This new area of research is investigat-
ing approaches closer to the hardware perspective. We focus on methods that leverage
side-channel analysis and present the relatively new area of analyzing side channels

43

Chapter 2 – State of the Art

Table 2.2 – Highlights of techniques used in related works on malware analysis lever-
aging side-channel analysis.

Articles Year Target dataset and detection techniques

WattsUpDoc [CRR+13] 2013
Detection of 12 malware variants.

Power consumption, MLP, NN, Random Forest.

Crypto-ransomware in IoT
[ADCC18]

2017
Ransomware detection.

Power consumption, k-Nearest Neighbor.

EDDIE [NSA+17] 2017
Code injection detection.

EM, STFT, Kolmogorov-Smirnov test.

DL and anomaly detection
[WZH+18]

2018
Anomaly detection of botnet.

Power consumption, MLP, LSTM.

HLMD [BAT19] 2019
Malware classification of 14 variants.

HPC, singular values, signature-based.

EM and Neural networks
[KSN+19b]

2019
Detection of DDoS, ransomware, control flow hijack.

EM, MLP.

to observe malicious or abnormal activity. Various works, such as [DMS+13, SPP+18,
BAT19, ODG+15], showed that combining the observation of micro-architectural events
collected by Hardware performance counter (HPC) registers with machine learning
techniques can allow the detection of malware. Some studies [SEE+17, DA18] were
even able to detect malware threats that was previously impossible or difficult to catch
with software methods such as kernel-level rootkits and Spectre attack. But although
the last discussed methods are working on hardware level, they still require access
to the system, and they will inevitably induce an overhead and require isolation con-
straints from the malware, which can be problematic, particularly, on constrained sys-
tems.

Those are the reasons why researchers have recently become more and more in-
terested in physical side channel information as a novel technique to detect malware
One of the first works on malware detection [CRR+13], even though limited due to
its constrained scenario, showed that the collection of power consumption on medical
embedded devices is suitable to detect malware. [KSN+19b] presents a malware detec-
tion solution by exploiting EM side-channel signals from embedded devices through

44

2.2. Malware detection

Multi-Layer Perceptron (MLP) to detect handcrafted implementations mimicking mal-
ware, malicious parts of DDoS, ransomware and control flow hijack. A common idea
to take advantage of side channel information to detect anomalies is to observe how
the system behaves in its normal state, and to raise an alert when a new behavior is
recorded. In [SNA+20, KSN+19a], the authors propose to detect malware by observing
EM signals. During the monitoring, if the observed EM emanations deviate from the
previously observed patterns, this is reported as an anomalous or malicious activity.
[NSA+17] uses Short Time Fourier Transform (STFT) and Kolmogorov–Smirnov test to
detect anomalies inside and between the loops through peaks in the EM spectrum. In
[RGF+19], the authors put a wide-bandwidth radio frequency probe over the proces-
sor of the device and used a support vector machine to infer the values of the registers.
They monitor if the hamming distance of the registers deviates from the known signa-
ture, and use this information to detect cyberattacks.

In [WZH+18], the authors use Autoencoders, Long Short-Term Memory (LSTM)
units, and MLP on power consumption data to detect anomalies such as Distributed
Denial-of-Service (DDoS) attack on 2 target devices: Arduino and Raspberry Pi. [DLL+20]
shows an approach to detecting malicious activities on IoT devices via analyzing power
side-channel signals using Convolution Neural Networks (CNN). In particular, they
conducted a study of 2 architectures, ARM and MIPS, on multiple target devices, in-
cluding webcams and network routers. The authors experimented with five malicious
real-world families by analyzing fine-grained malware activities using their power
consumption traces. The experimental results demonstrate that DeepPower is able
to detect infection activities of different IoT malware with a high accuracy, however
the results get worse for long trace and activities such as wget, grep, etc. The authors
of [ADCC18] are successfully detecting ransomware using machine learning on time
series of the power consumption of the device. [CKM21] considered CPU benchmark
applications for Android benign dataset to detect malware using EM, however it is
very specific stress processes that are easy to detect and classify rather than a wide-
range dataset of cleanware, long-running programs and device background services.
The use of physical hardware information, and particularly side-channel information,
represents a great advance for malware detection. A detailed comparison of the work
in different features using side-channel to analyze malicious activities is provided in
Table 2.3.

45

C
hapter

2
–

State
ofthe

A
rt

Table 2.3 – Comparison with related works on side-channel malware (SCM) analysis using EM or power consumption.
(*): Chapter 3 aims at SCM classification, however it also achieved good results in SCM detection scenario.

Article
SCM
detec-
tion

Anomaly
detection

SCM clas-
sification

Real-
world
SCM

Real-
world

analysis
environ-

ment

Sam-
ples
size

Varia-
tions

Benign
dataset

Win-
dow
size

Open
data,

source
code

Device under test

WattsUpDoc
[CRR+13] X - - X - 15 - - 5s - Windows XP

Embedded 664 MHz

IDEA
[KSN+19a] - X - - - 3 - - <40µs - AT328p 16MHz,

Cortex A8

REMOTE
[SNA+20] - X - X - 3 - - <10ms - Single-core ARM

1Ghz

Wang et al.
[WZH+18] - X - - - 1 - - 10s -

Raspberry Pi,
Arduino, Siemens

PLC

Khan et al.
[KSN+19b] X - - - - 3 - - <150µs -

Cyclone II FPGA &
NIOS II

soft-processor

DeepPower
[DLL+20] X - X X - 5 - - 1s -

MIPS/ARM
OpenWRT

Chawla et al.
[CKM21] X - X X - 137 - X 10s - Android Intrinsyc

Open-Q 820

Chapter 3 (X)* - X X X 35 X X 2.5s X
Multi-core, 900 Mhz

ARM

46

2.3. Rootkit detection through side-channel

2.3 Rootkit detection through side-channel

So
lu

ti
on

s

user space kernel space hypervisor HPC DMA Power
Detection level

OSSEC [BCH08]

AIDE [LGO04]

rkhunter [BH12]

chk-

rootkit [MSJ01]

Kernel

integrity:

LKRG [Zab18]

JoKER [GPSE15]

HookSafe

[WJCN09]

Shadow-

box [HP18]

HPC: [WK13,

SEE+17, JLC20]

Copilot

[PJFMA04]

Gibraltar[BGI11]

[LMG+18,

BJN+18]

SDR:
Chapter

4

Figure 2.1 – Taxonomy of rootkit detection approaches and positioning our approach
in the state of the art and open source tools.

On the effectiveness of Linux rootkit detection tools, Junnila J. [Jun20] carried out an
empirical evaluation of 5 prominent anti-rootkit tools: OSSEC [BCH08], AIDE [LGO04],
rkhunter [BH12], chkrootkit [MSJ01] and Linux Kernel Runtime Guard (LKRG) [Zab18]
against 15 rootkits. Surprisingly, the results showed that only 37.3% of the detec-
tion tests provided any indication of infected systems, in particular detection rate was
46.7% for user mode rootkits and 31.1% for kernel mode rootkits. Traditional rootkit
detection approaches such as OSSEC, AIDE, rkhunter and chkrootkit generally use
signature or rule-based mechanisms to detect rootkits by looking for threat-specific
information: either known rootkit binaries or known modifications of system bina-
ries, configuration files, or system states [BLRS10]. Obviously, they cannot detect new
rootkits or modified variants of existing rootkits as they are similar to signature-based
virus scanning.

On rootkit detection from the kernel-level space, JoKER [GPSE15] utilizes the Joint
Test Action Group (JTAG) hardware interface for trusted memory to detect rootkits.
LKRG is intended to safeguard OS kernel-level integrity against kernel-level rootk-
its and exploits. It performs post-infection detection and responds to unauthorized
changes of process credentials in OS kernel memory regions. However, such an ap-
proach requires compilation of kernel objects with additional kernel flags that must
be activated during kernel compilation, thus necessitating kernel recompilation and
posing a challenge for divergent, constantly evolving embedded systems.

Another study approach is to detect rootkits by putting the kernel and user space
under the monitor of a virtual machine (VM). Wang Z. et al. [WJCN09] have pre-

47

Chapter 2 – State of the Art

sented a hypervisor-based system called HookSafe that monitors kernel hooks and
prevents them from being hijacked by kernel rootkits. It is a lightweight hypervisor
that enumerates a collection of vulnerable areas in kernel space such as regions that
kernel-mode rootkits would attempt to modify, and relocates them to a more tightly
controlled place. Their experimental results show their effectiveness against 9 rootkits
with about 6% performance overhead. However, what if the rootkit is a hypervisor
where typically their protection level must descend one level further, rather than a
standard kernel-mode rootkit? Yuriy Bulygin [BS08] stated that you may rely on em-
bedded microcontrollers included in the motherboard’s north-bridge to monitor for
virtual machine-based rootkit. The authors demonstrated a proof of concept named
DeepWatch. It was further extended into HyperGuard, which uses a custom Sys-
tem Management Mode handler (SMI) in conjunction with onboard chipsets to protect
against malicious hypervisors. Nevertheless, it raised a concern of any technology that
is entirely reliant on software solutions only to ensure system integrity.

Shadow-box v2 [HP18] proposed a monitoring framework for x86 and ARM pro-
cessors, which utilizes Open Platform Trusted Execution Environment (OP-TEE) to
verify signatures and remote attestation from kernel executables. Rootkits living at
the same protection level (hypervisor) and lower (e.g. [BVN16, HR15, ESZ13]) have
the opportunity to evade this approach. Additionally, a VM-based solution could cir-
cumvent only the known tactics and is vulnerable to novel evasion techniques of VM
fingerprinting. Furthermore, Bratus et al. [BLRS10] suggested that modern applica-
tions could not integrate VM techniques as a detection mechanism, and managing the
VM becomes a major challenge due to its complexity and overhead.

Several studies propose combining the values of micro-architecture Hardware Per-
formance Counters (HPC) with learning models to identify malware. Numchecker [WK13],
Singh et. al. [SEE+17], and LKRDet [JLC20] detect Linux rootkits by looking for HPC
deviations during the execution of the kernel through virtualization to determine the
presence of a rootkit In particular, Singh et. al. [SEE+17] designed 5 tailor-made rootk-
its, each providing a single piece of rootkit functionality, and execute each sample
while collecting HPC traces of its impact on specific benchmark application. They
apply machine learning feature selection techniques in order to determine the most
relevant HPCs for the rootkit detection. They identified 16 HPCs that are useful for
the detection, and also find that direct kernel object manipulation (DKOM) rootkits
do not significantly impact HPCs. However, [BVN16] demonstrates that ARM would

48

2.3. Rootkit detection through side-channel

allow exception hypervisor level 2 to trap all micro-architecture instructions, includ-
ing performance counters, allowing the victim OS to continue to use the performance
monitor infrastructure while the presence of the rootkit remained hidden. Further-
more, recent studies [ZGJ+18, DWA+19] claim and experimentally support that using
the micro-architecture information from HPCs cannot distinguish between benign and
malware.

WattsUpDoc [CRR+13] was one of the earliest efforts in malware detection through
hardware side-channel that demonstrated the measurement of power usage on medi-
cal embedded devices. On rootkit detection through side-channel, [KZLR12] described
a network time analysis approach for monitoring performance changes caused by
hardware virtualization, with the goal of detecting the hardware virtualization rootkit.
It leverages the benchmark software to run on both systems with and without vir-
tualization and if it can be shown that the computer system time is different from the
virtualized instance and the non-virtualized instance, then it can be said there is poten-
tial for detecting hardware virtualized malware. [LMG+18, BJN+18, MCHR22] iden-
tify rootkits by using power-based malware detection on general-purpose computers
and [LMG+18, DLL+20, WZH+18] examine machine learning to perform a behavioral
detection method based on CPU power consumption. In particular, [LMG+18] inves-
tigates a number of machine learning techniques such as Nearest Neighbor, Decision
Trees, Neural Networks, and Support Vector Machines, as well as presents a behav-
ioral detection approach based on CPU power consumption that requires access to the
physical computer and power clamp. The approach was tested on Windows 7, Win-
dows 10, Ubuntu Desktop, and Ubuntu Server, for 4 distinct rootkits. Relevant data
features are extracted to find the overall top performing algorithms.

Gibraltar[BGI11] and Copilot [PJFMA04] leverage direct memory access (DMA)
via physical PCI to separately detect rootkit in kernel memory from another machine.
However, system overhead, asynchronous kernel read/write, race conditions, and tim-
ing attacks are major challenges to this solution.

49

C
hapter

2
–

State
ofthe

A
rt

Table 2.4 – Comparison with related works on rootkit (RK) detection using different side-channel analysis techniques:
HPC, DMA, Power consumption (Power) and EM.

Article WnP Classi-
fication Baits ML DL Sample

size
Open
source Benign User

RK
Window

size Device under test

Numchecker
[WK13] - - X - - 8 - - - 262.3 ms 32-bit Ubuntu PC

[SEE+17] - - - X - 5 - - - 45s VMWare Windows 7 IntelH
PC

[JLC20] - - X X - 4 - - - 2.91s ARM Cortex-A53

Copilot
[PJFMA04] - - - - - 12 - - - 30s PCI-compatible Intel PC

Linux

D
M

A

Gibraltar
[BGI11] - - - - - 23 - X - 20s PCI-compatible Intel PC

Linux

[LMG+18] - - - X X 5 - - X >5m PC Windows 10 & Ubuntu 14

Po
w

er

[BJN+18] - - - X - 5 - - - >1m Dell OptiPlex 755 Windows 7

EM Chapter 4 X X X X X 9 X X X 1.3s ARM Raspberry Pi & MIPS
Ci20

50

2.4. Research problems statement

2.4 Research problems statement

Previously in this chapter, we discussed relevant detection solutions for malware,
from classic to side-channel approaches, as well as their shortcomings. While some
above-mentioned related works are successfully detecting malicious activity, there is
a lack of research in the field on in-the-wild malware detection instead of proof-of-
concept samples that may reflect only particular parts of realistic malware samples.
Even more, none of the related works investigated the scenario of benign datasets and
variants such as packed or obfuscated malware to test the robustness of their systems.
Moreover, most of these works are using anomaly detection with low sample size,
which has the advantage of detecting unknown threats, but is generally prone to raise
numerous false positives. Indeed, anytime a new feature is introduced to the system, it
is detected as malicious. Some only exploit an isolated malware execution environment
(e.g. disabled outside connections), or an undefined malware execution environment,
making it prone to evasion techniques and unclear if the malware actually executes
malicious behaviors. Finally, none of them, to the best of our knowledge, are able to
perform wide-ranging classification models in real-world malware analysis, i.e., deter-
mine precisely the type, obfuscation, or variant of the malware infecting the system,
due to their restricted malware dataset or analysis methods.

Most of the work on rootkit detection utilizes benchmark software to collect data
from the system in both states: with and without rootkits. However, the purpose of
benchmark software is to assess the relative performance of the system, normally by
running a number of stress tests that are not particularly aimed against rootkits. The
benchmarking tool consumes unwanted system overhead, and benchmarking data
against rootkit will be less accurate and realistic. In our work, we present the method-
ology of using baits that are carefully crafted to trigger specific system behaviors. We
show that this approach produces better accuracy in detecting and classifying rootkits.
Previously, side-channel techniques for either malware detection or malware classifi-
cation were developed, but none of them discussed solutions for both scenarios.

An autonomous malware detection and classification methods on embedded de-
vices is apparently a necessity for malware analysts, forensic investigation and incident
response. The primary intention of this thesis is to design methods that allow analysts
to automatically investigate malware on embedded devices. In particular, it is a hybrid
solution based on side-channel analysis and dynamic malware analysis to investigate

51

Chapter 2 – State of the Art

useful information detect and suspicious behaviors from IoT binaries. This has led
to these research questions for detection and classification of malware in general and
rootkit specifically.

RQ1 How can we build and setup an IoT malware analysis and detection on embedded device?

Since automated malware analysis techniques are matured on other platforms,
but they have shortcomings that cannot be applied straightforward for IoT sys-
tems. Answering this question provides novel and enhanced methods of mal-
ware analysis on IoT system comparing to techniques proposed in literature.

RQ2 If a malware analyst has a dataset of unlabeled binaries. Would it be possible to clas-
sify the dataset into labeled types, families, variants of malware or rootkits, obfuscation
techniques used etc.?

Answering this question will be apparently useful for malware analyst in prac-
tice. It allows analysts to automatically investigate malware on embedded de-
vices.

RQ3 Is it feasible to utilize EM for stealthy rootkit detection on embedded devices?

Answering this question in order to solve the problem of stealthy rootkits that do
not expose any malicious activities, thus often hinder from side-channel analysis.

52

3
Obfuscation Revealed: Leveraging EM Signals for

Obfuscated Malware Classification

The content of this chapter, which is based on a joint work with Damien
Marion, Matthieu Matsio, and Annelie Heuser, was published in the Annual
Computer Security Applications Conference (ACSAC) 2021 [PMMH21] and
Euro S&P 2021 [PMH21]. Presentations 1 2 3 have been made at both academic
and industrial conferences, illustrating an overview of the paper.

Contents

3.1 Introduction . 54
3.1.1 Motivation . 54

3.1.2 Our contributions . 56

3.1.3 Roadmap . 58

3.2 Real-world IoT malware collection 58
3.2.1 Malware dataset . 58

3.2.2 Benign dataset . 60

3.3 Real-world malware analysis framework AHMA 62
3.3.1 IoT malware classification threat model 63

3.3.2 Data acquisition by dynamic malware execution 64

3.3.3 Data analysis and preprocessing 66

3.3.4 Malware classification model architectures 68

3.4 Experiments . 70
3.4.1 Data aquisition components 70

3.4.2 Classification framework 74

3.5 Results and discussion . 76
3.5.1 Experimental results . 76

3.5.2 Discussion . 84

3.6 Conclusion and perspectives . 86

1. ACSAC 2021
2. SemSecuElec 2021 https://videos-rennes.inria.fr/video/VJq91KPL6
3. Hardwear.io Security Trainings and Conference USA 2022 https://youtu.be/

oCohqwfUpsQ

53

https://videos-rennes.inria.fr/video/VJq91KPL6
https://youtu.be/oCohqwfUpsQ
https://youtu.be/oCohqwfUpsQ

Chapter 3 – Obfuscation Revealed: Leveraging EM Signals for Obfuscated Malware Classification

3.1 Introduction

In this chapter, we will present a novel approach of using side channel information
to identify the kinds of malware threats that are targeting embedded devices. Using
this approach, a malware analyst is able to obtain precise knowledge about the IoT
malware type and identity, even in the presence of obfuscation techniques that may
prevent static or symbolic binary analysis. We recorded 100,000 measurement traces
from an IoT device infected by various in-the-wild malware samples and realistic be-
nign activity. We preprocessed these traces and used them to train machine learning
and neural network models. Our method does not require any modification to the tar-
get device. Thus, it can be deployed independently of the resources available without
any overhead. Moreover, our approach has the advantage that it can hardly be detected
and evaded by the malware authors. In our experiments, we were able to predict three
generic malware types (and one benign class) with an accuracy of 99.82%. Even more,
our results show that we are able to classify altered malware samples with unseen
obfuscation techniques during the training phase, and to determine what kind of ob-
fuscations were applied to the binary, which makes our approach particularly useful
for malware analysts.

3.1.1 Motivation

In the new area of Internet of things (IoT), embedded cyber physical systems (CPS)
are blooming. IoT and its applications is influencing the majority of our life’s infras-
tructure, ranging from health/ food production to smart cities and urban management.
Our IoT world is growing at a breathtaking pace, from 2 billions objects in 2006 to a
projected 200 billion by the end of 2020, which is approximately 26 smart objects for
every human being on Earth 4.

Naturally, they are increasingly targeted by cyber criminals due to their occur-
rences, availability, and the ability to use infected devices for further attacks on vic-
tim’s architecture. IoT devices are given higher processing power, and some of them
are running fully functional OS with multicore processors. This increases the attack
surface by making them vulnerable to similar threats as general purpose computers,
in particular, malware exploitation.

4. https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-
iot.html

54

https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html

3.1. Introduction

As the number of sophisticated malware samples constantly increases, malware
analysts rely on mostly automated analysis systems for detection, classification, and
forensic. While malware analysis and mitigation studies are on the rise, various chal-
lenges and unsolved problems are still remaining, some concerning the security of all
computing systems, and some specific to embedded devices.

Analysis systems relying on static and dynamic features still have various short-
comings for malware analysts (previously discussed in 2.2). For example, static fea-
tures can be easily manipulated by packing or obfuscating techniques [OSM11], whereas
dynamic software-based monitoring may be detectable (e.g. by sandbox fingerprint-
ing [YIT+16]) to terminate the malware execution, and thus hinder the capability of
behavioral analysis [Sut13]. Moreover, unlike computer systems and servers, embed-
ded cyber physical system may not have enough resources (such as computing power
or battery) or accessibility (e.g. restricted access) to implement basic malware analysis
solutions. All these factors make it difficult for malware analysts to automatically gain
proper information about collected IoT malware samples (i.e. nature, evolution, etc.)
to be able to mitigate the security risks.

In the scenario of anomaly and malware detection, a recently new direction is us-
ing hardware features to detect malicious behavior. Indeed, for each computation an
electronic device is processing, it generates a set of residual productions that are poten-
tially leaking side channel information (as discussed in Chapter 1, Figure 1.3), giving
away a substantial amount of knowledge about the internal state of the device itself.

In the following sections, we concentrate on the EM field of an embedded device
as a source for malware analysis, which offers several advantages. In fact, the EM
emanation that is measured from the device is practically undetectable by the malware.
Recent work [HHM+14] in cryptographic side channel analysis has demonstrated that
it is able to detect the presence of electromagnetic monitoring using feedback from
LC oscillators on the hardware level of the device. However, applied to our scenario,
this requirement is impossible to be reached by malware on a software-level. As a
result, common malware evasion techniques cannot be implemented directly. Another
advantage is that monitoring EM emanation does not require the alternation of the
device in order to analyze it. In other words, it does not rely on device architecture
and OS or without any computational overhead.

Previous works using EM emanation and power consumption investigated the de-
tection of malware [KSN+19b, ADCC18, RGF+19], abnormal behavior [WZH+18], or

55

Chapter 3 – Obfuscation Revealed: Leveraging EM Signals for Obfuscated Malware Classification

distinct control flow tracking [ZPKA18]). These works are in very constrained and
static systems (in the case of anomaly detection) and mostly analyzed only laboratory-
grown malware samples without any variations. This naturally raises the question of
realistic evaluation:

If a malware analyst has a dataset of unlabeled binaries. Would it be possible to classify the
dataset into labeled types, families, variants of malware or rootkits and obfuscation techniques
used?

While malware detection concerns with the process of detecting the presence of
malware whether a specific program is malicious or benign [KKV11], malware classi-
fication refers to the process of distinguishing the unique types of malware from each
other based on the identified malicious patterns. In this work, we derive a framework
that is capable to classify real-world malware samples including protection mechanisms
against static and dynamic malware analysis using only EM emanation from the de-
vice. Furthermore, we aim at classifying into malware types, family, possible protec-
tion mechanism, previously unseen variants, or even distinct executable classification,
which makes our framework particularly suited for malware analysts.

3.1.2 Our contributions

In summary, this chapter makes the primary contributions:

1. Obfuscated ARM malware dataset. We put in place a representative set of ma-
licious ARM binaries, on which we applied various obfuscation techniques. By
integrating obfuscation techniques against software-based malware analysis sys-
tems, we are able to investigate if these techniques also hinder analysis based on
EM emanation, and if we can distinguish the applied obfuscation procedures in-
dependent of the executed binary. To the best of our knowledge, this has never
been studied before, provides the largest distinct malware sample dataset, and is
crucial for practical malware analysis.

2. Our real-world malware testbed allows executing malicious binaries while hav-
ing internet access, spoofing C&C servers (in case they have been taken down),
and protecting the host environment from infections of the malware. To not bias
our experiments and not allow user-fingerprinting by the malware to evade de-
tection, our framework includes a randomized user environment. We set up an
experimental framework to measure the electromagnetic activity of an embedded

56

3.1. Introduction

bare metal multiprocessor hardware environment running a fully-functioning
Linux OS in a random initial state. This includes a data acquisition and mal-
ware testbed platform. Using this platform, we are able to record a vast number
of electromagnetic traces from a device that was either infected by a real-world
malware sample belonging to different types, or in a clean state performing ran-
dom activities (i.e. not only in an idle state).

3. Generic side-channel analysis environment. Our approach does not make any
alteration to the target device. In particular, we do not utilize software monitor-
ing, precise triggering, or produce any additional overhead on the device. In our
experiments, a multiprocessor hardware environment was used to run a fully-
functioning Linux OS to be applicable to realistic IoT systems in the wild, use a
random initialized analysis environment, and perform practical benign activities.

4. Robust and resistant analysis techniques. We derived a methodology on how to
effectively extract suitable information about the binary, taking as input the raw
EM traces. Our approach consists of preprocessing by selecting the most relevant
frequency bands over time and then classifying in various scenarios with neural
network models and simplistic machine learning models. Results show that our
methodology is resistant to obfuscation techniques such as virtualization, pack-
ing, and static code rewriting.

5. Experimental scenarios compliant to malware analysts. We compile various sce-
narios, each of them represents a real world malware analysis use case: type and
family malware classification, exact malware executable profiling, virtualization
and packer identification, obfuscation classification, and the classification of un-
seen obfuscated variants. These scenarios go way beyond the detection scenarios
considered in the state-of-the-art. Also, using our analysis on obfuscation, we are
the first to discuss the difficulties of malware evasion against our methodology.

6. Open-source. The resources related to this work are publicly available 5. We
provide our source code, datasets, malware classification models, and raw results
of our experiments.

5. https://github.com/ahma-hub/analysis/wiki

57

https://github.com/ahma-hub/analysis/wiki

Chapter 3 – Obfuscation Revealed: Leveraging EM Signals for Obfuscated Malware Classification

3.1.3 Roadmap

The following sections are organized as follows. The generation of malware dataset
and its obfuscated variants will be described in Section 3.2. We detail our framework
in Section 3.3, which includes our approach towards dynamic malware execution, data
acquisition and preprocessing, and malware classification based on neural networks,
Naive Bayes, and SVM. In Section 3.4 we detail our experimental setup. Results and
discussion on malware classification scenarios are given in Section 3.5, and Section 3.6
concludes.

3.2 Real-world IoT malware collection

One of the most important blocks in building malware analysis systems, is the con-
struction of input datasets. In this section, we aim at being realistic and to include com-
mon obfuscation techniques that are used by today’s malware designers, frequently
used to avoid detection by hiding known signatures, behaviors, or by making it more
difficult to reverse engineer. While general purpose computers usually run on com-
mon architectures such as x86, embedded IoT devices are developed for a broad range
of architectures, such as ARM, MIPS, PowerPC, etc. Major problems related to the
diversity of the possible target IoT environments are described in [CGFB18].

This work, for the sake of simplicity, only supports ELF ARM 32-bit architecture
which can be executed properly on Linux OS.A well-known technique IoT malware
authors use to get over the target diversity is to cross-compile malware source code
in multiple architectures. Then, they deploy all malware binaries on the target device
at once. Thus only one binary will be executed properly with the correct supported
architecture. In the following, we discuss the creation of our malicious and benign
dataset.

3.2.1 Malware dataset

To understand the scope of ARM malware on IoT devices, we conduct a study on
4,790 32-bit ELF ARM malware samples collected from Virusign. 6. Thereafter, we ex-
tract AV labels for each sample from VirusTotal 7 reports to obtain malware variant

6. https://virusign.com
7. https://virustotal.com

58

https://virusign.com
https://virustotal.com

3.2. Real-world IoT malware collection

name. To get normalized labels that can be used for classification, we use AVClass.
It selects the top ranked corresponding family name through plurality vote. On col-
lected dataset, AVClass was able to associate the collected malicious ARM samples to
19 different families. Mirai (43.5%) and Bashlite (35.8%) dominate the dataset. These
2 DDoS malware variants have been publicly open sourced, and resulted in large use,
various modifications and variations of increasing complexity. This result is consistent
with previous epidemiologic studies of IoT malware [CGFB18, MBM+18] and online
real-time statistics such as Malware-bazaar 8.

To construct a representative malware dataset, we use 3 different well-known mal-
ware variants: DDoS (mirai, bashlite), Ransomware (gonnacry), and kernel rootkits (spy,
maK_It). In our study, we reviewed their codebase to understand their modus operandi
described as follows:

Bashlite creates TCP communication to the C&C server, then exchanges IRC com-
mands and messages. Control commands and common behaviours of bashlite consist
of scanner, password bruteforce, TCP and UDP Flooding.

Mirai adopted concepts from previously discussed bashlite, with improved features
such as anti-debugging, self-hidden, data obfuscation and botkiller which terminates
bots from other families.

Gonnacry is an active ransomware variant that is open sourced in Python and C for
research purpose. It finds all files in user’s home directory, then encrypt those belong to
a hard-coded list of extensions. The malware starts its encryption routine and creates
a desktop file that will be useful for the decryptor to access the path, key and IV. In
addition, we generate multiple malware variants from original gonnacry by extending
with other crypto schemes such as AES and DES, in addition to the original Blowfish
encryption algorithm.

Keysniffer is a Linux kernel module which has functionalities to hook and record
keys pressed in the keyboard events of debugfs.

MaK_It shares the same rootkit ability to spy, with addition of kernel module self-
hidden, packet sniffer and reverse-shell backdoor.

On obfuscation of the malware dataset, we applied each binary with every obfus-
cation transformations to enrich our datasets with static code rewriting that consists
of Opaque predicates, Bogus control flow, Instructions substitution and Control-flow flat-
tening, and dynamic code rewriting such as Packer and code Virtualization. To evalu-

8. https://bazaar.abuse.ch/

59

https://bazaar.abuse.ch/

Chapter 3 – Obfuscation Revealed: Leveraging EM Signals for Obfuscated Malware Classification

ate the robustness of our methodology and to explore possible protection techniques
against side-channel monitoring, we apply state-of-the-art packers and obfuscators
like UPX [OMR], Tigress [CMM+] which implemented stack-based interpreter VM,
and Obfuscator-LLVM [JRWM15].

It is worth mentioning that while there are numerous packers existing for PE for-
mats, only a limited number of ELF packers have been published. There are fewer
packers for ARM than ELF Intel architecture, and most of them are unmaintained
proof-of-concept projects. The only exception is UPX, a popular open source packer
to compress the size of executables (e.g. Stuxnet malware also uses DLLs packed with
UPX [Blu12]).

3.2.2 Benign dataset

The selection of a benign dataset is significant to not only increase the difficulty of
detection but also ensure the quality of classification. The benign samples must gener-
ate random activities such as computations, background processes with malware-free,
or usual activities on embedded IoT devices. We generate benign datasets by collect-
ing ARM executables from a fresh installation of Linux system. This similar approach
of constructing benign dataset has been conducted from other generic malware stud-
ies [LAS15, BLS13] outside from EM analysis. Furthermore, we complement benign
executables under a layer of UPX packer to blend benign samples with packer. Ad-
ditionally, the usual benign activities for an embedded IoT device were recorded such
as Linux utilities, device sleep, photo capture, network connections, as well as long
duration of executable runtime such as media player, camera capture, video encoder,
data backup, data (de)compression (Table 4.1). This collection varies from short to long
duration of executable runtime, and from low to high CPU consuming processes.

Notably in previous studies using EM emanation, the construction of benign dataset
is not considered, or benign activity is only associated with either free-malware activi-
ties or benchmark software [NSA+17, SEE+17, KSN+19a, SNA+20, CKM21]. It simpli-
fies detection drastically and is not realistic where malware, update services as well as
other IoT activities may already have distinct behaviors.

60

3.3. Real-world malware analysis framework AHMA

Data acquisition

Dataset variations
Dataset

generation
Synthetic user
environment

Dynamic malware execution Data storageEM

Data preprocessing

SpectrogramFeatures selection Time domain

STFT

Malware classification

MLP CNN

SVM NB

1

2

3

Figure 3.1 – Illustration of the proposed IoT malware classification framework Au-
tomated Hardware Malware Analysis (AHMA). 1 Data acquisition: from malicious
binary execution to (noisy) EM measurements 2 Data preprocessing: from (noisy) EM
measurements to exploitable data. 3 Malware classification: from exploitable data to
malware labels.

61

Chapter 3 – Obfuscation Revealed: Leveraging EM Signals for Obfuscated Malware Classification

Table 3.1 – Linux binaries and activities used in the benign dataset

Activities Executables

mknod vdir more find

zgrep ls cat findmnt

zmore as ed rm

touch dmesg sleep cd

Linux Utilities

less grep objdump

Network wget hostname ss ip

gunzip bunzip2 bzip2 tar
Compression

uncompress

Data backup dd

Scripting python

Photo & Video raspistill raspivid

Video Encoding MP4Box

Audio player mpg321

3.3 Real-world malware analysis framework AHMA

Our analysis consists of three main phases:

1. Malware execution and measuring EM emanation: Within our secured and random-
ized setup, we execute the malware samples while measuring EM emanation
from the outside of the device without manipulating any internal operation.

2. Data analysis and preprocessing: The raw captured measurement traces include
a large amount of noise. Thus, we transform our data by the time-frequency
domain, and select most suitable frequency bands.

3. Malware classification: Given the 2D data, we derive deep neural models and com-
pare them to more simplistic machine learning algorithms.

Our malware selection encompasses three types, which are representing common
malware targeted on IoT devices in the wild: DDoS, ransomware, and kernel rootk-
its. To be compliant with real-world scenarios and to investigate the robustness of

62

3.3. Real-world malware analysis framework AHMA

our approach, we extend our dataset by applying various software analysis protection
mechanisms to the malware binaries. Including obfuscation techniques gives us new
outcomes that have never been studied in the state-of-the-art. First, we determine if
code obfuscation techniques (e.g. code rewriting, virtualization, etc.) can actually hin-
der our approach. Second, we derive the robustness of our approach against unseen
malware samples, by conducting a scenario where our system tries to predict samples
with unknown obfuscation. This evaluation is of great importance due to the rapid
evolution of malware variations and obfuscation created by attackers. Finally, we in-
vestigate if we are able to predict if an obfuscation has been applied, and to which
technique it belongs.

We propose an IoT malware classification framework (AHMA), that takes as an in-
put an executable and outputs its predicted label by solely relying on EM side-channel
information. Figure 3.1 illustrates our workflow, which will be detailed within the next
few subsections. First, we define our threat model, and then we describe the collection
of EM emanation while the malware is executed on the target device. We setup an
infrastructure to be able to execute malware with a realistic user environment while
preventing any infection of our host controller system. Thereafter, as the collected data
is very noisy, a preprocessing step is required to isolate relevant informative signals.
Finally, using this output, we train neural network models and machine learning algo-
rithms in order to classify malware types, binaries, obfuscation methods, and detect if
an executable is packed or not.

3.3.1 IoT malware classification threat model

In general, malware analysts collect datasets of malware from online feeds of in-
trusion detection systems and community database as illustrated in generic malware
analysis workflow (Figure 3.2). The very first and important step is Malware analysis
where feeds are filtered, analyzed and classified.

In this threat model, malware analysts possessed real-world malware sets and phys-
ical target devices. Real-world malware feeds presumably contain unknown variants
which exploit evasion techniques and attack a wide range of Linux devices (e.g. Mi-
rai variants actively infect Linux IoT devices and obfuscate its encoded strings). By
leveraging the combination of bare-metal analysis and EM (Fig. 3.1), it avoids the ne-
cessity of software analysis tools update such as sandbox, hooking and anti evasion

63

Chapter 3 – Obfuscation Revealed: Leveraging EM Signals for Obfuscated Malware Classification

Malware analysis
Classification and evaluation

Previous work
Static analysis
Analysis environment setup
Unpackers, sandboxing,
Bare-metal & software monitoring

Requires
update
periodically

This paper
Bare-metal analysis
Electromagnetism

Delivery

Enrich, verify indicators
Active counter-measure
Visualisation, reports

Malware gathering

 Open source
 e.g. Virusign, Github

Closed/Private source
e.g. VirusTotal, honeypots
Customers
PoC lab samples

Figure 3.2 – Generic malware analysis workflow

techniques. Moreover, malware analysts are fully able to control and customize their
analysis environment in the most advantageous way by simulating network traffic
and setting up user synthetic environment. Therefore, simulating side-channel noise,
distant EM monitoring, random user activities, multiple malware attack on the same
device simultaneously are not their consideration. The proposed analysis framework
supports a generic OS, so that it is applicable to any kind of malware with UNIX, from
simple BusyBox utilities and Bash commands to ELF malware and high-level scripting
(e.g. Python). Unlike FPGA-based systems malware detection approach that executes
the samples on restricted bare-metal environment. The framework should not use any
system modifications like the traditional malware analysis framework such as hooking
on the target device to avoid being evaded by the malware.

3.3.2 Data acquisition by dynamic malware execution

Typically, malware analysts rely on static/signature-based analysis or dynamic sand-
boxes in order to gain information about malicious binaries. We propose a solution
which we believe is immune to obfuscation and evasion techniques, by black-box
monitoring side channel information to detect and classify malware samples at the
hardware-level of a bare-metal IoT device running a fully-functioning operating sys-
tem. Since network traffic analysis was considered as side-channel leak and already
studied in previous work [MBM+18], this chapter will focus on the aspect of EM ema-
nation specifically. The first part of our framework relates to the data acquisition that
can be divided into dynamic malware execution and electromagnetic monitoring.

64

3.3. Real-world malware analysis framework AHMA

Realistic malware execution environment

Traditional dynamic malware analysis solutions were built upon virtualization ma-
chines or emulation, which leave numerous system artifacts for evasive malware to ex-
ploit [RKK07]. In particular, sophisticated malware authors exploit fingerprints inside
analysis system (e.g. number of cores, network MAC address, etc.) to avoid malware
analysis or detection. Besides, in-guest monitoring components to observe malware
behaviors (e.g. syscall/API hooking, registry monitoring, etc.) also leave artifacts for
malware evasion. One way to prevent these artifacts is to patch the exploitable com-
ponents of the virtual system such that they are indistinguishable from a real machine.
However, this approach only guarantees known evasion techniques. Another way is to
implement a transparent analysis system that performs hardware virtualization exten-
sions, to keep the CPU execution semantics of the host. It is fundamentally infeasible
to make it perfectly transparent, since this system can be detected by timing attacks
and CPU identification (previously discussed in 2.1.2).

Furthermore, one can analyze malware on a fresh operating system installed on a
real machine which is referred to as bare-metal dynamic malware analysis. A pure
bare-metal system is limited to the disk access and network activities in general. How-
ever, such an analysis system, is not suited to perform an in-depth behavioral analysis
of stealthy malware such as passive rootkits and fileless malware.

To overcome these difficulties, we propose an infrastructure leveraging side-channel
information from a bare-metal sandbox rather than emulators or virtual machines. In
this malware execution environment, we propose a particular use case for embedded
devices where all outgoing network activities will be routed to testbed servers that re-
sides in a local network. Additionally, an unrealistic configuration will not be able to
trigger malware activities, so we propose spoofed C&C servers which receive network
connections and randomly return control commands, as well as a synthetic user envi-
ronment dedicated to embedded malware, which will be detailed in Section 3.4.1. Due
to a common problem in dynamic malware analysis, the C&C servers of the botnet in
the wild are taken down after a short period of time. Moreover, in order to prevent
analysis information leakage or infection to the analyst’s host machine, a local switch
router and firewall under a controlled network are implemented. We have confidence
that bare-metal malware analysis does not expose any instrumentation indicators, and
side-channel information will give us a snapshot of malware behavioral analysis.

65

Chapter 3 – Obfuscation Revealed: Leveraging EM Signals for Obfuscated Malware Classification

Electromagnetic monitoring

In the data acquisition procedure (step 1 in Fig. 3.1), the controller machine sends
binary samples to the target device (in our case we transfer samples to the Raspberry
Pi via SSH connection). The controller server is responsible for distributing samples
to one or more embedded devices as well as collect recorded EM traces. We use a
malware initiator to send trigger signals from the target device to oscilloscope through
GPIO pin-outs and let the oscilloscope start its recording session. Note that the in-
tended users are malware analysts who are unrestricted to set up malware initiators
or choosing the appropriate device. The malware initiator is only executed at the begin-
ning of the analysis to trigger the oscilloscope once while malware and benign samples
as well as the OS are kept untouched. This monitor scheme also means that our ap-
proach does not require data synchronization which is common in side channel anal-
ysis. Thereafter, the malware initiator spawns the according sample immediately and
the controller machine collects recorded EM traces from oscilloscope in block mode
through USB protocol. Recorded data traces will then be preprocessed and analyzed
with malware classification models (step 2 and step 3 in Fig. 3.1 respectively).

3.3.3 Data analysis and preprocessing

In this subsection, we will describe the procedure we used to collect and process
electromagnetic traces from a target device executing malware. First, we obtain the
raw signal directly from the oscilloscope. Then, we calculated the Short Time Fourier
Transform (STFT), which represents the evolution of the frequency content of the signal
over time.

The second step in our complete framework preprocesses the collected (noisy) EM
measurements (see Figure 3.1). This step is mandatory as the CPU of an electronic
device executes programmed instructions every clock cycle, which will provoke vari-
ations in its internal circuitry. Moreover, modern target devices have multicore archi-
tectures, so the recorded EM activity is a mixture of various processes, and it is im-
practical to identify the process responsible for each observed variation from the elec-
tromagnetic trace itself. The strong signals existing in the system, like the processor or
memory clock, will act as a carrier, that will be amplitude or frequency modulated by
the executed instructions [PZCW16]. This modulation will cause EM emanation, that
leaks from any element of the device.

66

3.3. Real-world malware analysis framework AHMA

It has been shown [SNZP16] that it is possible to monitor the EM spectrum to profile
a program execution on the system. Indeed, each loop present in the program will
generate repetitive activity that will produce "spikes" at frequencies that correspond
to the time the CPU of our monitored system will need to execute one iteration. Each
executed program has a specific loop pattern, that is revealed by peaks in frequency.

This is why we preprocess the raw EM data to represent the fluctuations of the
frequency content during the measurement time of the traces. For this purpose, we
computed the spectrogram of the signal by taking the magnitude squared of the STFT:

spectro{x(n)}(m,ω) = |
N∑
n=0

x(n)w(n−m)e−jωn|2. (Eq. 3.3.1)

A STFT breaks the signal into small segments of equal length, and performs a
Fourier transform on each of the segments. Here, x(n) represents the input signal at
time n, ω the frequency, m the segment index, N the number of recording points, and
w the window function. In our case, the window function splits the signal in chunks
of length M , with an overlap O using default SciPy configuration O = M/8. The evo-
lution of a signal frequency over time can easily be represented as an image.

Even though the spectrogram improves our data representation in terms of noise
reduction, it also greatly increases the amount of data. Using the full spectrogram
will drastically increase the amount of time and space resources needed for classifica-
tion, if even possible. We therefore apply feature extraction to the spectrogram using
NICV (Section 1.3.4). In particular, we apply the NICV to the spectrograms in order
to identify the frequency bandwidths that may reveal behavioral information about
the binary. In fact, applying the NICV to the spectrogram gives the variance of each
spectrogram’s feature between labels.

Let us denote X as a spectrogram of dimension D × F with D being the number
of time features and F being the number of frequency bandwidths. Let Y be the label,
e.g. the type of the malware. The computation of NICV(X, Y) results in a matrix of
dimension D×F (see Eq.1.3.3). Next, from the NICV matrix, we select the ε frequency
bands corresponding to the highest mean over D:

Fextract = {argmaxε(
1
D

∑D−1
d=0 [(NICV(X, Y))Fd]} (Eq. 3.3.2)

with argmaxε being a function that returns the ε indexes with the highest values and

67

Chapter 3 – Obfuscation Revealed: Leveraging EM Signals for Obfuscated Malware Classification

(·)Fd represents the dth column of the matrix over all frequencies. Accordingly, Fextract

contains the list of the ε indexes of the conserved frequencies. Note that, we extract the
complete frequency band of the spectrogram rather than its multiple chunks, which
is mainly motivated by possible time delays or desynchronization of unseen data in
feature extraction process due to the absence of an exact triggering process.

3.3.4 Malware classification model architectures

Table 3.2 – Proposed MLP architecture for ARM malware classification

Layer Size Filter Activation

Flatten spectrogram_size _ leaky RELU

Dense 500 _ leaky RELU

Dense 200 _ leaky RELU

Dense 100 _ leaky RELU

Dense N _ softmax

Given the most informative spectrogram bands, our main objectives are to analyze
to what extent a malware analyst is able to: (i) retrieve the type or family of the ma-
licious binary, (ii) identify precisely which binary was being executed, (iii) classify the
obfuscation technique, and (iv) classify the malware family even with a previously un-
known obfuscation technique. Based on that, we assume that the analyst has a dataset
of labeled malware binaries on which he can build supervised classification models.
These models are then used to classify new unknown binaries.

Deep learning recently achieved remarkable results in numerous fields, particularly
thanks to the improvements brought to the neural network paradigm (previously in-
troduced in subsections 1.4.2 and 1.4.3). Neural networks are particularly effective
for computer vision and pattern recognition, and that is the reason for investigating
their efficiency in classifying the spectrograms of monitored devices’ EM activity. We
defined two distinct neural networks architectures in Table 3.2 and 3.3, then compared
their efficiency on our classification tasks.

The first architecture is a simple MLP, which takes as input flattened spectrogram
bandwidths. We use three hidden layers with a decreasing number of neurons as we go

68

3.3. Real-world malware analysis framework AHMA

Table 3.3 – Proposed CNN architecture for ARM malware classification

Layer Size Filter Activation

Convolution 64 7× 7 leaky RELU

Max Pooling 64 2× 2 _

Convolution 128 3× 3 leaky RELU

Convolution 128 3× 3 leaky RELU

Max Pooling 128 2× 2 _

Convolution 256 3× 3 leaky RELU

Convolution 256 3× 3 leaky RELU

Max Pooling 256 2× 2 _

Dense 128 _ leaky RELU

Dense 64 _ leaky RELU

Dense N _ softmax

deeper into the network. We chose a Leaky RELU activation function for each hidden
layers as it revealed itself slightly more efficient than the RELU and sigmoid functions
in our experiments. Since we wanted to perform a multi-class classification, the output
layer ends with a softmax function. The loss used to calculate the error in prediction is
a categorical cross-entropy.

The proposed CNN architecture (Table 3.3) is more complex, but still rather simple
compared with the state-of-the-art networks used for image recognition. It is consti-
tuted of a stack of three atomic blocks where each block is made with one or two con-
volution layer(s), followed by a Max Pooling layer. The number of filters used in the
blocks is increasing (but their size is decreasing) as we go deeper in the network. To
produce the prediction, we end the network with a multilayer perceptron composed
of 2 hidden layers, and a softmax output layer. Once again, we use categorical cross-
entropy as a loss function.

We furthermore study the effectiveness of more simplistic and less resource de-
manding machine learning techniques such as Naive Bayes (NB) and Support Vector
Machines (SVM). As NB and SVM (or in general most machine learning algorithms)

69

Chapter 3 – Obfuscation Revealed: Leveraging EM Signals for Obfuscated Malware Classification

are prone to the curse of dimensionality [Bel57], meaning that they do not scale well
with the number of input features, we do not take as input the selected bandwidths as
for the neural network models, but perform feature transformation on the spectrogram
using LDA (previously discussed in 1.3.4). We apply these two machine learning algo-
rithms to our data in order to get preliminary results quicker than with deep learning
algorithms. The data used by the SVM, the NB and the deep learning algorithms is
the same. We only apply an additional pre-treatment, a Linear discriminant analysis
(LDA), on the data provided to the machine algorithm. LDA is a commonly used tool
together with machine learning algorithms that allows one to (drastically) reduce data
dimension. On the other hand, in most cases, LDA (or any feature transformation)
is not suitable for neural network models, as features are transformed into different
feature spaces and dependencies between features (in particular, shapes and patterns)
may be disconnected and harder to learn.

3.4 Experiments

3.4.1 Data aquisition components

Target device

Evaluation of target device is critical for EM side-channel analysis. We determine
three main requirements:

Definition 2: Main requirements for a target device

— It must be a multi-purpose embedded device to support as many collected
malware samples as possible, rather than a specific set of malware or device

— Its CPU must be a prominent architecture to avoid the lack of compatibility
of emerging IoT malware

— It must be vulnerable to EM side-channel attacks.

We select Raspberry Pi 2B as a target device with 900 MHz quad-core ARM Cortex
A7, 1 GB memory. Since its ARM architecture, size, power consumption, and cost-
effectiveness make it a good candidate for any kind of embedded and IoT scenarios,
including prototypes and developments. Our research focuses on a very general mal-
ware classification challenge rather than a narrowed solution to any specific device,

70

3.4. Experiments

Figure 3.3 – Overview of the proposed infrastructure: Experimental setup of malware
testbed and data acquisition.

in particular, as related works did not show diversity in results or analysis techniques
across multiple devices (e.g. [SNA+20]).

It has been shown in previous works [WZH+18, FI17] that cryptographic and anomaly
activities are successfully distinguished by leveraging EM signals from the Raspberry
Pi 2B. Later versions of Raspberry Pi have several changes to Wireless LAN as well as
metal shielding on the processor, that may affect the EM observation.

By not limiting the capabilities of the infrastructure with restricted bare-metal firmware,
the Raspberry Pi is deployed with a fully-functioning Raspbian Buster OS of Linux
4.19.57-v7+ armv7l. A device under test with a fully functioning OS and multiple cores
is to determine if it is possible to handle malware in more complex scenarios where
malware is mixed with background processes, services, and interrupts, resulting in
noisy EM traces.

To prevent the detection of any artificial artifacts by evasion techniques and main-
tain a realistic environment, all background services are kept to their default with more
than 100 concurrent processes and services. Additionally, no adjustments, overclock-

71

Chapter 3 – Obfuscation Revealed: Leveraging EM Signals for Obfuscated Malware Classification

ing, or tuning of the processor clock rate are applied to the device.

Malware testbed environment

To generate a practical analysis environment that can trigger real malware, we ap-
plied different tools and techniques. We created honeypot directories under the root
folder, home folder, etc. Each malware execution will have a random initialized envi-
ronment consisting of different valid files and extensions to assure that ransomware
will be properly executed while not biased towards the recorded traces. Further, the
Evemu library was adapted to emulate random keyboard input events which trigger
the keylogger functionality.

Besides, most IoT botnets architectures consist of one Command and Control (C&C)
which is continuously connected (except peer-to-peer botnet). To support our malware
dataset, consist of Mirai and Bashlite, we implement a synthetic environment of central
spoofed C&C server model. C&C servers are adopted to randomly deliver different
commands to the botnet client in multiple attack scenarios (Fig. 3.3). To trigger a
broad range of malicious activities, in each experiment the following commands are
delivered: network scanner, flood targeted victim network in TCP/UDP, hibernation,
or self-terminate etc. Furthermore, we installed multiple virtual machines in the same
local network for absorbing network attacks coming from malware. The nature of IoT
malware samples and the execution coverage on software level in the device under
testing are not altered, so that we presume no anti-analysis evasion techniques can
survive during the bare-metal malware analysis.

Electromagnetic signal acquisition

We monitor the Raspberry Pi under the execution of benign and malicious datasets
using a low-to-mid range measurement setup. It consists of an oscilloscope, Picoscope
6407, with 1GHz bandwidth connected to a H-Field Probe, Langer RF-R 0.3-3, where
the EM signal is amplified using a Langer PA-303 +30dB (Figure 4.4.2). To capture the
long-time execution of malware in the wild, the signals were sampled at only 2MHz
sampling rate.

The activity of the Raspberry Pi, when executing malware or generating benign
activity was recorded at a sample rate of 2MHz for 2.5 seconds. It has been chosen
empirically based on (but not limited to) the constraints of the data acquisition compo-

72

3.4. Experiments

1

2

Figure 3.4 – Probe setup consists of a H-Field probe 1 placed 45 degree above the
Raspberry Pi processor 2 .

nents: imprecise trigger, and malware characteristics (e.g. sleep time with no activity
of Mirai). The duration of 2.5 seconds is enough to obtain exploitable features for clas-
sification. We collected 3 000 traces each for 30 malware binaries and 10 000 traces for
benign activity. Thus, a total 100 000 traces were recorded, then we computed their
short-term Fourier transformation, as described in Section 3.3.3.

The feature selection process using NICV on one spectrogram is illustrated in Fig-
ure 3.5. The left side shows the NICV where the right side highlights the selected fre-
quencies that correspond to the 20 frequencies with the highest NICV mean over time
(D). The selection of complete bandwidth, and not discrete features of the spectro-
grams, makes the classification process more resistant to potential de-synchronisation
issues.

73

Chapter 3 – Obfuscation Revealed: Leveraging EM Signals for Obfuscated Malware Classification

1

2

3

Figure 3.5 – NICV (1) and in red the 20 selected frequencies (ε = 20) on the mean over
the time (2) and the mean over the frequencies (3)

3.4.2 Classification framework

Model input

In Section 3.3.3, we described how we generate the spectrograms from the EM activ-
ity recorded by the oscilloscope. We measure 500 000 points to get a 2.5s recording with
a sampling rate of 2MHz, which has about 8MB per trace. The Graphical Processing
Unit (GPU) RAM necessary to run a Keras model is equal to the size of the parameters
of its biggest layer multiplied by the batch size. To run the MLP described in Table
3.2 for example, we would need 500× input_size× batch_size. As explained above, it
was necessary to generate tens of thousands of spectrograms to train our neural net-
work models. We choose (M,O) = (8192, 4096) as parameters for the STFT. To reduce

74

3.4. Experiments

the dimension of the analyzed data and reduce the noise, we apply the feature ex-
traction process described in Subsection 1.3.4 to conserve only ε different bandwidths.
We tested ε ∈ {4 × i}0<i<8 to determine for each experiment the number of conserved
bandwidth εopt that reaches the best accuracy. If we used the whole spectrum with a
batch size of 32, that would require about 13GB of RAM. It is worth mentioning that it
could work in more powerful environment, but we were limited in our setting to 11GB
effective GPU RAM.

Eventually, our dataset is split into three parts:

1. A test dataset which will never be used during the training phase of the model,

2. A validation dataset to assess the efficiency of the model on unseen data, and

3. A training dataset.

We kept, by default, 20% of the dataset for testing and used the 80% remaining for
training and validation. These whole datasets were too big to be fitted into the memory
of the graphical process unit, so we had to create batch generators that accessed the
hard drive and fed small subsets of the data in real-time.

Training procedure

As performance assessment we used the accuracy of the classifier, which is defined
by the average percentage of correct label predictions (previously discussed in Chapter
1.4.4). The neural network models have been trained over 50 epochs, where we stored
the model according to the highest validation accuracy. In our setup using one RTX
2080 Ti GPU, CNN took around 50s per epoch, which gives 50× 50s = 2500s = 41 min
of training time, MLP performed 1 epoch within 9s, that gives 50× 9s = 2500s = 7min.
Testing one sample takes roughly 0.75s for MLP and 0.27s for CNN. We trained the
networks on the training dataset. We found out that the accuracy increased at the
beginning epochs and decreased afterwards, so we stopped the training after 50 epochs
and saved the only best model. After the training phase, we calculate the accuracy of
the model on the test dataset.

NB and SVM are much less resource demanding than neural network models, and
can be computed using standard CPU computation systems. On our system with an
Intel(R) Xeon(R) Silver 4214 @2.20GHz with 24 cores and 128GB RAM, NB took 0.14s
to train, and SVM 18.90s. The testing of one sample took for NB around 1µs, and for
SVM between 1ms and 6ms depending on the number of features considered.

75

Chapter 3 – Obfuscation Revealed: Leveraging EM Signals for Obfuscated Malware Classification

Results were obtained using the Keras backend of TensorFlow running on one RTX
2080 Ti GPU for MLP and CNN and Scikit-learn [PVG+11] library (version 0.23.2) for
NB, SVM and LDA.

3.5 Results and discussion

3.5.1 Experimental results

A synthesis of the results we obtained can be found in Table 3.4. The main column
indicates the name of the scenario. In the first column, we state the number of outputs
(i.e. classes) of the network. Finally, the other columns show the accuracy with the
optimal number of bandwidths, as well as the precision and recall of the two neural
network models, and the two machine learning algorithms on the test dataset. De-
tails about the dataset construction of each scenario can be found in Table A.1 in the
Appendix.

76

3.5.R
esults

and
discussion

MLP CNN LDA + NB LDA + SVM

Scenarios # AC [εopt] RC PR AC [εopt] RC PR AC [εopt] RC PR AC [εopt] RC PR

Type 4 99.75 [28] 99.83 99.85 99.82 [28] 99.89 99.88 98.01 [24] 98.84 98.35 98.08 [24] 98.71 98.76

Family 6 99.57 [28] 93.13 93.11 99.61 [28] 98.61 98.60 97.19 [28] 90.78 90.99 97.27 [28] 91.12 91.14

Virtualization 2 95.60 [20] 95.76 94.99 95.83 [24] 96.19 95.14 91.29 [6] 91.07 90.49 91.25 [6] 90.69 90.62

Packer 2 93.39 [28] 93.36 93.06 94.96 [20] 94.94 94.70 83.62 [16] 83.13 83.08 83.58 [16] 83.08 83.04

Obfuscation 7 73.79 [28] 72.77 72.79 82.70 [24] 82.08 82.08 64.29 [10] 63.08 63.01 64.47 [10] 63.22 63.00

Executable 35 73.56 [24] 74.66 76.75 82.28 [24] 83.08 83.11 70.92 [28] 72.29 71.94 71.84 [20] 72.47 72.32

Novelty (family) 5 88.41 [16] 92.35 91.01 98.85 [24] 98.59 98.59 98.25 [28] 98.69 98.53 98.61 [28] 98.90 98.82

Table 3.4 – Accuracy (AC), recall (RC) and the precision (PR) obtained with MLP, CNN, LDA + NB and LDA + SVM
applied to several scenarios. εopt gives the value ε, the number of extracted bandwidth (Eq. 3.3.2), obtaining the
highest accuracy. Bold numbers indicate the highest accuracy on the testing set per scenario. The column "#" gives
the number of classes per scenario.

77

Chapter 3 – Obfuscation Revealed: Leveraging EM Signals for Obfuscated Malware Classification

Type classification

Figure 3.6 – CNN type classification (Accuracy 99.82%). Including ddos: mirai, ob-
fuscated mirai, bashlite, obfuscated bashlite. Ransomware: gonnacry using Blowfish,
gonnacry using AES, gonnacry using DES. Packed and without packing. rootkit: maK_it
and spy. benign: random, video, music, picture, camera activities using random user
environments.

We used traces recorded during the activity of 30 malware samples, plus traces of
benign activities (random, video, music, picture, camera activities), both recorded in
a random user environment to avoid biases. As explained in Section 3.2, the malware
binaries are variations of five families: gonnacry, spy, maK_It, mirai and bashlite, includ-
ing seven different obfuscation techniques. In this scenario, we aim to retrieve the type
of malware (if any) infecting the device at the time of the recording. This gives us a
4-class classification problem: ransomware, rootkit, DDoS, and benign. All models are
very efficient for this problem (> 98% accuracy), and clearly obfuscation does not hin-
der type classification. We can observe that CNN (99.82%) is slightly more accurate
than MLP, NB, and SVM. The confusion matrix is illustrated in Figure 3.6, which il-
lustrates the predicted classes (predicted label) from the network per executed binary
(true label). The darker the color, the higher the proportion of correctly predicted la-

78

3.5. Results and discussion

bels. We can observe no confusion for the benign and rootkit class to any other class,
and a minor confusion between DDos vs ransomware.

Family classification

Figure 3.7 – CNN family classification (Accuracy 99.61%). Including bashlite: original &
obfuscated. mirai: original & obfuscated. Gonnacry: gonnacry using blowfish, gonnacry
using aes, gonnacry using des. Packed & without packing. maK_it: original rootkit. spy:
original spy rootkit. benign: random, video, music, picture, camera activities using
random user env.

In this scenario, we classify into the malware family plus benign class, which gives
six different classes: bashlite, mirai, gonnacry, spy, maK_it, and benign. CNN gives the
highest accuracy with 99.61%, but also MLP and ML provide results> 97%. The confu-
sion matrix is illustrated in Figure 3.7, which shows that all classes are mostly correctly
classified with a small confusion on both sides between spy and maK_it. Again, we see
that obfuscation does not hinder the classification.

79

Chapter 3 – Obfuscation Revealed: Leveraging EM Signals for Obfuscated Malware Classification

Novelty classification

Previous experiments showed that it was possible to correctly classify known mal-
ware into its corresponding types and families. While this is certainly a first step, in real
life malware analysis, it is very common to encounter unknown variations of a threat.
To emulate this scenario, we split the dataset of malicious binaries according to the ap-
plied variations. Some of the variations of each of the five malware families (gonnacry,
bashlite, mirai, spy, and maK_It) were not used in the training dataset and were reserved
only for testing (detailed in Table A.1 in Appendix). In addition, we did not include in
the test dataset any of the variations we used for training. We reserved the processed
spectrograms representing the activities of 18 binaries for training purposes, and the
spectrograms representing the activities of the remaining binaries for testing purposes.
Also, maK_It was only present in the training, and spy only in the test dataset. As we
can observe, even though the models are predicting unseen (obfuscated) variants, all
models perform with an accuracy of > 92%, with CNN at 99.38%. Accordingly, even
unseen variations in the training phase do not hinder our methodology.

Virtualization and packer identification

In next two scenarios, we test if the binary is protected with virtualization or pack-
ing, which results to two (two-class) detection problems. For each of them, we used
the traces of the original malware (mirai, bashlite and gonnacry) as well as the traces of
the corresponding protected variation. We see that virtualization is slightly easier to
detect than packing, with CNN performing with the highest accuracy of 95.83% and
94.96% respectively.

Obfuscation classification

In this scenario, we are interested in classifying dataset into the 7 obfuscation tech-
niques: Opaque predicates, bogus control flow, control-flow flattening using O-LLVM
or Tigress, instruction substitution, virtualization, or packing. Both of the network
models were able to learn to differentiate obfuscation techniques independently of the
five underlying malware families. CNN is more efficient achieving 82.70% (vs a ran-
dom guess of 14.29%). Again, MLP was slightly worse and ML techniques show a gap
of around 10%. The confusion matrix is illustrated in Figure 3.8, which shows that
for each obfuscation technique CNN predicted the correct label (the darkest color/the

80

3.5. Results and discussion

Figure 3.8 – CNN obfuscation classification (Accuracy 82.70%). Including addopaque:
opaque predicates, virtualize: virtualization, flatten: control flow flattening using Ti-
gress, cfflatten: control flow flattening using O-LLVM, sub: instruction substitution, bcf :
bogus control flow, upx: UPX packing.

highest number on the diagonal). Some confusion can be observed between addopaque,
virtualize, and flatten, which are executed using Tigress, and indeed they share similar
options 9.

This result shows that our methodology is not only able to distinguish between
malicious activities, but even focus solely on behavioral features independent of the
underlying binary execution.

Executable classification

This scenario is a straightforward executable identification, where the model is try-
ing to profile exactly the binary that generated the spectrogram. This translates into
a classification problem of 35 classes (including distinct benign activities), identifying
the family and variant with possible obfuscation of the malware. For the number of

9. http://tigress.cs.arizona.edu/transformPage/docs/flatten/index.html

81

http://tigress.cs.arizona.edu/transformPage/docs/flatten/index.html

Chapter 3 – Obfuscation Revealed: Leveraging EM Signals for Obfuscated Malware Classification

Figure 3.9 – Confusion matrix of a CNN classification into 35 binaries from left to right
(with and without obfuscation).
(1) bashlite_cfflatten, bashlite_upx, bashlite_bcf, bashlite, bashlite_addopaque, bashlite_sub,
bashlite_flatten, bashlite_virtualize;
(2) mirai_sub, mirai_bcf, mirai_cfflatten, mirai, mirai_upx, mirai_addopaque, mirai_flatten,
mirai_virtualize;
(3) gonnacry_des, gonnacry_des_upx, gonnacry, gonnacry_aes, gonnacry_aes_upx,
gonnacry_upx, gonnacry_flatten, gonnacry_virtualize, gonnacry_addopaque, gonnacry_bcf,
gonnacry_sub, gonnacry_cfflatten;
(4) spy, maK_It;
(5) benign: encode video, play audio, take picture, record camera, random.

classes and the closeness of the underlying executions, all models get very good re-
sults, where CNN is the most effective, with a rate of 82.28% compared to a random
guess of only 2.86%.

The confusion matrix of the CNN binary classification is given in Figure 3.9. As
we can see, if confusions between classes happen, they happen between binaries that
belong to the same family (squared in red in the figure). In addition, we observe that in
most cases, the "darkest" color appears on the diagonal, which means that the highest
score (output of the CNN) occurs for the true class label. So, in most cases, obfuscation

82

3.5. Results and discussion

does not hinder exact binary profiling, the prediction of the exact binary is effective,
and software obfuscation techniques do not hinder hardware analysis.

However, we still observe groups of binaries that are harder to distinguish and one
misclassification. More precisely, one can observe that bashlite_cfflatten, bashlite_upx,
bashlite_bcf, and bashlite have (nearly) no confusion with other binaries, which means
that the obfuscation does not mask the behavior of the binary and the obfuscation tech-
nique itself is visible and distinguishable; bashlite_addopaque is misclassified as bash-
lite_flatten which is inline with our previous explanation of the similarities of the under-
lying techniques, and there is a confusion between bashlite_flatten and bashlite_virtualize.

For mirai and its variants we see a much smaller effect of the obfuscation techniques
on the classification outcome than for bashlite and gonnacry. Meaning that the obfusca-
tion technique is clearly identifiable and does not mask the behavior of mirai itself.

For gonnacry we have several distinct groups:

— gonnacry-des-upx, gonnacry-des: only a very minor confusion can be visible be-
tween the packed and unpacked version using des. Interestingly, there is no con-
fusion using des with the version of aes and blowfish and their packed variants.

— gonnacry, gonnacry-aes: gonnacry and gonnacry-aes are slightly confused.

— gonnacry-des and gonnacry-des-upx are not confused with any other binary;

— gonnacry and gonnacry-aes have a slight confusion, which means that in some
cases the encryption with blowfish and aes are not clearly distinguishable;

— this effect is even more present when the binaries are packed, i.e. for gonnacry-upx
and gonnacry-aes-upx;

— again, similar to bashlite, we see a slight confusion between gonnacry_flatten and
gonnacry_virtualize.

— gonnacry_addopaque, gonnacry_bcf, gonnacry_sub,
gonnacry_cfflatten: we observe only nearly no confusion between these four ob-
fuscation techniques.

We see nearly no confusion when predicting maK_it and spy. Finally, as before the
benign binaries show no confusion with any other malicious binaries, and there is no
confusion between each of the benign classes.

83

Chapter 3 – Obfuscation Revealed: Leveraging EM Signals for Obfuscated Malware Classification

3.5.2 Discussion

Novel malware

The results we obtained show that our approach is successful in classifying various
malware samples into their types, families, and exact binaries, as well as identifying
and classifying obfuscation. The closeness between accuracy, recall, and precision of
each experiment indicates robustness and no overfitting to any specific class. We are
able to classify malware variations unseen during the training phase, which is par-
ticularly relevant in practical scenarios when considering the evolution of malware.
Furthermore, we realized the measurements were done in a stable lab environment,
but no exact triggering, nor any restrictions on the background processes of the target
device had been made, which corresponds to a setup a malware analyst could exploit.

We computed robust models as shown by the closeness between the accuracy, the
recall and the precision of each experiment. This means that our models do not over-
fit into any specific class. While it is out of the scope of the present work, it is worth
mentioning that our approach is very effective for malware detection. As we can see
in Figures 3.6 and 3.7, the precision and recall of the benign type are both equal to
1, which gives us a perfect f1-score of 1. All the results presented could certainly be
improved, for example, by fine-tuning the hyper-parameters of the neural network
models on a wider range of parameters, or by using more complex models, or more
bandwidth from the spectrogram.

Obfuscation resiliency

In this work, we examined 7 obfuscation techniques, including packers and virtu-
alization, which have been used by real-world malware as a growing trend to exploit
cryptors and packers to hide the true intent of malware samples. While previous so-
lutions such as signature-based packer detection can be evaded, our results show that
we can distinguish between obfuscation techniques solely based on EM traces, which
gives us the opportunity to analyze the evolution of IoT malware since new obfusca-
tion techniques will be reformed to thwart detection.

84

3.5. Results and discussion

ML algorithms

According to our findings, the accuracy of SVM and NB is comparable for more
straightforward classification problems such as type and family, but the gap widens
when considering more complex scenarios (e.g., executable, obfuscation). Therefore,
in some contexts where the amount of training time and resources matters, these algo-
rithms could be a reasonable choice in all scenarios.

Note that, all our results have been obtained by considering that the malware ana-
lyst measures only one trace per binary to predict the correct class. However, it could
be possible that he has the resources to measure multiple times the same binary ex-
ecution and to reduce noise, computes the mean over each of these execution traces.
Results using this approach are given in Figure A.1 in the Appendix for SVM and NB,
which shows a drastic improvement in many scenarios. For example, NB could reach
> 80% for binary classification and 100% in type and novelty classification. Interest-
ingly, we could not observe an improvement for MLP and CNN, which is discussed in
more detail in the Appendix.

Furthermore, we will extend from classification models to detection models that
combine with mean computing over multiple execution traces. This dramatically im-
proves the findings, which will be described in detail in Chapter 4.

Malware evasion

From our results, one can observe that malware SCA evasion (i.e. prevention from
our methodology) is not straightforward. In particular, we derived that our system
is robust against various code transformations and obfuscations, including random
junk insertion, packing, and virtualization, even when the transformation was pre-
viously unknown to the system. Another approach to evasion, instead of obfuscating
malicious behavior, could be to hide exploitable information by lowering the signal-to-
noise ratio. This could, for example, be achieved by forcing highly parallel/multi-core
executions such as ConcSpectre malware [LXF+22], which remotely disturbs thread
scheduling. However, as our methodology relies on EM emanation, which can be ob-
served on a local and global scale, and on frequency transformation with filtering, it
is unclear if hiding exploitable information is easily achievable at all. Even more, un-
expected highly parallel/multi-core activities can be more easily detected as abnormal
behavior, which is not in the interest of malware designers. We therefore see the topic

85

Chapter 3 – Obfuscation Revealed: Leveraging EM Signals for Obfuscated Malware Classification

of malware evasion against physical side-channel information as a new open direction
with non-straightforward solutions.

3.6 Conclusion and perspectives

We have demonstrated in this chapter that by using simple neural network models,
it is possible to gain considerable information about the state of a monitored device,
by observing solely its EM emanations. We were indeed able to not only detect, but
also determine the type of real-world malware infecting a Raspberry Pi running a full
Linux OS, with an accuracy of 99.89% on a test dataset including 20 000 traces from
30 different malware samples (and five different benign activities). We demonstrated
that software obfuscation techniques do not hinder our classification approach, even
if the obfuscation technique was not known to the analyst before. Even more, we
showed that it is possible to detect a particular obfuscation and classify between them
(or groups of obfuscation techniques), and classify the family with its exact variant/ob-
fuscation labels.

Given our experimental results, malware analysts therefore profit from our ro-
bust methodology to gain a better understanding of the variant, type/family, foren-
sic, and/or evolution of malware groups and campaigns, particularly in the context
when software systems fail (due to malware evasion) or cannot be applied (due to re-
stricted resources or update processes on the embedded device). While these results
were obtained in a controlled setup, as it is usually the case with malware analysis,

Future work may concentrate on the extension of our approach to real-time user
systems (e.g. Section 4). Another interesting direction could be the investigation of
other architectures and devices, to assess in which measure the knowledge learned by
a model on one device can be transferred to another one.

While the experiment results are certainly compelling, it is important to mention
that all experiments took place under controlled and ideal settings. At no point in
this chapter is it claimed that this technique, at least in its current form, could be used
to detect whether a computer or IoT device has been infected with malware but only
IoT malware classification. This problem will be further discussed in the next chap-
ter. Furthermore, data from a far broader range of computing devices would need to
be collected before analysts could evaluate whether this framework had any practical
value outside the lab. There are different factors to be considered that any of the EM

86

3.6. Conclusion and perspectives

signatures recorded on the Raspberry Pi test equipment would be relevant to a ran-
dom Wi-Fi router off the shelf. Nonetheless, our work can be considered as a first step
towards (detailed) behavioral analysis through electromagnetic emanation, opening a
new research direction for future work.

87

This page intentionally left blank

4
ULTRA:Ultimate Rootkit Detection over the Air

The content of this chapter, which is based on a joint work with Damien Marion,
and Annelie Heuser, resulted in one paper that was published in the 25th
International Symposium on Research in Attacks, Intrusions, and Defenses (RAID)
2022 [PMH22]

Contents

4.1 Introduction . 90

4.1.1 Motivation . 90

4.1.2 Our contributions . 91

4.1.3 Roadmap . 92

4.2 ULTRA: Ultimate Rootkit Detection over the Air framework 92

4.2.1 Threat model and methodology 93

4.2.2 Dataset . 97

4.2.3 Baits to trigger rootkit hooks . 100

4.3 Practical use case of ULTRA . 103

4.3.1 Target devices . 104

4.3.2 Data aquisition . 105

4.3.3 Detection and classification framework 108

4.4 Results and Discussion . 109

4.4.1 Results . 110

4.4.2 Discussion . 117

4.5 Conclusion . 122

89

Chapter 4 – ULTRA:Ultimate Rootkit Detection over the Air

4.1 Introduction

In this chapter, we present the ULTRA framework, which can identify rootkits in
real-world scenarios while being contactless, low-cost, and with no resource require-
ments on the specific embedded device, making it particularly suitable in the context
of IoT. Our approach consists of using hardware and software baits while only mea-
suring Electromagnetic Emanations (EM) over the air with a software-defined radio
device. This setup prevents known malware evasion techniques as there is often no
identifiable activity or resource on the monitored device. Further, baits enable us to
detect minor behavioral changes in the system from stealthy rootkits, rather than rely
on the signature of one-time active infection process. In our experiments, we move
beyond detection to classification, tackling practical scenarios of undiscovered rootkit
(variants) during the training phase, probe (dis)location, and evaluation of noisy en-
vironments. We show that our methodology is compliant to real-world analysis sce-
narios and can be labeled as wave (a probe) and play (WnP). For this, we particularly
investigate the influence of added kernel activity, classification scenarios, and the in-
fluence of undiscovered rootkits variants during the training phase. Our evaluation
is carried out on two devices with two architectures: Creator CI20 which uses MIPS
and Raspberry Pi relying on ARM, demonstrating that ULTRA is not limited to a sin-
gle technology. We compare our detection results to three software rootkit detection
tools, where ULTRA outperforms them in terms of requirements, detection level, and
latency.

4.1.1 Motivation

By 2025, we are expecting to have over 64 billion IoT devices [RHK20] and more
will be produced as beyond 5G technologies mature. Simultaneously to the advances
in IoT and embedded devices, the number and variety of cyberattacks have grown
in recent years, making current security approaches outdated in a short time [AG18,
RSSHCB21]. Many IoT manufacturers use Linux-based operating systems, making
it easier to migrate rootkits to target embedded devices. Generic malware detection
solutions rely on static or dynamic analysis that still have various shortcomings. In
particular, major problems are related to the diversity of IoT architectures [CGFB18],
obfuscation techniques (discussed in Chapter 3), and the fact that many IoT devices
may have constrained resources, limited battery or accessibility.

90

4.1. Introduction

Rootkits, those nefarious pieces of software that conceal deep within a system in or-
der to grant hackers access, are one of the most challenging malware to defend against
over the years. A recent study [pts21] shows that 44% of cybercriminal cases used
rootkits to attack government agencies, while 56% of the investigated rootkits were
used in advanced persistent threat (APT) attacks. They are typically utilized by highly
skilled actors with extensive malware creation skills and financial resources to develop
or acquire rootkits. One of the most sophisticated APT style attacks that employed a
rootkit was Stuxnet, which targeted industrial control systems and included the first
ever programmable logic controller (PLC) rootkit and a Windows rootkit to hide its ma-
licious files as well as injected code into PLC [FMC11]. Recently, NSA and FBI [AoI21]
reported Drovorub rootkit developed by state-sponsored APT28 to infect Linux sys-
tems to hide itself and files, directories, and network activities.

Even though rootkits can control the highest protection levels on the device’s sys-
tem, they do not have control over outside hardware-level events such as EM emana-
tion. A protection system relying on hardware features cannot be taken down, even if
the malware owns the maximum privileges on the machine. Therefore, with EM em-
anation, it becomes possible to detect stealthy malware such as kernel-level rootkits,
which are able to avoid software-based analysis methods.

In Chapter 3, while the experiment results from the IoT malware classification are
certainly encouraging, they took place under lab-settings without exact probes tuning
and structured product-oriented. In this chapter, we demonstrate novel solutions to
improve and extend it to a low-cost and portable detection solution.

4.1.2 Our contributions

In summary, our primary contributions are as follows:

1. SDR-based practical rootkit detection solution. Our approach is the first and
only to detect rootkits in real-time solely by EM, using a low-cost contactless SDR
device, with no triggering or resynchronization of side-channel measurements
required.

2. A novel methodology for detecting stealthy rootkits on IoT devices. We present
2 forms of baits to trigger the behavior of stealthy rootkits. ULTRA detects the
presence of modifications from the rootkit to the system, which is significantly
more subtle than traditional rootkit infection detection.

91

Chapter 4 – ULTRA:Ultimate Rootkit Detection over the Air

3. Realistic data collection with obfuscated variants on embedded devices. Using
7 distinct rootkit families and 2 obfuscated variations, we collected an unbiased
collection of 800 000 raw traces, including benign noise from both kernel and user
space activity. Traces are collected from two separate IoT devices with different
architectures: MIPS and ARM.

4. Proposed scenarios compliant to rootkit detection in real-world settings, and
ready for implementation. We put together various scenarios, each reflecting a
real-world rootkit detection and classification use case: rootkit novelty detection,
obfuscated rootkit detection, keylogger novelty detection, evaluation of benign
activities, noise, probe dislocation, or type invariance. These scenarios go way
beyond (simple) detection scenarios considered in the state-of-the-art.

5. Open-source. The source code for the ULTRA framework, measurement datasets,
rootkit detection and classification models, results of our experiments, and demo
videos are all publicly available at https://gitlab.com/ultra-RK/ultra/.

4.1.3 Roadmap

The structure of this chapter is organized as follows. In Section 4.2 we describe the
main part of our work which is the Ultimate Rootkit Detection over the Air (ULTRA)
framework. In Section 4.3 we show how we conduct experiments for data acquisition
and data processing. Section 4.4 discusses the results and concludes the chapter in 4.5.

4.2 ULTRA: Ultimate Rootkit Detection over the Air frame-

work

In this section, we propose “ULTRA: ULTimate Rootkit classification and detection
over the Air" that is able to analyze stealthy (non-active) rootkits by baiting and wav-
ing an EM probe over the device. The framework takes an EM trace monitored from
a target device as an input and predicts the presence of a rootkit and reveals its labels.
Figure 4.1 illustrates ULTRA’s workflow, which will be detailed within the following
subsections. First, we define our threat model, definitions, and methodology, and then
explain how the EM dataset is collected while a bait is executed on the target device
with or without the presence of a rootkit. Thereafter, as the collected data is very large

92

https://gitlab.com/ultra-RK/ultra/

4.2. ULTRA: Ultimate Rootkit Detection over the Air framework

and noisy, a preprocessing step is required to separate relevant informative signals.
Finally, using this result, we train neural network models and machine learning algo-
rithms for detection and classification in a variety of practical scenarios.

4.2.1 Threat model and methodology

Placing rootkit detection mechanism on the same level as the rootkit itself makes it
apparent from both sides, thus detection can be evaded by advanced rootkits, e.g. any
inspection at the kernel level can be subverted by kernel-level rootkits. In this section,
we propose a framework that is solely placed outside of the target device, thus pro-
viding the least possibility of being evaded by rootkits. We analyze the prerequisites
for developing such a dynamic rootkit detection system (i.e., one that cannot be de-
tected and evaded by the rootkit). These requirements serve as guiding principles for
the development and implementation of ULTRA. We start with a brief threat model
for rootkits, present notations and definitions, before providing an overview of the
ULTRA framework. We then extend our model to consider datasets that are part of
realistic execution environments and baits to trigger rootkit.

Threat model

Stealthy rootkit
We focused our attention on rootkits, which have the highest privilege of “root"

within the Linux system. Since they have unrestricted access to any protection rings
ranging from user space to hypervisor level, we assume that any behavior from the
target device is untrustworthy. Unlike “normal” malware, stealthy rootkits are not con-
stantly active, but only operate during certain activities. We assume that the rootkit
is able to avoid any traditional malware analysis technique such as signatures, VM
inspection, hooking, etc.

To avoid being evaded by advanced rootkits, the proposed framework must not
use any modifications similar to traditional malware analysis techniques such as sig-
natures, VM inspection, hooking, etc.

Target environment
The target environment requires stability and high availability, thus interruption,

downtime, or device reconfiguration should be kept to the least possible. This is a cru-
cial requirement for military control systems, unmanned vehicles, autonomous vessels,

93

Chapter 4 – ULTRA:Ultimate Rootkit Detection over the Air

EM data

Target environment (𝜏𝛿𝜌𝑘, 𝑡)

device (𝛿𝑑)

infected{𝛾,𝑟}

clean{𝛾}

SDR device(s)

Spectrogram

M(𝜏 ̃)

2 datasets

{MR,MΓ}

Features selection

ML & DL

? Test

modelR,Γ

Offline profiling

Online testing

radio
signals

Hardware bait (𝛽)

Software bait (𝛽)

probe(𝜌𝑘,𝑡)

1

2

4

3

Figure 4.1 – Illustration of ULTRA framework. 1 Trace acquisition: from black box
target devices receiving software and hardware baits to EM measurements; 2 Pre-
processing: converting raw measurements into usable data; Malware detection and
classification: from offline profiling models (trained on processed data 3) through
online rootkit label prediction (testing 4).

etc. Nowadays, industrial systems have numerous active embedded devices and they
are difficult to manage, interrupt and customize their analysis environment, so that we

94

4.2. ULTRA: Ultimate Rootkit Detection over the Air framework

suppose no acknowledge of any malicious service presented on the target devices.

Notations and definitions

Definition 3: Device

A device δd is defined as a computing unit with technology d running benign
activity γ. The device can be either in a clean state δ{γ} or infected δ{γ,r} with a
rootkit r.

For simplification, we omit indices when they are not relevant. For example, we
only use δ when the infection and activity status of the device is unknown or not rele-
vant, and explicitly use δ{γ,r} or δ{γ} to refer to a clean or infected device respectively.

Definition 4: Environment

An environment is defined by its device and probe. In particular, an environment
τ δρk,t consists of a device δ and a probe ρk,t with type t and location k.

Our approach consists in using baits on a device to trigger and thus be able to
profile and detect rootkit behavior. Baits are defined in the following, where we give a
detailed description with examples in Subsection 4.2.3.

Definition 5: Bait

A bait β is a software or hardware stimulus on a device δ with the following
requirements:

1. The bait can trigger partial or full behavior of rootkits without knowing
modus operandi of the rootkit in advance

2. It supports a variable duration of execution activities that can be remotely
controlled

3. It cannot be distinguished from common benign behavior (e.g. it relies on
unprivileged execution)

To represent that a bait β is executed in an environment τ δρk,t we write τ δρk,t(β). Now
our approach consists in measuring EM traces of an environment that is triggered with
a bait: τ δρk,t(β) τ̃ δρk,t(β). In a practical scenario, we observe q EM measurement traces
denoted as τ̃ δρk,t(β)q = {τ̃ δρk,t(β)1, . . . , τ̃ δρk,t(β)q}. Note that the benign activity γ on the

95

Chapter 4 – ULTRA:Ultimate Rootkit Detection over the Air

device δ is randomly chosen for each measurement (1, . . . , q). For instance, let the be-
nign activity set be denoted as Γ = {Γ0,Γ1,Γ2, . . . ,Γn}, where in our experiments Γ0 is
defined as no activity and Γi for 0 < i ≤ n represents (noisy) benign activity, then for a
device without infection τ̃ δ{~γ}ρk,t

(β)q = {τ̃ δ{γ1}
ρk,t

(β)1, . . . , τ̃ δ{γq}ρk,t
(β)q}, where ~γ = {γ1, . . . , γq}

is a vector of randomly chosen activities from Γ. The notation for an infected device
δ{r,γ} follows straightforwardly.

Let the set of p > 0 possible baits be denoted as B = {β1, β2, . . . , βp}. For any bait
βi ∈ B, 1 ≤ i ≤ p, we capture q observations, which results into a matrix M of size
p× q:

M =M(τ̃ δρk,t(B)q) =


τ̃ δρk,t(β1)1 . . . τ̃ δρk,t(βp)

1

...

τ̃ δρk,t(β1)q . . . τ̃ δρk,t(βp)
q

 .

ULTRA Framework classification and detection methodology

The framework consists of two phases, offline profiling and online testing.
Offline device profiling
In the offline phase an analyst profiles an environment that contains a device δ that

is infected with a rootkit r (i.e. δ{γ,r}) and that is in a benign state (i.e. δ{γ}) both running
benign activity γ. Let the rootkit set be denoted asR = {r1, r2, . . . , rm}, and the benign
set as Γ = {Γ0,Γ1,Γ2, . . . ,Γn}. We measure two sets of matrices: traces of baits running
on an infected system:

MR = {M(τ̃ δ{r1,~γ1}

ρk,t
(B)q),M(τ̃ δ{r2,~γ2}

ρk,t
(B)q), . . . ,M(τ̃ δ{rm,~γm}ρk,t

(B)q)},

and against clean system:
MΓ =M(τ̃ δ{~γ1}

ρk,t
(B)q)

Both states of the system are initialized under benign activities ~γi, 0 < i ≤ m, that
are randomly chosen from Γ and independent of the rootkit ri.

Using these two datasets, our approach consists in building feature extraction meth-
ods to reduce complexity and build machine and deep learning models that are able to
detect if a device is infected with a rootkit or not, i.e.

{MR,MΓ}Vtraining modelR,Γ.

96

4.2. ULTRA: Ultimate Rootkit Detection over the Air framework

Online testing

In the online phase, the goal is to determine if a device in an environment is infected
with a rootkit or in a benign state, where no information on γ is known. For this, we
use the estimated model modelR,Γ that has been built in an environment τ δρk,t(B) in the
offline profiling phase, and the corresponding machine/deep learning prediction al-
gorithm to output either benign vs infected state, or classify into particular categories.

In a practical context, the prediction algorithm detects or classifies the status of the
device using 1 measurement only in the testing phase. Naturally, in our experiments
to perform statistical evaluation, we collect a significant number of traces to estimate
accuracies and false positives and negatives. So, p′ measurement tracesM(τ̃ δρk,t(B)p′)
are measured by placing a probe ρk,t over the target device δ while unknown activity is
running. Note that, in the testing phase, the device is a blackbox since no information
of activity is acknowledged (i.e. presence of rootkits r or device activities γ).

In our experimental part (see Section 4.4.2), we setup a variety of experimental stud-
ies to test the effectiveness and robustness of our models. We start by keeping ρk,t and δ
unchanged from the offline profiling phase, and consider two types of devices: δrasp for
Raspberry Pi and δCI20 for Creator CI20 which are further detailed in the next subsec-
tions. Next, we consider the dislocation and changing the type of the EM probe(s). In
particular, we acquire traces with the same probe from two distinct locations: ρk=0,t=0

and ρk=1,t=0 and include a cheaper handcrafted EM probe ρk=2,t=1. Furthermore, we
investigate novelty detection where the rootkit set R varies between the learning and
testing phases. As well as a scenario where the noise level of the benign activity Γ
between learning and testing changes.

4.2.2 Dataset

The collection process of datasets is a critical component in the development and
evaluation of malware detection tools. At the time of writing, ULTRA framework sup-
ports but is not limited to rootkits of 32-bit ELF MIPS and ARM architectures, which
have been validated on Ci20 and Raspberry Pi devices. Following, we will discuss the
collection of rootkit and benign datasets.

97

Chapter 4 – ULTRA:Ultimate Rootkit Detection over the Air

Rootkit dataset

Even though rootkit malware samples are very rare in the wild and it is difficult
to get a large enough sample size for Linux, we tried to be realistic in this study by
acquiring 9 rootkit variants, from 7 up-to-date open source rootkit families listed in Ta-
ble 4.3. The rootkit dataset, including popular rootkit strategies used by today’s mal-
ware writers, covered various features of common Linux rootkits such as: self hiding,
file, module, process, network port, socket hiding; keylogger; remote access backdoor
and root privilege escalation (LPE). We therefore took under consideration both, user-
level (beurk [UT17], vlany [mem19]), and kernel-level rootkits (diamorphine [m0n21],
m0ham3d [m0h15], adore-ng [Han20], spy [Jan21], maK_it [McN15]).

Furthermore, since malware developers often use obfuscation techniques to bypass
malware detection, we apply static code and string rewriting techniques to 2 rootkits:
m0ham3d and diamorphine to test the robustness of our methodology, and to investi-
gate obfuscation mechanisms against side-channel monitoring. Technical details of the
applied obfuscation can be found in Appendix A.2. As a consequence, two new obfus-
cated variants are included in the dataset that can easily evade signature-base detection
solution (see Table 4.11). The total dataset of 9 rootkits was compiled on both architec-
tures, thus using 2 different Linux kernel headers. By code reviewing source code of
collected rootkits, we draw an overview of their functionalities and features that will
be described as follows:

• spy is a LKM rootkit which has functionalities to hook and record keys pressed in
the keyboard events to debugfs by exploiting register_keyboard_notifier.

• MaK_It shares the same rootkit ability to spy as a keylogger by exploiting regis-
ter_keyboard_notifier, with addition of kernel module self-hiding, local privilege
escalation and reverse-shell backdoor.

• adore-ng is a LKM rootkit which has functionalities of self-hiding, process, net-
work ports and files hiding, with a well-developed userspace toolkit ava for covert
communication between kernel and user land. The rootkit patches the Linux Vir-
tual File System (VFS) which is is a software layer in the Linux kernel that handles
all accesses related to the standard Unix file system, rather than the common sys-
tem call table hooking techniques, to serve several purposes: hide files, devices
and network ports, anti logging, as well as local privilege escalation.

• m0hamed is a LKM rootkit that is based on syscall table hooking for open, read and

98

4.2. ULTRA: Ultimate Rootkit Detection over the Air framework

write system calls. The features of this rootkit are local privilege escalation, and
file handler in /proc to permits the attacker to hide specified ports.

• Diamorphine is a LKM rootkit which has functionalities of self-hiding, hide/un-
hide any process, local privilege escalation, hiding specific files and directories
by hooking syscalls such as getdents, getdents64, kill.

• Beurk is a user-space rootkit based on LD_PRELOAD hooking technique which
allows specified libraries to be loaded before other libraries (e.g. libc, so that by
placing the Beurk library in LD_PRELOAD, it can hook libc functions). Beurk sup-
ports files and directories hiding, wipe logs in realtime, anti process (especially
anti-rootkits) and login detection, bypassing: lsof, ps, ldd, netstat analysis, and a
remote pseudoterminal backdoor. In total, Beurk hooks 19 libc functions.

• vlany is a user-space rootkit also based on ld.so patching technique and armed
with evasion techniques such as anti-debug via ptrace hooking, anti-forensics that
temporarily unload itself. This rootkit supports a vast amount of features: pro-
cess, files and ports hiding, real-time log wiping, Linux containers hiding, persis-
tent re-infection, dynamic linker modification (vlany randomizes the LD_PRELOAD
at a random path), reverse-shell backdoor as well as PAM backdoor.

Benign dataset

To train and evaluate the models, we collected a large dataset from a fresh installa-
tion of the Linux system. It is critical to select an unbiased dataset to avoid errors in
later binary detection models and to assure the quality of the framework during real-
time testing. Different execution modes are considered, such as default firmware ac-
tions, random computations, hibernation, or stress activities on target devices. There is
one kind of software which shares similarities with rootkits: kernel drivers, which are
installed at kernel-level and execute “good” behaviors. Compared to Chapter 3 which
only considered user and system processes, we further extend the benign dataset by
collecting both Linux user space binaries and kernel space modules from MIPS and
ARM architectures. Thus, we generated a vast number of benign activities such as com-
putations, background processes with malware-free, or usual activities on embedded
IoT devices (listed in Table 4.1). This collection varies from high to low CPU resource
consumption, from very long to short duration of activities, and likely confuses detec-
tion models as being classified as false positives. It is worth mentioning that only one

99

Chapter 4 – ULTRA:Ultimate Rootkit Detection over the Air

Table 4.1 – Benign dataset(Γ): Linux executables and kernel modules

Activities Executables and kernel modules (Γi>0)

mknod vdir more find

zgrep ls cat findmnt

zmore as ed rm

touch dmesg sleep cd

Linux Utilities

less grep objdump time

Network wget hostname ss ip

gunzip bunzip2 bzip2 tar
Compression

uncompress

Data backup dd

Scripting python

Linux drivers rpcsec_gss_krb5lru_cache bluetooth atm

Firewalls x_tables ip_vs br_netfilter

Filesystem 9pnet 9p ecryptfs nfsd

protocol btrfs udf xfs cifs

modules overlay

of the previous rootkit studies on Table 2.4 considered the impact of benign activities.

4.2.3 Baits to trigger rootkit hooks

In contrast to generic malware, rootkits are deeply concealed in the system, with
no indication of active activity. They are passive and only activated when a specific
“backdoor" behavior is triggered e.g. making a specific system call, interacting with a
covert channel, using special file names, etc. Therefore, revealing rootkit behaviors on
a targeted device requires the use of triggers or unique tactics. In this subsection, we
detail our approach to uncovering rootkits using baits that satisfy Def. 4.2.1.

The bait execution can trigger the behavior of specified benign activity (i.e. system
calls, keystroke input, etc.) regardless of knowing the exact rootkit family it is dealing

100

4.2. ULTRA: Ultimate Rootkit Detection over the Air framework

with, therefore any deviation occurring between bait executions inside a clean and an
infected state will indicate the presence of the rootkit on the target device. Algorithm
1 illustrates the proposed bait mechanism.

Algorithm 1 Algorithm of bait βi
Require: c ≥ 1

β(i, args, c) : . i: index, args: arguments, c: iterations
C ← c

while C > 0 do
βi(args)
C ← C − 1

end while

We define 2 novel strategies to trigger rootkits: software and hardware baits as
follows.

Software baits

diamorphine hook

bait execution flow

Figure 4.2 – Illustration of execution flow for kill bait running under diamorphine which
infected Linux kernel with hooked system call kill().

101

Chapter 4 – ULTRA:Ultimate Rootkit Detection over the Air

On software rootkit detection, Numchecker [WK13] used test programs which per-
formed 5 system calls such as sys_open, sys_close, sys_read, sys_getdents64, and sys_stat64
into the guest VM to determine the presence of rootkit based on deviations of HPCs.
In our work, we carefully crafted software baits by reverse-engineering and code-
reviewing a number of rootkits described in Section 4.2.2 to understand the common
system calls were being used by rootkits. In terms of keylogger detection, a similar
tactic on the software level has been conducted by Ortolani et. al. [OGC10] which
simulates carefully crafted keystroke sequences, i.e. the bait, as input and observes
the behavior of the keylogger in output to identify keyloggers among all the running
processes. In our work, we conduct a representative set of 10 designed baits that can
trigger 7 different rootkit families. The set takes into account not only syscall triggers
but also initiated network activities and keyboard inputs (Table 4.3).

For example, diamorphone rootkit intercepts kill() to redirect syscall convention to
hacked_kill(), which serves as a switch for 3 specific signal inputs (in Fig. 4.2). If the
signal matches, it will turn the call to either process hiding, module hiding, or root es-
calation. In general, the designed bait does not acknowledge any rootkit modus operandi
in advance. It simply calls the system call kill() with valid arguments, thus the switch
will route its execution via the default branch of the original system call kill(). Note
that, if the bait had routed into one of the 3 hjacked branches, the captured activity
would have fully exposed malicious behaviors. However, routing to the default switch
branch (illustrated as the bait execution flow in Fig. 4.2) yet created a small deviation
(only 15 additional ARM instructions during our experimental setting) between the
clean device and the infected device i.e. partially triggers behaviors of diamorphine. It
is not yet straightforward that the observed EM signals can lead to a result of whether
diamorphine is present on the device. It is important to point out that this minor devi-
ation detection is significantly more subtle and accurate than typical rootkit detection
at the infection phase.

Hardware baits

One could argue that software baits expose unprivileged execution at the OS user-
level, which can be observed and evaded by the rootkit installed on lower levels of
the system. We present the following hardware bait targeting rootkits: an external de-
vice that can be physically connected to the target device. The hardware prototype
(Fig.4.3 in Appendix) is composed of a BluePill STM32 board connected to the target

102

4.3. Practical use case of ULTRA

device via USB, and can be controlled remotely via the SWD debugger protocol using
an ST-Link v2 controller. It acts as a bare-metal hardware keyboard emulator, sending a
sequence of output keystrokes to the device. In the case of keylogger rootkit detection,
it meets 3 requirements from Def. 4.2.1: remote controllability, fully triggering keylog-
ger behaviors, and no difference from a standard keyboard from the software-layer
perspective. Furthermore, there is only inter-kernel communication between USB hu-
man interface device (HID) events and the HID layer from the descriptor after each
emulated keystroke, with no interference from other user processes. As a result, this
hardware keyboard emulator is an optimal solution for keylogger detection and anti-
evasion.

1

2

Figure 4.3 – Hardware keyboard emulator bait consists of one Blue Pill STM32 board
1 connected to a ST-link v2 2 which under control of ULTRA host agent.

4.3 Practical use case of ULTRA

103

Chapter 4 – ULTRA:Ultimate Rootkit Detection over the Air

Table 4.2 – ULTRA’s targeted devices specification, architectures (Arch.), and their tar-
geted frequency leakage (Fc) and CPU in MHz.

Device δ Arch. CPU RAM OS Fc

Raspberry Pi B+ ARM32 700 512MB Linux 4.1.7 1222

Creator CI20 MIPS32 1200 1GB Linux 3.18.3 792

4.3.1 Target devices

[CVD+20] showed the compilation information from a dataset of 93 000 malware
samples collected over a period of 3.5 years on VirusTotal. Two-thirds of all samples are
represented for by the two architectures, MIPS and ARM 32-bit. This can be explained
by the widespread use of these CPU architectures in popular consumer embedded
devices that are frequently exploited by IoT malware.

Our work focuses on rootkit detection on IoT devices, thus we have considered two
widely embedded architectures for all experiments as specified in Table 4.2. They sup-
port broad activities for embedded and IoT scenarios including prototypes and devel-
opments, regarding their prominent architectures, size, power consumption and cost
effective. Chapter 3 and previous works [WZH+18, FI17] show that cryptographic and
anomaly activities can be distinguished by leveraging EM signals from the Raspberry
Pi. However it is worth to mention that no study has been investigated the possibility
of side-channel leakage on MIPS Creator CI20, so that there is no influence of prior
knowledge on our experiment design. Thus, this work focuses on versatile rootkit
detection challenges validating on different combinations of hardware and software
rather than a narrowed solution to a specific device or architecture. We are not limiting
the capabilities of the infrastructure with restricted bare-metal firmware, since both tar-
get devices are deployed with fully-functioning Linux on MIPS and ARM. Therefore
any IoT applications can be performed together with internal noise such as background
processes, services and interrupts.

To prevent the detection of any artificial artifacts from evasion techniques, and to
maintain a realistic environment, all default background services are kept to their de-
fault (in practice, there are more than 100 running processes and services). Addition-
ally, no adjustments, overclocking, or tuning of the processor clock rate are applied to
the processor of target devices. By leveraging the combination of bare-metal analysis

104

4.3. Practical use case of ULTRA

and EM through SDR, it takes advantages that avoid the necessity of software tools
such as sandbox, hooking and anti-evasion techniques. The proposed framework is an
ideal candidate for target devices that require to be always-on and steady, where the
installation of new protection software such as kernel integrity, firmware upgrade, or
virtualization is not trivial.

4.3.2 Data aquisition

1 2

34

Figure 4.4 – ULTRA framework data acquisition consists of a H-Field probe 1 , which
connected to an amplifier 2 and HackRF 3 , placed 1mm and 45 degree above the
target device Raspberry Pi 4 processor.

The target devices are monitored in different setups ranging from low-cost to medium-
cost (see bill of materials in Appendix table A.3). It consists of a HackRF SDR device

105

Chapter 4 – ULTRA:Ultimate Rootkit Detection over the Air

with a frequency range of 1MHz-6GHz, connected to an H-Field probe Langer RF-U
5-2, where the EM signal is amplified using a Langer PA-303 +30dB (Figure 4.4). A low-
cost setup with an EM-compatibility probe, which is made of ferrite and conductor and
placed 10mm farther from the processor (Figure 4.7) rather than 1mm, will later be dis-
cussed. In all acquisitions, the probes were placed contactless over the processors of
target devices with a sampling rate of 2MHz bandwidth with neither modification nor
decapsulation of the target devices, during days and nights in the open space of casual
IT office buildings.

One challenge of side-channel analysis is to find a good setup of probe and points
of interest [NDGJ21]. Our work does not claim to optimize the best combination of
probes and its location, furthermore we will discuss the impact of probe (dis)locations
in Section 4.4.

Another challenge is to empirically find the targeted frequency to be monitored by
the SDR device. First, we hypothesize a centered frequency of the SDR device monitor
leaking information in output traces that were captured from one bait under a clean
vs an infected device. Thereafter, we shift an interval window of 2MHz starting from
200 MHz up to 3GHz and capture EM measurements. Each gap dataset is used to train
a deep learning model of MLP. If the model achieves a high accuracy in testing, that
corresponding centered frequency is assumed to leak information about the state of
the device. We achieved the best results of center frequencies (Fc) as given in Table 4.2.

We collected q = 5000 traces each for m = 9 rootkits variants in regards to their in-
put baits respectively (see Table 4.3) in both infected settingsMR and 240 000 traces for
benign tracesMΓ. The same data acquisition process was conducted for both devices
δrasp and δci20. We recorded in total more than 800 000 raw traces, which took 6.6TB,
thereafter we pre-processed the data as detailed in part 4.3.3.

106

4.3.Practicaluse
case

ofU
LTR

A

Table 4.3 – Input baits that handled by system calls, network activities (Net.: we deployed 2 specific baits for this type),
and keyboard emulator (Key.), targeting rootkit (RK) variants including obfuscated variants(∗). List of RK activities:
(H) Hide file/module/process; (N) Hide network port/socket; (L) Keylogger; (B) Remote access trojan; (R) LPE.

Baits (B)
Activities

System calls Net. Key.

RK (R) getdents readir open kill read write stat renameat tcp emu H N L B R

ke
rn

el

diamorphine X X X X

diamorphine(∗) X X X X

m0ham3d X X X X X X X

m0ham3d(∗) X X X X X X X

adore-ng X X X X X X X X

spy X X

maK_it X X

us
er beurk X X X X X X X X

vlany X X X X X X X X X

107

Chapter 4 – ULTRA:Ultimate Rootkit Detection over the Air

4.3.3 Detection and classification framework

Due to the variable and length of the raw data nature outputted by the SDR, it is
not suitable to be directly used in a machine learning or deep learning classification
algorithm as input. We therefore preprocess the data as described below.

Data preprocessing

Our measured EM traces have varying lengths in the time domain due to a variety
of factors, such as the time it takes each bait to complete, the network latency between
the target device and the host computer, and the time it takes the HackRF to acquire
data from the start to the end of the EM sampling without precise triggering. Further-
more, these EM traces have an enormous length, which makes them inappropriate to
be utilized directly for training samples for machine learning and deep learning-based
classifiers. To compensate for this unpredictability in the time domain, a fixed time
segment is taken from the beginning of each EM trace. Experimentally, we observe
that a segment of 0.5 s is sufficient for our dataset, but metrics can be further improved
by selecting a larger time window. Like in previous works [SNA+20, NSA+17] and in
Chapter 3, we then translate to the frequency domain while keeping the notion of time
by using the short-time Fourier transform (STFT).

In our experiments, we tuned the STFT parameters: the window function splits the
signal into chunks of length M , with an overlap O, where (M,O) = (8192, 4096) gives
the best results. Next, we only consider frequency bandwidths that contain interesting
information. To define which bandwidths are interesting, we use NICV, that we cou-
pled with an hill climbing algorithm following a forward selection [JKP94] based on the
best (over time) NICV score of each bandwidth. The entire bandwidth selection proce-
dure is described in Algorithm 2, the amount of bandwidths found by the algorithm is
denoted as εopt and reported in all the results tables. To further reduce the data com-
plexity to be usable by machine learning algorithms, we applied dimension reduction.
We applied LDA for classification scenarios, while we determined that for detection
scenarios (binary classification) kernel-PCA with sigmoid kernel, 15 components and
default sklearn parameters resulted in higher effectiveness.

108

4.4. Results and Discussion

Detection and classification algorithms

Given the most informative bandwidth, our goal is to identify rootkit activity as
effectively as possible while also classifying specific rootkit properties. One crucial
constraint is our rather limited dataset (from a data analysis perspective), which con-
tains a large amount of features even after the feature selection process (compared to
data samples).

We fine-tune machine and deep learning algorithms to analyze which procedure is
most suited given our datasets. Because of their simplicity, efficiency, and popularity
in the community, we chose Naive Bayes (NB), Support Vector Machines (SVM), and
Multi-layer Perceptions (MLP) as machine-learning and deep learning algorithms (de-
tailed in Chapter 1). However, in order to perform the machine learning techniques
such as NB and SVM efficiently, we further reduce features using Kernel PCA for bi-
nary classification and LDA when the number of classes is strictly greater than 2. The
proposed MLP architecture is shown in Table 4.3.3. It was trained over 50 epochs with
a batch size of 100, where we stored the model according to the highest validation ac-
curacy in the offline phase. In our offline profiling setup we use one RTX 2080 Ti GPU;
MLP performs 1 epoch below 1s during the validation tests.

Table 4.4 – Proposed MLP architecture of ULTRA framework

Layer Size Filter Activation

Flatten spectrogram_size _ leaky relu

Dense 500 _ leaky relu

Dense 200 _ leaky relu

Dense 100 _ leaky relu

softmax (multi-class)
Dense N _

or sigmoid (two-class)

4.4 Results and Discussion

109

Chapter 4 – ULTRA:Ultimate Rootkit Detection over the Air

4.4.1 Results

An individual dataset per device is measured for each of the 9 rootkits and their
respective baits, as highlighted in Table 4.3. From these datasets, we provide a variety
of detection or classification scenarios. A subset of the scenarios investigated are dis-
cussed in the following, where we highlight the results using getdents as bait because
they trigger 7 out of 9 rootkits (see the first column of baits in Table 4.3). The remain-
ing two rootkits, the two keyloggers spy and maK_it, are discussed in a scenario where
hardware or software keyboard emulators are used as baits (Section 4.2.3).

Scenarios that use other baits (e.g. network tcp) can detect adore-ng, beurk, vlany,
or “Hide network port/socket rootkit” activities in general with high accuracy can be
found in the Appendix (Figures A.8a, A.8b and A.8c). We also investigate the classi-
fication between kernel-space and user-space rootkits, both with and without benign
activities. The entire results are available in the Appendix Table A.4.

First, we conduct straightforward detection and move to classification by family
and activity. Next, we show that our methodology works indeed in real-world sce-
narios where rootkits are unknown during training, obfuscated, or additional noise is
present during the training or testing phase. In the discussion, we compare our re-
sults to open source host-based rootkit detection tools and demonstrate the effect of
changing the probe location between training and testing phases.

For binary classification problems, we use balanced accuracy (BA), true positive
rate (TPR), true negative rate (TNR) as metrics; for classification we use accuracy (AC),
recall (RC) and the precision (PR). In practice, one technique to decrease the FNR
and increase the TPR of detection is to monitor longer execution duration. In our
experiments, we calculate the mean over several traces during testing, thus making
a trade-off between longer raw data acquisition time (latency) and effectiveness. All
reported results of binary classification are computed for [1, 2, . . . , 10] averaged traces
of the testing set, where only the maximum is stated the tables to ease readability. To
be complete, Figures A.2, A.3, A.4, A.5 and A.6 in Appendix illustrate results using
[1, 2, . . . , 10] averaged traces for all binary scenarios. One can see that even if only one
trace is available due to constraints on the response latency, high accuracy is already
achievable.

110

4.4. Results and Discussion

Table 4.5 – Rootkit detection with the same environment between learning and test-
ing; bait β = {getdents} and corresponding rootkit set R = {adore, beurk, diamorphine,
diamorphine-obed, m0hamed, m0hamed-obed, vlany}with benign activity drawn randomly
from Γ; tested devices: δrasp. and δci20.

MLP KPCA + NB KPCA + SVM

Device δ BA [εopt]
TPR/TNR BA [εopt]

TPR/TNR BA [εopt]
TPR/TNR

δci20 98.1[6] 97.6/98.6 100.0[14] 100.0/100.0 100.0[16] 100.0/100.0

δrasp. 91.8[16] 91.0/92.5 97.8[11] 96.7/98.9 98.0[15] 100.0/96.0

Rootkit detection

This first detection scenario shows the ability to detect known rootkits, meaning
that the rootkit was seen during the offline learning phase. Thus, we have a constant
environment τ δρk,t(β) between the learning and testing phases. Table 4.5 shows the
balanced accuracy, true positive (TPR) and true negative rate (TNR), as well as the
optimal number of selected bandwidth (detailed in Subsection 4.3.3) for the bait β =
{getdents} and rootkit set R = {adore, beurk, diamorphine, diamorphine-obed, m0hamed,
m0hamed-obed, vlany}. SVM with Kernel PCA performs best by reaching a TPR of 100%
on both devices.

Rootkit classification

Table 4.6 – Classification by family and by activity obtained with MLP, LDA + NB and
LDA + SVM. The column « # » gives the number of classes per scenario.

MLP LDA + NB LDA + SVM

Scenario # AC [εopt]
PR/RC AC [εopt]

PR/RC AC [εopt]
PR/RC

family 19 91.3[65] 83.0/83.0 76.0[10] 65.6/65.4 85.6[8] 76.1/76.3

δ c
i2

0

activity 46 82.5[45] 83.0/82.5 62.5[10] 63.2/62.4 76.0[10] 75.8/76.0

family 19 82.1[50] 79.1/76.5 54.7[10] 53.9/55.3 66.2[10] 66.9/60.1

δ r
as

p.

activity 46 75.0[40] 75.4/75.0 50.6[10] 51.5/55.6 59.2[9] 59.4/59.2

In this scenario, we go beyond detection (two-class binary classification) and clas-
sify the rootkits into multiple classes. Again, the settings between the training and

111

Chapter 4 – ULTRA:Ultimate Rootkit Detection over the Air

testing phase remain constant. First, we consider the classification according to their
family (i.e. diamorphine, m0ham3d, adore-ng, spy, maK_it, beurk, vlany) which is inde-
pendent of the bait or the obfuscation. Note that, clean activity is not considered as 1
family but each class corresponds to the executed benign activity, yielding a total of 19
classes. Table 4.6 shows the results for both devices, we observe that MLP performs
the best, reaching 82.1% on δrasp. and 91.3% on δci20, vs. a random guess of only 5.2%.
Following that, we classify each rootkit individually and each cleanware separately, re-
sulting in 46 classes. MLP once again outperforms with 75% on δrasp. and 82.5% on δci20.
A random guess would only result in 2.17%. These results suggest that using ULTRA,
rootkits can not only be effectively detected, but also further information about the
family, clean activity, and obfuscation can be revealed with remarkably high accuracy.

Rootkit novelty detection

Now, we raise the question of whether detection is still effective even when rootkits
are unknown and not part of the offline learning phase. Or, generally speaking, can we
detect novel rootkits? So, the setting is not constant between learning and testing, but
with two sets of rootkits, Rlearning and Rtesting with Rlearning ∩ Rtesting = ∅. Again we
focus on the bait getdents, but we train one model per rootkit, i.e. Rlearning = {ri}
with ri ∈ {adore, beurk, diamorphine, m0hamed, vlany} consists of one rootkit at a time.
Additionally, we build a model where the learning (or testing) set corresponds to all
rootkits except the one in the testing phase (or learning phase), i.e. Rtesting = {ri} and
Rlearning = {{adore, beurk, diamorphine, m0hamed, vlany } \ ri} as well asRlearning = {ri}
and Rtesting = {{adore, beurk, diamorphine, m0hamed, vlany } \ ri} with ri ∈ {adore, beurk,
diamorphine, m0hamed, vlany}

Figure 4.5 illustrates the results, where each row starts with the name of a rootkit
and refers to the accuracy obtained using the rootkit in the training. For comparison,
we also illustrate the diagonal that corresponds to the case whereRlearning = Rtesting =
{ri}. The darker the blue color, the higher the accuracy. Results on δci20 are given on
top, δrasp. are displayed on the bottom.

Again, we notice that δci20 gives higher detection rates than δrasp.. In particular, for
δci20 we see that for each scenario (except three) at least one algorithm is achieving a
balanced accuracy of 100%. In total, SVM is performing the best and there is no large
gap between the diagonal and the other entries, meaning that even though rootkits are
unknown (new in the testing phase), the detection works effectively. Also, for SVM,

112

4.4. Results and Discussion

m
0
h
a
m

ed

d
ia

m
o
rp

h
in

e

beu
rk

a
d
o
re

vla
n

y

MLP on δci20

m0hamed

diamorphine

beurk

adore

vlany

99.4

51.2

95.5

100

51.2

97.9

100

88.4

100

50.7

98.9

91.2

99.3

93.3

55.7

100

100

74.0

100

50.7

97.6

63.9

98.4

99.0

98.8

P
ro

fi
li
n
g

o
n

m
0
h
a
m

ed

d
ia

m
o
rp

h
in

e

beu
rk

a
d
o
re

vla
n

y

KPCA + NB on δci20

100

100

100

51.1

100

100

100

99.5

84.5

100

100

100

100

51.5

100

100

100

96.7

100

100

70.5

100

100

51.9

100

testing on

m
0
h
a
m

ed

d
ia

m
o
rp

h
in

e

beu
rk

a
d
o
re

vla
n

y

KPCA + SVM on δci20

100

51.1

100

75.6

100

100

100

99.5

99.5

100

100

98.1

100

100

100

100

100

97.0

100

100

100

63.6

100

64.1

100

MLP on δrasp.

m0hamed

diamorphine

beurk

adore

vlany

99.6

71.7

80.5

50.3

71.1

98.0

95.1

100

89.6

86.7

61.0

61.9

96.9

57.4

66.7

50.3

86.5

100

100

73.8

59.7

56.2

56.3

52.5

85.5

KPCA + NB on δrasp.

99.6

67.1

71.6

54.5

69.1

100

100

100

69.3

99.5

64.0

69.6

100

67.8

78.2

63.6

100

100

100

81.4

63.2

65.6

63.3

54.9

99.5

KPCA + SVM on δrasp..

99.7

70.0

81.4

51.0

87.5

99.0

100

100

100

100

65.3

56.6

100

60.1

63.3

50.8

93.3

100

100

66.6

70.7

61.6

81.4

56.7

100
0

20

40

60

80

100

Figure 4.5 – Novelty rootkit detection. Each cell refers to an experiment, the row (resp.
the column) informs on the rootkit(s) seen during the offline learning phase (resp. the
online testing phase). Except on the diagonal, learning and testing sets are exclusive.
Numbers are balanced accuracies, the darker the blue color the higher the balanced
accuracy. All experiments share the same bait β = {getdents}, the same probe pk,t, and
benign activities are drawn randomly from Γ. δci20 on top; δrasp. on bottom.

113

Chapter 4 – ULTRA:Ultimate Rootkit Detection over the Air

we see no significant differences between rootkits, even if they work on different levels
(user vs. kernel protection ring).

For δrasp. the detection is still effective in most cases even if the rootkit is novel in
the testing phase, although there are more derivations between experiments. Still, for
each rootkit, one can find at least one model that performs greater than 78.2% in all
scenarios. We see that SVM performs slightly better than MLP and NB (on average)
among the three methods. For example, using SVM we are able to detect diamorphine
with 100% accuracy when training only on adore. Remarkably, looking at each column,
ignoring the diagonal, we always have at least one model from the three algorithms
that can detect unseen rootkit samples with an accuracy higher than 78% for δrasp. and
100% for δci20.

Obfuscated Rootkit detection

To evaluate the effectiveness of ULTRA in the presence of obfuscated rootkits, we
performed tests with the two rootkit samples m0hamed (m) and diamorphine (d) , as well
as their obfuscated variants m0hamed-obed (mo) and m0hamed (do). Table 4.7 summarizes
the results for both devices. For each device, the first four lines refer to m and mo

while the last four lines refer to d and do. First, we detect the original or obfuscated
rootkit while learning in the same setting. We denote this scenario by ri) ri with
ri ∈ {m,m0, d, do}. Second, we train on the original or obfuscated and test the other
one, i.e. ri) rj with i 6= j, ri and rj belonging to the same family. The major finding
is that, in general, the static-code obfuscation mechanism has a very low impact on
the detection rate, and ULTRA is able to detect the original and obfuscated variant.
Whatever variant of the rootkit (with or without obfuscation), it is able to detect both
variants with nearly no mistakes. In particular for δci20, NB is achieving 100% in all
scenarios, whereas for δrasp. SVM is performing best with 100% in all but one scenario.
Remarkably, we observe that there is no drop in effectiveness when ULTRA is detecting
obfuscated variants and reaching 100% effectiveness.

Keylogger novelty detection

Table 4.8 indicates how efficient ULTRA is in detecting keyloggers that are un-
known to the system (not present in the learning phase). We use two baits to monitor
keylogger activity: a hardware keyboard emulator denoted hwkb and a software bait

114

4.4. Results and Discussion

Table 4.7 – Detection scenarios on obfuscated rootkits. The bait β is getdents, R =
{diamorphine (d), diamorphine-obed (do), m0hamed (m), m0hamed-obed (mo)} with benign
activity randomly drawn from Γ, tested on both devices δrasp., δci20. We use the notation
r1) r2 to express that r1 was used in the learning phase, and r2 in testing. For r1 = r2
the environment stays constant, and for r1 6= r2 we detect unseen binaries.

MLP KPCA + NB KPCA + SVM

Scenario BA [εopt]
TPR/TNR BA [εopt]

TPR/TNR BA [εopt]
TPR/TNR

m)m 99.4[5] 99.0/99.8 100.0[7] 100.0/100.0 100.0[1] 100.0/100.0

mo)mo 100.0[13] 100.0/100.0 100.0[15] 100.0/100.0 100.0[10] 100.0/100.0

m)mo 100.0[13] 100.0/100.0 100.0[15] 100.0/100.0 100.0[10] 100.0/100.0

mo)m 97.4[5] 96.7/98.2 100.0[7] 100.0/100.0 100.0[1] 100.0/100.0

d)d 100.0[12] 100.0/100.0 100.0[9] 100.0/100.0 100.0[7] 100.0/100.0

do)do 100.0[10] 100.0/100.0 100.0[8] 100.0/100.0 100.0[9] 100.0/100.0

d)do 53.7[10] 7.4/100.0 100.0[8] 100.0/100.0 58.3[9] 16.6/100.0

δ c
i2

0

do)d 52.3[12] 4.9/99.6 100.0[9] 100.0/100.0 53.8[7] 8.6/99.1

m)m 99.6[34] 99.2/100.0 99.6[17] 99.3/100.0 99.7[36] 99.4/100.0

mo)mo 100.0[25] 100.0/100.0 100.0[14] 100.0/100.0 100.0[30] 100.0/100.0

m)mo 98.2[25] 96.3/100.0 90.3[14] 80.6/100.0 100.0[30] 100.0/100.0

mo)m 100.0[34] 100.0/100.0 100.0[17] 100.0/100.0 100.0[36] 100.0/100.0

d)d 95.1[4] 97.2/93.1 100.0[21] 100.0/100.0 100.0[21] 100.0/100.0

do)do 100.0[22] 100.0/100.0 100.0[11] 100.0/100.0 100.0[16] 100.0/100.0

d)do 100.0[22] 100.0/100.0 97.5[11] 95.0/100.0 100.0[16] 100.0/100.0

δ r
as

p.

do)d 83.0[4] 66.2/99.8 100.0[21] 100.0/100.0 100.0[21] 100.0/100.0

swkb. Regarding the targets, in this scenario, we can detect them more accurately on
δrasp., reaching 100% using SVM which again is remarkable.

Benign kernel-level module evaluation

We investigate the impact of additional kernel-level modules on the accuracy of
detection and classification. For this we build a LKM dataset that is based on drivers

115

Chapter 4 – ULTRA:Ultimate Rootkit Detection over the Air

Table 4.8 – Detection scenarios of keyloggers unseen during the offline profiling phase.
The baits β are software or hardware keyboard emulator respectively denoted as swkb
and hwkb. The tested devices are δrasp., δci20, and benign activity is drawn randomly
from Γ. When the learning has been done with spy and the testing with maK_it, we
write s)m while the reverse scenario is denoted by m)s.

MLP KPCA + NB KPCA + SVM

Scenario BA [εopt]
TPR/TNR BA [εopt]

TPR/TNR BA [εopt]
TPR/TNR

swkb 66.8[5] 34.8/98.8 94.9[9] 89.8/100.0 100.0[2] 100.0/100.0

s
)m

hwkb 50.6[8] 92.8/8.4 50.0[8] 0.0/100.0 51.0[16] 2.9/99.2

swkb 57.1[15] 14.8/99.5 100.0[13] 100.0/100.0 100.0[7] 100.0/100.0

δ c
i2

0
m

)s

hwkb 46.9[15] 43.5/50.2 50.0[27] 0.0/100.0 48.2[10] 0.1/96.3

swkb 100.0[23] 100.0/100.0 100.0[8] 100.0/100.0 100.0[8] 100.0/100.0

s
)m

hwkb 100.0[14] 100.0/100.0 100.0[10] 100.0/100.0 100.0[13] 100.0/100.0

swkb 100.0[11] 100.0/100.0 100.0[9] 100.0/100.0 100.0[4] 100.0/100.0

δ r
as

p.
m

)s

hwkb 99.5[15] 99.1/100.0 85.3[9] 70.6/100.0 100.0[12] 100.0/100.0

Table 4.9 – Detection of malware with additive benign kernel activities during the
learning phase only (S0) or during the testing phase only (S1). The bait β is getdents,
tested on the device δci20, the malwareR = {m0hamed} and the benign activity is ran-
domly chosen from Γ.

MLP KPCA + NB KPCA + SVM

Scenario BA [εopt]
TPR/TNR BA [εopt]

TPR/TNR BA [εopt]
TPR/TNR

S0 100.0[4] 100.0/100.0 100.0[13] 100.0/100.0 100.0[21] 100.0/100.0

S1 55.4[5] 99.0/11.7 100.0[7] 100.0/100.0 55.7[1] 100.0/11.4

having extra benign activities that may deceive the models (e.g. netfilter, VFS hooks,
ecryptfs etc.). Table 4.9 shows that with benign LKM added in the learning phase, all
models achieve 100%. However, the introduction of benign LKM during the testing
decreases the accuracy of the SVM and MLP models, but has no impact on the NB
model, which can still detect at 100% with no false positive. In conclusion, even if there
is additional unexpected activity from the kernel-space, NB is able to detect without
any errors.

116

4.4. Results and Discussion

Noise evaluation

Table 4.10 – Detection scenarios with rootkits seen during the learning phase but with
different background benign activity levels: the « quiet » (Q) level with Γ = Γ0, mean-
ing no background benign activity, and the « noisy » (N) level Γ = {Γ0, . . . ,Γn}. On the
left (resp. on the right) of the arrow ()) in the column « Scenario » we give the noise
level used during the offline profiling (resp. the online testing). The bait β is write,
tested on both devices δrasp., δci20, the malwareR = {m0hamed-obed}.

MLP KPCA + NB KPCA + SVM

Scenario BA [εopt]
TPR/TNR BA [εopt]

TPR/TNR BA [εopt]
TPR/TNR

N)Q 54.1[6] 96.1/12.2 98.7[7] 100.0/97.4 100.0[12] 100.0/100.0

Q)N 58.1[3] 100.0/16.3 52.9[7] 100.0/5.9 50.0[3] 100.0/0.0δ c
i2

0.

N)N 99.1[6] 98.2/100.0 100.0[7] 100.0/100.0 100.0[12] 100.0/100.0

N)Q 100.0[11] 100.0/100.0 100.0[10] 100.0/100.0 50.0[11] 100.0/0.0

Q)N 50.0[1] 100.0/0.0 50.0[1] 100.0/0.0 50.0[1] 100.0/0.0

δ r
as

p.

N)N 100.0[11] 100.0/100.0 100.0[10] 100.0/100.0 100.0[11] 100.0/100.0

In this scenario, we evaluate the influence of benign activity in the background and
assess robustness. We measured the SDR measurement traces of « noisy » (N) (noisy
benign background activities) and « quiet » (Q) (no additional benign activity besides
the OS background processes). Table 4.10 demonstrates the necessity of noise during
the training phase. In fact, models build with no extra background benign activity
(Q)N) get high TPR and low TNR. That is, those models are not able to distinguish
rootkits from benign and classify all activity as malicious. However, models built with
noisy traces (N) reach 100% (for at least one model) even when used in a quiet testing
environment (Q). This result shows how important it is to include usual noise activities
in the training phase in practice.

4.4.2 Discussion

Performance evaluation

We compare our detection results to other up-to-date opensource tools: rkhunter
v1.4.6 (2018), chkrootkit v0.54 (2021), and LKRG v0.91 (2021). The 3 tools are host-

117

Chapter 4 – ULTRA:Ultimate Rootkit Detection over the Air

based techniques compiled under ARM architecture and all experiments are conducted
on the same platform as δRaspi, except ULTRA was executed on a remote host agent:
Intel Xeon W-2104@4x 3.2GHz CPU 64GB RAM with Quadro P2200 GPU. It is worth
mentioning that LKRG is specifically required kernel-rebuilt to enable protection flags
such as kernel symbols extraction and seccomp. Since the detection component is
based on open source and cross-compilation capable GNURadio, sklearn and Tensor-
flow, the ULTRA detector can be deployed on portable devices (e.g. Raspberry Pi,
NVIDIA Jetson, etc.) along with SDR receivers.

Table 4.11 shows the detection results and execution latency of all scans, where all
results are averaged for 10 executions. ULTRA takes 1.5s for MLP on the CPU, and
1.3s using the GPU. Rkhunter and chkrootkit are unable to detect obfuscated variants
of diamorphine and m0ham3d LKRG aims to detect kernel-level rootkits, so that 4/9 are
not detected. Noticeably, while detecting triggered behaviors of adore-ng the device
OS crashed in kernel panic and thus brings the device in an unusable mode in a real-
world setting. ULTRA detected rootkits living at both kernel and user space mentioned
in Table 4.3, and regardless of the stage before or after rootkit infection, while integrity
detection solutions must be installed before the moment the rootkit infected the device.
Further, ULTRA detects rootkits by actively using baits without fully triggering mali-
cious behaviors of the rootkit (except in the keylogger detection scenario), in contrast
to LKRG which requires the occurrence of malicious behaviors explicitly.

Invariant to probe position

Figure 4.6 shows a detection scenario setup of 2 different probe locations on the
device δci20. Probe ρk=0,t=0 is used for offline training and probe ρk=1,t=0 with the same
type t = 0, but a different location was used for testing exclusively. Furthermore, we
conduct an experimental setup of ULTRA with a handcrafted EM compatible probe
ρk=2,t=1 which consists of ferrites and conductor (see Fig.4.7). The bait open was used
to detect the presence of rootkit beurk. Table 4.12 shows the results. We observe that
the location has a low impact on the accuracy. In fact, a model trained with ρk=0,t=0 can
detect rootkit signatures acquired with ρk=1,t=0 still with 100% whatever the classifica-
tion algorithm. However, when changing position and probe (ρk=0,t=0 in training, and
ρk=1,t=2 in testing), MLP is performing the best with only 60%.

Concluding, this result shows that the ULTRA framework works even with the re-
location of the probe position, but care should be taken with the type of the probe. It

118

4.4. Results and Discussion

Table 4.11 – Performance evaluation of rootkit (RK) and their obfuscated variants(∗)

detection results, and execution latency. List of indicators: (X) RK detected; (-) Not
detected; (†) Malicious behavior trigger required; (") Kernel panicked; Executed on
(‡) CPU ; (§) GPU.

RK
AV solutions

rkhunter chkrootkit LKRG ULTRA

diamorphine X - X† X

diamorphine(∗) - - X† X

m0ham3d X - X† X

m0ham3d(∗) - - X† X

adore-ng - - X†" X

spy - - - X

maK_it - - - X

beurk - - - X

vlany - - - X

Latency (sec) 1326.6‡ 44.3‡ 2.6‡ 1.3§-1.5‡

Table 4.12 – Detection scenarios with three distinct probes locations k ∈ {0, 1, 2} and
two different types t ∈ {0, 1}. The bait β is open, tested on the devices δci20, the malware
R = {beurk} and the benign activity is randomly drawn from Γ. Notation used in
Scenario: {k, t} in learning) {k, t} in testing.

MLP KPCA + NB KPCA + SVM

Scenario BA [εopt]
TPR/TNR BA [εopt]

TPR/TNR BA [εopt]
TPR/TNR

{0, 0}){0, 0} 100.0[2] 100.0/100.0 100.0[2] 100.0/100.0 100.0[2] 100.0/100.0

{0, 0}){1, 0} 100.0[2] 100.0/100.0 100.0[2] 100.0/100.0 100.0[2] 100.0/100.0

{0, 0}){2, 1} 60.6[2] 21.4/99.9 50.0[2] 0.0/100.0 50.0[2] 0.0/100.0

{1, 0}){1, 0} 100.0[2] 100.0/100.0 100.0[3] 100.0/100.0 100.0[2] 100.0/100.0

{2, 1}){2, 1} 100.0[1] 100.0/100.0 100.0[4] 100.0/100.0 100.0[4] 100.0/100.0

119

Chapter 4 – ULTRA:Ultimate Rootkit Detection over the Air

1 2

Figure 4.6 – Invariant to probe position. Framework setup with 2 probes 1 2 of the
same type placing contactless at 2 different locations placed 10mm above the processor.

indicates that our framework has a significant advantage and is powerful when detect-
ing rootkits in on-site scenarios with portable equipment, or in incident response and
digital forensics on a large scale.

Threats to validation

Adversaries to manipulate the ML and DL models
One actor may be able to manipulate the detection model by reverse engineering

and creating a rootkit that can evade the models, however this is out of scope for this
work.

Noise generation to decrease accuracy
Frieslaar et. al. [FI18] proposed a countermeasure to a SDR side-channel attack on

the Raspberry Pi by generating EM noise that consists of executing arithmetic instruc-
tions in an infinite loop. Noise-SDR [CF22] presents a novel technique by exploiting

120

4.4. Results and Discussion

1

2

Figure 4.7 – ULTRA framework is installed with an handcrafted EM-compatible probe
1 placed 10mm above Ci20’s processor 2 to detect beurk rootkit.

DRAM accesses to shape arbitrary signals out of EM noise from unprivileged soft-
ware. Therefore, a rootkit may try to tamper by generating noise during the execution.
However, it still raises a challenge to evade for rootkit authors: finding a solution to
generate noise without making any deviation between infected and benign state, i.e.
will be detected by the anomaly detectors, and the limitation of the signal’s bandwidth
(e.g. Noise-SDR can only generate signals that are limited by the target device leakage
and sampling rate).

The rootkit may undo modifications

This concern has been discussed in [WK13], if an advanced rootkit is aware of the
occurrence of a bait, it can hide its modifications before the bait is presented and re-
activate them afterwards. As per the bait design requirement, the execution of a bait
must present no difference from the execution of benign programs. For example, the
execution of getdents bait is equivalent to one simple binary which lists the content

121

Chapter 4 – ULTRA:Ultimate Rootkit Detection over the Air

of the current directory. Additionally, the detector can randomize the intervals and
iterations inside the baits to avoid the rootkit’s prediction of the checking period.

4.5 Conclusion

Stealthy nonactive rootkits constitute a real challenge for host-based malware anal-
ysis systems. In this chapter, we introduced the ULTRA framework that operates out-
side the box by relying solely on the EM activity of IoT devices and evokes rootkit
behavior by baiting.

We investigated a large number of experiments and scenarios to show that our
methodology is robust in real-world scenarios and can be applied like a wave-and-
play solution. We achieve detection rates of 100% for known and unknown variants,
while the device performs random and varied benign activities (plus active OS op-
erations). Further, we show that probe dislocation results in no loss of effectiveness,
making ULTRA highly practicable and employable. Furthermore, the classification of
rootkit families achieved up to 91.3% accuracy (vs a random guess of 5.2%), and even
more we are able to classify exact activity with up to 82.5% (vs a random guess of
2.17%). The comparison of our solution to open-source host-based solutions shows su-
periority of ULTRA on all levels: effectiveness, latency, resource requirements, stability
on the target device.

This work opens up new research areas pursuing the classic cat-and-mouse game:
improving detection and classification rates or evading and making our approach harder.
An appealing enhancement could be to increase the capability of the framework by in-
tegrating even more baits, thus providing the potential to detect APT rootkits.

Besides, ULTRA may provide cues to manufacturers to build a standalone solution
that uses electromagnetic waves to detect malware and similar threats for other plat-
forms such as PLC, Linux servers, etc. in the future. Further empirical research could
be conducted to investigate the power of single-board computers so that ULTRA can
be deployed in a fully portable manner.

122

Conclusion and Perspectives

In this chapter, we summarize the presented contributions of this manuscript, and
to highlight short-term and long-term perspectives for future works as well as ques-
tions that remain open.

Answers to research questions

We addressed the following research problems and our answers along this thesis:

RQ1 How can we build and setup an IoT malware analysis and detection on embedded device?
Since automated malware analysis techniques are matured on other platforms,
but they have shortcomings that cannot be applied straightforward for IoT sys-
tems. It is important to create an advanced IoT malware analysis framework and
overcome malware evasion tactics. In this thesis, we proposed AHMA and UL-
TRA framework that automatically performs EM captures from blackbox devices
executing malware. The EM traces can be further investigated and classified to
detect and classify malware.

RQ2 If a malware analyst has a dataset of unlabeled binaries. Would it be possible to clas-
sify the dataset into labeled types, families, variants of malware or rootkits, obfuscation
techniques used etc.?

In Chapter 3, a large dataset of malware has been studied to understand generic
IoT malware families, variants and their modus operandi. Further, we analyzed
100 000 traces recorded from 35 malicious samples including different types, fam-

123

ilies and obfuscation techniques used. The classification results from the dataset
in different scenarios with accuracy ranging from 82.28% to 99.82%. In Chapter 4,
we analyzed 800 000 traces recorded from 9 rootkit variants. We conducted sev-
eral scenarios to classify into different families, activities and rootkit protection
level with high accuracy.

RQ3 Is it feasible to utilize EM for stealthy rootkit detection on embedded devices?

Our results in Chapter 4 showed that it is possible to differentiate the status of
embedded devices under stealthy malware such as rootkits with detection accu-
racy for many scenarios at 100% rates. Although the detection rate of 100% was
obtained with a limited sample size due to the rarity of Linux IoT rootkits in the
wild, it is a solid sign that our technique is promising and novel.

A real-world IoT malware test bed using side-channel.

In this manuscript, we first surveyed the area of malware and rootkit detection,
specifically using side-channel, and then we presented some works aimed in improv-
ing rootkit detection both from a theoretical and practical point of view. In Chapter 1
and Chapter 3, we studied the IoT malware classification using Electromagnetic Ema-
nations (EM).

Compared to the state of the art, our work provides a novel method of identify-
ing IoT malware using side channel information, specifically EM, instead of installing
software on the targeted device and monitoring its operations or finding static fea-
tures. We classify malware utilizing in-the-wild malware samples rather than proof-
of-concept samples. We conducted several scenarios including benign datasets and
obfuscated malware to demonstrate the resilience of the models while most previous
research often use anomaly detection with a limited sample size.

We were able to not only detect, but also determine the type of real-world malware
infecting a Raspberry Pi running a full Linux OS, with an encouraging results, Specif-
ically, it can detect the type of malware with greater than 98% accuracy, where CNN
surpasses the others. It has also been demonstrated that it is successful in detecting
novel malware with 99.38% accuracy. Obfuscation techniques are likewise classified
with 82.70 percent accuracy, indicating that CNN outperforms the rest once again.

Given our experimental results, malware analysts can use our comprehensive tech-
nique to acquire a better understanding of the variations, types, families, and/or evo-

124

lution of malware actors and campaigns, especially when software detection systems
fail due to malware evasion, or cannot be deployed due to restricted resources on the
embedded device.

Real-time detection of IoT rootkits using side-channel

For host-based malware analysis systems, stealthy rootkits pose a significant chal-
lenge for detection. Side-channel based techniques such as EM collecting traces from
oscilloscopes are ineffective when stealthy rootkits are not yet disclosing harmful ac-
tivity.

We proposed the ULTRA framework in this thesis, which utilizes electromagnetic
waves to achieve detection rates of up to 100% for known and novel rootkit variants,
while the embedded device performs usual tasks and various benign processes as in
practical industrial application.

This approach has the potential to become a stand-alone and portable solution for
detecting not only stealthy rootkits, but also other advanced malware and APT cam-
paigns on any platform.

Perspectives

IoT malware is expanding since various malicious resources are easy to access on
open source platforms, where malware actors can reuse and extend with new features
and introduce new vulnerability exploits. With the rapid proliferation of advanced
malware in APT campaigns, as well as the growth in the number of IoT devices de-
ployed in organizations and government, we anticipate that the importance of IoT
malware detection solutions and automated IoT malware analysis framework must be
considered.

The major use of AHMA is to provide an environment for analysts to experiment
with IoT malware. Would such a strategy be effective in terms of IoT security: scal-
ability and affordability are likely to be significant challenges, as we cannot place an
additional bulky device next to each and every IoT device. Even if the strategy is non-
intrusive and clearly beneficial to analysts, we still require a method that can be used
more handy and in real-time to safeguard IoT devices from malware threats.

125

ULTRA proposed some solutions to overcome shortcomings of AHMA, and future
work may concentrate on the extension of our approach to real-time generic malware
classification systems. Based on results accomplished of ULTRA from Chapter 4, this
can be considered as a first step towards real-time and low-cost IoT behavioral analysis
through electromagnetic emanation, opening a new research direction for future work.

Malware identification and prevention can be considered as similar to a cat-and-
mouse game: As new malware analysis techniques are explored, malware authors in-
vent new strategies to avoid detection. Our results have the potential to contribute
to the development for further research into malware evasion of side-channel signals
monitor.

Reproducibility

Our IoT malware classification framework AHMA can be reproducible. The ar-
tifacts associated with the AHMA are found to be documented, consistent, complete,
exercisable, and include appropriate evidence of verification and validation by Annual
Computer Security Applications Conference (ACSAC) Artifacts 2021 committee 1.

Furthermore, we open access for ULTRA artifacts 2 including source code, captured
dataset and trained models.

Our IoT malware classification framework AHMA and ULTRA can be reproducible.
The artifacts associated with the AHMA are proved to be documented, consistent,
complete, exercisable, and include appropriate evidence of verification and validation
by Annual Computer Security Applications Conference (ACSAC) Artifacts 2021 com-
mittee 3. ULTRA’s artifacts 4 including source code, dataset and trained models are
published and open-access.

1. https://www.acsac.org/2021/program/artifacts/
2. https://gitlab.com/ultra-RK/ultra/
3. https://www.acsac.org/2021/program/artifacts/
4. https://gitlab.com/anon-ultra/ultra

126

https://www.acsac.org/2021/program/artifacts/
https://gitlab.com/ultra-RK/ultra/
https://www.acsac.org/2021/program/artifacts/
https://gitlab.com/anon-ultra/ultra

Media coverage

The publishing of our work in Chapter 3 and [PMMH21] has attracted a great at-
tention from the media, including sources such as Schneier 5, HackAday 6, The Hacker
News 7, and 01net 8. It would increase public awareness of detecting malware and
rootkits using electromagnetism emanations for cybersecurity researchers in both academia
and industry. Our work is a first step towards malware behavioral analysis through
electromagnetic emanation, opening a new research direction for future work.

5. https://www.schneier.com/blog/archives/2022/01/using-em-waves-to-detect-
malware.html

6. https://hackaday.com/2022/01/19/identifying-malware-by-sniffing-its-em-signature/
7. https://thehackernews.com/2022/01/detecting-evasive-malware-on-iot.html
8. https://www.01net.com/actualites/on-peut-detecter-des-malwares-avec-precision-

grace-aux-ondes-electromagnetiques-2053625.html

127

https://www.schneier.com/blog/archives/2022/01/using-em-waves-to-detect-malware.html
https://www.schneier.com/blog/archives/2022/01/using-em-waves-to-detect-malware.html
https://hackaday.com/2022/01/19/identifying-malware-by-sniffing-its-em-signature/
https://thehackernews.com/2022/01/detecting-evasive-malware-on-iot.html
https://www.01net.com/actualites/on-peut-detecter-des-malwares-avec-precision-grace-aux-ondes-electromagnetiques-2053625.html
https://www.01net.com/actualites/on-peut-detecter-des-malwares-avec-precision-grace-aux-ondes-electromagnetiques-2053625.html

This page intentionally left blank

Bibliography

[AAB+17] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca In-
vernizzi, Michalis Kallitsis, et al. Understanding the mirai botnet. In
26th USENIX security symposium (USENIX Security 17), pages 1093–1110,
2017.

[AARR02] Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj Ro-
hatgi. The EM side—channel (s). In International workshop on cryptographic
hardware and embedded systems, pages 29–45. Springer, 2002.

[ACH15] Ioannis Andrea, Chrysostomos Chrysostomou, and George Had-
jichristofi. Internet of Things: Security vulnerabilities and challenges.
In 2015 IEEE symposium on computers and communication (ISCC), pages
180–187. IEEE, 2015.

[ADCC18] Amin Azmoodeh, Ali Dehghantanha, Mauro Conti, and Kim-
Kwang Raymond Choo. Detecting crypto-ransomware in IoT networks
based on energy consumption footprint. Journal of Ambient Intelligence
and Humanized Computing, 9(4):1141–1152, August 2018. Accessed on
2019-03-20.

[AG18] Vipindev Adat and Brij B Gupta. Security in Internet of Things: is-
sues, challenges, taxonomy, and architecture. Telecommunication Systems,
67(3):423–441, 2018.

129

[AoI21] National Security Agency and Federal Bureau of Investigation. Rus-
sian GRU 85th GTsSS Deploys Previously Undisclosed Drovorub Mal-
ware. https://media.defense.gov/2020/Aug/13/2002476465/-1/-1/
0/CSA_DROVORUB_RUSSIAN_GRU_MALWARE_AUG_2020.PDF, 2021. Accessed:
2022-01-01.

[AQN+11] Blake Anderson, Daniel Quist, Joshua Neil, Curtis Storlie, and Terran
Lane. Graph-based malware detection using dynamic analysis. Journal
in Computer Virology, 7(4):247–258, November 2011. Accessed on 2020-04-
02.

[ARR] ARRL. Ulrich Rohde, N1UL, Recognized for Pioneering Work on
SDR. https://www.arrl.org/news/ulrich-rohde-n1ul-recognized-for-
pioneering-work-on-sdr.

[BAT19] Mohammad Bagher Bahador, Mahdi Abadi, and Asghar Tajoddin.
HLMD: a signature-based approach to hardware-level behavioral mal-
ware detection and classification. The Journal of Supercomputing, March
2019. Accessed on 2019-03-21.

[Bau99] Arthur O Bauer. Some aspects of military line communications as de-
ployed by the german armed forces prior to 1945. In The History of Mili-
tary Communications, Proc. 5th Annual Colloquium, 1999.

[BCH08] Rory Bray, Daniel Cid, and Andrew Hay. OSSEC host-based intrusion de-
tection guide. Syngress, 2008.

[BCK+10] Davide Balzarotti, Marco Cova, Christoph Karlberger, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. Efficient Detection of Split
Personalities in Malware. In NDSS, 2010.

[BDGN14] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm.
NICV: Normalized Inter-Class Variance for Detection of Side-Channel
Leakage. In International Symposium on Electromagnetic Compatibility
(EMC ’14 / Tokyo). IEEE, May 12-16 2014. eprint version: https://
eprint.iacr.org/2013/717.pdf.

[Bel57] Richard Bellman. Dynamic Programming. Princeton University Press,
Princeton, NJ, USA, 1 edition, 1957.

130

https://media.defense.gov/2020/Aug/13/2002476465/-1/-1/0/CSA_DROVORUB_RUSSIAN_GRU_MALWARE_AUG_2020.PDF
https://media.defense.gov/2020/Aug/13/2002476465/-1/-1/0/CSA_DROVORUB_RUSSIAN_GRU_MALWARE_AUG_2020.PDF
https://eprint.iacr.org/2013/717.pdf
https://eprint.iacr.org/2013/717.pdf

[Ber05] Daniel J Bernstein. Cache-timing attacks on aes. 2005.

[BGI11] Arati Baliga, Vinod Ganapathy, and Liviu Iftode. Detecting Kernel-Level
Rootkits Using Data Structure Invariants. IEEE Transactions on Dependable
and Secure Computing, 8(5):670–684, 2011.

[BH12] Michael Boelen and John Horne. The rootkit hunter project. Online.
http://rkhunter.sourceforge.net, 2012. Accessed on 2021-06-23.

[BJN+18] Robert Bridges, Jarilyn Hernández Jiménez, Jeffrey Nichols, Katerina
Goseva-Popstojanova, and Stacy Prowell. Towards malware detection
via cpu power consumption: Data collection design and analytics. In
2018 17th IEEE International Conference On Trust, Security And Privacy
In Computing And Communications/12th IEEE International Conference On
Big Data Science And Engineering (TrustCom/BigDataSE), pages 1680–1684.
IEEE, 2018.

[BLRS10] Sergey Bratus, Michael E Locasto, Ashwin Ramaswamy, and Sean W
Smith. VM-based security overkill: a lament for applied systems secu-
rity research. In Proceedings of the 2010 New Security Paradigms Workshop,
pages 51–60, 2010.

[BLS13] Donabelle Baysa, Richard M Low, and Mark Stamp. Structural entropy
and metamorphic malware. Journal of computer virology and hacking tech-
niques, 9(4):179–192, 2013.

[Blu12] Bill Blunden. The Rootkit arsenal: Escape and evasion in the dark corners of
the system. Jones & Bartlett Publishers, 2012.

[BS08] Yuriy Bulygin and David Samyde. Chipset based approach to detect vir-
tualization malware. BlackHat Briefings USA, 2008.

[BSRB15] Dmitri Bekerman, Bracha Shapira, Lior Rokach, and Ariel Bar. Unknown
malware detection using network traffic classification. In 2015 IEEE Con-
ference on Communications and Network Security (CNS), pages 134–142.
IEEE, 2015.

131

[Bun04] Andreas Bunten. Unix and linux based rootkits techniques and counter-
measures. In 16th Annual First Conference on Computer Security Incident
Handling, Budapest, 2004.

[BVN16] Robert Buhren, Julian Vetter, and Jan Nordholz. The threat of virtual-
ization: Hypervisor-based rootkits on the ARM architecture. In Interna-
tional Conference on Information and Communications Security, pages 376–
391. Springer, 2016.

[CAM+08] Xu Chen, Jon Andersen, Z Morley Mao, Michael Bailey, and Jose Nazario.
Towards an understanding of anti-virtualization and anti-debugging be-
havior in modern malware. In Dependable Systems and Networks With
FTCS and DCC, 2008. DSN 2008. IEEE International Conference on, pages
177–186. IEEE, 2008.

[CDD+14] Christophe Clavier, Jean-Luc Danger, Guillaume Duc, M. Abdelaziz
Elaabid, Benoît Gérard, Sylvain Guilley, Annelie Heuser, Michael Kasper,
Yang Li, Victor Lomné, Daisuke Nakatsu, Kazuo Ohta, Kazuo Sakiyama,
Laurent Sauvage, Werner Schindler, Marc Stöttinger, Nicolas Veyrat-
Charvillon, Matthieu Walle, and Antoine Wurcker. Practical improve-
ments of side-channel attacks on AES: feedback from the 2nd DPA con-
test. J. Cryptogr. Eng., 4(4):259–274, 2014.

[CF22] Giovanni Camurati and Aurelien Francillon. Noise-SDR: Arbitrary mod-
ulation of electromagnetic noise from unprivileged software and its im-
pact on emission security. In IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2022.

[CGFB18] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide
Balzarotti. Understanding Linux Malware. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 161–175, May 2018. ISSN: 2375-1207.

[CIYD+15] Aylin Caliskan-Islam, Fabian Yamaguchi, Edwin Dauber, Richard Ha-
rang, Konrad Rieck, Rachel Greenstadt, and Arvind Narayanan. When
coding style survives compilation: De-anonymizing programmers from
executable binaries. arXiv preprint arXiv:1512.08546, 2015.

132

[CKM21] Nikhil Chawla, Harshit Kumar, and Saibal Mukhopadhyay. Machine
Learning in Wavelet Domain for Electromagnetic Emission Based Mal-
ware Analysis. IEEE Transactions on Information Forensics and Security,
16:3426–3441, 2021.

[CMM+] Christian Collberg, Sam Martin, Jonathan Myers, Bill Zimmerman, Petr
Krajca, Gabriel Kerneis, Saumya Debray, and Babak Yadegari. The
Tigress C Diversifier/Obfuscator. http://tigress.cs.arizona.edu/
index.html. Accessed on 2020-05-14.

[CPM+18] Giovanni Camurati, Sebastian Poeplau, Marius Muench, Tom Hayes,
and Aurélien Francillon. Screaming Channels: When Electromagnetic
Side Channels Meet Radio Transceivers. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages 163–
177, Toronto Canada, October 2018. ACM.

[CRR+13] Shane S. Clark, Benjamin Ransford, Amir Rahmati, Shane Guineau, Jacob
Sorber, Wenyuan Xu, and Kevin Fu. WattsUpDoc: Power Side Channels
to Nonintrusively Discover Untargeted Malware on Embedded Medi-
cal Devices. In 2013 USENIX Workshop on Health Information Technologies
(HealthTech 13), Washington, D.C., August 2013. USENIX Association.

[CS221] CS231N. Convolutional neural networks for visual recognition. https:
//cs231n.github.io/convolutional-networks/, 2021. Accessed: 2022-
01-01.

[CTL97] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy
of obfuscating transformations, 1997.

[CTY13] Julia Yu-Chin Cheng, Tzung-Shian Tsai, and Chu-Sing Yang. An infor-
mation retrieval approach for malware classification based on Windows
API calls. In 2013 International conference on machine learning and cybernet-
ics, volume 4, pages 1678–1683. IEEE, 2013.

[CVD+20] Emanuele Cozzi, Pierre-Antoine Vervier, Matteo Dell’Amico, Yun Shen,
Leyla Bilge, and Davide Balzarotti. The tangled genealogy of IoT mal-
ware. In Annual Computer Security Applications Conference, pages 1–16,
2020.

133

http://tigress.cs.arizona.edu/index.html
http://tigress.cs.arizona.edu/index.html
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/

[DA18] Jonas Depoix and Philipp Altmeyer. Detecting Spectre Attacks by iden-
tifying Cache Side-Channel Attacks using Machine Learning. page 11,
2018.

[DLL+20] Fei Ding, Hongda Li, Feng Luo, Hongxin Hu, Long Cheng, Hai Xiao,
and Rong Ge. DeepPower: Non-intrusive and Deep Learning-based De-
tection of IoT Malware Using Power Side Channels. In Proceedings of the
15th ACM Asia Conference on Computer and Communications Security, pages
33–46, 2020.

[DMS+13] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam
Waksman, Simha Sethumadhavan, and Salvatore Stolfo. On the fea-
sibility of online malware detection with performance counters. ACM
SIGARCH Computer Architecture News, 41(3):559–570, 2013.

[Dom21] Christopher Domas. The Movfuscator. https://github.com/
xoreaxeaxeax/movfuscator, 2015 (accessed 30-August-2021).

[DWA+19] Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis Polychronakis,
and Fabian Monrose. SoK: The challenges, pitfalls, and perils of using
hardware performance counters for security. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 20–38. IEEE, 2019.

[Dwy19] Andrew Carl Dwyer. Malware ecologies: a politics of cybersecurity. PhD
thesis, University of Oxford, 2019.

[EH11] Mojtaba Eskandari and Sattar Hashemi. Metamorphic malware detec-
tion using control flow graph mining. Int. J. Comput. Sci. Network Secur,
11(12):1–6, 2011.

[EN20] Chris Eagle and Kara Nance. The Ghidra Book: The Definitive Guide. no
starch press, 2020.

[Ent18] Symantec Enterprise. Internet Security Threat Report 2018. Mountain
View, CA, USA, 2018.

[ESZ13] Shawn Embleton, Sherri Sparks, and Cliff C Zou. SMM rootkit: a new
breed of OS independent malware. Security and Communication Networks,
6(12):1590–1605, 2013.

134

https://github.com/xoreaxeaxeax/movfuscator
https://github.com/xoreaxeaxeax/movfuscator

[Fer07] Peter Ferrie. Attacks on more virtual machine emulators. Symantec Tech-
nology Exchange, 55, 2007.

[FI17] Ibraheem Frieslaar and Barry Irwin. Recovering AES-128 encryption
keys from a Raspberry Pi. In Southern Africa Telecommunication Networks
and Applications Conference (SATNAC), pages 228–235, 2017.

[FI18] I Frieslaar and B Irwin. Developing an electromagnetic noise generator to
protect a Raspberry Pi from side channel analysis. SAIEE Africa Research
Journal, 109(2):85–101, 2018.

[FMC11] Nicolas Falliere, Liam O Murchu, and Eric Chien. W32. stuxnet dossier.
White paper, Symantec Corp., Security Response, 5(6):29, 2011.

[GAD21] GREAT SCOTT GADGETS. GREAT SCOTT GADGETS HackRF One.
https://greatscottgadgets.com/hackrf/one/, 2021. Accessed: 2022-
01-01.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[Gér19] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems.
O’Reilly Media, 2019.

[GLP06] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs.
Stochastic Methods. In Louis Goubin and Mitsuru Matsui, editors, Cryp-
tographic Hardware and Embedded Systems - CHES 2006, 8th International
Workshop, Yokohama, Japan, October 10-13, 2006, Proceedings, volume 4249
of Lecture Notes in Computer Science, pages 15–29. Springer, 2006.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromag-
netic analysis: Concrete results. In International workshop on cryptographic
hardware and embedded systems, pages 251–261. Springer, 2001.

[GNU21] GNUradio. GNU Radio. https://www.gnuradio.org/about/, 2021. Ac-
cessed: 2022-01-01.

135

https://greatscottgadgets.com/hackrf/one/
https://www.gnuradio.org/about/

[GPPT15] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. Steal-
ing Keys from PCs using a Radio: Cheap Electromagnetic Attacks on
Windowed Exponentiation. Technical Report 170, 2015. Accessed on
2020-01-13.

[GPSE15] Mordechai Guri, Yuri Poliak, Bracha Shapira, and Yuval Elovici. JoKER:
Trusted detection of kernel rootkits in android devices via JTAG inter-
face. In 2015 IEEE Trustcom/BigDataSE/ISPA, volume 1, pages 65–73.
IEEE, 2015.

[GPT15] Daniel Genkin, Itamar Pipman, and Eran Tromer. Get your hands off my
laptop: Physical side-channel key-extraction attacks on PCs. Journal of
Cryptographic Engineering, 5(2):95–112, 2015.

[Han20] Seunghun Han. Adore-NG v2.5. https://github.com/kkamagui/adore-
ng, 2020. Accessed: 2022-02-10.

[HHM+14] Naofumi Homma, Yu-ichi Hayashi, Noriyuki Miura, Daisuke Fujimoto,
Daichi Tanaka, Makoto Nagata, and Takafumi Aoki. Em attack is non-
invasive? - design methodology and validity verification of em attack
sensor. In Lejla Batina and Matthew Robshaw, editors, Cryptographic
Hardware and Embedded Systems – CHES 2014, pages 1–16, Berlin, Hei-
delberg, 2014. Springer Berlin Heidelberg.

[HL07] David Harley and Andrew Lee. The root of all evil?-rootkits revealed,
2007.

[HLI13] KyoungSoo Han, Jae Hyun Lim, and Eul Gyu Im. Malware analysis
method using visualization of binary files. In Proceedings of the 2013 Re-
search in Adaptive and Convergent Systems, pages 317–321. 2013.

[HP18] Seunghun Han and JH Park. Shadow-box v2: The practical and omnipo-
tent sandbox for arm. 2018, slideshow at Blackhat Asia, 2018.

[HR15] Trammell Hudson and Larry Rudolph. Thunderstrike: EFI firmware
bootkits for Apple MacBooks. In Proceedings of the 8th ACM International
Systems and Storage Conference, pages 1–10, 2015.

136

[HZ12] Annelie Heuser and Michael Zohner. Intelligent machine homicide
- breaking cryptographic devices using support vector machines. In
Werner Schindler and Sorin A. Huss, editors, Constructive Side-Channel
Analysis and Secure Design - Third International Workshop, COSADE 2012,
Darmstadt, Germany, May 3-4, 2012. Proceedings, volume 7275 of Lecture
Notes in Computer Science, pages 249–264. Springer, 2012.

[Jan21] Arun Prakash Jana. spy v1.8. https://github.com/jarun/spy, 2021. Ac-
cessed: 2022-02-10.

[JCO20] Blake Janes, Heather Crawford, and TJ OConnor. Never Ending Story:
Authentication and Access Control Design Flaws in Shared IoT Devices.
In 2020 IEEE Security and Privacy Workshops (SPW), pages 104–109, 2020.

[JKP94] George H. John, Ron Kohavi, and Karl Pfleger. Irrelevant Features and
the Subset Selection Problem. In William W. Cohen and Haym Hirsh,
editors, Machine Learning, Proceedings of the Eleventh International Confer-
ence, Rutgers University, New Brunswick, NJ, USA, July 10-13, 1994, pages
121–129. Morgan Kaufmann, 1994.

[JLC20] Xingbin Jiang, Michele Lora, and Sudipta Chattopadhyay. Efficient and
Trusted Detection of Rootkit in IoT Devices via Offline Profiling and On-
line Monitoring. In Proceedings of the 2020 on Great Lakes Symposium on
VLSI, pages 433–438, 2020.

[Joh85] P Johnson. New research lab leads to unique radio receiver. E-Systems
Team, 5(4):6–7, 1985.

[JRWM15] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin.
Obfuscator-LLVM – Software Protection for the Masses. In Brecht
Wyseur, editor, Proceedings of the IEEE/ACM 1st International Workshop
on Software Protection, SPRO’15, Firenze, Italy, May 19th, 2015, pages 3–
9. IEEE, 2015.

[Jun20] Juho Junnila. (Thesis) Effectiveness of Linux Rootkit Detection Tools.
2020.

137

[JWHT14] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An
Introduction to Statistical Learning: With Applications in R. Springer Pub-
lishing Company, Incorporated, 2014.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analy-
sis. In Annual international cryptology conference, pages 388–397. Springer,
1999.

[KJJR11] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduc-
tion to differential power analysis. Journal of Cryptographic Engineering,
1(1):5–27, 2011.

[KK17] Itzik Kotler and Amit Klein. THE ADVENTURES OF AV AND THE
LEAKY SANDBOX. Black Hat USA Briefings, 2017.

[KKB+21] Eunbyeol Ko, Jinsung Kim, Younghoon Ban, Haehyun Cho, and
Jeong Hyun Yi. ACAMA: Deep Learning-Based Detection and Classifi-
cation of Android Malware Using API-Based Features. Security and Com-
munication Networks, 2021, 2021.

[KKV11] Stefan Katzenbeisser, Johannes Kinder, and Helmut Veith. Malware De-
tection, pages 752–755. Springer US, Boston, MA, 2011.

[KM06] J Zico Kolter and Marcus A Maloof. Learning to detect and classify
malicious executables in the wild. Journal of Machine Learning Research,
7(Dec):2721–2744, 2006.

[Koc96] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Annual International Cryptology Confer-
ence, pages 104–113. Springer, 1996.

[KRM+18] Mahmoud Kalash, Mrigank Rochan, Noman Mohammed, Neil DB
Bruce, Yang Wang, and Farkhund Iqbal. Malware classification with
deep convolutional neural networks. In 2018 9th IFIP International Confer-
ence on New Technologies, Mobility and Security (NTMS), pages 1–5. IEEE,
2018.

[KSN+19a] H. A. Khan, N. Sehatbakhsh, L. N. Nguyen, R. L. Callan, A. Yere-
dor, M. Prvulovic, and A. Zajic. IDEA: Intrusion Detection through

138

Electromagnetic-Signal Analysis for Critical Embedded and Cyber-
Physical Systems. IEEE Transactions on Dependable and Secure Computing,
pages 1–1, 2019.

[KSN+19b] Haider A. Khan, Nader Sehatbakhsh, Luong N. Nguyen, Milos
Prvulovic, and Alenka G. Zajic. Malware detection in embedded systems
using neural network model for electromagnetic side-channel signals. J.
Hardware and Systems Security, 3(4):305–318, 2019.

[KVH+20] Raphaël Khoury, Benjamin Vignau, Sylvain Hallé, Abdelwahab Hamou-
Lhadj, and Asma Razgallah. An analysis of the use of CVEs by IoT mal-
ware. In International Symposium on Foundations and Practice of Security,
pages 47–62. Springer, 2020.

[KY13] Deguang Kong and Guanhua Yan. Discriminant Malware Distance
Learning on Structural Information for Automated Malware Classifica-
tion. In Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’13, page 1357–1365, New
York, NY, USA, 2013. Association for Computing Machinery.

[KZLR12] Iain Kyte, Pavol Zavarsky, Dale Lindskog, and Ron Ruhl. Enhanced side-
channel analysis method to detect hardware virtualization based rootk-
its. In World Congress on Internet Security (WorldCIS-2012), pages 192–201,
2012.

[KZWE16] Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert.
Deep learning for classification of malware system call sequences. In Aus-
tralasian Joint Conference on Artificial Intelligence, pages 137–149. Springer,
2016.

[Lab21] Nozomi Networks Labs. How IOT botnets evade detection and analy-
sis. https://www.nozominetworks.com/blog/how-iot-botnets-evade-
detection-and-analysis/, Mar 2022 (accessed 30-July-2021).

[LAS15] Jared Lee, Thomas H Austin, and Mark Stamp. Compression-based anal-
ysis of metamorphic malware. International Journal of Security and Net-
works, 10(2):124–136, 2015.

139

https://www.nozominetworks.com/blog/how-iot-botnets-evade-detection-and-analysis/
https://www.nozominetworks.com/blog/how-iot-botnets-evade-detection-and-analysis/

[LBMNS18] Quan Le, Oisín Boydell, Brian Mac Namee, and Mark Scanlon. Deep
learning at the shallow end: Malware classification for non-domain ex-
perts. Digital Investigation, 26:S118–S126, 2018.

[LGO04] John Levine, Julian Grizzard, and Henry Owen. A methodology to de-
tect and characterize kernel level rootkit exploits involving redirection of
the system call table. In Second IEEE International Information Assurance
Workshop, 2004. Proceedings., pages 107–125. IEEE, 2004.

[Lin11] Martina Lindorfer. Thesis: Detecting Environment-Sensitive Mal-
ware. http://martina.lindorfer.in/files/papers/disarm_thesis.
pdf, 2011.

[LKMC11] Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti. De-
tecting environment-sensitive malware. In Recent Advances in Intrusion
Detection, pages 338–357. Springer, 2011.

[LMG+18] Patrick Luckett, J Todd McDonald, William B Glisson, Ryan Benton, Joel
Dawson, and Blair A Doyle. Identifying stealth malware using CPU
power consumption and learning algorithms. Journal of Computer Secu-
rity, 26(5):589–613, 2018.

[LWYZ17] Liu Liu, Bao-sheng Wang, Bo Yu, and Qiu-xi Zhong. Automatic malware
classification and new malware detection using machine learning. Fron-
tiers of Information Technology & Electronic Engineering, 18(9):1336–1347,
2017.

[LXF+22] Yang Liu, Zisen Xu, Ming Fan, Yu Hao, Kai Chen, Hao Chen, Yan Cai,
Zijiang Yang, and Ting Liu. ConcSpectre: Be Aware of Forthcoming Mal-
ware Hidden in Concurrent Programs. IEEE Transactions on Reliability,
2022.

[m0h15] m0hamed. lkm-rootkit: A rootkit implemented as a linux kernel module.
https://github.com/m0hamed/lkm-rootkit, 2015. Accessed: 2022-02-10.

[m0n21] m0nad. Diamorphine: a LKM rootkit.
https://github.com/m0nad/Diamorphine, 2021. Accessed: 2022-
02-10.

140

http://martina.lindorfer.in/files/papers/disarm_thesis.pdf
http://martina.lindorfer.in/files/papers/disarm_thesis.pdf

[MBBB16] Rauf Mahmudlu, Valentina Banciu, Lejla Batina, and Ileana Buhan. LDA-
based clustering as a side-channel distinguisher. In International Workshop
on Radio Frequency Identification: Security and Privacy Issues, pages 62–75.
Springer, 2016.

[MBM+18] Yair Meidan, Michael Bohadana, Yael Mathov, Yisroel Mirsky, Asaf Shab-
tai, Dominik Breitenbacher, and Yuval Elovici. N-BaIoT—Network-
Based Detection of IoT Botnet Attacks Using Deep Autoencoders. IEEE
Pervasive Computing, 17(3):12–22, July 2018. Conference Name: IEEE Per-
vasive Computing.

[MCHR22] J Todd McDonald, Rebecca C Clark, Lee M Hively, and Samuel H Russ.
Phase space power analysis for PC-based rootkit detection. In Proceedings
of the 2022 ACM Southeast Conference, pages 82–90, 2022.

[McN15] Ciarán McNally. maK_it-Linux-Rootkit.
https://web.archive.org/web/20190119045332/https://r00tkit.me/,
2015. Accessed: 2022-02-10.

[MD11] M Narasimha Murty and V Susheela Devi. Pattern recognition: An algo-
rithmic approach. Springer Science & Business Media, 2011.

[mem19] mempodippy. vlany: a Linux LD_PRELOAD rootkit.
https://github.com/mempodippy/vlany, 2019. Accessed: 2022-02-
10.

[MHN+13] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier non-
linearities improve neural network acoustic models. In Proc. icml, vol-
ume 30, page 3. Citeseer, 2013.

[Mit93] Joseph Mitola. Software radios: Survey, critical evaluation and future
directions. IEEE Aerospace and Electronic Systems Magazine, 8(4):25–36,
1993.

[Mit97] Tom M Mitchell. Machine learning, 1997.

[MKK07a] Andreas Moser, Christopher Kruegel, and Engin Kirda. Exploring mul-
tiple execution paths for malware analysis. In Security and Privacy, 2007.
SP’07. IEEE Symposium on, pages 231–245. IEEE, 2007.

141

[MKK07b] Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static
analysis for malware detection. In Computer security applications confer-
ence, 2007. ACSAC 2007. Twenty-third annual, pages 421–430. IEEE, 2007.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis
attacks - revealing the secrets of smart cards. Springer, 2007.

[MSB22] Sanjay Madan, Sanjeev Sofat, and Divya Bansal. Tools and Techniques
for Collection and Analysis of Internet-of-Things Malware: A Systematic
State-of-Art Review. 2022. Accessed on 2022-02-08.

[MSJ01] Nelson Murilo and Klaus Steding-Jessen. Métodos para detecção local
de rootkits e módulos de kernel maliciosos em sistemas UNIX. In Anais
do III Simpósio sobre Segurança em Informática (SSI’2001), pages 133–139,
2001.

[NAC82] NSA NACSIM. 5000: Tempest Fundamentals. National Security Agency,
1982.

[NDGJ21] Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. A Side-
Channel Attack on a Masked IND-CCA Secure Saber KEM. IACR Cryptol.
ePrint Arch., 2021:79, 2021.

[NKJM11] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath. Malware Im-
ages: Visualization and Automatic Classification. In Proceedings of the
8th International Symposium on Visualization for Cyber Security, VizSec ’11,
New York, NY, USA, 2011. Association for Computing Machinery.

[NSA+17] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic. ED-
DIE: EM-based detection of deviations in program execution. In 2017
ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA), pages 333–346, 2017.

[ODG+15] Meltem Ozsoy, Caleb Donovick, Iakov Gorelik, Nael Abu-Ghazaleh, and
Dmitry Ponomarev. Malware-aware processors: A framework for effi-
cient online malware detection. In 2015 IEEE 21st International Sympo-
sium on High Performance Computer Architecture (HPCA), pages 651–661,
Burlingame, CA, USA, February 2015. IEEE. Accessed on 2019-07-02.

142

[OGC10] Stefano Ortolani, Cristiano Giuffrida, and Bruno Crispo. Bait your hook:
a novel detection technique for keyloggers. In International workshop on
recent advances in intrusion detection, pages 198–217. Springer, 2010.

[OMR] Markus F.X.J. Oberhumer, László Molnár, and John F. Reiser. UPX the
Ultimate Packer for eXecutables. https://upx.github.io/. Accessed on
2020-05-14.

[OSM11] P. O’Kane, S. Sezer, and K. McLaughlin. Obfuscation: The Hidden Mal-
ware. IEEE Security & Privacy, 9(5):41–47, 2011.

[otCTO21] Mayor’s Office of the Chief Technology Officer. IoT Strategy The New
York City Internet of Things Strategy. http://nyc.gov/cto/, 2021. Ac-
cessed: 2022-02-01.

[Pag02] Dan Page. Theoretical use of cache memory as a cryptanalytic side-
channel. Cryptology ePrint Archive, 2002.

[PHG17] Stjepan Picek, Annelie Heuser, and Sylvain Guilley. Template attack ver-
sus Bayes classifier. J. Cryptogr. Eng., 7(4):343–351, 2017.

[PJFMA04] Nick L Petroni Jr, Timothy Fraser, Jesus Molina, and William A Ar-
baugh. Copilot-a Coprocessor-based Kernel Runtime Integrity Monitor.
In USENIX security symposium, pages 179–194. San Diego, USA, 2004.

[PMH21] Duy-Phuc Pham, Damien Marion, and Annelie Heuser. Poster: Obfusca-
tion Revealed-Using Electromagnetic Emanation to Identify and Classify
Malware. In 2021 IEEE European Symposium on Security and Privacy (Eu-
roS&P), pages 710–712. IEEE, 2021.

[PMH22] Duy-Phuc Pham, Damien Marion, and Annelie Heuser. ULTRA: Ulti-
mate Rootkit Detection over the Air. In 25th International Symposium on
Research in Attacks, Intrusions and Defenses (RAID), 2022.

[PMMH21] Duy-Phuc Pham, Damien Marion, Mathieu Mastio, and Annelie Heuser.
Obfuscation Revealed: Leveraging Electromagnetic Signals for Obfus-
cated Malware Classification. In Annual Computer Security Applications
Conference (ACSAC), 2021.

143

https://upx.github.io/
http://nyc.gov/cto/

[pts21] ptsecurity. Rootkits: evolution and detection methods. https:
//www.ptsecurity.com/ww-en/analytics/rootkits-evolution-and-
detection-methods/, 2021. Accessed: 2022-01-10.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine Learning in Python . Journal of Machine Learning Research,
12:2825–2830, 2011.

[PVM19] Duy-Phuc Pham, Duc-Ly Vu, and Fabio Massacci. Mac-A-Mal: macOS
malware analysis framework resistant to anti evasion techniques. Journal
of Computer Virology and Hacking Techniques, 15(4):249–257, 2019.

[PZCW16] Milos Prvulovic, Alenka Zajić, Robert L Callan, and Christopher J Wang.
A method for finding frequency-modulated and amplitude-modulated
electromagnetic emanations in computer systems. IEEE Transactions on
Electromagnetic Compatibility, 59(1):34–42, 2016.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis
(ema): Measures and counter-measures for smart cards. In International
Conference on Research in Smart Cards, pages 200–210. Springer, 2001.

[RGF+19] R. A. Riley, J. T. Graham, R. M. Fuller, R. O. Baldwin, and A. Fisher. A
New Way to Detect Cyberattacks: Extracting Changes in Register Values
From Radio-Frequency Side Channels. IEEE Signal Processing Magazine,
36(2):49–58, March 2019.

[RHK20] Khaled Riad, Teng Huang, and Lishan Ke. A dynamic and hierarchical
access control for IoT in multi-authority cloud storage. Journal of Network
and Computer Applications, 160:102633, 2020.

[RHW85] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Technical report, Califor-
nia Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[RKK07] Thomas Raffetseder, Christopher Kruegel, and Engin Kirda. Detecting
system emulators. In Juan A. Garay, Arjen K. Lenstra, Masahiro Mambo,

144

https://www.ptsecurity.com/ww-en/analytics/rootkits-evolution-and-detection-methods/
https://www.ptsecurity.com/ww-en/analytics/rootkits-evolution-and-detection-methods/
https://www.ptsecurity.com/ww-en/analytics/rootkits-evolution-and-detection-methods/

and René Peralta, editors, Information Security, pages 1–18, Berlin, Hei-
delberg, 2007. Springer Berlin Heidelberg.

[Rou16] Thibaut Rouffineau. Research: Consumers are terrible at updating their
connected devices. https://ubuntu.com/blog/research-consumers-are-
terrible-at-updating-their-connected-devices, Dec 2016.

[RSSHCB21] Valerian Rey, Pedro Miguel Sánchez Sánchez, Alberto Huertas Celdrán,
and Gérôme Bovet. Federated Learning for Malware Detection in IoT
Devices. 204:108693, 2021. Accessed on 2022-01-14.

[Rut06] Joanna Rutkowska. Introducing blue pill. The official blog of the invisi-
blethings. org, 22:23, 2006.

[Rut09] Joanna Rutkowska. The sky is falling?
http://theinvisiblethings.blogspot.com/2009/03/sky-is-falling.html,
Mar 2009.

[RZC+18] Edward Raff, Richard Zak, Russell Cox, Jared Sylvester, Paul Yacci, Re-
becca Ward, Anna Tracy, Mark McLean, and Charles Nicholas. An in-
vestigation of byte n-gram features for malware classification. Journal of
Computer Virology and Hacking Techniques, 14(1):1–20, 2018.

[SEE+17] Baljit Singh, Dmitry Evtyushkin, Jesse Elwell, Ryan Riley, and Iliano
Cervesato. On the Detection of Kernel-Level Rootkits Using Hardware
Performance Counters. In Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, ASIA CCS ’17, pages 483–493,
New York, NY, USA, 2017. ACM. Accessed on 2019-03-26.

[SEZS01] M.G. Schultz, E. Eskin, F. Zadok, and S.J. Stolfo. Data mining methods for
detection of new malicious executables. In Proceedings 2001 IEEE Sympo-
sium on Security and Privacy. S P 2001, pages 38–49, May 2001. ISSN:
1081-6011.

[Sha16] Udi Shamir. Analyzing a New Variant of BlackEnergy 3, Likely Insider-
Based Execution. SentinelOne, Mountain View, California, 288, 2016.

145

[SLKS19a] Asanka Sayakkara, Nhien-An Le-Khac, and Mark Scanlon. A survey
of electromagnetic side-channel attacks and discussion on their case-
progressing potential for digital forensics. Digital Investigation, 29:43–54,
2019.

[SLKS19b] Asanka Sayakkara, Nhien-An Le-Khac, and Mark Scanlon. Leveraging
Electromagnetic Side-Channel Analysis for the Investigation of IoT De-
vices. Digital Investigation, 29:S94–S103, July 2019. Accessed on 2020-06-
23.

[SM16] Tobias Schneider and Amir Moradi. Leakage assessment methodology -
Extended version. J. Cryptogr. Eng., 6(2):85–99, 2016.

[SN01] Matthew NO Sadiku and Sudarshan Nelatury. Elements of electromagnet-
ics, volume 428. Oxford university press New York, 2001.

[SNA+20] N. Sehatbakhsh, A. Nazari, M. Alam, F. Werner, Y. Zhu, A. Zajic, and
M. Prvulovic. REMOTE: Robust External Malware Detection Frame-
work by Using Electromagnetic Signals. IEEE Transactions on Computers,
69(3):312–326, 2020.

[SNZP16] Nader Sehatbakhsh, Alireza Nazari, Alenka Zajic, and Milos Prvulovic.
Spectral profiling: Observer-effect-free profiling by monitoring EM em-
anations. In 2016 49th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 1–11. IEEE, 2016.

[Son22] SonicWall. 2022 Sonicwall cyber threat report.
https://www.sonicwall.com/2022-cyber-threat-report/, 2022.

[SPP+18] Hossein Sayadi, Nisarg Patel, Sai Manoj P.D., Avesta Sasan, Setareh
Rafatirad, and Houman Homayoun. Ensemble Learning for Effective
Run-Time Hardware-Based Malware Detection: A Comprehensive Anal-
ysis and Classification. In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), pages 1–6, June 2018.

[Sut13] Scott Sutherland. 10 evil user tricks for bypassing anti-virus.
https://blog.netspi.com/10-evil-user-tricks-for-bypassing-
anti-virus/, 2013. Accessed on 2013.

146

https://blog.netspi.com/10-evil-user-tricks-for-bypassing-anti-virus/
https://blog.netspi.com/10-evil-user-tricks-for-bypassing-anti-virus/

[TIBV10] Ronghua Tian, Rafiqul Islam, Lynn Batten, and Steve Versteeg. Differen-
tiating malware from cleanware using behavioural analysis. In 2010 5th
international conference on malicious and unwanted software, pages 23–30.
Ieee, 2010.

[TK10] Mohammad Tehranipoor and Farinaz Koushanfar. A survey of hardware
trojan taxonomy and detection. IEEE design & test of computers, 27(1):10–
25, 2010.

[Tou16] Fred Touchette. The evolution of malware. Network Security, 2016(1):11–
14, 2016.

[UT17] Unix-Thrust. Unix-Thrust/Beurk: Beurk Experimental unix rootkit.
https://github.com/unix-thrust/beurk, 2017. Accessed: 2022-02-10.

[Val08] Danilo Valerio. Open source software-defined radio: A survey on gnu-
radio and its applications. Forschungszentrum Telekommunikation Wien,
Vienna, Technical Report FTW-TR-2008-002, 2008.

[VE85] Wim Van Eck. Electromagnetic radiation from video display units: An
eavesdropping risk? Computers & Security, 4(4):269–286, 1985.

[WF12] Carsten Willems and Felix C. Freiling. Reverse Code Engineering – State
of the Art and Countermeasures. 54(2):53–63, 20-03-2012.

[WFL+15] Markus Wagner, Fabian Fischer, Robert Luh, Andrea Haberson, Alexan-
der Rind, Daniel A Keim, and Wolfgang Aigner. A Survey of Visualiza-
tion Systems for Malware Analysis. 2015.

[WJCN09] Zhi Wang, Xuxian Jiang, Weidong Cui, and Peng Ning. Countering ker-
nel rootkits with lightweight hook protection. In Proceedings of the 16th
ACM conference on Computer and communications security, pages 545–554,
2009.

[WK13] Xueyang Wang and Ramesh Karri. Numchecker: Detecting kernel
control-flow modifying rootkits by using hardware performance coun-
ters. In 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC),
pages 1–7. IEEE, 2013.

147

[WZH+18] Xiao Wang, Quan Zhou, Jacob Harer, Gavin Brown, Shangran Qiu, Zhi
Dou, John Wang, Alan Hinton, Carlos Aguayo Gonzalez, and Peter
Chin. Deep learning-based classification and anomaly detection of side-
channel signals. In Cyber Sensing 2018, volume 10630, page 1063006. In-
ternational Society for Optics and Photonics, 2018.

[YIT+16] Akira Yokoyama, Kou Ishii, Rui Tanabe, Yinmin Papa, Katsunari Yosh-
ioka, Tsutomu Matsumoto, Takahiro Kasama, Daisuke Inoue, Michael
Brengel, Michael Backes, et al. SandPrint: Fingerprinting malware sand-
boxes to provide intelligence for sandbox evasion. In International Sym-
posium on Research in Attacks, Intrusions, and Defenses, pages 165–187.
Springer, 2016.

[YSI17] Pavel Yosifovich, David A Solomon, and Alex Ionescu. Windows Internals,
Part 1: System architecture, processes, threads, memory management, and more.
Microsoft Press, 2017.

[Zab18] Adam Zabrocki. Linux Kernel Runtime Guard (LKRG) under the Hood.
In CONFidence Conference, 2018.

[ZF05] YongBin Zhou and DengGuo Feng. Side-Channel Attacks: Ten Years
After Its Publication and the Impacts on Cryptographic Module Security
Testing. Technical Report 388, 2005. Accessed on 2022-02-24.

[ZGJ+18] Boyou Zhou, Anmol Gupta, Rasoul Jahanshahi, Manuel Egele, and Ajay
Joshi. Hardware performance counters can detect malware: Myth or
fact? In Proceedings of the 2018 on Asia Conference on Computer and Com-
munications Security, pages 457–468, 2018.

[ZP14] Alenka Zajić and Milos Prvulovic. Experimental demonstration of elec-
tromagnetic information leakage from modern processor-memory sys-
tems. IEEE Transactions on Electromagnetic Compatibility, 56(4):885–893,
2014.

[ZPKA18] Alenka Zajic, Milos Prvulovic, Haider Adnan Khan, and Monjur Alam.
Detailed tracking of program control flow using analog side-channel sig-
nals: a promise for IoT malware detection and a threat for many crypto-
graphic implementations. In Peter Chin and Igor V. Ternovskiy, editors,

148

Cyber Sensing 2018, page 5, Orlando, United States, May 2018. SPIE. Ac-
cessed on 2019-03-20.

149

This page intentionally left blank

A
Appendix

Malware obfuscation classification technical details

Experimental results on the meaning of test traces

Figure A.1 shows accuracy of NB and SVM when calculating the mean over t execu-
tion measurements from the same binary in the test dataset. We see an improvement
in all scenarios. Therefore, when the number of executions/ measurements per un-
known binary is not a restricting factor for the malware analyst, then computing the
mean over t traces will result in a more accurate prediction. This meaning process is
usually in the side-channel domain, as in [CDD+14]. Interestingly, we could not ob-
serve a straightforward improvement when applying this technique to MLP and CNN
classifications. One reason could be that the random user environment changes for
each execution, thus even though the binary stays unaltered, the measurement trace
changes. Now when calculating the mean, the patterns of features that may help MLP
and CNN to make correct predictions may be mixed or changed. Contrary. NB and
even SVM may not be able to model these patterns due to their more simplistic nature
and computing the mean can be seen as noise reduction instead.

151

Table A.1 – AHMA: Malware tag map
The first column lists all malware and benign samples, followed by the number of
recorded traces. Then each column refers to a scenario and gives for each sample the
group it belongs to if it has been used. [*] (resp., [+]) means the sample has been used
only during the training phase (resp. the testing phase), by default samples are used
during both phases (80% for training, 20% for testing).

Bin. names # Types tags Family tags Virt. tags Packer tags Obf. tags Exec. tags Novelty tags

random34 6000 benign benign random34 benign

mirai.arm7 6000 ddos mirai orig not_packed mirai mirai [*]

mirai_addopaque 3000 ddos mirai addopaque mirai_addopaque mirai [*]

mirai_virtualize 3000 ddos mirai virtualized virtualize mirai_virtualize mirai [+]

mirai_flatten 3000 ddos mirai flatten mirai_flatten mirai [+]

mirai-bcf 3000 ddos mirai bcf mirai-bcf mirai [*]

mirai-cfflatten 3000 ddos mirai cfflatten mirai-cfflatten mirai [+]

mirai-sub 3000 ddos mirai sub mirai-sub mirai [+]

upx-mirai 3000 ddos mirai packed upx mirai-upx mirai [*]

gonnacry 6000 ransomware gonnacry orig not_packed gonnacry gonnacry [*]

upx-gonnacry 3000 ransomware gonnacry packed upx gonnacry-upx gonnacry [*]

aes-upx-gonacry 3000 ransomware gonnacry packed upx gonnacry-aes-upx gonnacry [+]

aes-gonacry 3000 ransomware gonnacry not_packed gonnacry-aes gonnacry [+]

des-gonnacry 3000 ransomware gonnacry not_packed gonnacry-des

des-upx-gonnacry 3000 ransomware gonnacry packed gonnacry-des-upx

gonnacry_Virtualize2 3000 ransomware gonnacry virtualized virtualize gonnacry_virtualize2 gonnacry [*]

gonnacry_flatten 3000 ransomware gonnacry flatten gonnacry_flatten gonnacry [*]

gonnacry_bcf 3000 ransomware gonnacry bcf gonnacry_bcf gonnacry [*]

gonnacry_sub 3000 ransomware gonnacry sub gonnacry_sub gonnacry [*]

gonnacry_cfflatten 3000 ransomware gonnacry cfflatten gonnacry_cfflatten gonnacry [+]

gonnacry_addopaque 3000 ransomware gonnacry addopaque gonnacry_addopaque gonnacry [*]

maK_it4.19.57-v7+.ko 3000 rootkit maK_it rootkit_maK_it rootkit [*]

spy-4.19.57-v7+.ko 3000 rootkit spy rootkit_spy rootkit [+]

bashlite 3000 ddos bashlite orig not_packed bashlite bashlite [*]

bashlite_bcf 3000 ddos bashlite bcf bashlite_bcf bashlite [*]

bashlite_flatten 3000 ddos bashlite flatten bashlite_flatten bashlite [+]

bashlite_upx 3000 ddos bashlite packed upx bashlite_upx bashlite [*]

bashlite_addopaque 3000 ddos bashlite addopaque bashlite_addopaque bashlite [*]

bashlite_cfflatten 3000 ddos bashlite cfflatten bashlite_cfflatten bashlite [*]

bashlite_sub 3000 ddos bashlite sub bashlite_sub bashlite [*]

bashlite_virtualize 3000 ddos bashlite virtualized virtualize bashlite_virtualize bashlite [+]

playaudio 1000 benign benign playaudio benign

recordcamera 1000 benign benign recordcamera benign

takepicture 1000 benign benign takepicture benign

encodevideo 1000 benign benign encodevideo benign

152

1 2 3 4 5 6 7 8 9 10
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ac
cu

ra
cy

NB

1 2 3 4 5 6 7 8 9 10

SVM

0.0 0.2 0.4 0.6 0.8 1.0
Number of traces bds

0.0

0.2

0.4

0.6

0.8

1.0

Executable
Family

Novelty
Obfuscation

Packer
Type

Virtualization

Figure A.1 – Accuracy when computing the mean over t = [1, 2, 3, . . . , 10] samples per
binary in the test dataset. One can observe a drastic performance improvement for
SVM and NB for the scenarios where the accuracy was lower to begin with. For type
and novelty classification the accuracy reaches 100%.

ULTRA: Rootkit detection framework additional materials

Script example of network bait

Code A.1 – Network TCP bait script

for i in {1..30};
do (cat /proc/net/tcp > /dev/null)
done

153

Tuned iteration configuration values (c)

Table A.2 – Tuned iteration configuration values (c) for bait corresponding with the
targeted devices.

Devices δ

Baits βi Raspberry Ci20

getdents 5000 3000

readir 5000 5000

open 6000 6000

kill 400000 400000

read 225000 200000

write 350000 300000

stat 70000 70000

renameat 50000 50000

tcp 30 30

emu 5 5

Table A.3 – ULTRA’s bill of materials

Equipment Rate/Unit Count Amount (Euro)

HackRF One SDR 309 1 309

Adapter SMA Male BNC Female RG316 5 1 5

Amplifier Langer PA-303 BNC 375 1 375

Probe Langer RF-U 5-2∗ 250 1 250

Total 939
∗ This can be omitted in the case of using a hand-crafted probe.

154

Patch snippet for static string obfuscation

Code A.2 – Patch diff between original and obfuscated rootkit to evade static signature

--- m0hamed/rootkit.c
+++ m0hamed-obed/cm9vdGtpdAo.c
-void hide_module(void) {
+void aGlkZV9tb2R1bGUK(void) {

/*snippet*/

-asmlinkage int hacked_getdents(unsigned int fd, struct
linux_dirent *dirp, unsigned int count)

+asmlinkage int aGFja2VkX2dldGRlbnRzCg(unsigned int fd, struct
linux_dirent *dirp, unsigned int count)

/*snippet*/

- syscall_table[__NR_getdents] = hacked_getdents;
+ syscall_table[__NR_getdents] = aGFja2VkX2dldGRlbnRzCg;
/*snippet*/

- hide_module();
+ aGlkZV9tb2R1bGUK();
/*snippet*/

Table A.4 – Classification scenario distinguishing kernel-space and user-space rootkits
in (S0), then in (S1) we add benign samples.

MLP KPCA + NB KPCA + SVM

Scenario AC [εopt]
PR/RC AC [εopt]

PR/RC AC [εopt]
PR/RC

S0 98.5[24] / 82.8[60] 83.0/82.8 97.6[95] 97.6/97.6

δ c
i2

0

S1 98.1[28] / 75.9[95] 76.0/75.9 96.5[25] 96.5/96.5

S0 90.5[28] / 74.6[15] 74.9/74.6 89.3[100] 89.3/89.3

δ r
as

p.

S1 87.5[28] / 62.8[40] 64.6/62.8 85.1[25] 85.3/85.1

155

Enhancement through meaning testing traces

1 3 5 7 9

50

60

70

80

90

100

MLP

1 3 5 7 9

NB

1 3 5 7 9

SVM

number of t per mean

B
a
la

n
ce

d
A

cc
u

ra
cy

(B
A

)

getdents, δci20 getdents, δrasp.

Figure A.2 – Balanced accuracy (BA) of the Table 4.5 displaying the mean process over
t = [1, 2, . . . 10] samples per class (infected or clean) in the test dataset.

Optimal bandwidth selection

Additional results

156

1 3 5 7 9

50

60

70

80

90

100

MLP

1 3 5 7 9

NB

1 3 5 7 9

SVM

number of t per mean

B
a
la

n
ce

d
A

cc
u

ra
cy

(B
A

)

m→ m, δci20

mo → mo, δci20

m→ mo, δci20

mo → m, δci20

d→ d, δci20

do → do, δci20

d→ do, δci20

do → d, δci20

m→ m, δrasp.

mo → mo, δrasp.

m→ mo, δrasp.

mo → m, δrasp.

d→ d, δrasp.

do → do, δrasp.

d→ do, δrasp.

do → d, δrasp.

Figure A.3 – Balanced accuracy (BA) of the Table 4.7 displaying the mean process over
t = [1, 2, . . . 10] samples per class (infected or clean) in the test dataset.

1 3 5 7 9

20

30

40

50

60

70

80

90

100

MLP

1 3 5 7 9

NB

1 3 5 7 9

SVM

number of t per mean

B
a
la

n
ce

d
A

cc
u
ra

cy
(B

A
)

s→ m, swkb, δci20

s→ m, hwkb, δci20

m→ s, swkb, δci20

m→ s, hwkb, δci20

s→ m, swkb, δrasp.

s→ m, hwkb, δrasp.

m→ s, swkb, δrasp.

m→ s, hwkb, δrasp.

Figure A.4 – Balanced accuracy (BA) of the Table 4.8 displaying the mean process over
t = [1, 2, . . . 10] samples per class (infected or clean) in the test dataset.

157

1 3 5 7 9

30

40

50

60

70

80

90

100

MLP

1 3 5 7 9

NB

1 3 5 7 9

SVM

number of t per mean

B
a
la

n
ce

d
A

cc
u

ra
cy

(B
A

)

S0 S1

Figure A.5 – Balanced accuracy (BA) of the Table 4.9 displaying the mean process over
t = [1, 2, . . . 10] samples per class (infected or clean) in the test dataset.

1 3 5 7 9

50

60

70

80

90

100

MLP

1 3 5 7 9

NB

1 3 5 7 9

SVM

number of t per mean

B
a
la

n
ce

d
A

cc
u

ra
cy

(B
A

)

N → Q, δci20

Q→ N , δci20

N → N , δci20

N → Q, δrasp.

Q→ N , δrasp. N → N , δrasp.

Figure A.6 – Balanced accuracy (BA) of the Table 4.10 displaying the mean process over
t = [1, 2, . . . 10] samples per class (infected or clean) in the test dataset.

1 3 5 7 9

50

60

70

80

90

100

MLP

1 3 5 7 9

NB

1 3 5 7 9

SVM

number of t per mean

B
a
la

n
ce

d
A

cc
u

ra
cy

(B
A

)

{0, 0} → {0, 0}
{0, 0} → {1, 0}

{0, 0} → {2, 1} {1, 0} → {1, 0} {2, 1} → {2, 1}

Figure A.7 – Balanced accuracy (BA) of the Table 4.12 displaying the mean process over
t = [1, 2, . . . 10] samples per class (infected or clean) in the test dataset.

Algorithm 2 Bandwidth extraction procedure

1: nicv = NICV (learning_set) ∈ RF×D . the learning set is composed of labed
spectrogram of dimension F ×D

2: max_nicv = maxD(nicv) ∈ RF

3: sorted_bandwidth = argsort (tmp)

4: last_added = 0 . use as stopping criterion
5: current_acc = 0
6: current_bandwidth = sorted_bandwidth [0] . start with the bandwidth with the

highest NICV

7: while last_added < len (sorted_bandwidth) do
8: compute model of the m on current_bandwidth of the learning_set . ML or DL

learning phase
9: tmp_res = eval (m, current_bandwidth of the validating_set) . evaluate the

model accuracy on the validating set
10: if tmp_res > current_res then
11: remove first element of sorted_bandwidth . the last added bandwidth will

be concerved in the optimal list
12: last_added = 0 . to test all remaining bandwidth with the current optimal

list
13: current_res = tmp_res
14: else
15: put the first element of sorted_bandwidth to its end
16: last_added += 1
17: end if
18: add to the current_bandwidth the first sorted_bandwidth
19: end while

20: if len (sorted_bandwidth) > 0 then
21: remove last added element of current_bandwidth . the last added is not part

of the optimal selection
22: end if
23: return current_bandwidth

beu
rk

a
d
o
re

vla
n

y

MLP on δci20

beurk

adore

vlany

100

91.1

80.4

91.7

100

96.5

99.6

58.1

100

P
ro

fi
li
n

g
o
n

beu
rk

a
d
o
re

vla
n

y

KPCA + NB on δci20

100

50.3

100

82.4

100

100

74.9

51.2

100

testing on

beu
rk

a
d
o
re

vla
n

y

KPCA + SVM on δci20

100

50.8

99.5

100

100

100

65.5

52.7

100

MLP on δrasp.

beurk

adore

vlany

100

94.7

62.1

100

100

50.0

84.0

55.6

95.9

KPCA + NB on δrasp.

100

100

69.6

98.2

100

59.1

84.4

65.0

100

KPCA + SVM on δrasp..

100

92.8

60.1

100

100

53.1

88.0

56.0

100 0

20

40

60

80

100

(a) β = {tcp}

beu
rk

a
d
o
re

vla
n

y

MLP on δci20

beurk

adore

vlany

100

100

100

95.8

100

100

63.4

65.0

100

P
ro

fi
li
n

g
o
n

beu
rk

a
d
o
re

vla
n

y

KPCA + NB on δci20

100

51.0

97.5

99.5

99.6

95.5

100

50.0

100

testing on

beu
rk

a
d
o
re

vla
n

y

KPCA + SVM on δci20

100

50.6

100

100

99.6

100

100

50.3

100

MLP on δrasp.

beurk

adore

vlany

100

78.8

51.0

100

100

56.4

65.2

53.7

94.6

KPCA + NB on δrasp.

99.5

80.3

61.5

99.5

100

94.4

73.4

53.5

99.6

KPCA + SVM on δrasp..

99.0

87.9

50.7

93.9

100

71.3

96.3

56.7

100 0

20

40

60

80

100

(b) β = {readir}

m
0
h
a
m

ed

beu
rk

a
d
o
re

vla
n

y

MLP on δci20

m0hamed

beurk

adore

vlany

100

50.0

100

50.0

50.0

100

99.0

96.9

62.9

95.2

100

50.0

50.0

100

59.4

100

P
ro

fi
li
n
g

o
n

m
0
h
a
m

ed

beu
rk

a
d
o
re

vla
n

y

KPCA + NB on δci20

100

50.1

50.0

50.0

50.0

100

50.0

90.5

58.9

69.1

100

50.2

50.0

100

50.0

100

testing on

m
0
h
a
m

ed

beu
rk

a
d
o
re

vla
n

y

KPCA + SVM on δci20

100

50.0

50.0

50.0

100

100

51.8

100

100

75.9

100

50.6

66.8

100

54.0

100

MLP on δrasp.

m0hamed

beurk

adore

vlany

100

100

58.3

79.8

100

100

98.6

99.6

100

100

100

100

100

100

86.3

100

KPCA + NB on δrasp.

100

98.1

59.6

97.9

100

100

79.4

100

100

100

100

100

100

100

65.4

100

KPCA + SVM on δrasp..

100

77.2

51.7

89.1

100

100

82.8

100

100

100

100

100

100

100

54.0

100
0

20

40

60

80

100

(c) β = {open}

Figure A.8 – Novelty rootkit detection. Same description as the Figure 4.5, but with
differents baits β.

This page intentionally left blank

Titre : Exploitation des signaux de canaux auxiliaires pour la classification des malwares IoT et la
détection des rootkits.

Mot clés : Dispositifs IoT, systèmes embarqués, classification des malwares, détection des rootkits,

emmanation électromagnétique, radio logicielle
Résumé : L’Internet des objets est constitué de
périphériques dont le nombre et la complexité
augmentent de manière exponentielle. Ils uti-
lisent une variété de logiciels et de micrologiciels
personnalisés sans tenir compte des problèmes
de sécurité, ce qui en fait une cible attrayante
pour les cybercriminels. La détection des mal-
ware reposant sur des caractéristiques statiques
et dynamiques se heurte encore à diverses dif-
ficultés, telles que les techniques d’empaque-
tage ou d’obfuscation, ou la possibilité d’échap-
per à la surveillance sandbox. Contrairement
aux systèmes informatiques et aux serveurs, les
systèmes cyber-physiques embarqués peuvent
manquer de ressources ou d’accessibilité pour
les outils anti-malware. Nous présenterons des
méthodes qui ne nécessitent pas d’altération du
dispositif et qui peuvent être déployées de ma-
nière indépendante sans aucune surcharge en

exploitant l’émanation électromagnétique par ra-
dio. Les contributions de cette thèse de doctorat
sont séparées en deux parties différentes. Pre-
mièrement, nous présentons une nouvelle ap-
proche qu’un analyste malware peut utiliser pour
recueillir des informations exactes sur le type
et l’identité des malwares, même en présence
de techniques d’obfuscation qui peuvent entraver
l’analyse. De plus, nous présentons le système
ULTRA à faible coût, qui est la première solution
de type "wave-and-play", où il suffit d’agiter une
sonde sur le dispositif pour voir instantanément
quel rootkit est infecté. ULTRA a une spécification
qui facilite la découverte des rootkits dans un sys-
tème en temps réel sans qu’il soit nécessaire de
modifier le dispositif ou d’exiger des logiciels en
surveillant deux types distincts d’appâts qui sont
capables d’exposer le comportement des rootkits
furtifs.

Title: Leveraging side-channel signals for IoT malware classification and rootkit detection

Keywords: Iot devices, embedded systems, malware classification, rootkit detection, Electromag-

netic emmanation, software-defined radio

Abstract: The Internet of Things is constituted
of devices that are exponentially growing in num-
ber and in complexity. They utilize a variety of
customized software and firmware without con-
sideration of security concerns, making them an
appealing target for cybercriminals. Malware de-
tection relying on static and dynamic features still
have various difficulties such as packer or obfus-
cation techniques, or sandbox monitoring can be
evaded. Unlike computer systems and servers,
embedded cyber physical system may lack re-
sources or accessibility for anti-malware tools.
We will present methods that do not require de-
vice alteration while they can be deployed in-
dependently without any overhead by leveraging
electromagnetic emanation over the air. The con-

tributions of this PhD thesis are separated into
two different parts. First, we present a novel ap-
proach that a malware analyst can use to gather
exact information about the type and identity of
malware, even in the presence of obfuscation
techniques that may hinder analysis. Further we
present low-cost ULTRA framework which is the
first wave-and-play solution, where one can sim-
ply wave a probe over the device to instantly see
what rootkit is infected. ULTRA has a specifica-
tion that facilitates the discovery of rootkits in a
system in real-time without the need for device
alteration or software requirements by monitoring
two distinct types of baits that are capable of ex-
posing the behavior of stealthy rootkits.

	Acronyms
	List of Figures
	List of Tables
	Résumé long en français
	Introduction
	Publications
	Background
	IoT, embedded devices, and their security challenges
	iot attack vectors
	iot malware detection challenges

	IoT malware
	Generic IoT malware
	Malware obfuscation
	Rootkits

	Side-channel analysis
	Introduction to sca
	em leakage
	sdr
	Side-channel leakage: Dimensional reduction, feature extraction and transformation

	Detection and classification techniques
	Malware detection: static and dynamic approaches
	Machine learning
	Deep learning
	Classifiers and evaluation metrics

	State of the Art
	Malware evasion techniques
	Evasion of static code analysis
	Evasion of dynamic analysis

	Malware detection
	Malware detection from software analysis
	Malware detection from hardware analysis

	Rootkit detection through side-channel
	Research problems statement

	Obfuscation Revealed: Leveraging EM Signals for Obfuscated Malware Classification
	Introduction
	Motivation
	Our contributions
	Roadmap

	Real-world IoT malware collection
	Malware dataset
	Benign dataset

	Real-world malware analysis framework AHMA
	IoT malware classification threat model
	Data acquisition by dynamic malware execution
	Data analysis and preprocessing
	Malware classification model architectures

	Experiments
	Data aquisition components
	Classification framework

	Results and discussion
	Experimental results
	Discussion

	Conclusion and perspectives

	ULTRA:Ultimate Rootkit Detection over the Air
	Introduction
	Motivation
	Our contributions
	Roadmap

	ULTRA: Ultimate Rootkit Detection over the Air framework
	Threat model and methodology
	Dataset
	Baits to trigger rootkit hooks

	Practical use case of ULTRA
	Target devices
	Data aquisition
	Detection and classification framework

	Results and Discussion
	Results
	Discussion

	Conclusion

	Conclusion and Perspectives
	Bibliography
	Appendices
	Appendix

