Thèse soutenue

Modèles graphiques probabilistes appliqués aux procédés de fabrication

FR  |  
EN
Auteur / Autrice : Mathilde Monvoisin
Direction : Philippe LerayMathieu Ritou
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 16/12/2022
Etablissement(s) : Nantes Université
Ecole(s) doctorale(s) : École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes)
Partenaire(s) de recherche : Laboratoire : Laboratoire des Sciences du Numérique de Nantes
Jury : Président / Présidente : Bruno Castanier
Examinateurs / Examinatrices : Karim Tabia, Philippe Weber, Véronique Delcroix
Rapporteur / Rapporteuse : Karim Tabia, Philippe Weber

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

La fabrication intelligente est un domaine de recherche prometteur pour l’amélioration de la productivité et de la compétitivité dans l’industrie, par l’exploitation des données numériques obtenues lors de procédés de fabrication, tel que l’usinage à grande vitesse. Les réseaux bayésiens ont fait leurs preuves en matière de classification et de diagnostic, et ils ont notamment l’intérêt d’être grandement interprétables. Cette thèse présente une architecture générique de réseaux bayésiens pour le diagnostic à partir de capteurs, incluant un mécanisme de sélection de variables basé sur l’information mutuelle. Le co-training est un champ émergent des algorithmes d’apprentissage à partir de données, et l’exploration de cette famille d’algorithmes est jusqu’à présent essentiellement limitée à un apprentissage supervisé ou semisupervisé. Ce manuscrit propose plusieurs stratégies de co-training non-supervisées utilisables par tout modèle probabiliste, et détaille leur utilisation sur plusieurs jeux de données. L’ensemble des contributions théoriques est mis à profit dans un cas d’usage sur l’usinage à grande vitesse, dans lequel deux réseaux bayésiens avec la structure générique proposée permettent d’exploiter les données de capteurs d’une électrobroche en conditions réelles d’utilisation, et dont les paramètres sont appris grâce aux stratégies de co-training non-supervisées