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Résumé

Il existe une forte demande de données de haute qualité sur les vagues océaniques
pour plusieurs applications marines (Bitner-Gregersen et al., 2016; Ardhuin et al., 2019).
Par exemple, les ingénieurs ont besoin de séries temporelles à long terme de paramètres
de vagues, tels que la hauteur significative des vagues (Hs), pour estimer l’occurrence
des événements extrêmes, caractériser la climatologie des sites pour les convertisseurs
d’énergie marine, et concevoir des structures côtières et offshore ou planifier des opérations
maritimes (Kerbiriou et al., 2007). La caractérisation de l’état de la mer est donc nécessaire
pour ces nombreuses applications qui nécessitent des séries temporelles étendues avec une
résolution spatiale à l’échelle du kilomètre.

Nous distinguons trois méthodes de caractérisation de l’état de la mer: les méthodes
d’observation, les modèles numériques et les modèles statistiques. Bien que les méthodes
d’observation de l’état de la mer (telles que les mesures in situ) fournissent des données
fiables, elles ne fournissent pas une connaissance complète de l’état de la mer dans l’espace
et dans le temps (Ardhuin et al., 2019). Les modèles numériques de vagues (Gelci, Cazalé,
and Vassal, 1957; Remya et al., 2022; Hemer, Katzfey, and Trenham, 2013) constituent
donc une source alternative de données sur les vagues qui permet d’étudier les vagues avec
une haute résolution spatiale et temporelle (Boudière et al., 2013). Cependant, comme les
modèles numériques nécessitent des calculs intensifs (Laugel, 2013), les méthodes statis-
tiques sont de plus en plus populaires dans la communauté des climatologues en géneral
(Wilby et al. (1998); Benestad, Chen, and Hanssen-Bauer (2008); Maraun et al. (2010);
Scher (2018); Sungkawa, Rahayu, et al. (2019)) et des océanographes en particulier (Wang
and Swail (2006); Wang, Swail, and Cox (2010), Laugel (2013), Camus et al. (2014b)).

Dans cette thèse, nous nous intéressons à la caractérisation des paramètres d’état de
mer tel que la hauteur significative des vagues (Hs) en utilisant des méthodes statistiques
et d’apprentissage profond. En particulier, nous nous intéressons à la modélisation de la
relation entre les conditions du vent de l’Atlantique Nord et les paramètres d’état de la
mer à un endroit situé dans le Golfe de Gascogne. Étant donné la multidimensionnalité des
données de vent et la relation décalée en temps entre les conditions de vent et les vagues,
nous proposons d’abord un cadre général pour sélectionner les covariables pertinentes qui
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influencent la hauteur significative des vagues.
Après l’étape de prétraitement, un modèle de régression basé sur les types de temps

est proposé pour modéliser la relation entre le vent et les vagues. Les types de temps sont
construits à l’aide d’un algorithme de classification puis, pour chaque type de temps, une
régression de Ridge est ajustée entre les conditions de vent et la hauteur significative des
vagues. Le modèle prédit bien Hs, mais il présente certaines limites, à savoir : (i) la régres-
sion de Ridge ne tient pas compte du fait que les covariables ont une structure spatiale ; et
(ii) les types de temps sont construits a priori à l’aide d’un algorithme de classification et
ils ne sont pas évalués en fonction de la prédiction de Hs. Par conséquent, nous proposons
un algorithme d’espérance-maximisation (EM) pour estimer les paramètres de la régres-
sion de Ridge généralisée avec des covariables spatiales, puis, pour tenir compte les points
(i) et (ii), nous proposons un mélange d’experts de Ridge généralisés estimés à l’aide d’un
algorithme EM variationnel. Ce modèle est utilisé comme modèle de régression basé sur
les types de temps et ses performances sont supérieures à celles du modèle original.

Les contributions principales de cette thèse sont :

• Proposer un cadre général pour sélectionner les covariables pertinentes qui influ-
encent les états de mer:

Étant donné que les vagues océaniques sont une combinaison de mer du vent
générées localement et de houles générées et propagées à partir des zones éloignées
(Ardhuin and Orfila, 2018), les vagues observées à un endroit particulier dépen-
dent des conditions du vent sur une large zone dans une fenêtre temporelle de
plusieurs jours (Camus et al., 2014a). Par conséquent, la reproduction de la rela-
tion spatio-temporelle entre le vent et les vagues à l’aide de méthodes statistiques
et d’apprentissage automatique n’est pas simple (Camus et al., 2014a). Dans cette
thèse, nous proposons des étapes de prétraitement pour identifier les covariables
pertinentes pour la prédiction des vagues. En particulier, nous proposons deux
types de prédicteurs pour les états de mer: un prédicteur local et global. Le pré-
dicteur local est basé sur le vent dans le point d’intéret et le prédicteur global sur
les conditions du vents dans l’Atlantique Nord. Les conditions du vent sont carac-
térisées par deux composantes (zonale et méridionale), qui peuvent être difficiles à
prendre en compte directement dans un modèle statistique. Pour résoudre le prob-
lème de la multidimensionnalité dans cette étude, nous introduisons la projection
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du vent, qui consiste à ne retenir que la fraction du vent soufflant vers le point
cible. L’étape de prétraitement proposée permet d’utiliser une seule variable pour
chaque point de grille, réduisant ainsi de moitié la dimension du prédicteur global.
En outre, Le vent provenant de régions éloignées génère des vagues qui peuvent
mettre des jours pour atteindre le point cible. Ainsi, la relation entre le vent et les
vagues n’est pas instantanée. Il est donc nécessaire de prendre en compte les condi-
tions du vent décalées pour comprendre la dynamique des vagues à un endroit cible
particulier (Pérez et al., 2014). La présente étude utilise une approche entièrement
basée sur les données (data-driven) pour définir la zone de génération des vagues.
Elle est basée sur l’estimation du temps de voyage des vagues entre chaque source
et le point cible en utilisant la corrélation maximale entre la hauteur significative
des vagues et les conditions du vent (le vent projeté).

• Étude des méthodes de régularisation adaptées aux problèmes de régression avec
covariables spatiales:

Les données climatiques sont connues pour être de haute dimentionnalité, due au
petit nombre d’observations et au grand nombre de covariables, ce qui augmente
considérablement le risque de surajustement dans les modèles de regression. De
plus, il existe de fortes dépendances spatiales entre les covariables, ce qui crée un
problème de multicollinéarité. Par conséquent, les modèles statistiques doivent tenir
compte de ces aspects afin d’améliorer la qualité des prédictions et l’interprétation
physique du modèle. Les méthodes de régularisation sont largement étudiées dans
la littérature et se sont révélées efficaces à cette fin (Hastie et al. (2009)) . La pé-
nalité de Ridge généralisée est un outil puissant pour traiter la multicollinéarité et
la haute dimensionnalité dans les problèmes de régression. En outre, la pénalité de
Ridge généralisée permet de mettre n’importe quelle structure de covariance sur les
coefficients de régression (Wieringen (2015)), ce qui peut être avantageux dans les
applications spatiales et climatiques en particulier. Dans cette thèse, nous présen-
tons l’estimateur de Ridge généralisé comme un estimateur a posteriori d’un modèle
de variable latente dont les paramètres sont estimés avec l’algorithme Expectation-
Maximisation (EM) (Bishop and Nasrabadi (2006)). Une étude de simulation est
menée pour évaluer la performance du modèle puis il est appliqué pour estimer
la fonction de transfert entre les conditions du vent sur l’Atlantique nord et les
vagues dans le Golfe de Gascogne.
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• Exploiter les avantages des modèles de mélange dans la modélisation des données
hétérogènes pour créer un modèle de régression basé sur les types de temps pour
les vagues océaniques:

La classification du temps en différents systèmes au-delà de la classification print-
emps, été, automne et hiver s’est avérée avantageuse pour la modélisation des vari-
ables climatiques (Camus et al. (2014b), Yarnal and Frakes (1997), Peña-Angulo
et al. (2016)). Dans cette thèse, nous allons étudier l’utilisation des modèles de
mélange pour les tâches de régression basées sur les types de temps. En particulier,
nous introduisons le mélange d’experts de régression pénalisé par Ridge généralisé
et un algorithme pour estimer ses paramètres. Nous avons montré que l’utilisation
de l’algorithme EM est problématique étant donné que la distribution postérieure
de l’étape E n’a pas de forme analytique; nous avons donc proposé une approxima-
tion variationnelle (El Assaad et al., 2016) de l’étape E. Une étude de simulation
est réalisée pour évaluer la performance du modèle et la méthode est ensuite utilisée
comme méthode de régression basée sur les types de temps pour le downscaling de
la hauteur significative des vagues.

• Étude de l’utilisation de modèles d’apprentissage profond pour la modélisation de
la relation entre le vent et les vagues océaniques:

Les modèles d’apprentissage profond gagnent en popularité dans la communauté
climatique, en raison de leur capacité à construire des représentations hiérarchiques
des covariables (Goodfellow, Bengio, and Courville, 2016) et en particulier, les
réseaux de neurones convolutionnels (CNN) permettent d’apprendre des carac-
téristiques spatiales complexes à partir de données spatiales (Gu et al., 2018). Les
modèles d’apprentissage profond ont été utilisées dans de nombreuses études pour
le downscaling des variables climatiques telles que les précipitations et la tempéra-
ture. À notre connaissance, ils n’ont pas encore été utilisées pour le downscaling de
l’état de la mer ; par conséquent, dans Michel et al. (2022), nous avons développé
un modèle de downscaling pour les paramètres de l’état de la mer en utilisant
un modèle de réseau neuronal convolutif. Pour l’instant, les méthodes dévelop-
pées dans cette thèse sont basées sur les prédicteurs définis à l’aide d’une étape
de prétraitement, basée sur l’estimation de temps de voyage optimal des vagues
en utilisant la corrélation maximale entre Hs et les conditions de vent. Dans cette
thèse, nous utilisons la capacité des CNN à extraire des caractéristiques spatiales
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et des modèles Long short-term memory (LSTM) à apprendre des dépendances
temporelles à long terme afin de construire la fonction de liaison entre Hs et les
conditions de vent sans utiliser d’étape de prétraitement.
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Abstract

Ocean wave climate has a significant impact on human activities, and its understanding
is socioeconomically and environmentally important. In this thesis, we are interested in
characterizing sea state parameters such as significant wave height (Hs) using statistical
and deep learning methods. In particular, we are interested in modeling the relationship
between North Atlantic wind conditions and sea state parameters at a location in the Bay
of Biscay. Given the multidimensionality of the wind data and the time-lagged relationship
between wind conditions and waves, we first propose a general framework to select the
relevant covariates that influence the significant wave height.

After the preprocessing step, a regression model based on weather types is proposed
to model the relationship between wind and waves. The weather types are constructed
using a clustering algorithm, and then, for each weather type, a Ridge regression is fitted
between the wind conditions and the significant wave height. The model predicts Hs well;
however, it has some limitations, namely: (i) Ridge regression does not take into account
that the covariates have a spatial structure; and (ii) the weather types are constructed a
priori using a clustering algorithm, and they are not evaluated based on the prediction of
Hs. Therefore, we propose an expectation-maximization (EM) algorithm to estimate the
parameters of the generalized Ridge regression with spatial covariates. Then, to account
for (i) and (ii), we propose a mixture of generalized Ridge experts estimated using a
variational EM algorithm. This model is used as a weather-types-based regression model,
and its performance is better than that of the original model.

Finally, the last part of this thesis is devoted to developing deep learning methods for
sea state parameters prediction.

Keywords: Downscaling, Sea state, Generalized Ridge, Mixture of experts, EM algorithm, Deep
learning
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Introduction

Problem statement

There is a strong demand for high-quality ocean wave data for several marine ap-
plications (Bitner-Gregersen et al., 2016). For example, engineers need long-term time
series of wave parameters, such as significant wave height (Hs), to estimate the occur-
rence of extreme events, characterize site climatology for marine energy converters, and
design coastal and offshore structures or plan marine operations (Kerbiriou et al., 2007).
Wave observation methods, numerical models, and statistical methods are three different
approaches to this end. Although observations (such as in-situ measurements) provide reli-
able data, they are limited in space and time (Ardhuin et al., 2019). In contrast, numerical
models provide decades of wave data that can cover the entire globe. However, because
numerical models are computationally intensive, statistical and data-driven methods are
becoming increasingly popular in the climate and meteorology community (Wang and
Swail (2006), Laugel (2013), Camus et al. (2014b)).

This thesis aims to develop statistical and machine learning methods adapted to mod-
eling the relationship between wind and ocean wave parameters. In particular, we aim to
construct a link function between the wind conditions over the North Atlantic and the
significant wave height in the Bay of Biscay.

The main orientations of this thesis are:

• Providing a framework for identifying relevant wind-based covariates for wave pa-
rameter prediction.
Since ocean waves are a combination of locally generated wind waves and swells
generated and propagated from distant areas (Ardhuin and Orfila, 2018), the waves

12
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observed at a particular location depend on wind conditions over a large area within
a time window of several days (Camus et al., 2014a). Therefore, reproducing the
spatio-temporal relationship between wind and waves using statistical and machine
learning methods is not straightforward. In this thesis, we propose preprocessing
steps for identifying the relevant covariates for wave prediction.

• Studying regularization methods adapted to regression problems with spatial co-
variates.
Climate data are known to be multicollinear and high-dimensional, which requires
treatment in regression problems. Regularization methods are widely studied in
the literature and have been shown to be effective for this purpose (Hastie et
al., 2009); but do we need regularization methods suitable for regression in spatial
applications?

• Leveraging the benefits of mixture models in heterogeneous data modeling to create
a weather-types-based regression model for ocean waves.
Classifying the weather into different systems beyond the spring, summer, fall, and
winter classification has been proven to be advantageous in modeling climate vari-
ables (Camus et al. (2014b), Yarnal and Frakes (1997), Peña-Angulo et al. (2016)).
In this thesis, we will investigate the use of mixture models for weather-types-based
regression tasks.

• Investigating the use of deep learning models for modeling the relationship between
wind and ocean waves.
Deep learning models are gaining popularity in the climate community, given their
ability in building hierarchical representations of covariates (Goodfellow, Bengio,
and Courville, 2016). In particular, convolutional neural networks (CNNs) allow
for learning complex spatial features from spatial data (Gu et al., 2018). In this
thesis, we will investigate the use of deep learning methods to predict ocean wave
parameters.

Manuscript organization

This thesis is organized as follows:

Chapter 1: The opening chapter is a preliminary introduction to the problem of
downscaling and the statistical methods used for this purpose. This chapter also presents
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statistical and machine learning methods that are necessary to understand this thesis,
such as penalized linear regression, neural networks, weather types, and the Expectation-
Maximization (EM) algorithm.

Chapter 2: This chapter recalls the concept of sea state and present the methods used
for the characterization of sea states; namely: observation methods, numerical models, and
statistical models. Then the wave data used in this thesis is presented.

Chapter 3: In this chapter, we present the framework that will be used in this thesis to
identify relevant wind-based covariates for wave parameter prediction. Then, we present
a statistical model that links wind conditions over the North Atlantic and waves at a
location in the Bay of Biscay. This work contributes to the understanding of the complex
relationship between wind and waves using a data-driven approach that can be used for
weather and climate studies.

Chapter 4: In this chapter, we presents an expectation-maximization (EM) algorithm
for estimating generalized Ridge regression parameters when the covariates have a spatial
structure. A simulation study is conducted to assess the performance of the model then
it is applied to estimate the transfer function between wind conditions over the north
Atlantic and waves at the Bay of Biscay.

Chapter 5: This chapter introduces the mixture of generalized Ridge experts and a
variational EM algorithm for estimating its parameters. A simulation study is done to
assess the model’s performance and the method is then used as a weather types-based
regression method for downscaling the significant wave height.

Chapter 6: The developed methodology in the first chapter uses a preprocessing
step that defines the predictors of the statistical downscaling model. In this chapter, we
propose a deep learning approach that automatically extracts these features from data
without a preprocessing step.

Chapter 7: Finally, this chapter summarizes the contributions of this thesis and
presents some future research perspective.

Contributions

The articles related to this thesis are listed below:

• Chapter 3 is based on the article Statistical modeling of the space-time relation be-
tween wind and significant wave height, S.Obakrim, P.Ailliot, V.Monbet, N.Raillard,
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2022, https://www.essoar.org/pdfjs/10.1002/essoar.10510147.2
• Chapter 4 is based on the article EM algorithm for generalized Ridge regression

with spatial covariates, S.Obakrim, P.Ailliot, V.Monbet, N.Raillard, 2022, https:
//doi.org/10.48550/arXiv.2208.04754

• Chapter 5 is based on the article Maximum likelihood estimation of a mixture of
generalized Ridge regression, S.Obakrim, P.Ailliot, V.Monbet, N.Raillard, 2022,
doi: https://www.essoar.org/pdfjs/10.1002/essoar.10510147.2

• Chapter 6 is based on the article Deep learning for statistical downscaling of sea
states, M.Michel S.Obakrim, N.Raillard, P.Ailliot, V.Monbet, 2022, doi: https:
//ascmo.copernicus.org/articles/8/83/2022/. And the article Learning the
spatio-temporal relationship between wind and significant wave height using deep
learning, S.Obakrim, V.Monbet, N.Raillard, P.Ailliot, https://doi.org/10.48550/
arXiv.2205.13325
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Chapter 1

Statistical and Probabilistic Tools for
Downscaling

Contents
1.1 Statistical downscaling . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Downscaling as a regression problem . . . . . . . . . . . . . . . 18

1.2.1 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.2 Neural networks and deep learning . . . . . . . . . . . . . . . . 19

1.3 Weather types models . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.1 Observed weather types . . . . . . . . . . . . . . . . . . . . . . 24
1.3.2 Latent weather types . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 Expectation-maximization algorithm . . . . . . . . . . . . . . . 25
1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Note: This chapter is a preliminary introduction to the statistical and probabilistic
tools used for downscaling. In the first section, the problematic of downscaling and the
motivations behind it are presented. Then, in the second section, some statistical down-
scaling methods based on transfer functions are described. Section 3 discusses statistical
downscaling approaches based on weather types.

1.1 Statistical downscaling

Anticipating climate change due to greenhouse gas emissions is crucial for impact as-
sessments and policymakers. General circulation models (GCMs) are the primary tools
for identifying these changes and climate projection. The main drawback of these models
is their coarse spatial resolution (a grid size of about 100-500 km), which makes them
unsuitable for most impact assessment applications that require regional and/or local cli-
mate projections. For example, hydrological models often require meteorological variables
with a resolution of less than 10 km (Boé et al., 2007), and marine energy converters de-

16



1.1. Statistical downscaling

ployment needs wave data at fine-scale (Boudière et al., 2013). To address this problem,
downscaling methods derive fine-scale resolution time series of climate variables needed
for the impact study.

Downscaling approaches are classified into two approaches, dynamical and statisti-
cal. Dynamical downscaling (Xue et al., 2014) is similar to GCM models but at a much
higher resolution. Dynamical downscaling models use the results of GCMs and incor-
porate detailed descriptions of the physical processes that determine the local area to
generate realistic climate information at a much finer resolution. However, despite their
accuracy, these models require high computational resources and expertise (Hong and
Kanamitsu, 2014). An alternative approach to dynamical downscaling is statistical down-
scaling (SD), which establishes empirical relationships between large-scale atmospheric
and local climate variables.

Many statistical downscaling approaches have been proposed in the literature. (Ma-
raun et al., 2010) has classified these methods into perfect prognosis (PP), model output
statistics (MOS), and weather generators (WG), based on the type of predictors chosen
rather than the type of statistical model. PP is calibrated using observations at large
and local scales, and projections are produced using large-scale predictors simulated by
GCM. On the other hand, MOS downscaling methods construct a statistical relation-
ship between GCM outputs of the large-scale variables and the observed local variable.
MOS models generally use bias correction methods to correct GCM biases (Teutschbein
and Seibert, 2012). Finally, weather generators are statistical methods that simulate time
series of climate variables that have a distribution close to the observed variables. Fu-
ture synthetic simulations can be performed by adjusting the parameters of the weather
generator to account for future climate conditions (Keller et al., 2017).

Perfect prognosis methods are statistical models that establish empirical relationships
between observed large-scale predictors and observed local-scale predictors. These rela-
tionships are often inferred using predictors derived from numerical models when the pre-
dictors are realistically simulated, hence the name perfect prognosis. PP models fall into
three categories: Regression (Hessami et al., 2008), analog (Zorita and Von Storch, 1999),
and weather type-based (Camus et al., 2014b) methods. This study focuses on perfect
prognosis methods, especially regression and weather type-based methods.
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1.2. Downscaling as a regression problem

1.2 Downscaling as a regression problem

Suppose that we observe a sample y = (y1, ..., yn) of a local-scale variable Y and a
matrix X of global-scale variables of size n × d. In the following, we refer to y and X as
the predictand and the predictor, respectively. The problem of statistical downscaling can
be viewed as a regression problem of the form

Y = f(X) + ϵ (1.1)

where ϵ is the model’s error. The function f can be estimated either by linear models
like linear regression and generalized additive models or by non-linear models like neu-
ral networks and other machine learning algorithms. Besides the statistical method, the
quality of the downscaling model depends on the quality and the amount of data used
for the estimation and the quality of the predictor X (Camus et al., 2014a). This section
will discuss methods used to estimate the transfer function f , like linear regression and
neural networks.

1.2.1 Linear regression

Assuming that the relationship between the local-scale variable Y and the global-scale
variables is linear, linear regression can be used

Y = Xβ + ϵ (1.2)

where β is the vector in Rd of model parameters and ϵ ∼ N (0, σ2Id) is the error term with
variance σ2. The model 4.2 can be fitted by minimizing the least squares loss function,
which gives the solution

β̂ = (XT X)−1XT y. (1.3)

Least squares estimates are the best linear unbiased estimates of the parameters.
However, the variables in X might be highly correlated, some variables may be irrelevant,
or the problem is high-dimensional (d ≥ n), and the least-squares estimates have zero
bias and large variance. To address this issue, variable selection and shrinkage methods
are used. By using these methods, it is possible to increase the bias to reduce the variance
of predictions. This section will focus on shrinkage methods, especially Ridge regression.
Readers are invited to see (Hastie et al., 2009) for a review of variable selection methods
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1.2. Downscaling as a regression problem

used for regression.
Shrinkage or penalization methods impose a penalty on the size of regression coeffi-

cients by minimizing a penalized residual sum of squares

β̂ = arg min
β

{∥Xβ − y∥2
2 + λPenalty(β)} (1.4)

where λ ≥ 0 is a hyper-parameter that controls the amount of penalization. The common
choices of penalty are:

• Ridge where Penalty(β) = ∥β∥2 or other L2 based penalties such as fused and
generalized Ridge (see e.g, Wieringen (2015))

• Lasso where Penalty(β) = ∥β∥1 or other L1 based penalties (see e.g, Vidaurre,
Bielza, and Larranaga (2013) for a review)

• Best subset or L0 penalty where Penalty(β) = ∥β∥0 (Huang et al., 2018).
Unlike Ridge regression, which has an analytical solution, Lasso and best subset meth-

ods lack closed solutions given that the penalty is not differentiable. Therefore, numerical
methods are used to derive solutions. After taking the derivatives over β and equating to
zero, the solution for Ridge regression is

β̂ = (XT X + λId)−1XT y (1.5)

where Id is a d × d identity matrix with d is the number of variables. Therefore, Ridge
regression adds a constant to the diagonal of XT X before inversion. This solves the
problem when the matrix XT X is singular, often when the covariates are highly correlated.

Large-scale climate variables and GCM outputs are multidimensional and multicollinear,
and using them as a predictor in a linear regression statistical downscaling model might be
challenging. Therefore, regularization methods can be beneficial (Permatasari, Djuraidah,
and Soleh, 2017; Sungkawa, Rahayu, et al., 2019). For example, Hessami et al. (2008)
used Ridge regression to downscale precipitation and temperature in eastern Canada and
pointed out that Ridge estimates are more robust than ordinary least squares estimates.

1.2.2 Neural networks and deep learning

In the last subsection, we discussed the linear regression model, which is a simple
and usually interpretable model. However, in some applications, the assumption that the
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1.2. Downscaling as a regression problem

Figure 1.1 – Multi layer perceptron (MLP) architecture.

relationship between the predictor X and the predictand Y is linear might not be accurate.
Therefore, non-linear methods like neural networks are gaining popularity in the climate
community, for instance, for precipitation (Baño-Medina, Manzanas, and Gutiérrez, 2020),
wind (Sailor et al., 2000) and temperature downscaling (Sha et al., 2020).

The multi-layer perceptron (MLP) is a widely used artificial neural networks (ANNs).
It consists of a collection of connected neurons which form layers. The first and the last
layers are the input and the output layer, respectively, and the layers in the middle are
called hidden layers (figure 1.1). Each neuron in the hidden layer computes a real number
that corresponds to a non-linear transformation of the linear combination of the previous
layer

Z(l)
m = σ(Z(l−1)βl

m), m = 1, ..., Ml, l = 1, ..., L

Z(l) = (Z(l)
1 , Z

(l)
2 , ..., Z(l)

ml
), Z0 = X

(1.6)

where Z(l)
m is the m-th neuron of the hidden layer l, σ is the activation function, βl

m are
coefficients of the neuron m including the intercept, Ml is the number of neurons, and
L is the number of hidden layers. Common choices of the activation function are linear,
sigmoid, tanh or Rectified Linear Unit (ReLU) (see figure 1.2). For regression, the measure
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1.2. Downscaling as a regression problem

Figure 1.2 – Activation functions used in neural networks.

for goodness of fit is usually the mean squared error (MSE)

MSE(θ) =
n∑

i=1
(yi − ŷi)2 (1.7)

where θ are model parameters, often called weights. The weights of artificial neural net-
works are estimated by minimizing the cost function (4.8) and gradient descent is used
to find the minimum. Given the structure of the model, gradients can be derived easily
using the chain rule. This approach of updating gradients for neural networks is called
back-propagation (Hastie et al., 2009).

Using more than the classic three layers (input, hidden, output) in artificial neural
networks has given rise to deep learning (LeCun, Bengio, and Hinton, 2015). Recently,
deep learning models have grown significantly due to more powerful computers, large
data sets, and optimization techniques for training deeper networks. The advantage of
deep learning models lies in their ability to build hierarchical representations of inputs,
making them able to extract features from complex data structures such as images. Convo-
lutional neural networks (CNNs) are an example of deep learning methods used primarily
in computer vision. CNNs use the convolution operator in at least one of their layers.
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1.2. Downscaling as a regression problem

Figure 1.3 – Convolutional neural networks architecture. Illustration source (Gu et
al., 2019).

Convolution is a type of linear operator which is applied to inputs in order to extract
features. Feature extraction is done by passing a matrix (called filter or kernel) over the
inputs and transforming it based on the kernel values.

MLP models are usually called fully connected networks, meaning that each neuron
in each layer is connected to all neurons in the next layer. On the other hand, CNNs are
known for sharing weights thanks to the convolution operator, as all positions in the image
share the same kernels. Weight sharing allows feature extraction to be locally invariant as
kernels pass through all image positions. CNNs allow reducing the number of parameters
to learn (Yamashita et al., 2018). CNNs contain a series of connected layers (figure 1.4),
which are:

• Input layer
The input of CNNs is usually an image represented by a 3D array of dimensions
(height, width, depth).

• Convolutional layer
The convolution layer uses filters that apply the convolution operator to input
data with respect to its dimensions. Then an activation function (such as ReLU,
Sigmoid, or tanh) is applied after the convolution. The resulting output is called
the feature map.

• Pooling layer
The pooling layer is a method used to reduce the dimension of features. Common
forms of pooling are max pooling and average pooling. It should be noted that
there are no learnable parameters in the pooling layer.
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1.3. Weather types models

• Fully connected layer
After the final convolution or pooling layer, the features are transformed into a
one-dimensional vector. Then this vector is passed to fully connected layers (dense
layers).

As for MLP, CNNs are trained using back-propagation that optimizes a loss func-
tion (which depends on the task: regression or classification), where the parameters to
be learned are convolution kernels and weights in the fully connected layer. Several pa-
rameters that determine the architecture, such as the filter size, the number of filters, the
number of layers, etc., need to be selected.

Artificial neural networks are widely used in downscaling as an alternative for linear
regression because of their ability to learn complex and non-linear relationships between
large and local scale variables. For example, Cannon and Whitfield (2002) used ANNs for
downscaling streamflow conditions over British Columbia and Canada, and their method
outperforms stepwise regression. Cawley et al. (2003) used a multi-layer perceptron for
downscaling extreme precipitation in the northwest of the United Kingdom. Deep learning
approaches are also gaining increasing attention in the climate and meteorology commu-
nity (Scher, 2018; Rasp, Pritchard, and Gentine, 2018). Many deep learning models have
been proposed as statistical downscaling models. For instance, Baño-Medina, Manzanas,
and Gutiérrez (2020) proposed a CNN model for downscaling precipitation and tempera-
ture over Europe and concluded that their deep learning model outperformed linear and
generalized linear models. Sha et al. (2020) used a CNN model to downscale daily mini-
mum and maximum temperature over the western continental United States and showed
that their method outperforms simpler downscaling methods.

1.3 Weather types models

Weather typing consists of finding the leading atmospheric circulation patterns that
influence mesoscale climate. The classification of weather systems is widely used in me-
teorology and climatology, and numerous methods have associated weather types to the
climatology of precipitation (Yarnal and Frakes, 1997), temperature (Fernández-Montes
et al., 2013; Peña-Angulo et al., 2016), and ocean waves (Camus et al., 2014b). Numerous
weather typing methods have been proposed in the literature. Ailliot et al. (2015) notes
two different methods for constructing weather types; observed or latent weather states.
Observed weather types are extracted directly from predictors or other global variables
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like sea level pressure. On the other hand, a statistical model estimates latent weather
types a posteriori from local or both local and global variables. Weather types-based
statistical downscaling approaches find the leading atmospheric circulation patterns and
then fit a model between the predictor and predictand in each weather type (Maraun
et al., 2010).

1.3.1 Observed weather types

The North Atlantic Oscillation (NAO) is the classical circulation pattern commonly
used to define the weather types in the North Atlantic. NAO is defined as the first leading
mode from the empirical orthogonal function (EOF) analysis of daily or monthly geopo-
tential height anomalies at the 500 hPa (Hurrell et al., 2003). Weather types can then be
defined based on NAO indices such as NAO+, NAO- and blockings.

Observed weather types can also be found using a clustering algorithm on the predic-
tors. The most commonly used clustering algorithm is k-means, which consists of itera-
tively determining the center of each cluster and assigning the data to the cluster whose
center is closest. Boé et al. (2006) proposed a weather types-based SD model for precipita-
tion and temperature. The weather types were constructed using the k-means algorithm,
and then a resampling method was used to generate precipitation and temperature condi-
tionally to these weather types. Camus et al. (2014b) applied weather types to downscale
ocean wave parameters at two locations on the east coast of the North Atlantic. K-means
was used to construct weather regimes, and then the empirical density function of wave
parameters was estimated at each regime. Other methods like hierarchical clustering al-
gorithms (Ward Jr, 1963) can be used. For example, Scher (2018) used a hierarchical
descending clustering method for constructing weather types using sea level pressure in
Australia to statistically downscale rainfall amounts.

1.3.2 Latent weather types

Latent weather types correspond to weather states estimated a posteriori from the
data. By considering the weather types as a latent/hidden variable, an optimal clustering
that captures the local dynamics can be obtained using a model-based clustering algo-
rithm. For example, hidden Markov models (HMMs) were used for constructing weather
regimes for precipitation (Zucchini and Guttorp, 1991; Vrac, Stein, and Hayhoe, 2007).
Similarly, mixture models are model-based clustering approaches to infer latent weather
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types. (Flecher et al., 2010) used a mixture model to construct weather types for sim-
ulating multivariate daily time series of minimum and maximum temperatures, global
radiation, wind speed, and precipitation intensity.

Bellone, Hughes, and Guttorp (2000) assumed that precipitation depends on hidden
weather types, which were modeled using non-homogeneous hidden Markov models. De-
pending on the weather types, the rainfall amounts were modeled using the Gamma dis-
tribution, and the model parameters were estimated using the Expectation-maximization
(EM) algorithm. Ailliot and Monbet (2012) used a weather type-based approach to de-
scribe wind speed on the island of Ushant. A non-homogeneous hidden Markov chain
modeled the weather types, and the time series of wind speed were simulated with an
autoregressive model depending on the weather types. The method is called a Markov-
switching autoregressive model, estimated with the EM algorithm. Vrac, Hayhoe, and
Stein (2007) compared EM and hierarchical clustering weather types-based methods over
North America and found that the EM-based approach is generally more reliable than hi-
erarchical clustering in detecting variability and simulating intraseasonal observed weather
patterns. Furthermore, they pointed out that "hierarchical clustering will tend to provide
us with strong average information and a sharp distinction between the patterns as they
will have significantly different mean values. In contrast, the EM method takes the vari-
ance of the data into account to define patterns... That means that a day can belong to
more than one pattern at the same time, with different probabilities".

1.4 Expectation-maximization algorithm

One widely used method for inferring latent variables is the Expectation-Maximization
(EM) algorithm (Dempster, Laird, and Rubin, 1977a). The EM algorithm is an iterative
method that maximizes the likelihood when there is missing data. The EM algorithm alter-
nates between the expectation and maximization steps (E-step and M-step, respectively).
The E-step calculates the conditional expectation of the complete data log-likelihood
given the observations and current parameters. Then in the M-step, the parameters are
estimated by maximizing the conditional expectation of the log-likelihood calculated in
the E-step.

Suppose we have a set of observed data X and a latent variable Z and suppose that
the distribution of X depends on some set of parameters θ. The log-likelihood function is
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Figure 1.4 – Illustration of the EM algorithm, which involves computing the lower
bound and maximizing it with respect to the parameters. Illustration source (Bishop
and Nasrabadi, 2006)

given by
ln p(X; θ) = ln

∑
z

p(X, z; θ). (1.8)

Maximizing 1.8 is problematic given that the sum prevents the logarithm from acting
directly on the joint distribution of X and Z (Bishop and Nasrabadi, 2006). Consider
p(X, Z; θ) the complete log-likelihood of the complete data (X, Z), which we suppose is
simple to optimize and let q be a distribution over the latent variables Z. We have:

ln p(X; θ) =
∑

z

q(z) ln p(X|z; θ)

=
∑

z

q(z)(ln p(X, z; θ) − ln p(z|X; θ))

=
∑

z

q(z)(ln p(X, z; θ)
q(z) − ln p(z|X; θ)

q(z) )

=
∑

z

q(z) ln p(X, z; θ)
q(z) −

∑
z

q(z) ln p(z|X; θ)
q(z) .

(1.9)

Therefore (Bishop and Nasrabadi, 2006),

ln p(X; θ) = L(q, θ) + KL(q||p) (1.10)
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where

L(q, θ) =
∑

z

q(z) ln p(X, z; θ)
q(z)

KL(q||p) = −
∑

z

q(z) ln p(z|X; θ)
q(z) .

(1.11)

KL(q||p) is the Kullback-Leibler (KL) divergence (Kullback, 1997) between q(Z) and the
posterior distribution p(Z|X; θ), which satisfies KL(q||p) ≥ 0 and KL(q||p) = 0 if and
only if q(Z) = p(Z|X; θ). Therefore, L(q, θ) is a lower bound of ln p(X; θ) given that
ln p(X; θ) ≥ L(q, θ).

Given a current value of the parameters θold, the E-step maximizes the lower bound
L(q, θ) with respect to the distribution q(Z) while holding the parameters θold fixed. The
solution to this optimization problem occurs when the Kullback-Leibler divergence equals
zero, which corresponds to the case where q(Z) is equal to the posterior distribution
p(Z|X; θ). The lower bound L(q, θ) therefore becomes

L(q, θ) =
∑

z

p(z|X; θold) ln p(z, X; θ)
p(z|X; θold)

=
∑

z

p(z|X; θold) ln p(z, X; θ) −
∑

z

p(z|X; θold) ln p(z|X; θold)

= Q(θ|θold) + C

(1.12)

where

Q(θ|θold) =
∑

z

p(z|X; θold) ln p(z, X; θ)

C =
∑

z

p(z|X; θold) ln p(z|X; θold).
(1.13)

Given that the constant C is independent of θ, the E-step correspond to computing the
expectation of the complete-data log-likelihood Q(θ|θold). On the other hand, in the M-
step, the distribution q(Z) is held fixed, and the lower bound L(q, θ) is maximized with
respect to the parameters θ. This automatically increases the log-likelihood ln p(X; θ) by
at least as much as the lower bound does, given that the KL divergence is non-negative.
The M-step, therefore, corresponds to maximizing the expectation of the complete-data
log-likelihood Q(θ|θold).
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Algorithm 1: EM algorithm
Input: Observed variable X
Initialization: Initialize the parameters θ
repeat

E-step
calculate the quantity Q(θ|θold)
M-step
maximize Q(θ|θold) with respect to θ
θold = θnew

θnew = arg maxθ Q(θ|θold)
until convergence;

1.5 Conclusions

In this chapter, we recalled the problem of downscaling, especially statistical downscal-
ing. Then, we presented some statistical and data-driven approaches used for SD. Some
methods, such as linear regression, neural networks, deep learning, or weather types, were
used in the literature for downscaling precipitation and other climate variables. These
methods are presented in this chapter primarily for understating this thesis. For example,
the EM algorithm was presented in this chapter, given that it is used in the literature on
latent weather types and will be widely used in this thesis (in chapters 4 and 5).
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Sea State Characterization
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Note: This second chapter aims to recall the definitions and terminologies related to
ocean waves. The first section explains wind-wave generation. Then, the methods used to
observe the sea state are explained in the second section. The numerical wave models are
recalled in the third section, and the wave data used in this thesis are presented. Then,
section 3 presents statistical methods used for wave characterization. The last section
concludes this chapter.

2.1 Wind waves

Many different waves determine the dynamics of the ocean. Each type of ocean wave is
characterized by its wave period (figure 2.1). For instance, capillary waves have a period
of fewer than 0.1 seconds, infra gravity waves can have a period between 30 seconds and
five minutes, and ordinary tide waves have a period between 12 and 24 hours (Ardhuin
and Orfila, 2018). In this thesis, we are interested in gravity waves generated by the wind,
which typically have a period between 1 and 30 seconds.

The instantaneous local wind is necessary for forming wind waves, but it is insufficient.
Instead, wind duration and the distance over which the wind is blowing are essential for
achieving considerable wave heights (Ardhuin and Orfila, 2018). The distance over which
the wind is blowing in a constant direction is called the fetch. Waves that are generated
and observed at the fetch are called wind seas, which typically have a period between 1 and
8 seconds. When wind seas leave their generation area, they form swells. Swells generally
have a period between 8 and 30s and can travel over long distances. The sea surface is
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Figure 2.1 – Classification of ocean waves by wave period. Illustration source: (Ardhuin
and Orfila, 2018)

characterized by a superposition of different swells generated from distant areas and wind
sea generated by local wind (Ardhuin and Orfila, 2018). The statistical description of the
sea surface at a given time and location is called the sea state.

Sea state characterization is needed for many applications that require extended time
series with spatial resolution on the kilometer scale. In this study, we distinguish between
three methods for sea state characterization: observation methods, numerical models, and
statistical models.

2.2 Sea state observation

Sea state observation methods can be categorized into three categories: voluntary
observing ships (VOS), in situ measurements, and satellite observations.

• voluntary observing ships:
VOS is an international program where ships are hired to record and transmit weather
observations at sea. The VOS data are observations with the longest historical record,
dating back to 1870, making them more useful for climate and extreme studies than any
other source of wave observations (Ardhuin et al., 2019). However, VOS data are subject
to biases, are unevenly distributed across the ocean, and are inhomogeneous in temporal
sampling (Gulev et al., 2003).
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• in-situ measurements:
in-situ measurements provide high-quality measurements of sea state parameters such
as significant wave height, wave period, and wave direction using buoys and offshore
platforms. However, in-situ measurements are mostly concentrated near coastal areas,
most of which are found in Western Europe and North America.

• Satellite observations:
Satellite remote sensing of the ocean is another source of sea state data. From space,
satellites use active sensors such as altimeters to estimate significant wave height, while
other parameters such as wave period and direction can be estimated from synthetic aper-
ture radar images (Timmermans et al., 2020). Starting in 1985 with GEOSAT (GEOdetic
SATellite), the satellites provide global and quasi-continuous coverage with fine spatial
resolution. However, the temporal resolution of the waves measurements at a given point
is low, given that a single satellite measures waves with a time step that depends on its
orbit.

2.3 Numerical models

Sea state observation techniques do not provide a complete knowledge of the sea state
in space and time (Ardhuin et al., 2019). Numerical wave models are an alternative source
of wave data that makes it possible to study waves with a high spatial and temporal
resolution.

The ocean surface is characterized by waves of different periods and directions of
propagation. This phenomenon is known as the principle of superposition. Therefore,
numerical models describe the sea state using a two-dimensional spectrum. The first
spectral numerical wave model was developed by the French Weather Service in 1956
(Gelci, Cazalé, and Vassal, 1957). From this point on, numerical models have undergone
numerous improvements regarding mathematical models used for simulation, physical
representation of the wave phenomena, validation methods, and computation and storage
capacities (Laugel, 2013).

Numerical wave models are based on the energy balance equation (Thomas and Dwarak-
ish, 2015)

∂E(f, x, t, θ)
∂t

= In + Nl + Dis (2.1)

where E(f, x, t, θ) is the two-dimensional spectrum that depends on the frequency f ,
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direction of propagation θ, geographic coordinates x and time t. In represents the wind
energy influencing the waves, Nl accounts for non-linear wave interactions and Dis for
dissipation. The first-generation wave models did not consider non-linear wave interactions
and dissipation. The second-generation wave models are developed from the wind fields
and account for the non-linear interactions. Finally, the third-generation wave models
have improved the process of modeling the physics relevant for the characterization of the
sea state in two dimensions (frequency and direction).

The sea state is generally described by synthetic statistics derived based on the mo-
ments mn(x, t) of the spectrum E(f, x, t, θ) given by

mn(x, t) =
∫ ∞

0

∫ 2π

0
fnE(f, x, t, θ)dfdθ. (2.2)

In this study, we are interested in the significant wave height (Hs) parameter defined as

Hs(x, t) = 4
√

m0(x, t) (2.3)

Numerical wave models are used for either forecasting (Remya et al., 2022), hindcasting
(Boudière et al., 2013), or downscaling (Hemer, Katzfey, and Trenham, 2013). Hindcasting
is the process of reconstructing past sea state conditions. Numerical downscaling methods
are used to derive fine resolution long-term future projections of ocean wave parameters
by numerically downscale coarse predictions from global ocean-atmospheric models to
local scales.

The numerical wave data used in this study is the Homere hindcast database (Boudière
et al., 2013) developed at IFREMER (French National Institute for Ocean Science).
Homere is based on the third-generation wave model WAVEWATCH III on a destruc-
tured grid covering the English Channel and Bay of Biscay (figure 2.2) area from 1994
to 2021. The wind forcing considered is the CFSR (Climate Forecast System Reanalysis)
wind.

2.4 Statistical models

Statistical methods can be an alternative to numerical methods, given that they are
computationally inexpensive. As for numerical methods, sea state characterization statis-
tical methods can be used for three purposes: hindcasting, forecasting, or downscaling. For
hindcasting, statistical methods such as multiple linear regression (Campos et al., 2018)
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Figure 2.2 – Homere nodes in the English Channel and Bay of Biscay. Figure source:
https://marc.ifremer.fr/produits/rejeu_d_etats_de_mer_homere.

are used to reconstruct past wave conditions. For forecasting, time series forecasting meth-
ods, such as autoregressive (AR) and autoregressive moving average methods (ARMA)
(Ge and Kerrigan, 2016; Soares, Ferreira, and Cunha, 1996; Agrawal and Deo, 2002), are
usually used to predict short-term future sea state parameters. Machine and deep learning
methods, such as artificial neural networks, are also used to forecast sea state parameters
(Deo and Naidu, 1998; Duan et al., 2016). On the other hand, sea state statistical down-
scaling methods refer to statistical methods that use large-scale variables to characterize
a local-scale sea state parameter.

In chapter 2, we reviewed statistical downscaling methods used in the literature. In
this chapter, we focus on SD methods used for ocean waves. SD models of ocean waves
aim to statistically construct sea state parameters using large-scale conditions (predictor)
to study historical and future trends of local-scale wave conditions (predictand). The
wind mainly generates waves; however, sea level pressure (SLP) is usually used as a large-
scale predictor in SD, given that the isobars well represent the wind direction, and wind
speed is proportional to the pressure gradient (Camus et al., 2014a). For instance, Wang,
Feng, and Swail (2012) used a multivariate regression model to reconstruct significant
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wave height trends in the 20th century using sea level pressure as a predictor. Wang and
Swail (2006) reconstructed historical and future mean seasonal Hs in the North Atlantic
and North Pacific using linear regression with a redundancy analysis between SLP and Hs.
The reason why most sea state SD studies (Camus et al. (2014a), Camus et al. (2014b),
Cagigal et al. (2020), Laugel (2013)) use SLP instead of wind fields is that sea wind is not
as well represented in GCMs as SLP. However, Wang, Swail, and Cox (2010) pointed out
that "it is sufficient to use the wind-based predictor alone to represent the relationship
between atmospheric conditions and Hs. However, the wind-based predictor values must
be standardized to diminish the effects of both model climate and variability biases".
Therefore, in this study, we focus on modeling the relationship between wind conditions
and Hs.

As stated in section 2.1, the sea is characterized by a superposition of different swells
generated from distant areas and wind sea generated by local wind. Therefore, to model
the relationship between wind and waves, both local and global wind conditions need to
be considered. Moreover, swells generated from distant areas might take several days to
reach the target point. Consequently, waves at the target point depend on wind conditions
at distant areas with temporal lag that can be days; therefore, preprocessing methods
are needed (Camus et al. (2014a), Casas-Prat, Wang, and Sierra (2014)). Furthermore,
the wind data consists of two components (zonal and meridional); therefore, statistical
modeling of the relationship between wind and waves is challenging given the amount of
data to be considered.

2.5 Conclusions

In this chapter, different methods for describing the sea state were discussed. First, sea
state observation techniques were presented, and as Ardhuin et al. (2019) pointed out, ob-
servation techniques cannot meet engineers’ requirements in the near future because they
are limited in space and time. Two alternatives were then discussed, namely numerical
and statistical models. Numerical models are generally more accurate and provide multi-
variate sea state parameters (significant wave height, period, and direction), but they are
more computationally intensive than statistical models. Moreover, statistical models can
well reproduce the observed (Wang, Swail, and Cox, 2010) and future (Laugel et al., 2014)
wave climate.

It should be noted that the three approaches complement each other and that statisti-
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cal models cannot currently replace numerical models. For example, observations cannot
be used for all climate studies, but they are essential to calibrate numerical and statisti-
cal hindcasting models. Furthermore, to the best of our knowledge, statistical hindcast-
ing/forecasting/downscaling methods cannot be used at locations in the ocean where no
(observed or hindcasted) wave data are available. Therefore, numerical models are pow-
erful tools that provide wave data with high spatial and temporal resolution from which
statistical methods can learn.

In the following chapters, we focus on modeling the relationship between wind condi-
tions over the North Atlantic and significant wave height at a location in the Bay of Biscay.
The proposed methods are statistical downscaling models that link wind conditions and
waves. In reality, depending on the availability of wind data, the proposed methods can
also be used for hindcasting or forecasting applications; however, we have chosen to refer
to the proposed methods as statistical downscaling models.
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3.1. Introduction

3.1 Introduction

High-quality wave data is essential for many marine applications, such as designing
coastal and offshore structures and planning marine operations. In the previous chapter,
we discussed different methods for sea state characterization, namely, observations, nu-
merical, and statistical methods. Traditional in situ measurements obtained from buoys
provide the most reliable data for sea state parameters; however, they are only available
for the last decades and are limited spatially. Numerical models (Hasselmann et al., 1973;
Tolman et al., 2009) provide deterministic simulations of spectral wave models from which
sea state parameters are extracted. They are a valuable data source and provide decades
of records, although they are computationally expensive and sensitive to the quality of
forcing fields (wind, currents, and water levels) (Roland and Ardhuin, 2014). Statistical
models constitute an alternative to numerical models for constructing the wind-waves
relationship. These models are not computationally expensive, and once the statistical re-
lationship is estimated, future predictions can be made by assuming that this relationship
will stay the same in the future.

Various studies have compared SD and numerical models for ocean wave parameters
and other climate variables. Wang, Swail, and Cox (2010) compared these methods in
terms of climatological characteristics of the present period using ERA-40 wave data.
They found that the statistical models are better at reproducing the observed climate
than the dynamical models. Laugel et al. (2014) analyzed these methods for climate
projections, and their study shows that statistical downscaling approaches can reproduce
the present climatology and future projections. In addition, due to their low computational
complexity, SD models allow for the estimation of uncertainties associated with the choice
of general circulation models (GCMs) or climate scenarios. However, there are still some
challenges in modeling the relationship between wind and sea state parameters using
statistical methods, namely:

• Waves depend on both local and global wind conditions
The surface wind generates wind waves. However, it is not only the local wind that
defines local waves, and wind from distant regions generates waves that may reach the
target point. Therefore, SD models have to consider both wind sea and swells, which is
challenging in swell-dominated areas (Hemer et al., 2012). To address this issue, we use a
local and a global predictor to account for wind sea and swells, respectively (Casas-Prat,
Wang, and Sierra, 2014; Camus et al., 2014a).
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• Wind conditions are multicollinear and multidimensional
As discussed in the first chapter, the large-scale wind variables are multicollinear; thus,
regularization methods such as ridge regression can be beneficial. Furthermore, the wind
conditions are characterized by two components (zonal and meridional), which might be
challenging to consider directly in a statistical model. Dimensionality reduction methods
such as principal component analysis are typically used as a preprocessing step to reduce
the dimension of the large-scale variables (Laugel et al., 2014; Camus et al., 2014a; Camus
et al., 2014b). To address the issue of multidimensionality in this study, we introduce the
wind projection, which consists of retaining only the fraction of wind blowing towards the
target point. The proposed preprocessing step allows using only one variable for each grid
point, reducing the dimension of the predictor by half.

• The relationship between wind and waves is not instantaneous
Wind from distant regions generates waves that may take days to reach the target point.
Thus, the relationship between wind and waves is not instantaneous. Therefore, it is nec-
essary to consider lagged wind conditions to understand the wave dynamics at a particular
target location. The optimal lag at each grid point is interpreted as the travel time required
for the waves to reach the target point (Camus et al., 2014a). The ESTELA (Evaluation
of Source and Travel-time of wave Energy reaching a Local Area) (Pérez et al., 2014) is
a method that defines the wave generation area and wave travel time at any ocean loca-
tion worldwide. Using its spectral information, the method selects the fraction of energy
that travels to the target point from selected source points. The ESTELA method was
used in various studies to define the temporal coverage of predictors used in SD (Camus
et al. (2014a), Hegermiller et al. (2017)). The present study uses a data-driven approach
to define the wave generation area. It is based on estimating waves’ travel time from each
source to the target point (optimal lag) using the maximum correlation between the sig-
nificant wave height and wind conditions. Therefore, this method is not computationally
expensive, and only wind and Hs data at the target point are needed.

This study provides a framework for the wind to waves relationship using an entirely
statistical approach. Based on weather types, the statistical downscaling model links the
space-time wind fields over the North-Atlantic (predictors) and the significant wave height
(predictand) at a single site located in the Bay of Biscay off the French coast. The weather
types are constructed using a regression-guided clustering algorithm, and then a linear
regression model is fitted between the wind conditions and Hs at each weather type. The
developed methodology considers wind sea and swells and provides additional information
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about the spatiotemporal relationship between wind and waves. The main contribution
of this work, on the one hand, is that it provides an entirely data-driven approach that
estimates the travel time of waves from any source point to a target point, which is
essential for the definition of predictors. On the other hand, it proposes a regression-
guided clustering algorithm that accounts for both global and local climate to construct
weather types.

This chapter is structured as follows. After describing the data in Section 2, the local
predictors are defined in Section 3. Then, Section 4 describes the construction of the
global predictors. Next, Section 5 presents the statistical model that combines the local
and global predictors. Then, Section 6 presents the results of the SD model. Finally, the
study is concluded in Section 7.

3.2 Data

The atmospheric data used in this work to construct predictors is extracted from
the Climate Forecast System Reanalysis (CFSR) (Saha et al., 2010a). CFSR is a global
reanalysis developed at the National Centers for Environmental Prediction (NCEP) that
covers the period from 1979 to the present with hourly time step and spatial resolution of
0.5°by 0.5°. Extracted data consists of hourly 10m zonal and meridional wind components
in the North Atlantic (figure 3.1).

The historical wave data used in this work is the sea-state hindcast database HOMERE
(Boudière et al., 2013) based on the WAVEWATCH III model forced by CFSR wind.
The database covers the English Channel and the Bay of Biscay with unstructured com-
putational mesh. It contains 37 parameters and the frequency spectra on high spatial
resolution, ranging from 200 m to 10 km, with a one-hour time step.

The point of interest is located in the Bay of Biscay (figure 3.1) at (45.2°N, 1.6°W).
Waves at this point are related to both large-scale conditions in the North Atlantic (swells)
and local conditions (wind seas) (Charles et al., 2012b). Swell conditions are generally
dominant; however, the highest Hs are generated by strong local storms. To validate and
interpret the results of the SD method, we consider the energy spectral partitioning, which
identifies different wave systems. Homere uses the watershed algorithm (Tracy et al., 2007)
to separate wind sea and different swells.

The temporal resolution of both predictors and predictand is upscaled from hourly to
3 hourly resolutions to facilitate the analysis. Both datasets comprise a common period
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Figure 3.1 – CFSR zonal component in the considered area in 1994-01-01 00h:00. The
black point represents the point of interest.

of 23 years, from 1994 to 2016.

3.3 Local predictor

Wind speed, duration, and the fetch impact the characteristics of the wind sea (Ard-
huin and Orfila, 2018). Hereafter, at time t the variables U(t), F (t), U(t−1), and F (t−1)
are considered to construct the local predictors. U(t) is the wind speed at the target point,
and F (t) is the fetch length at time t, calculated as the minimum of the distance from the
target point to shore in the direction from which the wind is blowing and 500km. Lagged
wind conditions are considered because they provide information about the temporal
variability of the wind and, thus, the duration of wind conditions.

To investigate the capability of local variables to explain Hs, the polynomial regression
model

Hs(t) = β
(ℓ)
0 + X(ℓ)(t)β(ℓ) + ϵ(ℓ)(t) (3.1)

is considered. Where X(ℓ) is the local predictor:

X(ℓ)(t) = {U(t), U2(t), U3(t), U2(t)F (t), U(t − 1), U2(t − 1), U3(t − 1), U2(t − 1)F (t − 1)}
(3.2)
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β
(ℓ)
0 and β(ℓ) are model coefficients, and ϵ(ℓ)(t) is the model error. Model 3.1 contains poly-

nomial terms and interactions between local variables to consider nonlinear relationships
between Hs and predictors.

The model is fitted using data from 1994 to 2011 and is assessed in a validation period
from 2014 to 2016 using the Pearson correlation r, root mean square error (RMSE), and
bias:

r =
∑n

t=1(Ĥs(t) − Ĥs)(Hs(t) − Hs)
σĤs

σHs

(3.3)

RMSE =

√∑n
t=1(Ĥs(t) − Hs(t))2

n
(3.4)

BIAS =
∑n

t=1(Ĥs(t) − Hs(t))
n

(3.5)

where Ĥs(t) is the predicted Hs at time t, Ĥs and Hs are the mean of observed and pre-
dicted Hs, respectively; σĤs

and σHs are the standard deviation of predicted and observed
Hs, respectively; and n is the number of observations.

Results of the local model 3.1 are shown in Figure 3.2. The model poorly predicts small
values of Hs, which is expected given that local predictors do not consider swell systems
propagated from distant areas. In contrast, the model is better at predicting large values
of Hs, which can be explained by the fact that extremes are mainly generated by local
wind.

3.4 Global predictor

In order to take swells into account, a global predictor which describes wind conditions
over the North Atlantic has to be considered. Wind data has two components, the zonal
and meridional components. Each of the two components in space and time carries more
or less information about the waves observed at the target point at a given date. However,
using all of them as inputs to a statistical model is computationally challenging, given
the high dimensionality of the data, and may lead to hardly interpretable results due
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Figure 3.2 – Results of the local model 3.1 in the validation and calibration period.

Figure 3.3 – Wind projection representation. The original wind vector V at each source
point is projected into the component B defined by the bearing b of the target point
from the source point in a great circle path (black dashed line). The great circle is drawn
arbitrarily to explain the method and may not be the actual circle path.
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3.4. Global predictor

to the strong correlation between wind conditions at closed locations in space and time.
This section defines the global predictor related to the spatiotemporal domain of the wave
generation area.

3.4.1 Spatial coverage

Following Pérez et al. (2014), the spatial coverage of the global predictor is based
on the assumption that deep-water waves travel along a great circle path. Therefore, the
wave generation area is limited by neglecting grid points whose paths are blocked by land.
Furthermore, small islands are not taken into consideration.

3.4.2 Wind projection

To reduce the dimension of the atmospheric variables and to create a more inter-
pretable model, wind components at each grid point are projected into the bearing of the
target point in a great circle path (Figure 3.3) using the equation:

W = U cos2s
(1

2(b − θ)
)

(3.6)

where W is the projected wind, U is the wind speed, s the spread parameter (Young, 1999),
b the great circle bearing, and θ is the wind direction.

The parameter s controls the amount of wind energy spread in a particular direction;
the greater s, the less the wind energy spread is. The spread parameter s should not be
too large to avoid losing too much information, especially for grid points near the target
point; hereafter, s is chosen to be equal to 1. Methods to select s for each source point
were tested; however, this does not improve numerical results (not shown). Figure 3.4
illustrates the mean of the projected wind in the four seasons. Strong winds that blow
towards the direction to the target point are observed in winter and mostly in the area
around 50°N, 40°W.

3.4.3 Temporal coverage

According to the dispersion relation, the group velocity of waves is expressed as

Cg = gT

4π
(3.7)
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3.4. Global predictor

Figure 3.4 – Mean projected wind in the winter (DJF), spring(MAM), summer (JJA),
and autumn (SNO).
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3.4. Global predictor

Figure 3.5 – Projected wind at point located in (45.5°N, 3.5°W) versus Hs and the esti-
mated curve line using the model Hs = aW 2 + b

where g is the gravitational velocity and T is the period. For example, swells whose period
is around 15s have a group velocity of 11.73m/s, traveling 50% faster than a 10s ocean
wave, and it takes them about five days to cross the Atlantic from Cape Hatteras to the
Bay of Biscay (Ardhuin and Orfila, 2018). Therefore, waves generated at a location j and
time t might take time tj to arrive at the target point.

At each location j and time t, the predictor is defined as the mean of the squared
lagged projected wind in a time window so that

X
(g)
j (t; tj, αj) = 1

2αj+1
∑t−tj+αj

i=t−tj−αj
W 2

j (i), (3.8)
tj + αj + 1 ≤ t ≤ tj − αj + n

where αj controls the length of the time window, tj is the mean travel time of waves, Wj

is the projected wind at location j, and n the total number of observations. Henceforth,
the parameter αj is called the temporal width even though the length of the temporal
wind is equal to 2αj + 1. Remark that the relationship between the projected wind and
Hs seems to be a square relationship (Figure 3.5) so that in equation (3.8) the squared
projected wind is considered.

The parameters tj and αj may be estimated jointly for all locations by minimizing an
objective function (least squares, for example); however, such an approach would be non-
polynomial and computationally unfeasible due to the combinatorial explosion. Therefore,
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Figure 3.6 – Estimated travel time of waves and the temporal width using equation 3.9

tj and αj are estimated independently for each location using the maximum Pearson
correlation between the global predictor and Hs so that

(t̂j, α̂j) = arg max
tj ,αj

(
corr(Hs, X

(g)
j (tj, αj))

)
. (3.9)

Figure 3.6 shows the estimated travel time of waves and the temporal width. Globally,
the two parameters are spatially smooth and interpretable, and as expected, the two
parameters increase as the distance between the source and target point increases. Waves
generated at a source point situated at (37.5°N, 70.5°W), which is 5642km far from
the target point, can take on average 180h (about seven and half days) to reach the
target point. These waves travel at a velocity of 8.7m/s; thus, according to the dispersion
equation (3.7), they have an average period of 11.1s. On the one hand, considering t̂j + α̂j

as the maximum travel time of the waves, at the same source point, waves can also take
225h (about nine days) to reach the target point, with a velocity of 7m/s and a period of
9s. On the other hand, the minimum wave travel time (t̂j − α̂j) at the same point is 135h

(about five and a half days) with a velocity of 11.6m/s and a period of 14.8s. Therefore,
tj − αj and tj + αj can be interpreted as the propagation time of long-period waves and
short-period waves, respectively.

Regions below 35°N seem to have incoherent values of travel time, which may be
explained by the fact that waves generated by the wind in these areas have negligible
contributions to the Hs observed at the target location.
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3.5. Wind-waves model

3.5 Wind-waves model

3.5.1 Linear regression model

After defining the predictors, this section presents the statistical downscaling model.
Firstly, the linear model that combines the local and the global predictor is considered

Hs(t) = X(ℓ)(t)β(ℓ) + X(g)(t)β(g) + ϵ(t) (3.10)

where β(ℓ) and β(g) are local coefficients and global coefficients, respectively. Here β(ℓ)

is not necessarily the same as in equation (3.1). X
(ℓ)
t is the local predictor defined in

equation (3.2), X
(g)
t the global predictor defined in equation (3.8), and ϵ(t) is the model

error.

3.5.2 Model fitting

Model (3.10) can be fitted using the least squares method; given by

(β̂) = (XT X)−1XT Hs (3.11)

where X = (X(ℓ), X(g)) and β̂ = (β̂(ℓ)T , β̂(g)T )T . The least-squares estimates in equa-
tion (3.11) are the best linear unbiased estimates of the parameters. However, since the
global predictor is high dimensional (a 67108 × 5651 matrix), and its variables are highly
correlated, the matrix XT X may be ill-conditioned. Thus, the least-squares estimates be-
come highly sensitive to Hs variations. To address this issue, ridge regression (Hoerl and
Kennard, 1970) minimizes the penalized residual sum of squares

arg min
β

∥∥∥X(g)β(ℓ) + X(g)β(g) − Hs

∥∥∥2
+ λ∥β(g)∥2 (3.12)

where λ ≥ 0 is the regularization parameter. Remark that the regularization is not
applied to the parameters associated with the local predictor. The parameter λ allows to
take into consideration the bias-variance trade-off.

3.5.3 Regression-guided clustering

Using the global predictor to construct weather types leads to clusters that only ac-
count for the global atmospheric circulation and not for the local environment (not shown).
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3.5. Wind-waves model

This subsection describes a regression-guided clustering method that considers both the
global predictor and the predictand.

After estimating the coefficients, the contribution of a source point j at time t to Hs

at the target point, is defined as X
(g)
j (t)β̂(g)

j . The matrix of contributions Xβg is defined
as

Xβ(g)(t, j) = X
(g)
j (t)β̂(g)

j . (3.13)

We expect swell systems coming from contributions from distant areas, whereas wind
sea will be associated with local contributions. A natural question that arises is whether
we can identify these wave systems by using Xβ(g) . Subsequently, the k-means clustering
algorithm is used on Xβ̂(g) to obtain the weather types (WTs). Finally, the link function
can be constructed by fitting each class’s linear regression model (3.10). Therefore, Model
(3.10) now becomes

Hs(t) = X(ℓ)(t)β(ℓ)
i + X(g)(t)β(g)

i + ϵi(t), ∀t ∈ Ii i = 1, ..., K (3.14)

where β
(ℓ)
i and β

(g)
i are local and global coefficients for the class i. Ii is all time indices

that are in class i, and K is the total number of WTs.

3.5.4 The case of two weather types

The hyper-parameters of the model (3.14) are λ, the number of WTs K, and the K

regularization parameters λks associated with the different weather types (given that, at
each weather type, ridge regression is fitted). Given the number of hyper-parameters, it
is not computationally feasible to explore all possible combinations and optimize them
simultaneously using cross-validation, as usually done in the statistical literature. Instead,
we propose the simpler approach described below. At first, we select λ considering only
two WTs, then the number of WT for this fixed value of λ, and finally λks are fixed for
all weather types.

The most usual approach to choosing the regularization parameter λ of the ridge re-
gression consists in performing cross-validation and taking the value of λ, which minimizes
a prediction error, typically the RMSE. In the current work, we also intend to obtain a
physically interpretable model in addition to forecast accuracy. Interpretability will be
quantified as follows. First, the k-means clustering algorithm is used on the contributions
Xβ(g) to identify the leading two clusters. The resulting clusters are then compared with
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3.5. Wind-waves model

Figure 3.7 – Results of cross-validation: RMSE (green line) and classification accuracy
(purple line) versus the logarithm of λ. The red and blue dots correspond to the minimum
RMSE and maximum accuracy, respectively. The interval for each criterion is defined as
the its minimum and maximum.

the sea state classification obtained using the energy spectrum partitioning in Homere.
The sea states chosen for the comparison are wind sea, and swell, and the agreement
between the two clusterings is measured using the classification accuracy

accuracy = correct predictions/ sample size (3.15)

Figure 3.7 shows that the value of λ that gives the optimal classification accuracy is
greater than that of the optimal RMSE. Figure 3.8 shows the estimated global coeffi-
cients β(g) using the two different optimal values of the regularization parameter λ. The
coefficients obtained using λ that gives the maximum classification accuracy are smoother
than the ones obtained when minimizing the RMSE and generally decrease as the distance
between the source and target points increases. The optimal λ based on classification is
chosen in this study, given that it gives interpretable coefficients, and considering that
RMSE does not increase a lot when using λ that gives the maximum accuracy (0.32m to
0.35m).

Figure 3.9 shows the times series of Hs and the corresponding empirical density with
respect to the clusters in the calibration period. The most probable cluster is the first one
(82%), which corresponds mostly to swells, and the second cluster corresponds to wind
seas (Table 6.1). To understand the difference between the two clusters, we define the
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Figure 3.8 – Estimated global coefficients β(g) using ridge regression with λ that gives the
maximum accuracy (left panel) and minimum RMSE (right panel).

Figure 3.9 – Time series of Hs depending on the clusters (left panel) and empirical density
(right panel) in the calibration period.

classes 1 2
swell 47074 6388

wind sea 974 3904

Table 3.1 – Contingency table of k-means clusters (1 and 2) and Homere sea states classes
(swell and sea state) in the calibration period.
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3.6. Results

Figure 3.10 – Mean of Xβ(g) minus the global mean for the cluster 1 (left panel) and
cluster 2 (right panel).

anomaly of Xβ(g) in each cluster 1 and 2 as xβ(g)(1) and xβ(g)(2), respectively

xβ(g)(1) = X̄β(g)(1) − X̄β(g) (3.16)
xβ(g)(2) = X̄β(g)(2) − X̄β(g)

where X̄β(g)(1) and X̄β(g)(2) are the mean of Xβ(g) at cluster 1 and 2, respectively and
X̄β(g) is the global mean of Xβ(g) . For the first cluster, the local wind around the target
point contributes less than the global mean in Hs (Figure 3.10). Grid points far from the
target point contribute more, which is expected when swell systems dominate. In contrast,
in the second cluster, generally associated with wind sea, local wind contributes more than
the global mean in Hs.

3.6 Results

The clusters obtained in the last section seem to be interpretable and correspond to
sea state classes of Homere (accuracy = 0.87). However, the number of sea states K may
be greater than 2; therefore, a validation analysis is done to select the optimal number of
WTs. To do that, for each number of WTs (from 1 to 8), model (3.14) is fitted using the
calibration period and evaluated using the validation period. Figure 3.11 illustrates the
RMSE of Hs as a function of the number of WTs. The optimal number of WTs is 5, and
the RMSE decreases significantly from 1 to 5 WTs.

Figure 3.12 shows the time series of Hs and its empirical density as a function of
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3.6. Results

Figure 3.11 – RMSE versus the number of WTs for the validation period.

the five WTs. The resulting WTs depend on the value of Hs; for example, the first WT
corresponds to small values of Hs, and the fifth corresponds to extremes. In increasing
order, the other clusters (2 to 4) correspond to intermediate values Hs. The bottom right
panel of Figure 3.12 shows the frequency of occurrence of WTs. The first WT is the most
likely, and the fifth one has the smallest probability of occurrence. The transition matrix
in the bottom left panel shows that the self-transition probabilities are greater than 0.9
for all WTs, meaning that the WTs are consistent in time. Remark that some transition
probabilities are precisely zero; for example, the transition probabilities from the 1st to
the 4th and the 5th WT are equal to zero. This means that the probability of being in
extreme sea states after being in the first WT is zero.

Figure 3.13 shows the mean of Xβ(g) at each WT where

xβg(i) = X̄β(g)(i) − X̄β(g) , i = 1, .., 5 (3.17)

where X̄β(g)(i) is the mean of Xβ(g) at the ith WT and X̄β(g) is the global mean of
Xβ(g) . For the 1st and 2nd WT, contributions of source points far from the target points
are greater than the global mean. Therefore, these two classes correspond to swells. In the
3th WT, the local wind contributes more, with moderate winds, in the variance of Hs.
The fourth one can be considered a composition of wind sea and swells given that local
and far source points contribute to the variance of Hs. Finally, the 5th WT corresponds
to the wind sea, where the local source points contribute with the highest intensities of
winds creating the highest waves.
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3.6. Results

Figure 3.12 – Top left panel: time series of Hs as a function of WTs. Top right: empirical
density of Hs as a function of WTs. Bottom left: transition matrix of WTs. Bottom right:
Frequency of occurrence of WTs. All figures correspond to the calibration period.
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3.6. Results

Figure 3.13 – Mean of Xβ(g) minus the global mean for the five WTs.
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3.6. Results

Figure 3.14 – Monthly and annual (in December-January-February) frequency occurrence
of WTs in the calibration period. The continuous black line corresponds to the mean
annual winter (DJF) time series of the NAO (North Atlantic Oscillation) index, and the
horizontal black line indicates when NAO is less or greater than zero. When the continuous
black line is below the horizontal line, the NAO is less than zero.

The monthly variability of WTs is shown in the left panel of figure 3.14. As expected,
the 5th and 4th WTs occur primarily in winter (December-January-February), and the
1st WT, which corresponds mainly to swells, often occurs during summer. The long-term
winter variability of frequency of occurrence of WTs is shown in the right panel of figure
3.14. The continuous black line corresponds to the mean annual winter of NAO index
(Barnston and Livezey, 1987) from 1994 to 2016. The horizontal black line indicates when
NAO is greater or less than zero. The long-term variability of weather types seems to be
related to the NAO index. For example, the winter of 2010 experienced fewer extreme
waves, and the NAO index was less than zero. In contrast, the most extreme sea states
were observed in 2014, where the NAO was greater than zero.

Figure 3.15 and 3.16 show results of model (3.14). The model performs well in pre-
dicting Hs. The RMSE in the validation period is 0.272m for an Hs of mean 1.97m and
standard deviation of 1.1m . Comparing these results with those of the local model in
Figure 3.2, it appears that considering the global predictor is essential to explain the vari-
ability of Hs. Figure 3.17 illustrates the performance of the downscaling model at each
weather type in the validation period. It can be seen that the model in WT 1, 2, and 4
explains less the variability of Hs compared with the model in WT 3 and 5. This can be
explained by the fact that in these WTs, the model has to consider source points that
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3.6. Results

Figure 3.15 – Observed versus predicted values of Hs using the model (3.14) in the vali-
dation and calibration period.

Figure 3.16 – Time series of observed and predicted values of Hs in the validation period.
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Figure 3.17 – Left panel: histogram of observed versus predicted Hs at each WT. Right
panel: scatter plot of observed versus predicted Hs. Both in the validation period.
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cover the swell generation, as seen in Figure 3.13. In contrast, in WT 4 and 5, the model
considers mainly local source points as waves are mainly generated by local wind (Figure
3.13).

3.7 Conclusions

This study proposes a method that describes the spatiotemporal relationship between
wind and the significant wave height (Hs). At first, the local model, based on a linear
regression between the local wind and Hs, is constructed. However, the model poorly
explains the variability of Hs given that the model does not consider the swell generation.
Therefore, the global predictor was defined to account for both wind sea and swells. The
global predictor is based on the projected wind, which is the wind that goes from source
points to the target point in a great circle path. After wind projection, the spatial coverage
of the predictor is defined based on the assumption that waves travel along a great circle
path. Then its temporal coverage is defined based on two parameters, the travel time of
waves and the temporal width. Both parameters exhibit spatial structure and increase as
the distance between the source and target points increases.

The statistical downscaling model combines the local and global predictors to pre-
dict Hs using a weather-types-based model. The weather types were constructed using
a regression-guided clustering algorithm. The comparison between the Homere sea state
classes (wind sea and swell) and two clusters obtained by the clustering algorithm shows a
significant resemblance. The predictive model consists of fitting ridge regression between
the predictors and the predictand on each WT, and the validation analysis shows that
the optimal number of WTs is five. The obtained weather types are interpretable and
correspond to different wave systems, and the results of the downscaling model show its
skill in predicting Hs. This statistical downscaling method can be extended to other lo-
cations. However, for close locations, it will be redundant to define the global predictor
and weather types for each location. Therefore, only the local predictor may be adapted
to each location.

The methodology presented in this chapter is based on observed weather types con-
structed using a clustering algorithm. As discussed in chapter 1, weather types can also
be considered as latent variables and can be estimated using the EM (Expectation-
Maximization) algorithm, where variables are evaluated based on the prediction of Hs,
which can lead to optimal estimations.
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Chapter 4

EM Algorithm for Generalized Ridge
Regression with Spatial Covariates
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Note: The results of this chapter are submitted for publication as S.Obakrim, P.Ailliot,
V.Monbet, and N.Raillard, EM algorithm for generalized Ridge regression with spatial
covariates 1.

4.1 Preface

In the previous chapter, we used Ridge regression to construct the link function be-
tween the North Atlantic wind conditions and Hs in the Bay of Biscay. It is clear that the

1. The preprint can be found in https://doi.org/10.48550/arXiv.2208.04754
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4.2. Abstract

use of Ridge regression allows us to deal with multicollinearity and improve our downscal-
ing model’s predictive ability. However, the regression model used in the previous chapter
does not incorporate the fact that the covariates (wind conditions) exhibit a spatial struc-
ture. In this case, assuming that the regression coefficients also have a spatial structure
is appropriate. This is usually done with the generalized Ridge (Wieringen, 2015) or the
generalized LASSO (Tibshirani and Taylor, 2011), which allows incorporating any prior
on the structure of the regression coefficients. However, these methods need the selection
of the regularization hyper-parameters, which is usually done with cross-validation. In this
chapter, we propose an Expectation-Maximization algorithm to estimate the parameters
of generalized Ridge, focusing on spatial applications. The proposed method is applied to
the problem of downscaling the significant wave height at the Bay of Biscay.

4.2 Abstract

The generalized Ridge penalty is a powerful tool for dealing with overfitting and for
high-dimensional regressions. The generalized Ridge regression can be derived as the mean
of a posterior distribution with a Normal prior and a given covariance matrix. The co-
variance matrix controls the structure of the coefficients, which depends on the particular
application. For example, it is appropriate to assume that the coefficients have a spatial
structure in spatial applications. This study proposes an expectation-maximization algo-
rithm for estimating generalized Ridge parameters whose covariance structure depends
on specific parameters. We focus on three cases: diagonal (when the covariance matrix is
diagonal with constant elements), Matérn, and conditional autoregressive covariances. A
simulation study is conducted to evaluate the performance of the proposed method, and
then the method is applied to predict ocean wave heights using wind conditions.

4.3 Introduction

Consider an experiment where we have the data {y, X}, of n observations of a contin-
uous variable Y and n × d matrix of covariates X. Suppose that Y is related to X via a
linear model

Y = Xβ + ϵ, (4.1)
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4.3. Introduction

where β are model coefficients and ϵ ∼ N (0, σ2) is the model error. We suppose that the
intercept is either included in β (so that the first column of X is a vector of 1) or that Y and
X are centered. The least squares estimates are the best linear unbiased estimates of the
parameters β. However, in the case of multicollinearity or high-dimensionality, penalized
linear regression methods, like Ridge regression, are needed to control the variance. Ridge
estimator of the problem (4.1) is

β̂Ridge
λ = arg min

β
−ℓ(β, σ2) + λ∥β∥2 (4.2)

where λ is the regularization parameter and ℓ(β, σ2) is the log-likelihood of the model
(4.1). High values of λ permit to reduce the variance and increase the bias of the model.
A good model should have a trade-off between variance and bias (Hastie et al., 2009). In
order to find a trade-off between bias and variance, the hyperparameter λ needs to be
selected.

Boonstra, Mukherjee, and Taylor (2015) classified methods for selecting λ into goodness-
of-fit-based and likelihood-based methods. Goodness-of-fit-based methods define a good-
ness of fit criterion (such as the mean squared error) and minimize it in terms of λ. The
most common goodness-of-fit-based method is the k-fold cross-validation which consists
of partitioning observations into k groups and estimating β k times for each λ leaving
out one group. For each λ, a goodness of fit score is calculated, and λ with the maximum
score value is chosen. The typical choice of k is 5 and 10, while setting k = n leads to
leave-one-out cross-validation (LOOCV). LOOCV leads to a better estimation of λ; how-
ever, it is computationally expensive given that it requires fitting the model n times (Patil
et al., 2021). Generalized cross-validation (GCV) (Golub, Heath, and Wahba, 1979) is an
approximation of LOOCV that does not require fitting n models. GCV uses a weighted
version of the predicted residual error sum of squares (PRESS) statistic (Allen, 1974) as
a goodness of fit criterion. One of the problems with goodness-of-fit-based methods is the
selection of the grid of λ, which influences the estimation.

Assuming that Y |β ∼ N (Xβ, σ2In), Ridge regression can be derived as the mean of
a posterior distribution with the prior β ∼ N (0d, σ2λ−1Id) (Wieringen, 2015) and as in
Bayesian hierarchical linear regression, likelihood-based methods maximize the likelihood
with respect to σ2 and λ using for instance an iterative method (Lee and Nelder, 1996).
Unlike goodness-of-fit-based methods, the advantage of likelihood-based approaches is, on
the one hand, that they do not require grid selection for the regularization parameters.
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4.3. Introduction

On the other hand, likelihood-based methods can be generalized to consider any form
of prior for the coefficients β. In some applications, the regression coefficients can be
penalized differently, or a joint penalization of the coefficients is required. For example, in
spatial statistics, where predictors have a spatial structure, it is reasonable to suppose that
coefficients have a spatial structure. To do that, the generalized Ridge (Wieringen, 2015)
can be used. Generalized Ridge extends the equation (4.2) by replacing the term λ∥β∥2 to
βT ∆β, where ∆ is called the penalty matrix. In general, ∆ depends on some regularization
parameters (see, e.g., Goeman (2008) and Hemmerle (1975)); however, when the number
of the regularization parameters is greater than 1, goodness-of-fit-based methods struggle
with the problem of combinatorial explosion. Generalized Ridge in the hierarchical linear
model framework, is equivalent to suppose that β ∼ N (0d, Σθ) where Σθ is a covariance
matrix that depends on some parameters θ. Note that Σθ corresponds to the inverse of the
penalty matrix ∆. The classical Ridge is a special case of this model when the covariance
matrix Σθ is diagonal, and θ is the usual regularization parameter λ.

Considering β as a hidden variable, Bishop and Nasrabadi (2006) proposed an expectation-
maximization (EM) algorithm to find the maximum likelihood estimation (MLE) of pa-
rameters of a Bayesian linear regression model. The EM algorithm (Dempster, Laird, and
Rubin, 1977b) is a method for estimating the parameters of a model with hidden variables.
The EM algorithm alternates between two steps: the expectation and maximization steps.
The E-step calculates the conditional expectation of the log-likelihood given the observa-
tions and current parameters. In the M-step, the parameters are estimated by maximizing
the conditional expectation of the log-likelihood calculated in the E-step. In this study, we
extend the algorithm in Bishop and Nasrabadi (2006) and propose an EM algorithm to
estimate the parameters of hierarchical linear regression when β ∼ N (0, Σθ). At first, we
study the case where Σθ is diagonal with constant elements, which corresponds to the clas-
sical Ridge in equation (4.2) and the problem studied by (Bishop and Nasrabadi, 2006).
Then, we consider the case where the coefficients β have a spatial structure, especially
when Σθ is the Matérn or the conditional autoregressive (CAR) covariance. A simulation
study is done to assess the performance of the method. Then, the proposed method is
applied to oceanographic data where the response variable represents a wave parameter in
a location in the Bay of Biscay, and X represents wind conditions over the North Atlantic
(Obakrim et al., 2022b).

This paper is organized as follows. The proposed method and its special cases are
presented in Section 2. Then, a simulation study is conducted in Section 3 to assess
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4.4. Proposed method

the performance of the proposed method. In section 4, we apply the methodology to
oceanography data. Finally, this study is concluded in Section 5.

4.4 Proposed method

As stated in the introduction, Ridge regression can be viewed as a hierarchical linear
model where β ∼ N (0d, σ2λ−1Id). When there is a structure on the coefficients, it is
unreasonable to consider all possible covariance functions as possible candidates for β.
Therefore, we suppose that the covariance of β depends on some parameters θ, so that
β ∼ N (0d, Σθ). This motivates using the EM algorithm to find the maximum likelihood
estimation of the parameters, where the model parameters are then Θ = (σ2, θ). The
proposed method is described in this section, and three special cases of the covariance Σθ

(the diagonal, Matérn, and CAR) are studied.

4.4.1 EM algorithm for generalized Ridge

Consider the linear model (4.1) and assume that β is a latent variable that follows a
normal distribution. We define the regression model hierarchically as

β ∼ N (0d, Σθ)
Y | β, Θ ∼ N (Xβ, σ2In)

(4.3)

where Θ = (σ2, θ). Note that for simplicity, we assume that the mean of β is zero. The EM
algorithm for the case where β has a non-zero mean will be presented in the Appendix.

Given a sample y = (y1, ..., yn), the complete log-likelihood is expressed as

ln p(y, β; Θ) = ln p(y | β; σ2) + ln p(β; θ)

= −1
2

(
d ln(2π) + ln(|Σθ|) + βT Σ−1

θ β + n ln(2π) + n ln(σ2) + 1
σ2 ∥y − Xβ∥2

)
(4.4)

Maximum likelihood estimation consists of maximizing (4.4) with respect to the param-
eters Θ. This is usually done with the Expectation-Maximization algorithm in the latent
variable context. The EM algorithm alternates between the E-step and M-step. In the
E-step, the expectation Q(Θ|Θ(t)) of the complete likelihood with respect to the posterior
distribution of the latent variable β and the parameters Θ(t) from the previous iteration
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4.4. Proposed method

t is calculated. In the M-step, the quantity Q(Θ|Θ(t)) is maximized with respect to the
parameters Θ.

The E-step and M-step are defined as follows
• E-step:

Q(Θ|Θ(t)) = E(ln p(y, β; Θ) | y, Θ(t)). (4.5)

The posterior distribution of the latent variable β is a normal distribution with mean µβ|y

and covariance matrix Σβ|y such that
 Σβ|y = (Σ−1

θ + 1
σ2 XT X)−1

µβ|y = (XT X + σ2Σ−1
θ )−1XT y.

(4.6)

Note that µβ|y defined in (4.6) is a generalized Ridge estimator (see e.g. Wieringen (2015))
solution of the optimization problem

µβ|y = arg min
β

∥y − Xβ∥2

σ2 + βT Σ−1
θ β (4.7)

Therefore,

Q(Θ|Θ(t)) = −1
2

(
ln(|Σθ|) + Tr(Σ−1

θ E(ββT | y, Θ(t))) + ln(σ2) + 1
σ2E(∥y − Xβ∥2 | y, Θ(t))

)
+C

(4.8)
where C is a constant and E(ββT |y; Θ(t)) = Σβ|y + µβ|yµT

β|y

E(∥y − Xβ∥2|y; Θ(t)) = ∥y∥2 − 2yT Xµβ|y + Tr(XT XE(ββT |y; Θ(t)))
(4.9)

• M-step:
The maximization step computes

Θ(t+1) = arg max
Θ

Q(Θ|Θ(t)) (4.10)

which leads to the following updates of the parameters σ2 and θ

σ2,(t+1) = 1
n

(∥y∥2 − 2yT Xµβ|y + Tr(XT XE(ββT |y; Θ(t))))

θ(t+1) = arg max
θ

ln(|Σ−1
θ |) − Tr(Σ−1

θ E(ββT | y, Θ(t)))
(4.11)
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4.4.2 Special cases

The M-step in equation (4.11) requires the maximization of Q(Θ|Θ(t)) over the pa-
rameters of the covariance Σθ. In this study, we will explore three cases. First, we consider
the case where Σθ is diagonal. Then, the case where β has a spatial structure, especially
when the parametric covariance is the Matérn covariance function. Finally, we consider
the conditional autoregressive model (CAR).

4.4.2.1 Diagonal case

In the classical Ridge, the covariance matrix of the coefficients β is supposed to be
diagonal such that

Σθ = σ2
βId. (4.12)

The M-step of the covariance in (4.11) becomes

σ
2,(t+1)
β = arg max

σ2
β

−d ln(σ2
β) − 1

σ2
β

Tr(E(ββT | y, Θ(t))). (4.13)

Setting the derivatives with respect to σ2
β to zero, we obtain the M-step

σ
2,(t+1)
β = Tr(E(ββT | y, Θ(t)))

d
. (4.14)

Note that 1
σ2

β
corresponds to the regularization parameter λ in equation (4.1). As

stated in the introduction, Ridge regression requires the selection of the regularization
parameter. Therefore, the EM algorithm can be an alternative to cross-validation for
estimating Ridge coefficients along with the regularization parameter. A comparison of
the two methods (cross-validation and EM algorithm) is given in the Appendix.

4.4.2.2 Spatial covariance functions

In spatial statistics applications, one may assume that β has a spatial structure. One
way to do that is to assume that β has a parametric covariance function. There are many
choices of covariance functions that are widely used for Gaussian processes and kriging
(Schulz, Speekenbrink, and Krause, 2018). In this study, we focus on the stationary Matérn
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covariance, which has the form

K(h; ϕ, κ) =
σ2

β

2κ−1Γ(κ)

(
h

ϕ

)κ

Kκ

(
h

ϕ

)
(4.15)

where h is the distance between two points, Γ is the Gamma function, and Kκ is the mod-
ified Bessel function (Abramowitz, Stegun, and Romer, 1988). The Matérn function is
parameterized by the variance parameter σ2

β, the range parameter ϕ, and the smoothness
parameter κ. The range parameter ϕ controls the decay rate with distance, with larger
values of ϕ corresponding to more strongly correlated variables, and the smoothness pa-
rameter κ controls the mean-square differentiability of the spatial process.

The M-step of the covariance of β in (4.12) becomes

(σ2,(t+1)
β , θ(t+1)) = arg max

σ2
β

,θ
ln(|R−1

θ |) − d ln(σ2
β) − 1

σ2
β

Tr(R−1
θ E(ββT | y, Φ(t))) (4.16)

where Rθ is the Matérn correlation and θ = (ϕ, κ). Since the variance parameter is constant
and following Bachoc (2013), the optimization of the variance parameter σ2

β can be carried
out separately with the correlation parameters ϕ and κ. Therefore,

σ
2,(t+1)
β = Tr(R−1

θ E(ββT | y, Φ(t)))
d

θ(t+1) = arg max
θ

ln(|R−1
θ |) − d ln(Tr(R−1

θ E(ββT | y, Φ(t)))).
(4.17)

The solution to the optimization problem in equation (4.17) cannot be done analytically;
therefore, numerical optimization algorithms are used. This study uses the quasi-Newton
method L-BFGS-B to optimize the parameters. Given the difficulties in estimating Matérn
parameters (Kaufman and Shaby, 2013), we a priori fix the smoothness parameter as 3

2 ,
which gives the classical 3

2 -Matérn covariance function.

4.4.2.3 Conditional autoregressive model

The M-step in equation (4.10) requires the inversion of the covariance matrix, which
can be challenging for large matrices. This problem is widely discussed in Gaussian pro-
cesses literature (Ambikasaran et al., 2015; Storkey, 1999). Therefore, it can be numer-
ically advantageous to parameterize the precision matrix (inverse of the covariance ma-
trix) instead of the covariance matrix. This is motivated by the fact that the precision
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matrix Pθ = Σ−1
θ can be approximated by a sparse matrix (Tajbakhsh, Aybat, and Del

Castillo, 2020). In fact, the off-diagonal elements of the precision matrix correspond to
the conditional covariance between two variables given the remaining variables. Therefore,
conditionally independent variables have zero values in the precision matrix.

Gaussian Markov random fields (GMFs) are widely used in spatial statistics (Cressie
and Wikle, 2015). GMFs models have a Markov property making them computationally
and theoretically suitable (Rue, 2001). Furthermore, (Rue and Tjelmeland, 2002) demon-
strated that a GMF model can approximate a Gaussian field with a Matérn correlation
function and other families of correlation functions. Conditional autoregressive (CAR)
models are classes of GMFs with well-defined joint Gaussian distribution (Cressie and
Kapat, 2008). This subsection will study cases where the coefficients β have the CAR
model property. The joint distribution of a CAR is expressed as

β ∼ N (0, τ 2(Id − αH)−1Φ). (4.18)

The distribution of β depends on unknown parameters α and τ 2, and many types of
CAR models depend on the choice of the matrix H and Φ. Following (Besag, York, and
Mollié, 1991), in this study, we consider the Weighted CAR (WCAR) model where

Φ = diag(|N1|−1, ..., |Nd|−1) (4.19)

where |Ni| is the number of neighbors of location i and H =
(

aij

|Ni|

)
d×d

; i, j = 1, ..., d, where
aij is the (i, j) element of the adjacency matrix A = (aij)d×d, where aij = aji = 1 if and
only if location i and j are neighbors and otherwise aij = 0. Putting Pθ = τ−2(Id−αH)Φ−1,
the second part of the M-step in the equation (4.11) becomes

θ(t+1) = arg max
θ

ln(|Pθ|) − Tr(PθE(ββT | y, Φ(t))) (4.20)

where θ = (τ 2, α).
As for the Matérn covariance, the solution to the optimization problem (4.20) cannot

be done analytically, and the numerical optimization algorithm L-BFGS-B is used. Note
that the optimization of the variance parameter τ 2 can also be carried out separately with
the parameter α.

Remark that this leads to a spatial extension of the fused Ridge method proposed in
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(Goeman, 2008). When α = 1, we obtain

1
τ 2 βT Φ−1(Id − αH)β = 1

2τ 2

∑
(i,j)|aij=1

(βi − βj)2. (4.21)

This shows that any spatial coefficient variations will be penalized when solving (4.7). In
this case, replacing the L2 norm with the L1 norm leads to the fused LASSO method
proposed in (Tibshirani et al., 2005). However, the matrix (Ip − αH) is semi-positive
definite when α = 1 and thus Σθ is degenerate. Hereafter we impose the constraints
|α| < 1 to ensure that the precision matrix is positive definite. Another strategy would
consist of adding a regular Ridge penalty (e.g., the discussion in Wieringen (2015)).

4.5 Simulation study

In this section, a simulation study is conducted to assess the performance of the
proposed method for estimating model parameters for the three cases: diagonal, Matérn,
and CAR.

4.5.1 Setup

This study focuses on using the proposed method for spatial applications. Therefore,
we consider a 15×15 regular spatial grid in a square domain [1, 15]2 where each location j

has a covariate xj. We generate X = (xij)n×d of n independent and identically distributed
observations from a multivariate normal distribution with zero mean and a Matérn co-
variance with some arbitrary parameters (σ2

x, ϕx, κx) = (6, 2, 3/2). Then, the coefficients
β, kept the same for all observations, are simulated using either the diagonal, Matèrn, or
CAR case. Finally, for a given σ2, Y is simulated from the normal distribution according
to equation (4.3).

The parameters chosen for each case are:
• Diagonal: σ2 = 36 and σ2

β = 7
• Matérn: σ2 = 36, σ2

β = 0.1 and ϕ = 4
• CAR: σ2 = 36, τ 2 = 1 and α = 0.9

The parameters are chosen so that the results of the three methods are comparable. For
the CAR model, we consider four neighbors to construct the adjacency matrix, and we
chose α = 0.9 to sufficiently smooth the resulting coefficients.
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The EM algorithm is initialized with an arbitrary set of parameters, and the E-step
and M-step are repeated until no further improvement can be made to the likelihood value
or to limit the computational cost until a maximum number of iterations is reached. The
computation time for one iteration on an i5-7500 CPU and 16Go computer is 0.16, 3, and
1.8 seconds for diagonal, Matérn, and CAR, respectively.

4.5.2 Results

At first, one simulation is done for each case (diagonal, Matérn, and CAR) with n =
800. The parameters are estimated using the EM algorithm presented in the previous
section. Figure 6.1 shows the first simulation results. Left panels correspond to the true
β, and right panels correspond to the estimated β using the EM algorithm. For all the
cases, the EM algorithm does well in estimating the parameters, especially the variance
σ2.

To assess the influence of the sample size on the estimations, for each case, we perform
100 independent random simulations for each sample size varying from 50 to 850. For each
simulation, the EM algorithm is used to estimate the parameters. Figure 6.2 shows the
normalized root mean square error NRMSEβ and NRMSEy for the three cases where

NRMSEβ =

√
1
d

∑d
j (βj − β̂j)2

σ̂β

NRMSEy =

√
1
n′
∑n′

i (yi − ŷi)2

σ̂y

(4.22)

where β̂j and ŷi are the estimated βj and yi and σ̂β and σ̂y are the sample standard
deviation of β and y, respectively. NRMSEy is calculated in a test set (which is not used
in the estimation) of size n′ = n

2 . For the three cases, NRMSEβ and NRMSEy decrease
as the sample size increases.

To evaluate the parameter estimates, we compare the EM estimates with the maximum
likelihood estimates of the parameters, hereafter referred to as MLE, knowing the true β.
More precisely, the MLE estimates are defined as

ΘMLE = arg max
Θ

−1
2

(
ln(|Σθ|) + βT

trueΣ−1
θ βtrue + n ln(σ2) + 1

σ2 ∥y − Xβtrue∥2
)

+C (4.23)
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Figure 4.1 – Simulation results for the three cases (diagonal, CAR, and Matérn). The left
panels correspond to the true β coefficients with the true parameters given in section 3.1,
and the right panels correspond to the β estimated when the sample size n = 800.
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where βtrue is the true β simulated for each case with the parameters given in section
3.1. Along with the sample size, we are also interested in how the estimates behave when
varying the dimension of X, d, and the variance parameter σ2. Note that in practice,
ΘMLE cannot be found directly, given that the true β is not observed (latent variable).
Therefore, we expect the EM algorithm to provide less accurate estimates than MLE.
However, we expect that by varying the sample size, the dimension, and the variance σ2,
the estimations asymptotically will be close to MLE estimates.

Figures 6.3, 6.4 and 6.5 show boxplots of EM (red) and MLE (blue) estimates for the
diagonal, Matérn and CAR cases as a function of sample size, dimension d, and variance
σ2. For the diagonal case, the estimate of σ2 seems to converge to the true value of the
parameter (blue line) when the sample size n increases as it does in the usual linear
regression model. Note that the estimate of the spatial variance σ2

β does not seem to
converge to the true value of the parameter as the sample size increases, but when n is
large enough, EM and MLE seem to provide similar results. This is not unexpected since
both methods are based on a single sample of the d-dimensional field β. As expected,
the dimension d also affects the estimate of the parameter σ2

β, which converges towards
the true value as d increases; however, no significant change is observed for σ2 when d

increases. The effect of the variance σ2 on the estimation of σ2
β is small, and we observe

that for σ2 larger than 100, the EM and MLE tend to underestimate σ2
β. Similar behavior

can be observed for the Matérn case: the variance parameter σ2 seems to converge towards
the actual value with increasing sample size. However, there is no significant change in the
other parameters (the variance σβ and the range ϕ). The dimension d mainly influences
the parameters σβ and ϕ, which describe the spatial structure of the d-dimensional field β,
and as d increases, the estimates converge to the actual values. As for the diagonal case,
the EM algorithm underestimates the parameters σβ and ϕ when the variance σ2 increases.
Finally, for the CAR case, the sample size influences the parameters σ2 and τ 2, but only
slightly the correlation parameter α, which is mainly influenced by the dimension d. The
variance σ2 has a significant influence on τ 2, but only a small one on α. To summarize:

• The sample size n mainly influences the estimation of the variance of the residuals
σ2

• The parameters which describe the spatial structure of β are mainly influenced by
the dimension d

• As the variance σ2 increases, EM underestimates the parameter σ2
β of the diagonal

and Matérn case, and the range parameter ϕ

75



4.6. Application

NRMSEβ NRMSEy

0.1

0.2

0.3

0.0

0.5

1.0

1.5

2.0

2.5

Diagonal

Matèrn

CAR

Figure 4.6 – Results of the estimations when the true beta is simulated from Matérn with
the parameters σ2 = 36, σ2

β = 0.1 and ϕ = 4 and sample size n = 800. The left panel
correspond to NRMSEβ and the right one for NRMSEy.

• EM estimates are close to MLE estimates in most cases when the sample size and
the dimension d are large enough and the variance σ2 is small

Another interesting aspect that needs to be studied is when the coefficients β are
simulated using one covariance and estimated using another covariance model. To do
that, we perform 100 independent simulations of β using the Matérn covariance function,
and we estimate the parameters using the three cases: diagonal, CAR, and Matérn. Figure
4.6 shows the results of NRMSEβ and NRMSEy of the experiment. It is clear that using
the Matérn covariance for the estimation gives better results in terms of NRMSEβ. Not
surprisingly, the diagonal case is the worst model for estimating the coefficients. However,
in terms of NRMSEy, there is a small difference between the three methods.

4.6 Application

The proposed method is applied to the problem of predicting the significant wave
height (Hs) at a location in the Bay of Biscay using wind conditions over the North
Atlantic (figure 4.7), where the significant wave height is the average height of the highest
third of the waves, a key measure of wave height that provides information about wave
energy. The data used for Hs comes from the Homere hindcast database (Boudière et
al., 2013), and the wind data comes from Climate Forecast System Reanalysis (CFSR)
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Figure 4.7 – CFSR projected wind in the North Atlantic in 1994-01-01 00h:00. The black
point represents the target point.

(Saha et al., 2010b). The wind data are pre-processed before being used as a predictor
(see (Obakrim et al., 2022b) for the pre-processing procedure). We consider 23 years of
Hs and wind data from 1994 to 2016 with a temporal resolution of 3 hours.

The regression problem is of the form

Hs(t) =
d∑

j=1
Xj(t)βj + ϵ(t) t = 1, ..., n (4.24)

where Xj(t) is the predictor at time t and location j defined as

Xj(t; tj, αj) = 1
2αj+1

∑t−tj+αj

i=t−tj−αj
W 2

j (i), (4.25)
tj + αj + 1 ≤ t ≤ tj − αj + n

where Wj is the projected wind (figure 4.7) defined as

Wj = Uj cos
(1

2(bj − θj)
)

(4.26)

Uj is the wind speed, bj is the great circle bearing, and θj is the wind direction at location
j. αj controls the length of the time window, and tj is the mean travel time of waves
which are estimated using the maximum correlation between Hs and the predictor

(t̂j, α̂j) = arg max
tj ,αj

(
corr(Hs, Xg

j (tj, αj))
)
. (4.27)
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Method r RMSE(m) bias(m)
Diagonal 0.941 0.414 -0.0004
Matérn 0.956 0.354 -0.04
CAR 0.957 0.352 -0.06

Table 4.1 – Quantitative comparison of the diagonal, Matérn, and CAR methods in the
validation set using the correlation (r), root mean square error (RMSE), and bias.

Let X = X1, ..., Xd be the predictor which has the size 67088×5651. Since the predictor
has a spatial structure. It is reasonable to assume that the coefficients β also have a spatial
structure so that nearby locations have close contributions to the waves at the target point.
This assumption is equivalent to suppose that β ∼ N (0, Σθ). For the covariance Σθ, we
will consider the cases of Matérn and CAR. For comparison, we also consider the diagonal
case even though it does not consider any structure between coefficients.

The model’s parameters (equation 4.24) are estimated using data from 1994 to 2013,
and the model is evaluated in terms of correlation, RMSE, and bias, using a validation
set from 2014 to 2016. Figure 4.8 shows the results of estimating β and the covariance
parameters using the EM algorithm when the covariance structure is assumed to be di-
agonal, Matérn and CAR. Not surprisingly, the coefficients estimated with the diagonal
covariance show no physical spatial structure. Therefore, the assumption that close loca-
tions have close coefficients cannot be taken into account using the diagonal case. This
motivates using the Matérn and CAR covariances. The Matérn and CAR covariances give
the smoothest coefficients with a clear spatial structure. In addition, locations close to the
target point have larger coefficients. Therefore, the obtained coefficients are more physi-
cally interpretable and take into account our assumption about the covariance. Note that
the CAR method is less expensive numerically than the Matérn, which involves inverting
the covariance matrix at each iteration of the optimization algorithm used in the M-step.

Table 6.1 shows the results of the quantitative comparison between the three methods
for predicting significant wave height in the validation set using correlation (r), root mean
square error (RMSE), and bias. In terms of correlation and RMSE, the diagonal method
is the less accurate method. Therefore, adding the spatial structure in the covariance is
advantageous in predicting the significant wave height. The CAR and Matérn methods
lead to close results regarding r, RMSE, and bias.
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4.7 Summary

This study proposed an EM algorithm for estimating generalized Ridge regression
with spatial covariates. We have studied three cases: the diagonal, Matérn, and the CAR
case. A simulation study is carried out to evaluate the performance of the algorithms,
and the EM algorithm successfully estimates the parameters in all cases. We have studied
the influence of the sample size, dimension of X, and the variance σ2 on the estimation.
The sample size mainly influences the variance parameter σ2. The range parameter of the
Matérn and correlation parameter of the CAR are mainly influenced by dimension d.

The proposed method is applied to the problem of downscaling the significant wave
height in the Bay of Biscay using wind conditions over the North Atlantic. The Matérn
method gives smooth coefficients with a clear spatial structure; however, the CAR method
slightly outperforms the Matérn method in terms of RMSE. The Matérn covariance is
clearly a better choice for spatial applications. However, estimating the parameters re-
quires the inversion of the covariance matrix at each iteration of the optimization method
in the M-step, which may be a computational bottleneck in many applications. To ad-
dress this issue, instead of parameterizing the covariance matrix, one can parameterize
the precision matrix directly as we did with the CAR method.

.1 Comparison between cross-validation and EM

As stated in section 2, the EM algorithm can be used as an alternative for cross-
validation for estimating Ridge regression. In this section, we perform a simulation study
to compare the two approaches and use the same simulation procedure discussed in section
3.1. Given the same covariates X (presented in section 3.1) we perform 50 independent
random samples of coefficients β using the diagonal method (with parameters σ2 = 36 and
σ2

β = 7). For each simulation, we estimate the coefficients using the EM algorithm and the
cross-validation method. Figure 5.11 shows the box plot of NRMSEβ and NRMSEy. The
EM algorithm outperforms cross-validation in estimating the coefficients β and predicting
y.

The comparison we performed here is for the Gaussian case; therefore, it is straight-
forward that the EM algorithm will outperform cross-validation. To see how the two
approaches behave in the non-Gaussian case, we simulate the response variable Y using
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Figure 9 – Results of estimating Ridge regression with the EM algorithm and 10-fold
cross-validation in the Gaussian case.
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.2. The case where β has a non-zero mean

the model
Y = Xβ + ϵ, where ϵ ∼ U(2, 30) (.1.1)

Where U(2, 30) is the uniform distribution on the interval [2, 30]. Figure 10 shows the
estimation results using the EM algorithm and cross-validation. The EM algorithm still
outperforms cross-validation in both NRMSEβ and NRMSEy; however, the difference
between the two methods here is small than in the Gaussian case.

.2 The case where β has a non-zero mean

In this section, we consider the case where β has a non-zero mean as defined by the
hierarchically model

β ∼ N (µξ, Σθ)
Y | β, Θ ∼ N (Xβ, σ2In)

(.2.1)

where Θ = (σ2, µξ, θ).
The complete log-likelihood is expressed as

ln p(y, β; Θ) = ln p(y | β; σ2) + ln p(β; θ)

= −1
2

(
ln(|Σθ|) + βT Σ−1

θ β − 2βT Σ−1
θ µξ + µT

ξ Σ−1
θ µξ + n ln(σ2) + 1

σ2 ∥y + Xβ∥2
)

+ C

(.2.2)

Where C is a constant. In the M-step, the quantity Q(Θ|Θ(t)) is maximized with respect
to the parameters Θ.

• E-step:

Q(Θ|Θ(t)) = E(ln p(y, β; Θ) | y, Θ(t)). (.2.3)

The posterior distribution of the latent variable β is a normal distribution with mean µβ|y

and covariance matrix Σβ|y such that
 Σβ|y = (Σ−1

θ + 1
σ2 XT X)−1

µβ|y = Σβ|y(Σ−1
θ µξ + 1

σ2 XT y).
(.2.4)
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Therefore,

Q(Θ|Θ(t)) = − 1
2
(
ln(|Σθ|) + Tr(Σ−1

θ E(ββT | y, Θ(t))) − 2µT
β|yΣ−1

θ µξ + µT
ξ Σ−1

θ µξ

+ n ln(σ2) + 1
σ2E(∥y − Xβ∥2 | y, Θ(t)) + C

(.2.5)

where E(ββT |y; Θ(t)) = Σβ|y + µβ|yµT
β|y

E(∥y − Xβ∥2|y; Θ(t)) = ∥y∥2 − 2yT Xµβ|y + Tr(XT XE(ββT |y; Θ(t)))
(.2.6)

• M-step:
The maximization step computes

Θ(t+1) = arg max
Θ

Q(Θ|Θ(t)) (.2.7)

which leads to the following updates of the parameters

σ2,(t+1) = 1
n

(∥y∥2 − 2yT Xµβ|y + Tr(XT XE(ββT |y; Θ(t))))

(ξ(t+1), θ(t+1)) = arg max
ξ,θ

ln(|Σ−1
θ |) − Tr(Σ−1

θ E(ββT | y, Θ(t))) + 2µT
β|yΣ−1

θ µ
(t)
ξ − µT

ξ(t)Σ−1
θ µ

(t)
ξ

(.2.8)

4.3 Conclusions

In this chapter, we proposed an EM algorithm to estimate the parameters of the
generalized Ridge regression. Using the simulation study and the application to wave
height prediction, we have shown that the inclusion of spatial structure on the regres-
sion coefficients when the covariates have spatial structure improves the accuracy and
interpretability of the predictive model.
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5.1 Preface

In Chapter 3, we proposed a model based on weather types to predict significant wave
height using wind conditions. The weather types were constructed using a regression-
guided clustering algorithm for accounting for large and small-scale conditions. Then, for
each weather type, a Ridge regression model is fitted between Hs and the wind conditions.
The model was shown to predict Hs and be interpretable effectively. In the conclusion of
the chapter, we pointed out that the weather types can be considered as a hidden variable
and the overall model based on the weather types can be considered as a mixture model.

Motivated by the ideas of chapter 3 and 4, the fundamental goals of this chapter are:
• Create a weather types-based model that does regression and classification at the

same time
• The model must be able to make predictions of future weather types
• The model must perform a regularization to overcome the multicollinearity of the

covariates
• The regularization hyperparameters must be learned by the model without using

conventional hyperparameter selection methods such as cross-validation
Therefore, we propose a mixture of generalized Ridge experts for regression tasks with
heterogeneous data and multicollinear covariates. The proposed method is then applied
to the problem of predicting Hs using wind conditions.

5.2 Abstract

Mixture of experts are powerful tools for modeling heterogeneous data that appear
in many applications such as environment, economics, and business. In this study, we
focus on using mixture of experts for regression purposes and consider the case where
the covariates are multicollinear. In the case of multicollinearity or high-dimensionality,
penalized methods are needed, and generalized Ridge is a powerful penalization method
for this purpose. In addition, the generalized Ridge allows incorporating any prior on the
covariance structure of the regression coefficients, which is useful, for example, in spatial
applications. The generalized Ridge may have more than one hyperparameter, and in
the context of mixture modeling, estimating these hyperparameters using conventional
hyperparameter selection methods, such as cross-validation, can be computationally chal-
lenging. This study proposes a variational expectation-maximization algorithm for fitting
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generalized Ridge expert mixtures. A simulation study is carried out to evaluate the pro-
posed method’s performance, and the method is applied to predict ocean waves using
wind conditions.

5.3 Introduction

Heterogeneous data is common in many fields such as the environment, economy, and
business. Mixture models are commonly used in statistics and machine learning for re-
gression and classification to model heterogeneous data. For example, mixtures of normal
distributions (Day, 1969) are often used to find clusters in data. For regression tasks,
the mixture of linear regression models, also known as finite mixture of regression, parti-
tions the data into classes and fits a linear regression model in each group (DeSarbo and
Cron, 1988). Given a set of covariates X and a response variable Y , the mixture of linear
regression relates Y to X via a linear model such that

E(Y |X, Z = k) = Xβk, k = 1, ..., K (5.3.1)

where Z is a discrete hidden variable that determines the class and K is the number of
classes. The mixture of regressions model in equation (5.3.1) assumes that the classes
depend only on the response variable Y and that the covariates carry no information
about the classes. Therefore, the mixture model cannot predict future classes from new
observations of the covariates. In general, the average of the predictions on the classes
with fixed weights is used as a prediction of the response variable Y (Hoshikawa, 2013).

Mixture of experts (MoE), introduced by Jacobs et al. (1991), are mixture models
that assume that the class membership depends on the covariates X. Therefore, MoE
models are capable of predicting the response variable as well as the class membership.
MoEs have two components: several experts, that may be regressors or classifiers, and
a gate network that partitions the input space into regions in which the experts are
specialized. The multinomial logit model is usually used as a gating network (Geweke
and Keane, 2007) and the inference of MoEs is generally done using the Expectation-
Maximization algorithm (Jacobs et al., 1991), MCMC (Meeds and Osindero, 2005), or
variational methods (Yuan and Neubauer, 2008). Detailed surveys on MoE models can be
found in: Yuksel, Wilson, and Gader (2012); Masoudnia and Ebrahimpour (2014); Nguyen
and Chamroukhi (2018).
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Although MoE models are powerful tools for regression and classification, their ap-
plication can be complex when the covariates are multicollinear and high dimensional.
Therefore, regularized likelihood is typically used to select relevant covariates (Fraley
and Raftery, 2007; Ramamurti and Ghosh, 1997); however, these methods require the
selection of the regularization hyper-parameters, which may have a high computational
cost. The Ridge or L2 penalty (Hastie et al., 2009) is a powerful tool for dealing with
multicollinearity and high dimensionality. Moreover, the generalized Ridge penalty allows
for jointly penalizing the coefficients and permits including any prior on the structure of
the coefficients (Wieringen, 2015). By assuming that the coefficients are hidden variables,
Obakrim et al. (2022a) proposed an Expectation-Maximization algorithm for estimating
the parameters of a linear regression model. In this study, we extend their algorithm for
estimating the parameters of a mixture of generalized Ridge regression.

The remainder of this paper is structured as follows. The mixture of generalized Ridge
regression model is presented in the second section. Then in the third section, the method
used for model inference is detailed. In the fourth section, a simulation study is conducted
to assess the performance of the proposed method, and in the fifth section, our proposed
method is applied to predict wave heights in the Bay of Biscay using wind conditions over
the North Atlantic. Finally, this study is concluded in the last section.

5.4 Mixture of generalized Ridge experts

Mixture of experts are a set of expert models for regression or classification and a gate
that divides the heterogeneous input space into a set of homogeneous regions. The experts
are individual models that are specialized in each region defined by the gate network. In
this study, we consider mixture of generalized Ridge regression experts where the gating
network is the classical multinomial model.

Consider an experiment where we have the data {y, X}, of n independent identically
distributed (i.i.d.) observations of a continuous variable Y and n×d matrix of covariates X.
Suppose that Y is related to X via a mixture of linear models, where the covariates might
be multicollinear or high-dimensional. The generalized Ridge penalty (Wieringen, 2015) is
a powerful tool for dealing with multicollinearity and high-dimensionality. The generalized
Ridge regression can be derived as the mean of a posterior distribution with a Normal
prior and a given covariance matrix Wieringen (2015). Thus, we define the mixture of
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Figure 5.1 – Graphical representation of the mixture of generalized Ridge experts. Xi

and yi are observed variables, Zi and β are hidden variables and γ, Σθ and σ2 are the
parameters of the model.

generalized Ridge regression experts (MoR) model hierarchically as (see figure 5.1)

Zi ∼ M(1, pi), pi = (pi1, ..., piK)T , i = 1, ..., n

βk ∼ N (0, Σθk), k = 1, .., K

yi|βk, Zi = k ∼ N (Xiβk, σk
2)

pik = exp(Xiγk)∑K
l=1 exp(Xiγl)

(5.4.1)

where Z is a multinomial variable that determines the class, K is the total number of
classes, β = {β1, ..., βK}, of size d × K, are experts coefficients for each class, Σθ =
{Σθ1 , ..., ΣθK

}, of size d × d × K, are the covariance matrices of the regression coefficients
at each class k, σ2 = (σ2

1, ..., σ2
K) are the variances of the residuals at each class k, and

γ = {γ1, ..., γK}, of size d×K, are the coefficients of the gating network. Figure 5.1 shows
a graphical representation of the MoR model. We consider Zi and β as hidden variables
and Σθ, γ, and σ2 as the parameters of the model. Note that for a matter of simplicity,
we suppose that all the βk’s have a zero mean.

5.5 Model inference

Many methods have been proposed in the literature for inferring mixture of expert
models (see Yuksel, Wilson, and Gader (2012) for a review of inference methods). In this
study, we propose a variational Expectation-Maximization (EM) algorithm for estimating
the parameters of the MoR model.
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5.5.1 EM algorithm

The complete likelihood of the model (5.4.1) is expressed as

L(Y, Z, β; Θ) = p(Y |Z, β; Θ)p(β|Z)p(Z)

= p(β)
n∏

i=1
p(yi|zi, β)p(zi)

= p(β)
n∏

i=1

K∏
k=1

p(yi|zi, β)ωikpωik
ik

(5.5.1)

where Θ = {γ, Σθ, σ2} are the model parameters and ωik = 1 if Zi = k and ωik = 0
otherwise. Therefore, the complete log-likelihood is expressed as

ln L(Y, Z, β; Θ) =
n∑

i=1

K∑
k=1

ωik ln Φ(yi; Xiβk, σk) +
K∑

k=1
ln Φ(βk; 0, Σθk) +

n∑
i=1

K∑
k=1

ωik ln pik

(5.5.2)

where Φ is the multivariate normal distribution density function. Starting with an initial
guess of the parameters Θ(0), the EM algorithm alternates between the E-step and M-step
until convergence. In the E-step, the expectation Q(Θ|Θ(t)) of the complete likelihood with
respect to the posterior distribution of the latent variables Z and β and the parameters
Θ(t) from the previous iteration t, is calculated. In the M-step, the quantity Q(Θ|Θ(t)) is
maximized with respect to the parameters Θ.

The E-step requires the computation of the expectation of the complete log-likelihood
with respect to the posterior distribution p(Z, β|Y ; Θ) of the latent variables Z and β.
p(Z, β|Y ; Θ) has the form

p(Z, β|Y ; Θ) = p(Z; Θ)p(Y |Z, β; Θ)p(β|Z; Θ)∑
Z p(Z; Θ)

∫
β p(Y |Z, β; Θ)p(β|Z; Θ) . (5.5.3)

The calculation of this distribution requires integrating over all possible values of Z and
β, which is intractable. To address this issue, we propose a variational EM algorithm.

5.5.2 Variational EM

In this subsection, we first recall the idea and motivation behind the variational EM
algorithm; then, we present the variational approximation we propose to address the

89



5.5. Model inference

problem of intractability in the E-step. Theoretical results on variational inference in
general can be found in Blei, Kucukelbir, and McAuliffe (2017) and on variational EM in
particular in Beal (2003). The variational EM algorithm has also proven itself in practice
(see, e.g., El Assaad et al. (2016); Bernardo et al. (2003); Kounades-Bastian et al. (2016)).

The log-likelihood function of the model (5.4.1) is expressed as

ln p(Y ; Θ) = ln
∑
Z

∫
β

p(Y, Z, β; Θ) (5.5.4)

which is intractable. An alternative view of the EM algorithm (Bishop and Nasrabadi, 2006)
is motivated by the fact that

ln p(Y ; Θ) = L(q, Θ) + KL(q||p) (5.5.5)

where

L(q, Θ) =
∑
Z

∫
β

q(Z, β) ln p(Y, Z, β; θ)
q(Z, β)

KL(q||p) = −
∑
Z

∫
β

q(Z, β) ln p(Z, β|Y ; θ)
q(Z, β)

(5.5.6)

where q(Z, β) is a distribution over the latent variables Z and β and KL(q||p) is the
Kullback-Leibler (KL) divergence between q(Z, β) and the posterior p(Z, β|Y ; Θ). Given
that KL(q||p) ≥ 0, L(q, Θ) is a lower bound of ln p(Y ; Θ). L(q, Θ) is also called the
variational free energy, which can be expressed as follows (Neal and Hinton, 1998)

L(q, Θ) = Eq(ln L(Y, Z, β; Θ)) + H(q) (5.5.7)

where q is the distribution over the latent variables, Eq(.) denotes the expectation with
respect to the distribution q and H(q) is the entropy of q. The E-step maximises the lower
bound L(q, Θ) with respect to the distribution q(Z, β). The lower bound is maximized
when the KL divergence is equal to zero, which corresponds to the case where q(Z, β)
is equal to the posterior distribution p(Z, β|Y ; Θ). The EM algorithm starts with an
initial guess of the parameters, Θ(0), and repeatedly applies the following two steps until
convergence:

• E-step: q(t) = arg maxq L(q, Θ(t))
• M-step: Θ(t+1) = arg maxΘ L(q, Θ)
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Given that the posterior distribution p(Z, β|Y ; Θ) is intractable, variational approxima-
tion can be used.

In this study, we propose a variational approximation that simplifies the E-step by
imposing some constraints on the distribution q. We assume that the distribution q can
be factorized into

q(Z, β) =
∏
i,l

qZ(Zil)
∏

l

qβ(βl) (5.5.8)

where qZ and qβ are the distribution over the latent variables Zil and β, respectively.
Along with the factorization assumption in equation (5.5.8), we also assume that βk’s are
independent. Therefore, the distribution q is characterized by the mean µqk, the covariance
Σqk and τik where τik = pZ(Zi = k) and qβk ∼ N (µqk, Σqk).

The lower bound in (5.5.7) becomes

L(q, Θ) = EqZ ,qβ
(ln L(Y, Z, β; Θ)) + H(q) (5.5.9)

where

EqZ ,qβ
(ln L(Y, Z, β; Θ)) =

n∑
i=1

K∑
k=1

τikEqβ
(ln Φ(yi; Xiβk, σk)) +

K∑
k=1

Eqβ
(ln Φ(βk; 0, Σθk

))

+
n∑

i=1

K∑
k=1

τik ln pik

(5.5.10)

and
H(q) = −

n∑
i=1

K∑
k=1

τik ln τik + 1
2

K∑
k=1

(p(1 + ln 2π) + ln |Σqk|). (5.5.11)

We have

n∑
i=1

K∑
k=1

τikEqβ
(ln Φ(yi; Xiβk, σk)) = −1

2

n∑
i=1

K∑
k=1

τik ln σk
2 − 1

2

K∑
k=1

1
σk

2Eqβ
((y − Xβk)T τk(y − Xβk)) + C

= −1
2

n∑
i=1

K∑
k=1

τik ln σk
2 − 1

2

K∑
k=1

1
σk

2 (yT τky − 2yT τkXµqk

+ Tr(XT τkXΣqk)) + C

(5.5.12)
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where τk = diag(τik) and C is a constant. And

K∑
k=1

Eqβ
(ln Φ(βk; 0, Σθk

)) = −1
2

K∑
k=1

(ln |Σθk| + Tr(Σθ
−1
k Σqk) + µqkΣθkµq

T
k ) + C. (5.5.13)

Therefore

L(q, Θ) = − 1
2

n∑
i=1

K∑
k=1

τik(ln σk
2 + ln τik − 2 ln pik)

− 1
2

K∑
k=1

( n

σk
2 (yT τky − 2yT τkXµqk) + Tr(( 1

σk
2 XT τkX + Σθ

−1
k )Σqk) − ln |Σqk|) + C

(5.5.14)

Given some initial values Θ(0), µq
(0)
k and Σq

(0)
k , the variational E-step can be performed

using

arg max
τ

L(q, Θ(t))

subject to
K∑

k=1
τki = 1, i = 1, ..., n

(5.5.15)

arg max
µq

L(q, Θ(t)) (5.5.16)

arg max
Σq

L(q, Θ(t)). (5.5.17)

After calculating the derivatives and equating to zero, the updates for the parameters in
the variational E-step are

τ
(t)
ik = Vik

(t−1)∑K
l=1 Vil

(t−1) (5.5.18)

Σq
(t)
k = ( 1

σk
2(t−1) XT τ

(t)
k X + Σθ

(t−1)
k

−1
)−1 (5.5.19)

µqk
(t) = 1

σk
2(t−1) Σq

(t)
k Xτ

(t)
k y (5.5.20)

where

Vik
(t−1) = p

(t−1)
ik e

− 1
2 (ln σk

2(t−1)+ 1
σk

2(t−1) (y2
i −2yiXiµqk

(t−1)+XiΣq
(t−1)
k

XT
i +(Xiµqk

(t−1))2))
(5.5.21)

After the variational E-step, in the M-step, we maximize L(q, Θ) with respect to the
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parameters Θ. The updates of the parameters are

σ
2,(t)
k = 1

Tr(τk
(t))(yT τk

(t)y − 2yT τk
(t)Xµqk

(t) + Tr(XT τk
(t)XΣqk

(t))) (5.5.22)

Σθk
(t) = arg max

Σθk

L(q(t), Θ) (5.5.23)

γ(t) = γ(t−1) −
[

∂2L(q(t), Θ)
∂γ∂γT

]−1
∂L(q(t), Θ)

∂γ
(5.5.24)

where γ = (γT
1 , ..., γT

K)T . Equation (5.5.24) corresponds to a single Newton-Raphson up-
date of γ of the multinomial logit model. The expression of the gradient and Hessian are
well known (see, for example, (Chamroukhi, 2010)) and have the form

∂L(q(t), Θ)
∂γ

= X̃T (τ̃ − P̃ )

∂2L(q(t), Θ)
∂γ∂γT

= −X̃T T̃X̃T

(5.5.25)

where X̃ is a matrix of order Kn × Kp defined as

X̃ =


X 0 0 . . . 0
0 X 0 . . . 0
... 0 . . . ...
0 . . . 0 X

 (5.5.26)

and τ̃ and P̃ are vectors of length n × K, formed by concatenating τk and pk (pk =
(p1k, ..., pnk)), respectively. Finally, T̃ is a matrix of order nK × nK which is defined as

T̃ =


T11 T12 . . . T1K

T21 T22 . . . T2K

... ... . . . ...
TK1 TK2 . . . TKK

 (5.5.27)

where the matrices Tkh are diagonal matrices of order n × n such that diag(Tkh)i =
pik(δkh − pih), where δkh is equal to 1 if k = h and 0 otherwise.

93



5.5. Model inference

5.5.3 Note on the covariances Σθk

The covariances Σθk’s are the main parameters that control the structure of the re-
gression coefficients βk at each class k. Their choice depends, therefore, on the application
at hand. For instance, when we believe that there is no structure between the regression
coefficients, one can choose Σθk = σ2

θk
Id, which corresponds to fitting the classical Ridge

regression in each class k. However, the coefficients may exhibit a structure in many ap-
plications, as in spatial applications. Obakrim et al. (2022a) proposed an EM algorithm
for estimating generalized Ridge for spatial application. The study considered three cases:
when the covariance is diagonal constant, Matérn, and conditional autoregressive (CAR).
In this study, we focus on using our proposed method for spatial applications, and we con-
sider the CAR covariance as it is less computationally expensive than the Matérn. The
CAR permits to avoid the covariance matrix’s inversion during the maximization step in
equation (5.5.20) by directly parameterizing the precision matrix. The precision matrix
of the CAR at each class k, which depends on the parameters τk

2 and αk, is defined as
follows

Pθk
= τk

−2(Id − αkH)Φ−1 (5.5.28)

where
Φ = diag(|N1|−1, ..., |Nd|−1) (5.5.29)

where |Ni| is the number of neighbors of location i and H =
(

aij

|Ni|

)
d×d

; i, j = 1, ..., d, where
aij is the (i, j) element of the adjacency matrix A = (aij)d×d, where aij = aji = 1 if and
only if location i and j are neighbors and otherwise aij = 0.

5.5.4 Variational EM algorithm training details

Mixture models suffer from locally optimal solutions; therefore, the solution depends
on the initial values of the EM (or variational EM) algorithm (Shireman, Steinley, and
Brusco, 2017). Our proposed algorithm is initialized as follows: at first, we use the K-
means algorithm on the covariates X to find K clusters in the data, then the parameters
γk k=1,..., K, are initialized as follows:

γk = (XT X)−1XT ẑk, k = 1, ..., K (5.5.30)

where ẑik = 1 if the observation i is in the K-means cluster k and ẑik = 0 otherwise.
In the case when the matrix (XT X) is ill-conditioned, one may add a constant of regu-
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larization. After initializing γk’s, the probabilities pik are calculated. We have chosen to
initialize the parameters γk k=1,..., K, in this way instead of directly fitting a multinomial
model, because the multinomial model is more computationally expensive and numerical
experiments show that our initialization method leads to results close to an initialization
with a multinomial model. The other parameters (σk

2 and covariance parameters θk for
k = 1, .., K) can be initialized randomly or fixed arbitrary.

After initialization, the variational E-step and M-step are repeated until until the
stopping criterion is met or until a maximum number of iterations is reached. The stopping
criterion chosen in this study is the root mean square error (RMSE) between observed
and predicted response variable Y . A summary of the variational EM algorithm used in
this study is presented in Algorithm 2.

Algorithm 2: Variational EM algorithm
Input: Observed response variable y, a matrix of covariates X (of size n and
n × d, respectively) , and a number of classes K

Initialization: Initialize the parameters Θ(0) = (γ(0), Σ(0)
θ , σ2,(0)) using the

procedure described in subsection 5.5.4
repeat

VE-step
for k = 1 to K do

for i = 1 to n do
Compute the probability τik using the equation (5.5.18)

Compute the covariance Σqk and the mean µqk using the equations
(5.5.19) and (5.5.20), respectively

VM-step
for k = 1 to K do

Compute the variance σ2
k using the equation (5.5.22)

Compute the covariance Σθk using the equation (5.5.23)
Update the parameters γk using the equation (5.5.24)

until the stopping criterion is met or a maximum number of iterations is reached;

5.6 Simulation study

In this section, we perform a simulation study to assess the performance of the pro-
posed method. We will focus on using the method for spatial applications; therefore, we
consider the CAR covariance structure for the regression coefficients presented in the
previous section.
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Figure 5.2 – An example of the simulated gate coefficients γ (left panels) and experts
coefficients β (right panels).
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test (blue box) sets, resulting from the comparison of the true and estimated classes using
the mixture of generalized Ridge experts.
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5.6.1 Setup

For all the simulations, we consider three classes (K = 3), and we proceed as follows:
• We consider a 10 × 10 regular spatial grid in a square domain [1, 10]2. Then we

generate X = (xij)n×d of n independent and identically distributed observations
from a multivariate normal distribution with zero mean and CAR covariance with
the parameters (τ 2

X , αX) = (8, 0.94). Hence, each location j has a covariate xj.
• The γk are simulated in each class using a multivariate normal distribution of

zero mean and CAR covariance with parameters: (τ 2
γ1 , αγ1) = (2.0.99), (τ 2

γ2 , αγ2) =
(5, 0.8), and (τ 2

γ3 , αγ3) = (3, 0.9) for the first, second, and third class, respectively.
Then, we calculate the probabilities pik, i = 1, ..., n, k = 1, 2, 3.

• The βk coefficients are simulated at each class from a multivariate normal dis-
tribution of zero mean and CAR covariance with parameters: (τ 2

1 , α1) = (2.0.8),
(τ 2

2 , α2) = (0.5, 0.99), and (τ 2
3 , α3) = (1, 0.9) for the first, second, and third class,

respectively.
• Finally, Y is simulated, conditionally on βk’s, Z, and X, from a normal distribution

of variances σ2
1 = 3, σ2

2 = 7, and σ2
3 = 2 at the first, second, and third class,

respectively.
The parameters are chosen so that they are different at each class and the variance of
the predictions Xβk is sufficiently large that the sigma2

k. Figure 5.2 shows an example of
simulated coefficients γ and β and figure 5.3 shows the empirical density of a simulated
response variable Y as a function of the classes.

5.6.2 Parameter estimation

To evaluate the parameters estimation, we consider three validation measures: the nor-
malized root mean square error (RMSE) of the response y (NRMSEy), normalized RMSE
of the coefficients βk in class k (NRMSEβk), and Cramér’s V (V ), defined respectively
as

NRMSEy =

√
1
n

∑n
i (yi − ŷi)2

σ̂y

NRMSEβk =

√
1
d

∑d
j (βkj − β̂kj)2

σ̂βk

V =
√

χ2/n

K − 1

(5.6.1)
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Figure 5.5 – Results of estimating the parameters σk
2, τk

2, and α2
k for each class k=1,2,3

using MoR with CAR covariance on 100 simulations. The blue line corresponds to the
true value of the parameters.
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Figure 5.6 – Results of NRMSEy (left panel) and the Cramér’s V (right panel) as a
function of the sample size varying from 50 to 1000.

where ŷi is the predicted yi, σ̂y the sample standard deviation of y, β̂kj is the estimated
βk, σ̂βk

the sample standard deviation of βk, and χ2 is the Pearson’s chi-squared statistic
between the observed and predicted classes. Note that the Cramér’s V is an association
measure for categorical variables, with a value between 0 and 1 (0 corresponds to no
association and 1 to complete association between variables).

We perform 100 independent simulations using the methodology presented in the
subsection 5.6.1, with the sample size n = 1000, and for each simulation, we estimate
the parameters using our proposed method. Figure 5.4 shows the Cramér’s V in the
training set (red box) and a test set (blue box) of size 1000. Where the training set is the
data used for estimating the parameters which has n = 1000 observations, and the test
set generated independently which is not used o estimate the parameters. The Cramér’s
V has values around 0.96 and 0.8 in the training and test set, respectively. There appears
to be some overfitting in the class estimation, which may be due to the fact that the gate
network coefficients (γ) are not penalized.

Figure 5.5 shows the results of estimating σ2
k and the CAR parameters τ 2

k and αk for
the classes k = 1, 2, 3, where the blue line corresponds to the true value of the parameters.
generally, the parameters are well estimated in all classes.

To evaluate the sample size’s impact on the parameters’ estimation, we perform 100
independent simulations for each sample size, n, varying from 50 to 1000. Figure 5.6 shows
the NRMSEy and the Cramér’s V, both in the test set, as a function of the sample size.
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Figure 5.7 – Results of NRMSEβ1, NRMSEβ2, and NRMSEβ3 as a function of the
sample size varying from 50 to 1000.

As expected, NRMSEy decreases, and V increases as the sample size increases. Figure 5.7
shows the results of RNMSEβk for each class k = 1, 2, 3. For the three classes, RNMSEβk

decreases as the sample size increases. Figure 5.8 shows the influence of the sample size
on the estimation of the parameters σ2

k and the CAR covariances τ 2
k and αk for the classes

k = 1, 2, 3, where the blue line corresponds to the true value of the parameters. All the
parameters in the three classes converge to the true value as the sample size increases.

5.6.3 Selection of the number of classes

One important hyper-parameter that needs to be selected in mixture models is the
number of classes K. Different methods have been used in the literature for this purpose,
ranging from information-based to cross-validation methods (see McLachlan and Rath-
nayake (2014) for a review). In this study, we use 10-fold cross-validation to select the
number of classes. We partition the data into ten groups, and we estimate the parameters
using the MoR (CAR) model for each number of classes K, ranging from 1 to 6, leaving
out one group. For each K, we calculate the mean NRMSEy, and the number of classes
with the minimum NRMSEy is chosen. Figure 5.9 shows the cross-validation results,
where the black line is the mean NRMSEy of the ten validation groups, and the interval
corresponds to the mean NRMSEy plus and minus its standard deviation. The optimal
number of classes that gives the minimum NRMSEy is K = 3, corresponding to the
actual number of classes.
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Figure 5.8 – Estimated parameters σk
2, τk

2, and α2
k for each class k=1,2,3 as a function

of the sample size varying from 50 to 1000. The blue line corresponds to the true value of
the parameter.
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Figure 5.9 – 10-fold cross-validation results for selecting the optimal number of classes
K.The black line corresponds to the mean of NRMSEy in the ten folds, and the red
interval corresponds to the mean of NRMSEy minus and plus the standard deviation of
NRMSEy in the folds.

5.6.4 Comparison to other methods

In this subsection, we compare our proposed method with two other approaches: the fi-
nite mixture regression (FMR) and the mixture of linear regression experts (MoE). Unlike
our proposed model, in the finite mixture model, defined in equation (5.3.1), the covari-
ates carry no information about the class membership. In this study, we use the Flexmix
package in R (Leisch, 2004) to fit the finite mixture regression model. On the other hand,
the mixture of linear regression experts corresponds to fitting a linear regression without
regularization on each class, and the class membership is determined using the multino-
mial logit model. The difference between FMR and MoE is that the class membership in
MoE depends on the covariates X, but in FMR it does not. The main difference between
these two methods and MoR is that we use regularization of the regression coefficients in
MoR, but not in MoE nor FMR. For MoR model, we use two covariance methods: the
diagonal and CAR noted MoR (diagonal) and MoR (CAR), respectively.

To compare the methods, we perform 100 independent simulations using the same
methodology presented in the subsection 5.6.1, and we estimate the parameters using
FMR, MoE, MoR (diagonal), and MoR (CAR). Figure 5.10 shows the results of the
comparison. The left panel corresponds to NRMSEy in a test set of size 1000, and the
right panel corresponds to the Cramer’s V in the training set of size 1000. Note that we
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Figure 5.10 – Results of the validation measures (NRMSEy and Cramér’s V) of 100
simulations for finite mixture regression (FMR), mixture of regression experts without
regularization (MoE), mixture of generalized Ridge experts with diagonal constant co-
variance matrix (MoR (diagonal)), and mixture of generalized Ridge experts with CAR
covariance (MoR (CAR)).

used the Cramer’s V in the training set because the finite mixture model predicts only
constant weights of classes. For the two validation measures, the FMR is the worst model.
Then comes the MoE model, which has the highest uncertainty in predicting the response
variable. The MoR with diagonal and CAR covariance are the best models in predicting
Y and finding the classes whit the CAR model is slightly better than the diagonal one.

5.7 Application

In this study, we use the proposed method to predict the significant wave height
(Hs) at a location in the Bay of Biscay using wind conditions over the North Atlantic.
The significant wave height is the average height of the highest third of the waves, which
provides essential information about wave energy. (Obakrim et al., 2022b) used a weather-
types regression-based approach for the same problem. Weather typing involves finding the
leading atmospheric circulation patterns influencing waves at the target location. After
constructing the weather types, using a regression-guided clustering algorithm, Ridge
regression is fitted at each class between the response variable Hs and wind conditions.
Thus, their model is equivalent to the equation (5.3.1), but the classes were formed a
priori using a clustering algorithm. In this study, we construct the weather types (classes)
in a statistically optimal way using our proposed method.
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Figure 5.11 – CFSR projected wind in the North Atlantic in 1994-01-01 00h:00. The black
point represents the target point.
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Figure 5.12 – The empirical density of Hs as a function of the estimated classes (1,2, and
3) using the mixture of generalized Ridge with the diagonal (left panel) and CAR (right
panel) covariances.

105



5.7. Application

40

50

60

−60 −40 −20

−0.4

−0.3

−0.2

−0.1

0.0

0.1

γ1

40

50

60

−60 −40 −20

0.0

0.1

0.2

γ2

40

50

60

−60 −40 −20

−0.2

0.0

0.2

γ3

Diagonal

40

50

60

−60 −40 −20

−0.15

−0.10

−0.05

0.00

0.05

γ1

40

50

60

−60 −40 −20

−0.05

0.00

0.05

0.10

γ2

40

50

60

−60 −40 −20

−0.15

−0.10

−0.05

0.00

0.05

0.10

γ3

CAR

Longitude

La
tit

ud
e

Figure 5.13 – Estimated parameters γ1, γ2, and γ3 for the class 1, 2, and 3, respectively
for the diagonal (left panel) and CAR (right panel) cases.
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Figure 5.14 – Estimated regression coefficients β1, β2, and β3 for the class 1, 2, and 3,
respectively for the diagonal (left panel) and CAR (right panel) cases.
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Figure 5.15 – Observed versus predicted Hs in the test set for the diagonal (left panel)
and CAR (right panel) covariance cases.

The data used for Hs comes from the Homere hindcast database (Boudière et al., 2013),
and the wind data comes from Climate Forecast System Reanalysis (CFSR) (Saha et
al., 2010b). The wind data are pre-processed before being used as a predictor (see (Obakrim
et al., 2022b) for the pre-processing procedure). We consider 23 years of Hs and wind data
from 1994 to 2016 with a temporal resolution of 3 hours. Since the data here are time
series, we uses the terms Hs(t), X(t), and Z(t) to refer to Hs, the covariates X, and the
class membership variable Z at time t, respectively.

We consider the hierarchical mixture of Ridge experts as defined in equation (5.4.1).
The response variable Hs is of size n = 67088 and the matrix of covariates X = X1, ..., Xd

is of size 67088×5651. At a given time t, the covariates are defined as X(t) = X1(t), ..., Xd(t),
where Xj(t) is the covariate at time t and location j defined as

Xj(t; tj, αj) = 1
2αj+1

∑t−tj+αj

i=t−tj−αj
W 2

j (i), (5.7.1)
tj + αj + 1 ≤ t ≤ tj − αj + n

where Wj is the projected wind (figure 5.11) defined as

Wj = Uj cos
(1

2(bj − θj)
)

(5.7.2)
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Method r RMSE(m) bias(m)
Obakrim et al. (2022b) 0.973 0.272 -0.03

MoR (Diagonal) 0.972 0.26 -0.02
MoR (CAR) 0.974 0.242 -0.003

Table 5.1 – Quantitative comparison of the method developed in Obakrim et al. (2022b),
MoR with diagonal and CAR covariances, in the test set using the correlation (r), root
mean square error (RMSE), and bias.

Uj is the wind speed, bj is the great circle bearing, and θj is the wind direction at location
j. αj controls the length of the time window, and tj is the mean travel time of waves
which are estimated using the maximum correlation between Hs and the predictor

(t̂j, α̂j) = arg max
tj ,αj

(
corr(Hs, Xg

j (tj, αj))
)
. (5.7.3)

The hierarchical mixture of generalized Ridge experts, defined in equation (5.4.1), is
fitted to the data, and the parameters are estimated using the proposed variational EM
algorithm. For the covariances Σθk, k = 1, .., K, we consider the diagonal and CAR cases.
The model’s parameters are estimated using data from 1994 to 2013, and the model is
evaluated using a test set of the data from 2014 to 2016. Cross-validation results show
that K = 3 is the optimal number of classes. Figure 5.12 shows the empirical density
of Hs as a function of the classes obtained by fitting the mixture of generalized Ridge
experts with the diagonal and CAR covariances in the left and right panel, respectively.
The classes obtained are physically interpretable and depend on the severity of the sea
state. The first class corresponds to waves with low height, the second class to moderate
wave heights, and the third class to high wave heights. Figure 5.13 shows the parameters
γ1, γ2, and γ3 for the diagonal (left panel) and CAR (right panel). The results of figure
5.13 can be interpreted as follows: for both the diagonal and CAR cases, the first class
corresponds to waves coming from the southwest of the target point, and the second class
corresponds to waves generated by the wind in the middle of the North Atlantic, and the
third class corresponds to waves generated in the north. Figure 5.14 shows the estimated
regression coefficients β1, β2, and β3 for the diagonal and CAR cases. As expected, the
CAR coefficients have a more smooth spatial structure than the diagonal.

Figure 5.15 shows the scatter plot of the observed versus predicted Hs in the test set
using the MoR model with the diagonal (left panel) and CAR covariance (right panel).
In terms of correlation (r), root mean square error (RMSE), and bias, the MoR model
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with CAR covariance is better than that with diagonal covariance. A comparison between
our proposed methods (MoR (Diagonal) and MoR (CAR)) with the method developed in
Obakrim et al. (2022b) for the same site is shown in table 6.1. Therefore, the MoR with
CAR covariance is the best model for predicting the significant wave height.

5.8 Summary

In this study, we proposed an algorithm for estimating the parameters of a mixture
of generalized Ridge regression. We showed that using the EM algorithm is problematic
given that the posterior distribution in the E-step is intractable; therefore, we proposed a
variational approximation of the E-step. The simulation study shows that the variational
EM algorithm can estimate the model’s parameters.

The proposed method is applied to predicting the significant wave height at a loca-
tion in the Bay of Biscay, using wind conditions over the North Atlantic. The resulting
classes are physically interpretable and correspond to different wave systems. The pro-
posed method does well in predicting Hs, and the comparative study shows that our
method performs better than the method proposed in Obakrim et al. (2022b).

In this work, we have shown that the proposed mixture of generalized Ridge experts
can solve multicollinearity and incorporate any covariance structure of the regression
coefficients without estimating the regularization hyperparameters using conventional hy-
perparameter selection methods. However, in our model, the gate network parameters
(γk, k=1,..., K) are not penalized, which can lead the gate network to overfit (as can be
seen in Figure 5.4). Thus, future research could investigate the possibility of including a
regularization for the gate network in the same manner as for the regression coefficients.
(βk, k=1,..., K).
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5.9 Conclusions

In this chapter, we proposed a mixture of generalized Ridge experts model fitted using
a variational EM algorithm. The model can perform regression and classification and
predict future class membership. In addition, the model performs regularization and can
incorporate any covariance structure of the regression coefficients without the need to
estimate the regularization hyperparameters using cross-validation.

The method is applied to create a weather-types-based regression model for predicting
the significant wave height from wind conditions. The resulting weather types are phys-
ically interpretable and correspond to different wave systems. Furthermore, the model
predicts Hs well and is better than the model developed in chapter 3. Note that in chap-
ter 3 model, we used two predictors: the local predictor and the global predictor. However,
in this chapter, we have only considered the global predictor because if it is combined with
the local predictor, it will be challenging to find a suitable covariance structure for the
regression coefficients.
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Chapter 6

Modeling the Space-Time Relation
between Wind and Significant Wave
Height: a Deep Learning Approach
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Note: Part of the results of this chapter are published as M. Michel, S.Obakrim,
N.Raillard, P.Ailliot, and V.Monbet, Deep learning for statistical downscaling of sea
states 1. The other part of the results are presented in the Climate Informatics inter-
national conference 2 and accepted for publication as S.Obakrim, V.Monbet, N.Raillard,
and P.Ailliot, Learning the spatiotemporal relationship between wind and significant wave
height using deep learning 3

6.1 Preface

In the previous chapters, we developed several statistical methods for modeling the
relationship between the significant wave height and wind conditions. As discussed in

1. The article can be found in https://doi.org/10.5194/ascmo-8-83-2022
2. https://ncics.org/news/events/ci2022/
3. The preprint can be found in https://doi.org/10.48550/arXiv.2205.13325
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6.2. Abstract

Chapter1, deep learning methods are gaining attention in the climate community and
were used in many studies for downscaling climate variables such as precipitation and
temperature. To the best of our knowledge, deep learning methods have not been yet used
for sea state downscaling; therefore, in Michel et al. (2022), we developed a downscaling
model for sea state parameters using a convolutional neural network model. The model is
based on the predictors (local and global) defined in Chapter3, and the model does well
in predicting Hs.

As for now, the methods developed in this thesis are based on the predictors defined
in Chapter 3, where a preprocessing step is used to define the temporal structure of
the global predictor. The preprocessing step is based on estimating the optimal lagged
wind conditions (interpreted as the travel time of waves) using the maximum correlation
between Hs and wind conditions. The objective of this chapter is to construct the link
function between Hs and wind conditions without this preprocessing step, using deep
learning.

6.2 Abstract

Ocean wave climate significantly impacts near-shore and off-shore human activities,
and its characterization can help design ocean structures such as wave energy convert-
ers and sea dikes. Therefore, engineers need long time series of ocean wave parameters.
Numerical models are a valuable source of ocean wave data; however, they are compu-
tationally expensive. Consequently, statistical and data-driven approaches have gained
increasing interest in recent decades. Using a two-stage deep learning model, this work
investigates the spatiotemporal relationship between North Atlantic wind and significant
wave height (Hs) at an off-shore location in the Bay of Biscay. The first step uses convolu-
tional neural networks (CNNs) to extract the spatial features that contribute to Hs. Then,
long short-term memory (LSTM) is used to learn the long-term temporal dependencies
between wind and waves.

6.3 Introduction

Characterization of wave climate is required for many marine applications, such as
designing coastal and off-shore structures and planning ship operations. Wind waves are
generated by the surface wind, with the local wind creating the wind sea and wind from
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distant areas creating waves that propagate and form swells (Young (1999)). Waves in
the Bay of Biscay depend on local and large-scale wind conditions in the North Atlantic
(Charles et al. (2012a)); however, swells generally dominate the sea state. Swells travel
large distances and take up to five days to cross the Atlantic from Cape Hatteras to
the Bay of Biscay (Ardhuin and Orfila (2018)). Consequently, waves observed at a given
location depend on wind conditions over the North Atlantic in a time window of several
days, and it is challenging to reproduce this complex spatiotemporal relationship using
machine learning. This work aims to propose a deep learning approach that learns this
relationship.

The advantage of deep learning methods (Goodfellow, Bengio, and Courville (2016))
lies in their ability to build hierarchical representations of predictors. In particular, in the
case of spatial data, convolutional neural networks (CNNs) allow for learning complex
spatial features from the data (Gu et al. (2018)). Moreover, long short memory (LSTMs)
(Hochreiter and Schmidhuber (1997)) have proven to be very successful in predicting time
series and sequence data. In this work, we propose a non-expensive data-driven approach
that learns the underlying spatiotemporal structure of the relationship between wind and
waves using a two-stage model based on CNNs and LSTM.

This paper is organized as follows. Section 2 presents the problem of downscaling
ocean waves and related works. Section 3 describes the data used in this work. Section 4
presents the proposed two-stage model, the architecture, and the training process. Section
5 discusses the results of this work. Finally, Section 6 presents the conclusions and future
work directions.

6.4 Problem statement and related work

The problem of improving the spatial resolution of climate variables is known under
the name of downscaling (Maraun et al. (2010)). Downscaling approaches attempt to
construct a numerical or statistical link between large-scale and local-scale variables. The
advantage of statistical downscaling (SD) over numerical models is primarily in terms of
computational efficiency. A rigorous comparison of the two approaches can be found in
(Wang, Swail, and Cox (2010); Laugel et al. (2014)).

In the case of ocean waves, wind (Obakrim et al. (2022b)) or sea level pressure (SLP)
(Camus et al. (2014a)) are commonly used to downscale ocean wave parameters. However,
to establish a link function between the wind (or SLP) and the local ocean wave param-
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eters, it is necessary to consider a large spatial and temporal coverage and, consequently,
many potential explanatory variables that are highly correlated. Some methods determine
the wave generation area for any ocean location worldwide. For example, ESTELA (Pérez
et al. (2014)) is a numerical model that uses spectral information to select the fraction of
energy that travels to the target point from selected source points. The ESTELA method
can be used to design statistical downscaling methods. For instance, Camus et al. (2014a),
and Hegermiller et al. (2017) used the ESTELA method to define the predictors used in
their SD model.

Obakrim et al. (2022b) proposed a data-driven approach that determines the wave
generation area by estimating the travel time of waves generated in each considered source
point that reaches the target point. Then, the predictors were defined based on the wave
generation area, and finally, a SD model based on weather types was built.

As far as we know, the existing methods for SD of ocean wave parameters define a
priori the spatiotemporal structure of the predictors, and then the SD model is built using
these predictors. This study proposes a deep learning approach that automatically learns
the spatiotemporal relationship between wind and waves.

6.5 Data preparation

The Climate Forecast System Reanalysis (CFSR) (Saha et al. (2010a)) hourly wind
data is considered in this study as a predictor. CFSR is a global reanalysis developed
by the National Centers for Environmental Prediction (NCEP) that covers the period
from 1979 to the present with an hourly time step and a spatial resolution of 0.5°by 0.5°.
The historical Hs data is extracted from the hindcast database HOMERE (Boudière et
al. (2013)) at the target location with spatial coordinates (45.2°N, 1.6°W) located in the
Bay of Biscay. The temporal resolution of both wind and Hs data is up-scaled to 3-hourly
data. The period from 1994 to 2016 is considered in this study, leading to a dataset with
n = 67208 observations.

Instead of using both zonal and meridional components as a predictor, we use the
projected wind (Obakrim et al. (2022b)) defined at each location j and time t, as

Wj(t) = Uj(t) cos2
(1

2(bj − θj(t))
)

(6.5.1)

where Wj(t) is the projected wind, Uj(t) is the wind speed, θj(t) is the wind direction,

115



6.5. Data preparation

Figure 6.1 – The projected wind defined in (6.5.2) in 1994-01-01 00h:00. The black point
represents the target point

and bj is the great circle bearing from the source point j to the target point. Under the
assumption that waves travel in great circle paths, grid points whose paths are blocked
by land are neglected (Figure 6.1). Therefore, we define the global predictor at time t as

X(g)(t) = (W 2
1 (t), ..., W 2

p (t)) (6.5.2)

where p = 5651 is total number of grid points.
Following (Obakrim et al. (2022b)), in order to capture the wind sea, we also define

the local predictor as

X(ℓ)(t) = {U(t), U2(t), U3(t), U2(t)F (t), U(t − 1), U2(t − 1), U3(t − 1), U2(t − 1)F (t − 1)}
(6.5.3)

where U(t) is the wind speed at the target point and F (t) is the fetch length at time t,
calculated as the minimum of the distance from the target point to shore in the direction
from which the wind is blowing and 500km. The fetch has an important effect on wind sea
characteristics (Ardhuin and Orfila (2018)); therefore, it is commonly used to construct
empirical wind wave models.
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6.6. Proposed methodology

6.6 Proposed methodology

As mentioned in the last section, state-of-the-art statistical methods for downscaling
wave parameters usually use a preprocessing step to create features that consider the
wave generation area. This study proposes a deep learning approach that automatically
extracts these features. Since waves may take several days to reach the target point, the
history and current wind can be used to predict Hs. An example of this type of model
could have the following form

Hs(t) = f(X(g)(t − tmax), ..., X(g)(t)) (6.6.1)

where tmax can be interpreted as the maximum travel time of the waves and will be referred
to as such in the following. However, this approach can be computationally challenging
given the dimension of the predictor (5651 in our case). Instead, in this study, we propose
to use current wind conditions to estimate current and future Hs.

In order to describe the complex spatiotemporal relationship between wind and Hs,
we propose the following two-stage model

1st stage: [Hs(t|X(g)(t)), ..., Hs(t + tmax|X(g)(t))] = f(X(g)(t)) + ϵ(t), f : Rp → Rtmax

2nd stage: Hs(t) = g(X(g)(t), f(X(g)(t − tmax)), ..., f(X(g)(t))) + ϵ′(t), g : Rtmax∗tmax+8 → R
(6.6.2)

where the notation Hs(t1|X(g)(t2)) represents the contribution of wind conditions at time
t2 in Hs at time t1. ϵ and ϵ′ are the errors of the 1st stage and 2nd stage, respectively. The
1st stage estimates the current and future Hs using current wind conditions. The 2nd stage
estimates Hs using the past predictions obtained from the 1st stage. Along with the local
predictor X(g), the input for the 2nd stage is a tmax ∗ tmax matrix of the form


Ĥs(t − tmax|X(g)(t − tmax)) . . . Ĥs(t|X(g)(t − tmax))

... . . . ...
Ĥs(t|X(g)(t)) . . . Ĥs(t + tmax|X(g)(t))

 (6.6.3)

where Ĥs(t1|X(g)(t2)) represents the prediction, obtained from the 1st stage, of the con-
tribution of wind conditions at time t2 in the Hs at time t1. When t1 = t2, this prediction
represents the wind sea (first column of the matrix in equation (6.6.3)); for t1 > t2, on
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6.6. Proposed methodology

Figure 6.2 – Architecture of the two-stage model in equation (6.6.2)

the other hand, the prediction represents the Hs caused by swells.
The general structure of the model is shown in Figure 6.2. The 1st stage consists of a

series of 3*3 convolutions followed by the ReLU activation function, 2*2 max pooling layer,
Batch Normalisation, then a flatten followed by a dense layer. The 2nd stage starts with
an LSTM layer that learns the long-term dependencies of the (t − tmax, ..., t) outputs of
the 1st stage. The output of the LSTM layer is then concatenated with the local predictor
X l and fed into two fully connected layers. The dropout layer is used in both stages to
prevent the network from overfitting. The loss function chosen in this study is the mean
squared error (MSE) which is expressed as

MSE(1st stage) = 1
tmax

tmax∑
i=0

1
n − tmax − 1

n−tmax∑
t=1

(Hs(t + i) − Ĥs(t + i|X(g)(t)))2

MSE(2nd stage) = 1
n

n∑
t=1

(Hs(t) − Ĥs(t))2
(6.6.4)

Where n is the total number of observations and Ĥs is the prediction of Hs. The Keras
framework with Tensorflow backend (Chollet et al. (2015)) is used in this work to train
the model on an Nvidia K80s GPU using the Adam optimizer (Kingma and Ba (2014))
and mini-batches of 64.
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6.7. Results

Figure 6.3 – Results of cross-validation using different values of tmax. The blue line rep-
resents the mean of RMSE, and the red interval represents the minimum and maximum
RMSE

6.7 Results

The period from 1994 to 2011 is used to train the two-stage model and the period from
2012 to 2014 serves as the validation period. The measures chosen in this paper to validate
the analysis are the correlation coefficient (r), the root mean square error (RMSE), and
the bias. Different values for the maximum travel time of waves tmax are tested, and
the results of k-fold cross-validation (with k = 5) are shown in Figure 6.3. The RMSE
stabilises approximately at tmax = 30 × 3h, which corresponds to about 3.3 days, and the
gain is substantial compared to using tmax = 5. This means that wind conditions over a
time window of at least 3.3 days must be considered to characterize the wave climate at
the target location. In the following, the value of tmax is chosen equal to 30.

Figure 6.4 shows the scatter plot of observed versus predicted values of Hs using the
two-stage model (6.6.2). The RMSE in the validation period equals 0.21m for an Hs

of mean 1.9m and standard deviation 1.1m. The model performs well in predicting Hs

and accounts for both wind and swell. The validation measures in the calibration and
validation periods are almost the same. This means that the model does not overfit the
training data and generalizes well the relationship between wind and waves. Furthermore,
the seasonality of Hs is well captured by the two-stage model, as shown in Figure 6.5.

A comparison of the two-stage model with two other statistical approaches is made in
Table 6.1. The first approach, described in (Obakrim et al. (2022b)), is based on weather
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6.7. Results

Figure 6.4 – Observed versus predicted Hs in the validation period (left panel) and cali-
bration period (right panel)

Figure 6.5 – Time series of observed (blue line) and predicted (red line) Hs in 2016

Method r RMSE(m) bias(m)
two-stage model 0.98 0.21 -0.006
weather types 0.97 0.27 -0.03

H-CNN 0.97 0.27 -0.04

Table 6.1 – Comparison of the two-stage model, weather types, and H-CNN methods.
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6.8. Summary

types (Maraun et al. (2010)). As for the present work, the local and global predictors
were considered. However, to reduce the dimension of the predictor, a single predictor is
extracted at each spatial location j to predict Hs at time t. It is defined a priori as

X
(g)
j (t; tj, αj) = 1

2αj+1
∑t−tj+αj

i=t−tj−αj
W 2

j (i), (6.7.1)
tj + αj + 1 ≤ t ≤ tj − αj + n

where tj is the travel time of waves, αj controls the length of the time window, and Wj

is the projected wind at location j. The parameters tj and αj were estimated using the
maximum correlation between hs and the global predictor. The second method (Michel
et al. (2022)) uses CNNs to predict Hs using the same predictors as in (Obakrim et
al. (2022b)). Thus, the main difference with the approach proposed in this work is that
the temporal dimension of the global predictor is reduced a priori using the preprocessing
step based on the maximum correlation described above. The numerical results in Table
6.1 indicate that the two-stage model significantly outperforms the other two methods in
terms of the validation measures.

6.8 Summary

This study proposes a two-stage model based on deep learning to predict Hs using wind
conditions. The model can automatically learn the underlying spatiotemporal structure
of the relationship between wind and waves. The model does well in predicting Hs and
is computationally inexpensive (about 5min using a computer of 30GB RAM, two cores
CPU, and a 16GB GPU). The proposed methodology is based on two stages which are
trained separately. A natural question for future work is whether we can estimate the
parameters jointly using back-propagation and eventually speed up the training process
and improve the results. Future work also includes using the method to predict other sea
state parameters, such as wave direction and period.

The proposed method can be used for climate and weather studies at any ocean
location worldwide. For nearby locations, one can train only the 2nd stage at each location,
using the weights of one location as initialization for the others and leaving the 1st stage
the same. The model can also learn from buoy data instead of hindcast data and eventually
fill in the gaps and complete historical data.
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6.9. Conclusions

6.9 Conclusions

In this chapter, we studied the potential of using deep learning models for downscaling
the significant wave height using wind conditions. We developed a two-stage model based
on convolutional neural networks and long short term memory deep learning models
capable of predicting Hs without a preprocessing step that defines the temporal structure
of the predictors as in Chapter 3. Furthermore, the proposed model predicts well Hs and
outperforms the statistical methods developed in the previous chapters.
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Chapter 7

Conclusions

Contents
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
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7.1 Summary

In this thesis, we investigated the use of statistical and deep learning methods for
modeling the relationship between wind conditions and the significant wave height. At
first, we developed a weather-types-based regression method that predicts Hs using wind
conditions. The weather types model predicts well Hs; however, the individual regression
models for each weather type do not consider that the covariates (wind conditions) have
a spatial structure. Therefore, in Chapter 4, we developed a new method for estimating
the parameters of generalized Ridge regression that can incorporate any covariance struc-
ture of the regression coefficients, and we focused on the use of spatial covariances such
as Matérn and conditional autoregressive (CAR). Then, in Chapter 5, we combined the
ideas of Chapters 3 and 4 and proposed a mixture of generalized Ridge experts, which is
estimated using a variational EM algorithm. The mixture of generalized Ridge experts is
used as a weather-types-regression-based model for downscaling Hs, and the model out-
performs the model proposed in Chapter 3. Finally, in Chapter 6, we investigated the use
of deep learning for downscaling sea state parameters and proved the potential of these
methods in modeling the spatiotemporal relationship between wind and waves.

The main findings of this work can be summarized as follows:
• Taking into account lagged wind conditions is important in order to statistically

model the relationship between wind and waves
• Using a local and a global predictor is beneficial in constructing the link function

between wind and waves (Chapter 3 and 5)
• Lagged wind conditions can be considered either by using a preprocessing step as

in Chapter 3 or can be learned automatically using deep learning (Chapter 6)
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Method local predictor r RMSE(m) bias(m)
Weather types (Chapter 3) yes 0.973 0.272 -0.03
GR-Diagonal (Chapter 4) no 0.941 0.414 -0.0004
GR-Matérn (Chapter 4) no 0.956 0.354 -0.04
GR-CAR (Chapter 4) no 0.957 0.352 -0.06

MoR-Diagonal (Chapter 5) no 0.972 0.26 -0.02
MoR-CAR (Chapter 5) no 0.974 0.242 -0.003

H-CNN (Michel et al. (2022)) yes 0.972 0.271 -0.04
Two-stage model (Chapter 6) yes 0.98 0.21 -0.006

Table 7.1 – Quantitative comparison of the method developed in this thesis. The first
method is the weather-types-based model developed in Chapter 3, GR-diagonal, GR-
Matérn, and GR-CAR are the methods developed in Chapter 4 (GR for generalized
Ridge), MoR-Diagonal and MoR-CAR are the methods proposed in Chapter 5, H-CNN is
the deep learning method developed in Michel et al. (2022). Finally, the two-stage model
is the method proposed in 6. The local predictor column indicates whether the model
takes into account the local predictor.

• It is beneficial, both in terms of prediction accuracy and interpretability, to consider
that the regression coefficients have a spatial structure when the covariates have a
spatial structure

• A weather-types-based-regression model can be constructed using mixture of re-
gression models, especially mixture of experts, given that they allow for future
predictions of weather types

• Constructing weather types using a mixture model allows the weather types to
be evaluated based on the prediction of Hs, which leads to optimal estimations
(Chapter 5)

A comparison between all the methods developed in this thesis is shown in table
7.1. Regarding the validation measures (correlation r, RMSE, and bias), the two-stage
model outperforms the other methods; However, in terms of interpretability, it is the
least interpretable given the complex model architecture. On the other hand, the mixture
of generalized Ridge experts provides good results and physically interpretable weather
types, yet in terms of computational complexity, it is the most expensive model.

7.2 Perspectives

The objective of this thesis was to study the use of statistical and machine learning
methods for sea state characterization. We believe that our work opens new research
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avenues listed in the following non-exhaustive list:
• The methods proposed in this study were only used for significant wave height

downscaling; however, it would be interesting to verify if they also perform well
for other sea state parameters, such as wave period and direction. Furthermore,
The downscaling methods can be extended to nearby locations by adjusting only
the local predictor and keeping the same global predictor for nearby locations. It
is also possible to apply our proposed methods to any ocean location worldwide;
however, the quality of the model will depend on the quality of the available wind
and wave data and the tidal conditions at the target point.

• Investigate the use of the proposed methods for operational applications such as
long-term sea state monitoring, short-term forecasting or hindcasting.

• The EM algorithm proposed for generalized Ridge regression is limited to linear
regression with Gaussian errors. A natural question that arises is whether the
algorithm can be extended to be used for generalized linear models.

• The proposed mixture of generalized Ridge experts has been shown to work well
in both simulations and applications. However, the convergence of the variational
EM algorithm used to estimate the parameters is not guaranteed, and it would be
interesting to investigate the theoretical convergence of the algorithm.

• While this thesis work is oriented to wave parameters prediction, some of our
proposed methods, such as the EM algorithm for generalized Ridge and mixture
of generalized Ridge experts are domain-free. They can be applied to any domain,
and it could be interesting to investigate their performance compared to other
methods.
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Résumé : Le climat des vagues océaniques a
un impact significatif sur les activités humaines, et
sa compréhension est importante sur le plan socio-
économique et environnemental. Dans cette thèse,
nous nous intéressons à la caractérisation des pa-
ramètres d’état de mer tels que la hauteur significa-
tive des vagues (Hs) en utilisant des méthodes statis-
tiques et d’apprentissage profond. En particulier, nous
nous intéressons à la modélisation de la relation entre
les conditions de vent de l’Atlantique Nord et les pa-
ramètres d’état de la mer à un endroit situé dans le
Golfe de Gascogne. Étant donné la multidimension-
nalité des données de vent et la relation décalée en
temps entre les conditions de vent et les vagues,
nous proposons d’abord un cadre général pour sé-
lectionner les covariables pertinentes qui influencent
la hauteur significative des vagues. Après l’étape de
prétraitement, un modèle de régression basé sur les
types de temps est proposé pour modéliser la rela-
tion entre le vent et les vagues. Les types de temps
sont construits à l’aide d’un algorithme de classifica-
tion puis, pour chaque type de temps, une régression

de Ridge est ajustée entre les conditions de vent et
la hauteur significative des vagues. Le modèle pré-
dit bien Hs, mais il présente certaines limites, à sa-
voir : (i) la régression de Ridge ne tient pas compte du
fait que les covariables ont une structure spatiale ; et
(ii) les types de temps sont construits a priori à l’aide
d’un algorithme de classification et ils ne sont pas éva-
lués en fonction de la prédiction de Hs. Par consé-
quent, nous proposons un algorithme d’espérance-
maximisation (EM) pour estimer les paramètres de la
régression de Ridge généralisée avec des covariables
spatiales, puis, pour tenir compte les points (i) et (ii),
nous proposons un mélange d’experts de Ridge géné-
ralisés estimés à l’aide d’un algorithme EM variation-
nel. Ce modèle est utilisé comme modèle de régres-
sion basé sur les types de temps et ses performances
sont supérieures à celles du modèle original. Finale-
ment, la dernière partie de cette thèse est consacrée
au développement de méthodes d’apprentissage pro-
fond pour la prédiction des paramètres de l’état de la
mer.

Title: Statistical downscaling and climate change in the coastal zone

Keywords: Downscaling, Sea state, Generalized Ridge, Mixture of experts, EM algorithm, Deep learning

Abstract: Ocean wave climate has a significant im-
pact on human activities, and its understanding is
socioeconomically and environmentally important. In
this thesis, we are interested in characterizing sea
state parameters such as significant wave height (Hs)
using statistical and deep learning methods. In par-
ticular, we are interested in modeling the relation-
ship between North Atlantic wind conditions and sea
state parameters at a location in the Bay of Biscay.
Given the multidimensionality of the wind data and the
time-lagged relationship between wind conditions and
waves, we first propose a general framework to se-
lect the relevant covariates that influence the signifi-
cant wave height. After the preprocessing step, a re-
gression model based on weather types is proposed
to model the relationship between wind and waves.
The weather types are constructed using a clustering
algorithm, and then, for each weather type, a Ridge re-

gression is fitted between the wind conditions and the
significant wave height. The model predicts Hs well;
however, it has some limitations, namely: (i) Ridge
regression does not take into account that the co-
variates have a spatial structure; and (ii) the weather
types are constructed a priori using a clustering algo-
rithm, and they are not evaluated based on the pre-
diction of Hs. Therefore, we propose an expectation-
maximization (EM) algorithm to estimate the param-
eters of the generalized Ridge regression with spatial
covariates. Then, to account for (i) and (ii), we propose
a mixture of generalized Ridge experts estimated us-
ing a variational EM algorithm. This model is used as
a weather-types-based regression model, and its per-
formance is better than that of the original model. Fi-
nally, the last part of this thesis is devoted to develop-
ing deep learning methods for sea state parameters
prediction.
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