
Numéro d’ordre NNT : 2022LYSEC009

THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYON opérée au
sein de l’École centrale de Lyon

École Doctorale 512
École Doctorale InfoMaths

Spécialité de doctorat : Mathématiques et applications
Discipline : Mathématiques

Soutenue publiquement le 03/03/2022 par

Thierry GONON

Gaussian process regression on nested subspaces

Devant le jury composé de :

Mme Clémentine Prieur Professeur, Université Grenoble Alpes Président
M. Bertrand Iooss Chercheur senior, EDF R&D Rapporteur
M. Luc Pronzato Directeur de recherche, CNRS Rapporteur
M. Olivier Roustant Professeur, INSA Toulouse Examinateur
M. Bruno Demory Ingénieur simulation CFD, Valeo Invité
Mme Christophette Blanchet-Scalliet Maître de conférence, Ecole Centrale de Lyon Directeur
Mme Céline Helbert Maître de conférence, Ecole Centrale de Lyon Directeur

Remerciements
Bon, et bien je crois que le moment est venu. C’est un événement sacrément spécial que
la fin d’une thèse, de trois années de recherche et d’approfondissement d’un sujet. Il est
temps pour moi de remercier les principaux acteurs de la mienne, qui ont fait en sorte qu’elle
se passe le mieux possible. Préparez-vous à la lecture des remerciements les plus longs de
l’histoire des remerciements.

Merci aux membres du jury d’avoir accepté votre mission : Bertrand Iooss, Clémentine
Prieur, Luc Pronzato, et Olivier Roustant. En particulier merci à Luc Pronzato et Bertand
Iooss pour avoir accepté de rapporter ma thèse.

Merci à Céline, Christophette, et Bruno, mes très chers encadrants. Merci Céline pour
ton énergie permanente, pour tes idées à foison, pour m’avoir accordé ta confiance en
m’accompagnant en projet, en stage, puis en thèse. Merci pour ton aide bibliographique,
ta connaissance dans le domaine, et ton investissement dans la communauté française de la
quantification d’incertitude. Merci ensuite Christophette, pour avoir accepté de me super-
viser avec Céline, pour ton engagement dans ma thèse, ton ardeur à réfléchir aux questions
que je t’ai posées, tes remarques toujours pertinentes et tes éclairs de génie, et nos partages
de calculs et de réflexions qui m’ont passionné et ont été une vraie source de motivation dans
ma thèse. Merci à Bruno pour m’avoir suivi toutes les deux semaines avec assiduité, pour
ton enthousiasme sans égal envers ton travail qui me fait vouer un respect sans borne en
ta personne. Merci pour toujours avoir gardé de vue les enjeux industriels, une vision glob-
ale qui nous a été extrêmement utile pour nous recadrer dans un contexte, et parfois nous
réaligner sur les bons enjeux, lorsque nous nous perdions un peu dans des développements
mathématiques.

Merci au labo de maths dans son ensemble, pour la bonne ambiance qui y règne et pour
l’intégration des jeunes. En particulier, merci Isabelle pour ta gentillesse, ton sens du service,
pour m’avoir aidé à m’y retrouver dans les méandres administratifs. Merci Francis, pour avoir
réglé tous les soucis informatiques que j’ai rencontrés, et pour m’avoir conseillé des outils très
utiles dans ma vie de tous les jours. Merci Martin pour avoir consacré du temps à m’expliquer
le fonctionnement du cluster de Centrale et m’avoir aidé à me servir de ton code 1D. Merci à
Benoit Fabrèges et Roland Denis, responsables du cluster de l’ICJ, vous que j’ai sollicités à de
nombreuses reprises (probablement de façon excessive) et qui avez pris le temps de répondre
à mes questions relatives au cluster ou même pour des problèmes de code (bien que cela
dépasse le cadre de votre fonction). Cela m’a débloqué plusieurs fois et je vous en suis très
reconnaissant.

Merci à ceux qui ont collaboré de près ou de loin à la thèse. Merci à Manuel et Nicolas,
vous qui avez oeuvré côté Valeo pour la naissance de ma thèse, qui avez gardé un oeil sur
moi tout au long de celle-ci, et que je ne remercierai jamais assez. Merci à l’équipe de CFD
des systèmes thermiques de Valeo, à laquelle j’ai parfois été rendre visite durant ces trois
ans. Merci Xavier Bay pour nous avoir accueillis aux Mines de Saint-Etienne, pour avoir
longuement discuté avec nous de ma thèse, et défriché très pédagogiquement les portions de
votre travail que nous avons utilisées. Merci à Olivier Roustant et Jean-Yves Welschinger
pour avoir accepté d’être membres de mon comité de suivi, pour avoir surveillé le déroulement
de ma thèse avec un vrai soucis de me faire réussir, et en particulier Olivier d’un point de vue
scientifique pour nous avoir apporté votre expertise dans le domaine et nous avoir proposé
des pistes.

Un grand merci aux membres de la vénérable cathestr, JC, Paypouze, Jacky, et Hippo, pour
m’avoir accueilli dans votre coloc les bras ouverts au début de ma thèse. En particulier,
merci à toi Hippolyte, à qui j’ai coûtume de dire que je dois ma thèse. Merci d’avoir été
me chercher pour faire un projet de recherche et m’avoir fait connaître Céline par la même
occasion.

Un merci tout particulier à mes chers cobureaux, avec qui j’ai eu le plaisir de passer mes
journées, et parfois aussi mes soirées ou week end. Merci à Mona, tout d’abord, pour avoir
passé avec moi mes premières longues journées d’hiver au labo, pour ta gentillesse à toute
épreuve, et pour ta formidable réactivité au dooble. Merci à Nicolas, ensuite, toi qui dès le
premier jour m’a demandé : "Dis-moi Thierry, est-ce que tu sais jouer au tarot ?". Merci
pour les footings dans les pentes de la Croix-Rousse que tu m’as emmené faire pour mon
plus grand plaisir (même si je n’avais pas le niveau), pour la sortie ski à laquelle tu m’as
convié et que je qualifierais de journée des descentes de l’extrême. Merci à Laura, ou Madame
Tatouille, notre mère à tous bien sûr, une source d’inspiration pour beaucoup de choses, pour
avoir contribué à l’ambiance du labo avec les regrettés vendredis pâtisserie, pour le sujet de
stage que tu as fait avec Mathilde et que je vous ai honteusement piqué, pour toutes les
activités que tu nous as organisées : balades, escape game, et j’en passe, pour mon article
et ma présentation au séminaire des doctorants que tu as relus avec une minutie qui m’a
impressionné, dont je n’aurais pas été capable pour d’autres. Merci à Angèle, toi qui est la
cobureau avec laquelle j’ai passé le plus de temps pendant la thèse, merci pour les problèmes
mathématiques que tu nous as exposés et auxquels nous avons réfléchis devant le tableau,
ton éthique de travail et ta conscience professionnelle qui je pense m’ont tiré vers le haut,
merci pour ton incroyable énergie, enrhumée ou non, pour avoir été la précurseure des aller-
retour à vélo, et la plus assidue je le reconnais volontiers, merci pour les footings sur le
temps du midi, pour tous les jeux que nous avons faits quand nous n’étions que deux ou
avec d’autres (peut-être rattrapera-t-on un jour le score de Laura et Mathilde au hanabi),
pour enfin nous avoir invités à ton magnifique mariage. Merci à Mathilde, informaticienne
pour la thèse mais mathématicienne dans le coeur, merci pour ta bienveillance envers moi,
j’ai vraiment apprécié ta compagnie, nos discussions en voiture après les quelques soirées que
nous avons faites ensemble, ainsi que notre visionnage de Forest Gump en temps de grève
qui restera inoubliable, je me réjouis grandement de ton heureux événement récent avec tout
de même un léger pincement au coeur qu’il ne soit pas arrivé le 23 septembre, histoire que ce
jour soit définitivement éligible à la fériérisation. Merci Mélina, mon illustre prédécesseure
de thèse, pour avoir pris le temps de répondre à mes questions à certains moments de ma
thèse quand j’en ai eu besoin, qui ont été charniers dans le déroulement de celle-ci et qui ont
notamment conduit à des choix sur le format de mes codes R largement inspirés des tiens.
Merci également pour les quelques fois où je t’ai rencontrée dans un cadre plus festif où j’ai
pu découvrir ton sens de l’humour dévastateur qui fait mouche sur moi à tous les coups.
Merci à Antoine, avec qui j’ai de commun nos années d’élèves ingénieurs, merci pour nous
avoir fait découvrir ce jeu exceptionnel qu’est le hanabi, qui est devenu une véritable affaire
d’état, vecteur de rapports passionnés sur le temps du midi, merci pour avoir assisté en ma
compagnie et celle de Reda à la dernière grande victoire de Roger Federer (une demi-finale
de Wimbledon d’anthologie contre Nadal), merci également pour m’avoir inclus au groupe
des restos avec Lucas et Antonio. Merci à vous trois pour avoir traversé nos thèses côte à
côte, pour nos soirées de débats mathématiques, politiques, sociétaux et sportifs enfiévrés.
Merci Thibault pour avoir accepté les yeux fermés de faire le RAID avec moi, pendant lequel
on s’est je pense bien marrés, nous les MItigés, les combattants, les talentueux, ou, pour
reprendre tes mots, les chaudières. Merci à Hugues, toi qui as une place particulière en tant

que dernier rescapé des compagnons du flunch à être resté dans l’enceinte de l’école, merci
pour les soirées de réflexion intense autour d’énigmes mathématiques, et pour les parties
endiablées de race for the galaxy (moi l’élève a encore du travail pour rattraper le niveau
du maître). Merci Reda, le célèbre auteur de la fonction de Reda, comme aime à l’appeler
Noé, merci pour ta tranquillité en toute circonstance, pour tes compétences avancées de
recherche bibliographique, pour les confs que j’ai passées à tes côtés, ce qui m’a permis de me
sentir moins seul, enfin pour notre goût commun du foot et les parties que nous avons jouées
ensemble (une technique de jeu et un contrôle de balle qui méritent tout mon respect). Merci
enfin à ceux qui ont fait un bout de chemin avec moi en se rajoutant à la formidable bande :
Benjamin, Tania, Nicolas (le post-doc), Matthieu, Josselin et bien sûr la prometteuse relève
: Noé et Benoit.

Un grand merci à la compagnie élargie du flunch : Hugues en premier artilleur, Natan le
plus sympathique des malchanceux, Thomas saboteur dans l’âme, Thibault digne héritier
d’Audiard et de Coluche, Clément frère de maillot (allez Paris) et meilleur binôme en 1A,
Antonio le plus français des espagnols et solide compère des TD de la mort en 3A. Notre
esprit de groupe a perduré malgré la perte tragique de notre vénéré flunch, sa disparition
nous a rendus plus forts et plus soudés et je vous remercie pour les nombreux skype que
nous avons faits, pour les parties acharnées de pictionnary, et pour les parties de saboteur
qui auront révélé une absence totale de mauvaise fois au sein du groupe, sans aucune réserve
possible.

Un mot sur ma famille qui a joué un rôle important. Merci papy pour m’avoir transmis ton
goût des maths, de leur histoire (que je ne connais que trop peu et j’essaie d’y remédier),
les livres que tu m’as passés, et pour m’avoir fait découvrir Mickael Launay. Merci à toi et
mamie pour nos appels parfois longs au téléphone les week end, qui me tiennent compagnie.
Merci papa et maman pour m’avoir soutenu dans ma décision audacieuse de me lancer dans
un doctorat. Merci à vous ainsi que Stéphane et Laura. Merci Stéphane pour les crises de fou
rire que tu déclenches chez moi, pour nos nombreux délires qui désespèrent notre entourage,
pour tes anecdotes croustillantes et hors du commun, pour ta vie sociale riche et saine qui
m’inspire dans mes propres relations. Oui c’est le petit frère qui sert d’exemple au grand.
Merci Laura, toi qui sera toujours tendrement "ma petite Laura" même si tu me répètes
souvent que tu n’as plus 8 ans tout de même, experte reconnue en films de noël, que je vois
grandir et s’épanouir à vue d’oeil. Si tu peux me rendre un service, ça serait de ne jamais
t’arrêter de rire, car c’est ma plus grande source de joie. Même si à mon grand regret, je
vous ai dégouté des maths, j’épie avec curiosité la direction que prendront vos études qui
seront de toute façon nouvelles pour la famille et source d’ouverture vers d’autres domaines.
Merci papa pour ton entrain, ta verve, tes anecdotes de pêche, toutes les vacances que tu
nous organises et qui sont de véritables bulles d’air pour moi. Merci ma petite maman, pour
ta tendresse sans faille, ton soucis de notre bien-être permanent et ton goût pour la lecture
dont j’essaie de m’inspirer. Merci Michèle et Jojo pour votre compagnie toujours appréciée
et pour avoir occupé mon confinement avec vos superbes cours de danse en ligne. Merci à
toute ma famille dans son ensemble, et en particulier la family tribe, Hélène, Pascal, Benoît,
Claire, Geoffroy, Lié, et surtout Philippe, toi qui a pris du temps pour relire mon article avec
soin en faisant valoir ton expertise de la grammaire anglaise.

Je remercie pour finir trois professeurs qui m’ont profondément marqué et ont également
grandement influencé ma scolarité : d’abord Monsieur Chériaux (avec un x parce qu’il y en
a plusieurs), mon formidable professeur de CM1-CM2, un des hommes les plus cultivés et
passionnants qu’il m’ait été donné de rencontrer, ensuite Monsieur Consigli qui a laissé une

trace indélébile sur mes années collège. Je dirais que si Monsieur Chériaux m’a fait aimé
l’école, Monsieur Consigli m’a fait aimé les maths. Merci également à Monsieur Jaffrenoux,
qui a révolutionné mon année de terminale, qui m’a absolument convaincu de faire une classe
prépa, ce qui a indirectement conduit à ma thèse.

Je termine cette première et remuante expérience des remerciements avec une petite larme à
l’oeil et souhaite à présent une bonne lecture de la suite aux plus courageux d’entre vous.

Résumé
Les métamodèles sont très largement utilisés dans l’industrie pour prédire la sortie des codes
de calcul coûteux. Comme ces codes de calcul font intervenir une grande quantité de vari-
ables d’entrée, créer directement un grand métamodèle dépendant de l’ensemble des entrées
apparait trop ambitieux. Les industriels choisissent par conséquent de procéder séquentielle-
ment. Ils réalisent des études en plusieurs étapes avec des métamodèles se concentrant sur
des ensembles de variables de plus en plus grands. Les variables non prises en compte sont
fixées à une valeur nominale. La dimension de l’espace des entrées grandit à chaque étape.
Cependant, l’information obtenue aux étapes précédentes est perdue car un nouveau plan
d’expérience est généré pour construire le métamodèle. Dans cette thèse, une approche al-
ternative est introduite, utilisant tous les plans d’expériences générés depuis le début plutôt
que seulement celui de l’étape en cours. Ce métamodèle utilise la régression par processus
Gaussiens et est appelé seqGRP (sequential Gaussian process regression). A chaque étape, la
sortie est modélisée par la somme de deux processus : le processus qui modélisait la sortie à
l’étape précédente et un processus correctif. Le premier est défini sur le sous-espace d’entrée
de l’étape précédente tandis que le deuxième est défini sur le sous-espace de l’étape en cours.
Le processus correctif représente l’information apportée par les variables libérées à l’étape
concernée. Il a la particularité d’être nul sur le sous-espace de l’étape précédente pour assurer
la cohérence de la modélisation entre les étapes. Premièrement, des candidats pour les pro-
cessus correctifs sont proposés, qui ont la particularité d’être nuls sur un continuum de points.
Ensuite, un algorithme d’EM (Expectation-Maximization) est implémenté pour estimer les
paramètres des processus. Enfin, le métamodèle seqGPR est comparé à un métamodèle de
krigeage classique qui modélise la sortie par un processus Gaussien stationnaire. La compara-
ison est faite sur deux exemples analytiques, un en deux étapes allant jusqu’à la dimension 4,
un autre en trois étapes allant jusqu’à la dimension 15. La méthodologie introduite est égale-
ment évaluée sur un exemple industriel allant de la dimension 11 à la dimension 15. Dans
tous ces cas test, le métamodèle seqGPR a de meilleures performances, ou tout du moins est
aussi bon que le krigeage. En parallèle, une méthodologie est proposée pour construire les
échantillons d’entraînement du métamodèle. Enfin, deux problèmes complémentaires sont
abordés : la présence de plusieurs plans d’expérience sur différents sous-espaces à chaque
étape, et l’enrichissement des plans d’expérience.

Mots clés : Métamodèle, Krigeage, Régression par processus Gaussiens, Grande dimension,
Conditionnement infini, Multifidélité, Espaces imbriqués, Problèmes d’espace d’entrées de
taille variable.

3

Abstract
Metamodels are widely used in industry to predict the output of an expensive computer code.
As industrial computer codes involve a large amount of input variables, creating directly one
big metamodel depending on the whole set of inputs may be a very challenging problem.
Industrialists choose instead to proceed sequentially. They build metamodels depending on
nested sets of variables (the variables that are set aside are fixed to nominal values), i.e.
the dimension of the input space is progressively increased. However, at each step, the
previous piece of information is lost as a new Design of Experiment (DoE) is generated to
learn the new metamodel. In this thesis, an alternative approach is introduced, based on all
the DoEs rather than just the last one. This metamodel uses Gaussian process regression
and is called seqGPR (sequential Gaussian process regression). At each step, the output
is supposed to be the realization of the sum of two independent Gaussian processes. The
first one models the output at the previous step. It is defined on the input space of the
previous step which is a subspace of the one of the current step. The second Gaussian
process is a correction term defined on the input space of the current step. It represents
the additional information provided by the newly released variables. The correction term
has the particularity of being null on the subspace of the previous step so that there is a
coherence between the steps. Firstly, some candidate Gaussian processes for the correction
terms are suggested, which have the property of being null on an infinite continuous set of
points. Then, an EM (Expectation-Maximization) algorithm is implemented to estimate the
parameters of the processes. Finally, the metamodel seqGPR is compared to a classic kriging
metamodel where the output is assumed to be the realization of one second order stationary
Gaussian process. The comparison is made on two analytic examples, a first one with two
steps, up to dimension 4, and a second one with three steps, up to dimension 15. The
introduced methodology is also tested on an industrial example which goes from dimension
11 to dimension 15. In all these test cases, seqGPR performs better than, or at least as well as
kriging. A methodology is suggested to build the samples used for the seqGPR metamodel.
Two complementary issues are tackled: the presence of multiple designs in different subspaces
at each step, and the enrichment of the training samples.

keywords: Metamodel, Kriging, Gaussian process regression, High dimension, Infinite con-
ditioning, Multifidelity, Nested spaces, Variable-size design space problems.

4

Contents

1 Introduction 9
1.1 Industrial motivation . 9
1.2 Model . 11
1.3 Problematics and plan of the thesis . 12

2 State of the art 15
2.1 Generalities on the kriging metamodel . 15

2.1.1 From Gaussian vectors to Gaussian process regression 15
2.1.2 Maximum Likelihood estimation and EM (Expectation - Maximiza-

tion) algorithm . 17
2.1.3 Multifidelity . 19
2.1.4 Sobol index . 21
2.1.5 Design of Experiments . 22

2.2 Kriging under constraints . 25
2.2.1 Imposing the constraint a posteriori 25
2.2.2 Imposing the constraint a priori with a conditional GP 26

3 Probabilistic model 29
3.1 Model . 29

3.1.1 General formalism . 29
3.1.2 Examples . 30
3.1.3 Metamodel seqGPR (Sequential Gaussian process regression) 33

3.2 Candidates for the correction processes . 33
3.2.1 Red (Reduced) process . 34
3.2.2 Psi process . 34
3.2.3 P (Preconditioned) process . 35
3.2.4 Example in 2D . 37

3.3 Qualitative comparison of the processes . 41
3.3.1 Shapes of the paths . 41
3.3.2 Influence of σ2 . 41
3.3.3 Influence of θ1 . 43
3.3.4 Influence of θ2 . 43
3.3.5 Influence of δ . 43

3.4 Estimation of the parameters . 47
3.4.1 Psi Likelihood . 48
3.4.2 Red Likelihood . 49
3.4.3 P Likelihood . 49
3.4.4 Comparison of the estimations on a 2D example 50

3.5 Conclusion . 51

5

4 seqGPR methodology 55
4.1 Estimation and prediction . 56

4.1.1 Nested designs . 56
4.1.2 Non-nested designs . 57
4.1.3 Example in 2D . 58

4.2 Test cases . 64
4.2.1 Robustness . 64
4.2.2 Analytic test case in dimension 4 . 65
4.2.3 Analytic test case in dimension 15 . 67
4.2.4 Industrial test case . 67

4.3 Conclusion . 71

5 Designs of Experiments 73
5.1 Nested designs . 73

5.1.1 Iterative construction procedure . 74
5.1.2 Numerical implementation . 75
5.1.3 Example in 2D . 75
5.1.4 Other illustrations . 78

5.2 Non-nested designs . 79
5.2.1 Iterative construction procedure . 79
5.2.2 Numerical implementation . 80
5.2.3 Examples . 81
5.2.4 Other illustrations . 86

5.3 Conclusion . 87

6 Additional contributions 89
6.1 Conditioning on multiple subspaces . 89

6.1.1 Model . 89
6.1.2 Candidate for the correction processes 90
6.1.3 Example in 2D . 92
6.1.4 Test cases . 96

6.2 Enrichment . 99
6.2.1 Process of enrichment . 99
6.2.2 Example in 2D . 100
6.2.3 Test cases . 102

6.3 Conclusion . 104

7 Conclusions and perspectives 107
7.1 Conclusions . 107
7.2 Perspectives . 108

7.2.1 Multi-conditioning . 108
7.2.2 Enrichment . 108
7.2.3 Categorical variables . 108

8 Résumé en Français 111
8.1 Définition des processus correctifs (Zn)Nn=2 111
8.2 Construction des plans (Xn)Nn=1 . 112

8.2.1 Les plans imbriqués . 112
8.2.2 Les plans non imbriqués . 114

6

8.3 Estimation des paramètres . 115
8.4 Cas test . 115

8.4.1 Cas test analytique en dimension 4 116
8.4.2 Cas test analytique en dimension 15 116
8.4.3 Cas test industriel en dimension 15 116

8.5 Tentatives d’approfondissement de la méthode 117
8.5.1 Conditionnement multiple . 117
8.5.2 Enrichissement des plans . 118

9 Appendix 121
9.1 Example in 4D . 121

9.1.1 Illustration of chapter 3 . 121
9.1.2 Illustration of chapter 4 . 123
9.1.3 Illustration of chapter 5 . 124
9.1.4 Illustration of chapter 6 . 132

9.2 Proofs state-of-the-art . 137
9.2.1 Proof of proposition 1 . 137
9.2.2 Proof of proposition 2 . 140
9.2.3 Proof of proposition 3 . 141
9.2.4 Proof of proposition 4 [Friedman et al., 2001] 142
9.2.5 Proof of proposition 5 [Zertuche, 2015] 144
9.2.6 Proof of proposition 6 [Le Gratiet, 2013a] 146
9.2.7 Proof of proposition 7 . 146
9.2.8 Proof of proposition 8 [Gauthier and Bay, 2012a] 148

9.3 Proofs of PhD propositions . 150
9.3.1 Proof of proposition 9 for a Monte-Carlo method 150
9.3.2 Proof of proposition 10 . 152
9.3.3 Proof of proposition 13 . 153

9.4 Fomulae and algorithms . 154
9.4.1 Formulae of the EM procedure . 154
9.4.2 Algorithms of chapter 5 . 156

9.5 Papers . 156
9.5.1 Paper: Sampling strategies for metamodel enrichment and automative

fan optimization [Henner et al., 2019] 156
9.5.2 Paper : Gaussian process regression on nested subspaces [Gonon et al., 2021]172

Bibliography 193

7

8

Chapter 1

Introduction

This thesis is part of a collaboration between Institut Camille Jordan and Valeo. This collab-
oration was originally materialized by the ANR project PEPITO (Plans d’Experience Pour
l’Industrie du Transport et l’Optimisation) which led to a first paper [Henner et al., 2019] (see
appendix 9.5.1) about enrichment strategies for metamodels. A part of the thesis work has
been the implementation of R routines using the package RcppArmadillo, and the submission
of another paper [Gonon et al., 2021] (see appendix 9.5.2).
This chapter describes the industrial problem which motivates the work (see section 1.1),
the choosen model to answer the problem (see section 1.2) and the issues that it creates (see
section 1.3).

1.1 Industrial motivation
In Valeo, numerical codes are used to model physical phenomena involved in manufacturing.
The industrial product which motivates this thesis work is the fan system. It is part of the
car engine cooling system (see figure 1.1). This cooling system is composed of a cold fluid
circulating in part in the car engine to regulate its temperature and in part in a radiator
where it is itself cooled down. When the car moves, the wind generated by the car speed
and reaching the radiator is sufficient to evacuate the heat from the fluid. When the car is
motionless, the fan is activated to replace the wind.

Computer experiments make the search for performance easier and cheaper than physi-
cal experiments. However, computer codes are confronted to some limitations. As they
model complex physical phenomena, they are often computationally expensive. One sim-
ulation of the computer code modelling the aerodynamical outputs of the fan system
lasts 1h to 1h30 on 256 CPU. For the accoustical outputs, the simulation goes to 3 to
5 days on 1500 CPU. This problem of expensive time duration is solved by the use of
metamodels [Forrester et al., 2008], [Sacks et al., 1989]. A metamodel is a simpler statis-
tical model, like radial basis neural network [Cheng and Titterington, 1994], kriging model
[Santner et al., 2003a], [Roustant et al., 2012], support vector regression [Clarke et al., 2005].
This simpler model is fit on a sample of well-chosen runs, also called design of experiments
(DoE) [Pronzato and Müller, 2012], [Dupuy et al., 2015]. Metamodels provide fast approx-
imations of the code outputs. Besides, they have a proactive role as they help to select
relevant simulations to be run [Jones et al., 1998]. The computer code is then used more
efficiently. Therefore, to study the fan system, Valeo experts use a mixed approach which
combines the use of a computational fluid mecanics (CFD) computer code with designs of
experiments and metamodels.

9

(a) Car engine cooling system (b) Fan system

Figure 1.1: On left panel, diagram of the car engine cooling system. On right panel, diagram
of fan system. [Valeo,]

Figure 1.2: Visualization of the environment in which is modeled the fan system in the
simulation code. The fan system is isolated from the engine cooling system. An air generator
imposes a flowrate upstream from the fan. [Valeo,]

Building surrogate models can be difficult when numerical codes involve lots of variables. The
output considered in this example is the Pressure difference (∆P) between the upstream and
the downstream of the air flow crossing the fan. The fan system is modeled independently
from the cooling system context, as shown in figure 1.2. Among the variables studied on
the fan system, one input is the flowrate (Q), which is, in this context, not delivered by
the fan itself, but imposed upstream from it. The others are of geometric nature. The
fan blade geometries are supposed identical to each other. The geometry is monitored at 5
different sections (see figure 1.3a). At each section, the stagger angle and the chord length
are controlled (see figure 1.3b). The chord is the line formed by the two borders of the blade
at the considered section. The stagger angle is the angle between the chord and the rotation
axis. The sweep is manipulated at each section and shown in panel 1.3c. It is defined as
the distance between the black line, formed by the rotation axis and the leading edge (right
border on the figure) at the first section, and the leading edge at the considered section. At
section 1, it is always equal to 0 and therefore not kept as an input. Other variables are
involved like thickness, or cambers, more sections can be defined etc.

10

(a) Sections (b) Chord length and stagger angle
at a given section

(c) Definition of the sweep at sec-
tion 5

Figure 1.3: On the left panel, visualization of the five sections of the blade. On the middle
panel, definition of the stagger angle and the chord length at a given section. On the right
panel, definition of the sweep at section 5.

Dimension reduction is a common approach to deal with a great number of variables. It
consists in considering only the influential inputs. The influential inputs are often detected
by sensitivity analysis methods ([Saltelli et al., 2008],[Sobol, 1993],[Iooss and Prieur, 2019]).
However, this approach leads to a vicious circle. Indeed, on one side, the variables selected
by sensitivity analysis are relevant only if the metamodel is sufficiently accurate, and on the
other side, the dimension reduction is used to increase the metamodel accuracy.

Valeo experts chose an alternative method that consists in a study of several steps, which was
defined in the PEPITO ANR project. The first step focuses on a small amount of variables
deemed as important based on expert knowledge. The other variables are set to nominal
values. A metamodel is created and used only for these variables until the understanding of
their influence is sufficient. Then, to obtain better performances, new steps are proceeded
with, in which new variables are added progressively. For example, in the case of the fan
system, a first step of the study is done only on the flowrate, staggers and chords. Then, the
second step also takes into account the sweeps. Further steps can be carried out with the
thicknesses, cambers etc. and so on up to 30 variables.

The classical metamodeling approach for this kind of problem is to build a metamodel on a
new independent space-filling design in the wider input space at each new step of the study.
Yet, this approach may be criticized as the information provided by the previous DoE’s
and metamodels is disregarded. The question is then, what metamodel can be built to use
optimally these ancient training samples. The idea is to use the information brought by the
designs of all steps to provide a richer metamodel than the metamodel built on the design of
the last step only.

1.2 Model
In the present work, an original metamodel is introduced, which takes into account the
information from all the steps. The chosen approach consists in creating dependent meta-
models from one step to another. The metamodels are based on Gaussian process regres-
sion [Santner et al., 2003a] [Williams and Rasmussen, 2006] (see section 2.1 in chapter 2).

11

One way of taking into account the different designs could be to use a multifidelity model
for which the levels are not defined on the same input space. That is what is done in
[Hebbal et al., 2021] with deep Gaussian processes (see last paragraph of subsection 2.1.3 in
chapter 2). Nevertheless, this model is really expensive to learn. Furthermore, the multifi-
delity context is not suitable since the runs obtained at the previous steps have the same accu-
racy level. Another way could be to define a virtual categorical input, equal to the number of
the step, that influences the choice of the input variables to consider. [Pelamatti et al., 2021]
defines a Gaussian process whose input space varies dynamically with this virtual cate-
gorical input. This modelization does not take into account the fact that the input sets
are entwined from one step to another. This particularity can lead to a simpler modeliza-
tion. The approach in this work, called seqGPR (sequential Gaussian process regression),
is based on a recursive statistical model inspired by the autoregressive multifidelity model
[Kennedy and O’Hagan, 2000] (see subsection 2.1.3 in chapter 2) but with the same accuracy
for all the runs and with an input space of increasing dimension.
The suggested metamodel is based on a probabilistic model of the function to approximate.
It involves Gaussian processes built on nested subspaces and connected by additive relations.
At a given step, the Gaussian process modeling the output on the current subspace is equal
to the sum of the Gaussian process of the previous step, defined on a smaller subspace, and
a correction process. As the two processes model the same function, they must coincide on
the smaller subspace from the previous step. Therefore, the correction process must be null
on the input subspace of the previous step, which is an infinite continuous set of points

1.3 Problematics and plan of the thesis
As regards the probabilistic model described in the previous section, one first difficulty is
to build an appropriate correction term, null on a continuum of points with a numeri-
cally computable covariance kernel. One idea could be to enjoin the prediction to verify
the nullity property. For example, relevant points from the concerned subspace can be
added to the DoE. This technique is used in [Da Veiga and Marrel, 2012] in the context of
monotonicity, boundedness, convexity constraints. One drawback is the greediness of that
method. Besides, the nullity cannot be verified in the whole subspace. The correction process
could be defined in a finite dimensional way, with adequate basis functions, as it is done in
[Maatouk and Bay, 2017], [Lopera, 2019], [Bachoc et al., 2020], to ensure some properties of
monotonicity, boundedness, convexity. Then the prediction could be computed by a Monte-
Carlo scheme based on simulations using rejection sampling. Yet, this approach is greedy
as the number of basis functions increases with the dimension. Instead of establishing the
nullity in retrospect, it can be verified at first glance, as an intrinsic property of the cor-
rection term. In this thesis, the Gaussian process introduced in [Gauthier and Bay, 2012b],
which uses an extension of the conditional expectation to an infinite continuous set of points,
is retained. A tractable kernel is sought for this process which is then compared to other
candidates verifying the nullity condition.

Once a tractable candidate for the correction term is proposed, another difficulty lies in the
estimation of the hyperparameters. One way is to optimize the likelihood. This task can be
numerically difficult, since the likelihood involves several sets of parameters for the different
processes. One way to reduce the dimension of the optimization space is to propose nested
designs as it is done in [Le Gratiet and Garnier, 2014]. In this thesis an alternative based on
the expectation maximization algorithm [Friedman et al., 2001] is introduced. It allows the
reduction of the dimension with limited constraints on the designs.

12

Special designs must be generated to be used by the seqGPR metamodel. At a given step,
the design must be space-filling in the current subspace and be distant from the previous
subspace, in order for the covariance matrices at stake to be invertible. A methodology must
be defined to built such DoE’s, inspired from the simulated annealing algorithm optimizing an
LHS design for a given space-filling criterion (as in [Morris and Mitchell, 1995]), and taking
into account the constraints proper to the metamodel seqGPR.

Chapter 2 defines the literature tools on which is based the method. The definition of
the probabilistic model and the issue of building the correction processes null on infinite
continuous sets of points are tackled in chapter 3. The estimation of the model parameters
and the evaluation of the seqGPR method on analytical and industrial test cases are detailed
in chapter 4. Adequate sampling strategies are developed in chapter 5. Chapter 6 describes
some enhancements tried on the method.

13

14

Chapter 2

State of the art

This chapter details the different tools used in this thesis. Section 2.1 presents the kriging
metamodel (or Gaussian process regression metamodel), from its definition to the associated
results and methodologies. Section 2.2 lists the different answers existing in literature to
impose some constraints on the kriging metamodel.

2.1 Generalities on the kriging metamodel
The present section defines the kriging metamodel as it is defined in
[Williams and Rasmussen, 2006] and [Santner et al., 2003a]. First, some results about
Gaussian vectors and Gaussian processes are recalled, that led to the definition of the kriging
metamodel. Then, the parameter estimation by maximum likelihood is explained, and the
EM algorithm (Expectation-Maximization) is detailed. The Multifidelity model is presented.
The Sobol index used in sensibility analysis is defined. Finally, the usual sampling strategies
associated with a metamodel are developped.

2.1.1 From Gaussian vectors to Gaussian process regression

Here are first described some theoretical results about Gaussian Vectors that are used in a
kriging context.

Definition 1 (Equality in L2(Ω)) Let (Ω,F ,P) denote a probability space. L2(Ω) is the
set of all random variables X defined on Ω such that E[X2] < +∞. Two variables X, Y ∈
L2(Ω) are said equal in L2(Ω) (X

L2(Ω)
= Y) if E[(X − Y)2] = 0.

In the following, every variable is defined on the probability space (Ω,F ,P) and all equalities

between variables are equalities in L2. The notation X
L2(Ω)

= Y is simplified in X = Y .

Definition 2 (Gaussian Vector) A random vector Y =
(
Y1 · · · Yn

)′ is a Gaussian vec-

tor if every linear combination of its components is Gaussian, i.e. every
n∑

i=1

λiYi (with λi ∈ R)

is a Gaussian Variable.

Definition 3 (Conditional expectation) Let X (resp. Y) be a Gaussian variable (resp.
Gaussian vector). The expectation of X conditioned by Y , denoted by E [X | Y] is the random
variable U solution of

min
U∈span(1,Y ′)

E
[
(X − U)2

]
,

15

where span(1,Y ′) denotes the set of all linear combinations of (1,Y ′). In particular, if X
and Y are centered, the conditional expectation is the orthogonal projection of X in span(Y).
The definition of the conditional expectation can be extended if X is a vector by applying it
component by component.

Proposition 1 (Explicit formula of the conditional expectation) Let V be a Gaus-
sian vector split in two subvectors V =

(
V1 V2

)
. The mean vector and covariance matrix

of V can be defined by blocks:




E [V] = (m1,m2)′

Cov (V ,V) =

(
Σ11 Σ12

Σ21 Σ22

)

with m1 = E[V1], m2 = E[V2], Σ11 = cov(V1,V1), Σ22 = cov(V2,V2), Σ12 = cov(V1,V2),
Σ21 = cov(V2,V1). The expectation of V1 conditioned by V2 is equal to

E [V1 | V2] = m1 + Σ12Σ+
22 (V2 −m2) ,

with Σ+
22 the Moore-Penrose generalized inverse of Σ22. In particular, if Σ22 is positive defi-

nite, Σ+
22 = Σ−1

22 . It is a Gaussian vector of mean and covariance matrix:
{

E [E [V1 | V2]] = m1,
Cov (E [V1 | V2] ,E [V1 | V2]) = Σ12Σ+

22Σ21.

Proof A proof of this proposition, entirely rewritten by hand, is suggested in appendix 9.2.1,
as it was not encountered in the literature for the general case (this proposition is usually
proven for the case Σ22 positive-definite).

Proposition 2 (Conditional vector) Following the notations of proposition 1, the vector
[V1 | V2 = v] is equal to

[V1 | V2 = v] = m1 + Σ12Σ+
22 (v −m2) + V1 − E [V1 | V2] .

It is a Gaussian vector of mean and covariance matrix given by
{

E [V1 | V2 = v] = m1 + Σ12Σ+
22 (v −m2)

cov ([V1 | V2 = v] , [V1 | V2 = v]) = Σ11 − Σ12Σ+
22Σ21

Proof The proof of this proposition was not found in the literature and one written by hand
is suggested in appendix 9.2.2.

Proposition 3 (Multiple conditioning) Let (U,V ,W) be a Gaussian vector with U (resp.
V and W) a Gaussian variable (resp. Gaussian vectors). Let denote by X = [U | V = v]
(resp. Y = [W | V = v]) the variable U (resp. W) conditioned by V = v, then:

[X | Y = w] = [U | V = v,W = w]

Proof The proof of this proposition was not found in the literature and one written by hand
is suggested in appendix 9.2.3

This last result on Gaussian vectors means that the conditioning can be carried out in any
order, in one go or step by step. The next part is dedicated to Gaussian processes.

Definition 4 (Gaussian process) A Gaussian Process Y : Ω×X → R verifies that
for all n > 1, for all x1, · · · , xn in X ,

(
Y (x1) · · · Y (xn)

)
is a Gaussian vector.

16

Caracterization Y is entirely determined by its mean function E[Y (x)] = m(x) and its
covariance kernel cov(Y (x), Y (t)) = k(x, t).

Usual covariance kernels The following stationary tensor product kernels are often used
in practice in the kriging context:

• Exponential kernel:

k(x, t) = σ2
∏

i

exp

(
−|xi − ti|

θi

)

• Matern 5
2
kernel:

k(x, t) = σ2
∏

i

(
1 +

√
5 |xi − ti|
θi

+
5(xi − ti)2

θ2
i

)
exp

(
−
√

5 |xi − ti|
θi

)

• Gaussian kernel:
k(x, t) = σ2

∏

i

exp

(
−(xi − ti)2

θ2
i

)

Definition 5 (Gaussian space) Let (Y (x))x∈X a Gaussian process indexed by X . The
Gaussian space engendered by Y is the closure of all linear combinations of the Y (x) (x ∈ X).

Let f : X → R denote the output of an expensive computer code. A metamodel is
used in order to approximate f . It is a simpler model quicker to evaluate. The kriging
metamodel, or Gaussian process regression metamodel, is based on the assumption that the
output f is the realization (a path) of a Gaussian Process Y . The Gaussian process is usually
chosen second-order stationary: with constant mean m and stationary covariance kernel k

(such that k(x + h, t + h) = k(x, t)). Then, given a sample of points X =



x(1)

...
x(n)


 ⊂ X for

which we know the output value (f(X) = y), the prediction mean and variance of the kriging
metamodel are given by:

{
ŷ(x) = E [Y (x) | Y (X) = y] = m+ k(x,X)k(X,X)−1(y −m1X),
v̂(x) = V ar (Y (x) | Y (X) = y) = k(x, x)− k(x,X)k(X,X)−1k(X, x),

(2.1)

where 1X is the column vector full of ones of size equal to the size of X. These formulae are
a direct application of the formulae seen in proposition 1, considering the Gaussian vector(
Y (x) Y (X)

)′.

2.1.2 Maximum Likelihood estimation and EM (Expectation - Max-
imization) algorithm

Knowing the distribution parameters of Y and some training data, the mean and variance
of prediction of the corresponding kriging metamodel can be computed. But the parameters
of Y are unknown a priori, so they first need to be infered from the training data. The
parameter estimation can be done by maximum likelihood or cross-validation. In this thesis,
the retained estimation method is the maximum likelihood. The method is described in this
subsection, along with the EM algorithm which helps optimizing it in particular contexts.

17

Maximum Likelihood estimation The parameters of Y need to be estimated from the
training data Y (X) = y. To do that, the likelihood, which is a function of the parameters η,
is maximized. In rough terms, maximizing the likelihood can be interpreted as finding the set
of parameters that maximizes the probability that the training data occurs. The likelihood
taken at the set of parameters η (noted L(η;y)) is equal to the density of the vector Y (X)
(assuming Y has the parameters η), applied at the observed values y.

L(η;y) = hY (X);η(y).

In the usual case, the output f is assumed to be a simulation of the Gaussian process
Y ∼ GP(m∗, (σ∗)2 rθ∗(x, x

′)) of parameters η∗ = (m∗, (σ∗)2 , θ∗). Denoting by nX the number
of points (rows) of X, and by 1X the unit column vector of size nX, the likelihood is equal to:

L(η;y) = 1

(2πσ2)
nX
2
√
|rθ(X,X)|

exp
(
−1

2
(y−m1X)′ rθ(X,X)−1(y−m1X)

σ2

)
,

where |rθ(X,X)| denotes the determinant of the matrix rθ(X,X). Taking −2 log(L) and
keeping only the terms that depend on η, the quantity that needs to be minimized is:

l(η;y) = nX log(σ2) + log |rθ(X,X)|+ (y −m1X)′ rθ(X,X)−1 (y −m1X)

σ2
.

The optimal values of m and σ2 are:




m(θ) =
1′X rθ(X,X)−1 y

1′X rθ(X,X)−1 1X

σ2(θ) =
(y −m(θ)1X)′ rθ(X,X)−1 (y −m(θ)1X)

nX
.

Finally, finding (m,σ2, θ) maximizing the likelihood is equivalent to finding θ minimizing:

l(θ;y) = nX log
(
σ2(θ)

)
+ log |rθ(X,X)| .

This optimization is done numerically.

EM algorithm The likelihood is often maximized numerically. This paragraph describes
the EM algorithm as presented in [Friedman et al., 2001], which is an algorithm used to
maximize the likelihood in the case where some observations are missing (which is of interest
in the thesis).
The following notations are used:

• Z a random variable corresponding to the observed data and z, a scalar corresponding
to its observation (which is known). The distribution of Z is parameterized by η∗.

• Zm the missing data and zm the corresponding observation (which is unkown).

• T = (Z,Zm) the complete data and t = (z, zm) the corresponding observation.

It is assumed that there exists a σ finite measure µ such that all T laws admit a density fT (t)
with respect to µ. So Z admits a density fZ(z) with respect to µ. The loglikelihood of the
observed data at η is given by:

l(η; z) = log(hZ;η(z)).

18

This loglikelihood can be difficult to optimize. The loglikelihood of the complete data is
rather used, it is given by:

l0(η; t) = log(hT ;η(t)).

As t is not known entirely, the random variable l0(η;T) = log(hT ;η(T)) is used instead of
l0(η; t). The expectation part of the EM algorithm consists in defining the expectation of this
variable conditionally to Z = z with the assumption that the Z distribution is parameterized
by η̂:

Q(η, η̂) = Eη̂ [l0(η, T) | Z = z]

The Maximization part of the EM algorithm consists in maximizing this quantity with respect
to η.

• Iteration 0: Generate initial guess η̂(0) for η.

• Iteration k + 1: Compute η̂(k+1) as solution of

max
η
Q(η, η̂(k))

Proposition 4 The likelihood increases at each iteration of the EM algorithm

Proof The proof, which is let in exercise in [Friedman et al., 2001], is detailed in appendix
9.2.4.

2.1.3 Multifidelity

This subsection describes the multifidelity metamodel in the context of Gaussian process
regression (see [Kennedy and O’Hagan, 2000]). The multifidelity metamodel takes into ac-
count different levels of accuracy of the computer code. The low levels (resp. high levels) of
accuracy are called low fidelity levels (resp. high fidelity levels), they are generally cheaper
to evaluate (resp. more expensive to evaluate).

Metamodel For sake of simplicity, it is assumed that two levels of fidelity of the computer
code are available. The low level is denoted by f1 : X → R , and the high level by
f2 : X → R . The level of fidelity can result from the degree of refinement of the mesh
in a finite element code, or the number of iterations in a Monte-Carlo based simulation.

f1 (resp. f2) is assumed to be the realization of a Gaussian process Y1 : Ω×X → R
(resp. Y2 : Ω×X → R). Y2 is linked to Y1 by the following formula:

Y2(x) = g(x)Y1(x) + Yc(x), ∀x ∈ X .

g : X → R is a known deterministic function and Yc : Ω×X → R is a Gaussian
process, independent of Y1, and acting as a correcting term. The model is also valid if
g =

∑
i βifi with (βi)i parameters to estimate and (fi)i deterministic functions.

The training data for the kriging metamodel is composed of one sample X1 ⊂ X on which the
low fidelity level is observed f1(X1) = y1, and another X2 ⊂ X on which the high fidelity level
is observed f2(X2) = y2. The mean and variance of prediction at x ∈ X of the multifidelity
metamodel are the moments of the variable [Y2(x) | Y1(X1) = y1, Y2(X2) = y2]:

{
ŷ(x) = E [Y2(x) | Y1(X1) = y1, Y2(X2) = y2]
v̂(x) = V ar (Y2(x) | Y1(X1) = y1, Y2(X2) = y2)

19

Maximum likelihood estimation of the parameters The following notations are used:

• η1 = (m1, θ1) denotes the set of parameters of Y1 ∼ GP (m1, kθ1(x, x′)). ηc = (mc, θc)
denotes the set of parameters of Yc ∼ GP (mc, kθc(x, x

′)). η = (η1, ηc) denotes the total
set of parameters.

• n1 and n2 are respectively the sizes of X1 and X2.

• Σθ1 is the covariance matrix of Y1 on X1∪X2. Σθc is the covariance matrix of Yc on X2:




Σθ1 =

(
kθ1(X1,X1) kθ1(X1,X2)
kθ1(X2,X1) kθ1(X2,X2)

)

Σθc = kθc(X2,X2)

• 1n denotes the unit column vector of size n. diag(u) denotes the diagonal matrix whose
diagonal components are the components of the vector u. 0nm is the null matrix with
n rows and m columns.

If the designs are nested (X2 ⊂ X1), then g(X2) ◦ Y1(X2) = u1 is observed. The likelihood
becomes

L(η;y1,y2) = hY1(X1),g(X2)◦Y1(X2)+Yc(X2)(y1,y2)
= hY1(X1),u1+Yc(X2)(y1,y2)
= hY1(X1),Yc(X2)(y1,y2 − u1)
= hY1(X1)(y1)︸ ︷︷ ︸

=L1(η1;y1)

hYc(X2)(y2 − u1)︸ ︷︷ ︸
=Lc(ηc;y2−u1)

as Y1 ⊥ Yc

The likelihood is decoupled. η1 and ηc can be estimated seperately by maximizing respectively
L1(η1;y1) and Lc(ηc;y2 − u1). Similarly, the prediction is also decoupled:

{
ŷ(x) = E [Y1(x) | Y1(X1) = y1] + E [Yc(x) | Yc(X2) = y2 − u1]
v̂(x) = V ar (Y1(x) | Y1(X1) = y1) + V ar (Yc(x) | Yc(X2) = y2 − u1)

If X1 ∩ X2 = ∅, neither Y1(X2) nor Yc(X2) is observed. This time, the prediction and the
likelihood are not decoupled. The joint likelihood must be maximized:

L(η;y1,y2) = hY1(X1),g(X2)◦Y1(X2)+Yc(X2)(y1,y2)

[Zertuche, 2015] suggests to use an EM algorithm (see subsection 2.1.2) in this case.

Proposition 5 In the case of multifidelity with not nested designs, the EM algorithm is the
following

• Iteration 0: Generate initial guess η̂(0) = (η̂
(0)
1 , η̂

(0)
c).

• Iteration k + 1:

– Compute η̂(k+1)
1 as solution of

max
η1

Q1(η1, η̂
(k))

– Compute η̂(k+1)
c as solution of

max
ηc
Qc(ηc, η̂(k))

20

with




Q1(η1, η
′) = n1+n2

2
log(2π)− 1

2
log(|Σθ1|)

−1
2
tr
(

(kθ1(X2,X2)− kθ1(X2,X1)kθ1(X1,X1)−1kθ1(X1,X2))
−1
∼
Ση′

)

−1
2

(
(y1 −m11n1)′

(
∼
µη′ −m11n2

)′)
Σ−1
θ1

(
y1 −m11n1
∼
µη′ −m11n2

)

Qc(ηc, η′) = −n2

2
log(2π)− 1

2
log(|Σθc|)

−1
2
tr
(

Σ−1
θc
diag(g(X2))

∼
Ση′diag(g(X2))

)

−1
2

(
Y2 − g(X2) ◦ ∼

µη′ −mc1n2

)′
Σ−1
θc

(
Y2 − g(X2) ◦ ∼

µη′ −mc1n2

)

and




∼
µη′ = m′11n2

+




(
kθ′1(X2,X1) kθ′1(X2,X2)diag(g(X2))

)

×
(

kθ′1(X1,X1) kθ′1(X1,X2)diag(g(X2))

diag(g(X2))kθ′1(X2,X1) diag(g(X2))kθ′1(X2,X2)diag(g(X2)) + kθ′c(X2,X2)

)

×
(

Y1 −m′11n1

Y2 −m′1g(X2)−m′c1n2

)




∼
Ση′ = kθ′1(X2,X2)

−




(
kθ′1(X2,X1) kθ′1(X2,X2)diag(g(X2))

)

×
(

kθ′1(X1,X1) kθ′1(X1,X2)diag(g(X2))

diag(g(X2))kθ′1(X2,X1) diag(g(X2))kθ′1(X2,X2)diag(g(X2)) + kθ′c(X2,X2)

)

×
(

kθ′1(X1,X2)

diag(g(X2)kθ′1(X2,X2)

)




Proof The proof of this proposition, given in [Zertuche, 2015], is recopied in appendix 9.2.5.

Multifidelity with different input spaces for each level This paragraph describes a
multifidelity model whose levels of fidelity are not defined in the same input space. Let X1

denote the input space of f1, and X2 the input space of f2. A multi-fidelity model using deep
Gaussian processes has been proposed in [Hebbal et al., 2021]. The output is modelled by

Y (x) =

{
Y2(Y1(x)), if x ∈ X1

Y2(Y1(Ψ2→1(x))), if x ∈ X2

Y1 : X1 → R is a Gaussian process representing the low fidelity level. Y2 : X2 → R
is a Gaussian process representing the high fidelity level. Ψ2→1 : X2 → X1 is a multi-
output Gaussian process acting as a mapping between the two input spaces. This approach
is very complex to implement as it requires a heavy computational machinery.

2.1.4 Sobol index

Sensitivity analysis (see [Da Veiga et al., 2021]) aims at classifying variables by influence on
the output. To do so, a well-known criterion is the Sobol index. If f(x1, · · · , xd) is the
output, the Sobol index of the variable xi is defined by:

Si =
V ar (E [f(X1, · · · , Xd) | Xi])

V ar(f(X1, · · · , Xd))
,

21

where X1, · · · , Xd are independent random variables of uniform distribution in [0, 1]. The
Sobol index Si computes the proportion of the output variance explained by the input Xi.
This index has another formula which is easier to implement numerically with a Monte-Carlo
scheme.

Proposition 6 The Sobol index Si can be rewritten:

Si =
Cov(f(X), f(

∼
X))

V ar(f(X))
,

where X = (X1, · · · , Xi−1, Xi, Xi+1, · · · , Xd) and
∼
X = (

∼
X1, · · · ,

∼
X i−1, Xi,

∼
X i+1, · · · ,

∼
Xd).

The variable
∼
Xj is independent of same law than Xj.

Proof The proof of this proposition is given in [Le Gratiet, 2013a] and recopied in appendix
9.2.6 for the reader.

2.1.5 Design of Experiments

DoE’s must be generated to learn the metamodel and to evaluate it. To evaluate the accuracy
of the metamodel on a test sample (Xtest,ytest) =

(
x

(i)
test, y

(i)
test

)ntest
i=1

, a usual criterion to use
is the RMSE (Root Mean Square Error) defined by:

RMSE =

√∑ntest
i=1 (y

(i)
test − ŷ(x

(i)
test))

2

ntest
(2.2)

The initial sample on which is built the kriging model must be space filling in order to optimize
the learning of the response surface. Different types of DoE’s (from [Santner et al., 2003b])
are presented in what follows, with constraints and criteria to optimize.

Latin Hupercube Sampling A very commonly used type of design is the LHS (latin
hypercube sample). The purpose of such a design is that the projections of its points in every
direction are sufficiently spaced and space filling in the corresponding direction. Basically an
LHS design is of the form

X =



π1(u1) πd(u1)
| · · · |

π1(un) πd(un)


 ,

where u = (u1, · · · , un) is an equispaced discretization of [0, 1] and π1, · · · , πd are permuta-
tions on u. For example, based on the following discretization u =

{
u1 = 1

6
, u2 = 1

2
, u3 = 5

6

}
,

the following LHS can be built on X = [0, 1]2:

22

X1 =



u1 u1

u2 u2

u3 u3


 , X2 =



u1 u1

u2 u3

u3 u2


 , X3 =



u1 u3

u2 u1

u3 u2


 .

All LHS are not necessarily space filling. The choice of the permutations πi can be restricted
to have better space-filling properties

Orthogonal Latin Hypercube (OLH) Sampling An OLH is an LHS which is subject
to constraint. The input space is divided in subspaces of same size (the 4 corners in the 2D
example below). The points of the OLH must be in the same proportion in all the subspaces.

LHS OLH

Those kind of samples are difficult to built. A simpler way to build a space-filling LHS
is to choose the permutations πi by optimizing an additional space filling criterion. The
optimization is usually done by simulated annealing.

Space filling criteria

• Maximin: the goal is to maximize the minimal distance between two points of the
design

max
X

min
x,t∈X
‖x− t‖2

• Generalized maximin: this criterion, which has to be minimized, takes into account the

23

distances between all pairs of points in the design:

min
X

(∑

x,t∈X

(
1

‖x− t‖2

)p) 1
p

.

It is reduced to the maximin criterion when p→ +∞.

• Minimax: the goal is to minimize the biggest distance between a point of X and a point
of X :

min
X

max
x∈X,t∈X

‖x− t‖2

• Discrepancy: this criterion, which has to be minimized, measures the uniformity of the
distribution of the points of X:

min
X

sup
J∈J

∣∣∣∣
card(X ∩ J)

n
− λ(J)

∣∣∣∣

where J is the set of all hyperrectangles included in X , and λ is the Lebesgues measure.

The discrepancy and minimax criteria are very expensive to compute for a given sample so
their optimization is too complex. In practice, the maximin and generalized maximin are
used. Alone, they tend to select points at the border of X especially when the dimension of
X is high (because of the curse of dimensionality), but combined with the latin hypercube
constraint, they give suitable designs.

After having trained a kriging model on an initial sample, new points can be added to improve
the accuracy of the metamodel. There exists methods to add points relevant to solve problems
of optimization [Jones et al., 1998] or inversion [Picheny et al., 2010]. However, here are only
presented enrichment methods to improve the accuracy of the metamodel in the whole input
space. The procedure consists in adding one or several points optimal for some criterion.

MSE (Mean Squared Error) The additional point maximizes the variance of prediction
(defined in equation (2.1)):

max
x∈X

v̂(x)

It is a space filling criterion. As the variance of prediction increases as the point is far from the
DoE, this procedure will add points that will complete the wholes in the DoE. The problem
of this method is that the points selected to enrich the sample are often located in the corners
of the input space. In the paper [Henner et al., 2019] (see appendix 9.5.1), a methodology is
proposed, that selects points optimal for the MSE criterion in a restricted zone around the
center point (the input space is [−1, 1]d and the restricted zone is [−0.5, 0.5]d).

IMSE (Integrated Mean Squared Error) The point chosen is the one which, when
added, minimizes the integrated variance

min
x

∫

X
v̂∪{x}(t)dt

with v̂∪{x}(t) the variance of prediction of the kriging metamodel enriched with the point x.

24

LOO-CV The two previous criteria are only spatial criteria (favouring points far from the
training sample) as they are based on the prediction variance. An interesting idea would
be to have a criterion that takes into account both the space and the output evolution.
[Le Gratiet, 2013b] suggests an enrichment procedure for the DoE, based on the maximization
of the following criterion:

max
x∈X

v̂(x) ·
[

1 +
n∑

i=1

(yi − ŷ−i(x(i)))2

v̂−i(x(i))
1x∈Vi

]

This criterion is the product of two criteria. The first factor is the prediction variance v̂(x).
The second factor is associated to the output evolution, it favors points in the zones where
the output behavior is not correctly predicted by the metamodel. yi is the observation of
the output at the training point x(i). ŷ−i and v̂−i are respectively the mean and variance of
prediction of the kriging metamodel trained on the sample without this point X\{x(i)}. Vi is
the Voronoï cell corresponding to x(i), i.e. the points that are closer to x(i) than to the other
training points. At a given point x ∈ X , the criterion is equal to v̂(x)

(
1 + (yi−ŷ−i(x(i)))2

v̂−i(x(i))

)

with i the index of the training point x(i) which is the closest to x. This criterion can
be seen as an adjusted kriging variance which better estimates the prediction error of the
kriging model. Indeed, in the Voronoï cells where the variance supposedly underestimates the
prediction error, that means when (yi− ŷ−i(x(i)))2 >> v̂−i(x

(i)), the term
(

1 + (yi−ŷ−i(x(i)))2

v̂−i(x(i))

)

automatically increases the value of the criterion, which as a result is superior to the initial
variance. Conversely, in the zones where the prediction error is small: (yi − ŷ−i(x(i)))2 <<
v̂−i(x

(i)), the criterion is close to the initial variance v̂(x).

2.2 kriging under constraints : Gaussian process null on
any subset

The goal of this section is to review the literature handling directly or indirectly the definition
of a Gaussian process null on a part of the input space. Let Z denote such a Gaussian process,
defined on XZ and null on a subset D ⊂ XZ :

Z(x) = 0, ∀x ∈ D ⇔ Z(D) = 0. (2.3)

Three methods of the literature to impose that constraint (or similar ones) are presented in
this section. Two methods that are applied for more general constraints (monotonicity, con-
vexicity, boundedness) are described and a method directly dedicated to the nullity constraint
is presented.

2.2.1 Imposing the constraint a posteriori

The purpose of the kriging metamodel is the prediction, so the implementation of E [Z | Y = y]
with Y = y some training data. The two methods of the literature described in this
subsection work at, amongst others, computing a similar formula, which is of the form
E [W (x) | a 6 W (D) 6 b], i.e. the expectation of the process W conditioned to be bounded
on D.

25

Discretizing the nullity domain In the paper [Da Veiga and Marrel, 2012], this expec-
tation is first approximated by discretizing D in D (where points in D are choosen uniformly
within D). The goal becomes to compute the expectation E [W (x) | a 6 W (D) 6 b]. This is
the expectation of a truncated normal distribution, whose formula is known analytically in
its integral form. The paper then suggests to compute the integrals with adapted numerical
approximations. Here, as the inequality constraints are equalities, the expectation is directly
computable with the usual formula (see proposition 1).

The drawback of this method is the approximation of D in D which does not able to strictly
verify the nullity constraint everywhere in D.

Using a finite dimensional GP [Maatouk and Bay, 2017], [López-Lopera et al., 2017],
and [Bachoc et al., 2020] tackle the computation of the same expectation
E [W (x) | a 6 W (D) 6 b], but this time the inequality constraint must be verified in
the whole input space (D = XW). The process W (x) is approximated in a finite dimensional
way by Ŵ (x). The method is generalized for any dimension of the input space but is here
recalled in 1D for the sake of understanding:

Ŵ (x) =
m∑

j=0

ξjhj(x),

where ξ = (ξ0, . . . , ξm) is a centered Gaussian vector of covariance matrix denoted by Γ =
(k(x(i), x(j)))i,j, with k the kernel of W . h = (h0, . . . , hm) is a set of basis functions defined
by :

hj(x) =

(
1−

∣∣∣∣
x− x(j)

∆m

∣∣∣∣
)

1∣∣∣∣x−x(j)

∆m

∣∣∣∣61

with x(j) = j∆m (j ∈ J0,mK) a discretization of [0, 1] and ∆m = 1
m

the discretization interval.

The expectation E
[
Ŵ (x) | a 6 Ŵ (X) 6 b

]
is computed by a Monte-Carlo strategy where the

paths of
[
Ŵ (x) | a 6 Ŵ (X) 6 b

]
are generated by rejection sampling. It is made possible as

it is reduced to simulating the vector (ξ0, · · · , ξm) with the constraints a < ξi < b.

The first drawback of this method is that it is expensive in high dimension. Some work
has been done in [Bachoc et al., 2020] to apply it at a reduced cost in high dimension but
only works if there is a small amount of influential inputs. The second drawback is that the
constraint is applied to the whole domain XW , and its adaptation to a subset D does not
seem straightforward.

2.2.2 Imposing the constraint a priori with a conditional GP

[Gauthier, 2011] directly suggests a candidate for the process Z null on D. This process is
presented in definition 6.

Definition 6 Let
∼
Z : Ω×XZ → R be a centered Gaussian process of law:

∼
Z ∼

GP (0, k(x, x′)), with k a positive definite kernel. The Gaussian process defined in
[Gauthier, 2011] is equal to:

Z(x) =
∼
Z(x)− E

[∼
Z(x) |

∼
Z(t), ∀t ∈ D

]
, ∀x ∈ XZ ,

26

where the expectation part is the orthogonal projection of
∼
Z(x) on the Gaussian space gener-

ated by
{∼
Z(t), t ∈ D

}
.

Formula of the expectation part for any D
Proposition 7 D is supposed to be indexed by a set S: D = {xs, s ∈ S}. Let ν be σ-finite
measure on S.

• The expectation part E
[∼
Z(x) |

∼
Z(t), ∀t ∈ D

]
is given by:

E
[∼
Z(x) |

∼
Z(s), ∀t ∈ D

]
=

+∞∑

n=1

φn(x)

∫

S

∼
φn(s)

∼
Z(xs)dν(s),

with φn : X → R suh that:

φn(x) =
1

λn

∫

S
k(x, xs)

∼
φn(s)dν(s),

and (λn,
∼
φn) solutions of the following eigen problem:

∫

S
k(s, u)

∼
φn(u)dν(u) = λn

∼
φn(s), ∀s ∈ S.

The
∼
φn : S → R are such that:

∫

S

∼
φn(s)

∼
φm(s)dν(s) = δnm, ∀n,m ∈ N\{0},

with δnm is the Kronecker symbol (δnn = 1 and δnm = 0 if n 6= m).

• The expectation E
[∼
Z(x) |

∼
Z(t), ∀t ∈ D

]
is a centered Gaussian process of covariance

kernel:

κ(x, t) =
+∞∑

n=1

λnφn(x)φn(t).

Proof See [Gauthier and Bay, 2012b]. An alternative proof using the Karhunen-Loeve de-
composition is detailed in appendix 9.2.7.

Formula for finite D
Proposition 8 If D = D is a finite subset of X , then, the expectation part of the process Z
coincides with the classical formula of the conditional expectation (see proposition 1):

E
[∼
Z(x) |

∼
Z(D)

]
= k(x,D)k(D,D)−1

∼
Z(D).

It is a centered Gaussian process of covariance kernel given by:

κ(x, t) = k(x,D)k(D,D)−1k(D, t)

Thus, the process Z coincides with the formula of proposition 2:

Z(x) =
∼
Z(x)− k(x,D)k(D,D)−1

∼
Z(D) =

[∼
Z(x) |

∼
Z(D) = 0

]
.

27

Proof The proof of this proposition, given in [Gauthier and Bay, 2012a], is recalled in ap-
pendix 9.2.8.

In fact, the process E
[∼
Z |

∼
Z(D)

]
(resp.

∼
Z−E

[∼
Z |

∼
Z(D)

]
), whose formula is given in propo-

sition 7 (resp. definition 6) for any D, is the generalization of the conditional expectation
given in proposition 1 (resp. the conditional process

[∼
Z |

∼
Z(D) = 0

]
given in proposition 2)

which is defined for finite D.

28

Chapter 3

Probabilistic model

This chapter has two objectives. Firstly, the goal is to suggest a sequential model based on
Gaussian processes (called seqGPR) to take into account the results of numerical simulations
obtained in spaces of increasing dimension. This model, inspired from the autoregressive
multifidelity metamodel of [Kennedy and O’Hagan, 2000], involves processes null on a con-
tinuum of points. The second goal is to propose numerically tractable kernels for that kind
of processes. For that purpose, the work of [Gauthier, 2011] is used and extended and other
kernels are defined.

Section 3.1 defines the probabilistic model on which is based the seqGPR metamodel. Three
candidates for the correction processes involved in the model are detailed in section 3.2. The
candidates are compared in terms of path shapes and parameter influence in section 3.3.
Section 3.4 gives the likelihood formulae for each candidate and compares their parameter
estimation by maximum likelihood.

3.1 Model

In this section, a formal probabilistic model of the problem is proposed and the notations
that will be used in the rest of the thesis are defined.

3.1.1 General formalism

Let f : [0, 1]d1+...+dN → R be an output of an expensive simulation code depending on
d1 + . . .+ dN variables. A response surface of f has to be built taking into account that the
N − 1 first steps of the study (of increasing dimensions) have already been completed. Each
of these steps is a focus on the relation between the output and a subset of free variables.
The other variables are temporarily fixed but then progressively released in the further steps.
This thesis deals with the handling of the last step of the study, denoted by N , where all
inputs are free.
Let In denote the index set of the variables that are released at step n ∈ J1, NK and dn =
card(In). For every index set I, let xI denote the associated subvector of x. The following
framework, based on Gaussian process regression, is introduced to model the sequential study:

• At step 1, a first series of computer code evaluations is run. The set xI1 of the first d1

components of x, are free in [0, 1]d1 . Different values are explored. They are stored in
DoE X1 ⊂ [0, 1]d1 . The other components are fixed to preset values x̀I2∪···∪IN (entirely
determined by xI1). Let f1 denote the corresponding restriction of f on the subspace

29

[0, 1]d1 . The function f1 is assumed to be the realization of a stationary Gaussian
process Y1 = m + Z1 of mean m ∈ R and with Z1 : Ω× [0, 1]d1 → R a centered
Gaussian Process of covariance kernel σ2

1ρ1. Let y1 = f1(X1) represent the vector of
observations of the output on DoE X1.

• At step 2, a second range of simulations is then launched on a subspace of higher di-
mension [0, 1]d1+d2 . The variables xI2 , fixed at step 1, are released. Different values of
xI1∪I2 , stored in DoE X2, are explored. The other variables xI3∪···∪IN are fixed to the
new set of values x̀I3∪···∪IN ∈ [0, 1]d3+···+dN . Let f2 be the corresponding restriction of f
on the subspace [0, 1]d1+d2 .

The function f2 is assumed to be the realization of a Gaussian process
Y2 : Ω× [0, 1]d1+d2 → R , which is the sum of the process at step 1 Y1, and a
correction term Z2, which represents the additional information provided by the re-
leased variables. As f1 and f2 are restrictions of the same function f , Y1 and Y2 have
to coincide on the subspace defined at step 1. This results in the following definition
of Y2:

Y2(xI1 , xI2) = Y1(xI1) + Z2(xI1 , xI2), ∀(xI1 , xI2) ∈ [0, 1]d1+d2 ,

with Z2 a centered Gaussian process independent from Z1, of covariance kernel σ2
2ρ2

such that for all xI1 in [0, 1]d1 , Z2(xI1 , x̀I2) = 0. Let y2 = f2(X2) denote the vector of
observations for this step.

• In the same way as previous steps, at step n ∈ J3, NK, a DoE Xn is created in the higher
space [0, 1]d1+···+dn . The variables xI1∪···∪In−1 and xIn are free and the others xIn+1∪···∪IN
are set to x̀In+1∪···∪IN ∈ [0, 1]dn+1+···+dN . The corresponding restriction of f on this
subspace, fn, is evaluated on Xn. The values are stored in yn = fn(Xn). The function
fn is modeled as the realization of a Gaussian process Yn : Ω× [0, 1]d1+···+dn → R .
Following the same arguments as in step 2, Yn is defined as (for all (xI1∪···In−1 , xIn) in
[0, 1]d1+···+dn):

Yn(xI1∪···∪In−1 , xIn) = Yn−1(xI1∪···∪In−1) + Zn(xI1∪···∪In−1 , xIn),

with Zn a centered Gaussian process independent from (Z1, · · · , Zn−1) of covariance
kernel σ2

nρn and such that Zn(xI1∪···∪In−1 , x̀In) = 0, ∀xI1∪···∪In−1 ∈ [0, 1]d1+···+dn−1 .

3.1.2 Examples

Example in 2D This example will follow the course of the thesis to illustrate the method
in a simple case. Let f(x1, x2) be a function of two variables to approximate by a metamodel.
A two-step study is carried out:

• At step 1, the input x2 is fixed to 0.7x1+0.2. The subspace of the input space considered
at this step is shown in figure below.

30

Here, this subspace is not indexed by the curvilinear abscissa (ac =
√
x2

1 + (0.7x1 + 0.2)2)
but simply by x1: {(x1, 0.7x1 + 0.2), x1 ∈ [0, 1]}. The function to approximate is
f1(x1) = f(x1, 0.7x1 + 0.2). This restriction is modeled by a Gaussian process Y1(x1) =
m+Z1(x1) with m a scalar equal to the mean of Y1, and Z1 a centered Gaussian process
of covariance kernel k1(x1, t1). Thus, Y1 is a function of x1 (and not of the curvilinear

abscissa ac). A DoE is generated X1 =



x

(1)
1
...

x
(n1)
1


 containing values of x1. For these

points, the values of x2 are implicitely fixed to 0.7x1 + 0.2. The values of f1 at the

points of X1 are known, equal to y1 =



f1(x

(1)
1)
...

f1(x
(n1)
1)


.

• At step 2, the entire input space [0, 1]2 is considered. The function to approximate
is now f2(x1, x2) = f(x1, x2). It is modeled by a Gaussian process Y2(x1, x2) linked
to Y1(x1) by the formula Y2(x1, x2) = Y1(x1) + Z2(x1, x2). This formula looks like the
multifidelity metamodel, but the difference is that Y1 and Y2 model the same level of
fidelity. Thus, they must coincide on the subspace x2 = 0.7x1 + 0.2. This coincidence,
shown in the figure below, implies that Z2(x1, 0.7x1 + 0.2) = 0. Y1 can be seen as a
function of (x1, x2) constant in x2 (see the middle panel). On the left and middle panels,
Y1 and Y2 coincide on the orange line corresponding to the subspace x2 = 0.71 + 0.2.
The right panel shows Y1 as a function of x1.

Visualization of Y2 Y1 as a function of (x1, x2) Y1 as a function of x1

A DoE is generated X2 =



x

(n1+1)
1 x

(n1+1)
2

...
...

x
(n1+n2)
1 x

(n1+n2)
2


 containing values of (x1, x2). The

31

values of f2 at the points of X2 are known, equal to y2 =




f2(x
(n1+1)
1 , x

(n1+1)
2)

...
f2(x

(n1+n2)
1 , x

(n1+n2)
2)


. An

example of the DoE’s X1 and X2 is shown in the figure below:

Example in 4D This example will follow the course of the thesis to illustrate the general
definitions in a particular case, which tries to encompass the problem in its generality: vari-
ables fixed at constants or deterministic functions, variables released one by one or several
at a time, and a study composed of more than two steps.

In this example, N = 3, I1 = 1, I2 = {2, 3}, I3 = 4, (x̀2, x̀3) = (0.4, 0.5), x̀4 = x1+x2+x3

4
.

The output considered is a function of 4 inputs f(x1, x2, x3, x4). The study is composed of 3
steps.

• At step 1, x1 is released and (x2, x3, x4) are fixed. (x2, x3) are equal to (0.4, 0.5). x4 is
equal to x1+x2+x3

4
= x1+0.9

4
. So the restriction considered is f1(x1) = f

(
x1, 0.4, 0.5,

x1+0.9
4

)
.

f1 is assumed to be the realization of Y1(x1) = m+Z1(x1), with Z1 a centered Gaussian
process of covariance kernel σ2

1ρ1(x1, t1). The DoE X1 is of the form:

X1 =



x

(1)
1
...

x
(n1)
1


 .

• At step 2, (x2, x3) are released and x4 is still fixed. x4 is equal to x1+x2+x3

4
. The

restriction considered is f2(x1, x2, x3) = f
(
x1, x2, x3,

x1+x2+x3

4

)
. f2 is assumed to be

the realization of Y2(x1, x2, x3) = Y1(x1) + Z2(x1, x2, x3), with Z2 a centered Gaussian
process of covariance kernel σ2

2ρ2 ((x1, x2, x3), (t1, t2, t3)) such that Z2(x1, 0.4, 0.5) = 0,
for all x1 in [0, 1]. This property of Z2 enables the following equality Y2(x1, 0.4, 0.5) =
Y1(x1), for all x1 in [0, 1]. The DoE X2 is of the form:

X2 =



x

(n1+1)
1 x

(n1+1)
2 x

(n1+1)
3

...
x

(n1+n2)
1 x

(n1+n2)
2 x

(n1+n2)
3


 .

32

• At step 3, x4 is released. All 4 inputs are free so the whole output f is considered.
It is assumed to be the realization of Y3(x1, x2, x3, x4) = Y2(x1, x2, x3)+Z3(x1, x2, x3, x4),
with Z3 a centered Gaussian process of covariance kernel σ2

3ρ3 ((x1, x2, x3, x4), (t1, t2, t3, t4))
such that Z3(x1, x2, x3,

x1+x2+x3

4
) = 0, to enable Y3(x1, x2, x3,

x1+x2+x3

4
) = Y2(x1, x2, x3),

for all (x1, x2, x3) in [0, 1]3. The DoE X3 is of the form:

X3 =



x

(n1+n2+1)
1 x

(n1+n2+1)
2 x

(n1+n2+1)
3 x

(n1+n2+1)
4

...
x

(n1+n2+n3)
1 x

(n1+n2+n3)
2 x

(n1+n2+n3)
3 x

(n1+n2+n3)
4




3.1.3 Metamodel seqGPR (Sequential Gaussian process regression)

Finally, the problem is modeled by the following statistical model (for xI1∪···∪In in [0, 1]d1+···+dn):





Y1(xI1) = m+ Z1(xI1),

Yn(xI1∪···∪In−1 , xIn) = Yn−1(xI1∪···∪In−1) + Zn(xI1∪···∪In−1 , xIn), ∀n ∈ J2, NK,
(3.1)

where:

• The processes (Zn)Nn=1 are independent Gaussian processes of law:

Zn ∼ GP(0, σ2
nρn(xI1∪···∪In , tI1∪···∪In)), ∀n ∈ J1, NK. (3.2)

• The processes (Zn)Nn=2 verify the following property:

Zn(xI1∪···In−1 , x̀In) = 0, ∀n ∈ J2, NK,∀xI1∪···In−1 ∈ [0, 1]d1+···+dn−1 . (3.3)

The same formulae of prediction as for a classic kriging metamodel apply (see subsection
2.1.1 in chapter 2). For every x ∈ [0, 1]d, the prediction mean ŷ(x) and variance v̂(x) are
defined by:

{
ŷ(x) = E [YN(x) | Y1(X1) = y1, · · · , YN(XN) = yN] ,
v̂(x) = V ar (YN(x) | Y1(X1) = y1, · · · , YN(XN) = yN) .

Remark The independence hypothesis on the (Zn)16n6N is added as in the multifidelity
model [Kennedy and O’Hagan, 2000], from which this model is inspired. The dependence is
privileged between the (Yn)16n6N which really model the output. Furthermore, this hypoth-
esis simplifies calculations for the likelihood and so for the parameter estimation, as shown
in section 4.1 in chapter 4.

3.2 Candidates for the correction processes
In this section, candidates for the correction processes, that must satisfy the nul-
lity property (3.3), are suggested. More precisely, the goal is to build a process
Z : [0, 1]dJ+dI × Ω → R null on an infinite continuous set of points :

Z(xJ , g(xJ)) = 0 ∀xJ ∈ [0, 1]dJ , (3.4)

33

with g : [0, 1]dJ → [0, 1]dI a deterministic function.

Three candidates are suggested for the process Z, all based on a latent Gaussian process
∼
Z ∼ GP (0, σ2r((xJ , xI), (tJ , tI))) of covariance kernel σ2r. The function g is imposed by
industrial concerns, however one can discuss about its regularity. If the goal is to have a Z
kernel of the same regularity than the

∼
Z kernel, then a reasonable rule may be that g must

at least be as regular as the kernel of
∼
Z.

The first candidate results from a reduction of the latent process and is called the Red process.
The second candidate, called the Psi process, involves a multiplicating term denoted by Ψ,
null on the zone of nullity. The third candidate is a tractable version of the process defined
by [Gauthier, 2011], which has been recalled in subsection 2.2.2 in chapter 2.

3.2.1 Red (Reduced) process

The transformation leading to the Red process consists in subtracting from
∼
Z its value on

the subspace {(xJ , g(xJ)), xJ ∈ [0, 1]dJ}. Thus, the Red process is equal to:

ZRed(xJ , xI) =
∼
Z(xJ , xI)−

∼
Z(xJ , g(xJ)).

It is a centered Gaussian process of covariance kernel σ2ρRed with:

ρRed((xJ , xI), (tJ , tI)) = r ((xJ , xI), (tJ , tI))− r ((xJ , xI), (tJ , g(tJ)))
−r ((xJ , g(xJ)), (tJ , tI)) + r ((xJ , g(xJ)), (tJ , g(tJ)) .

As the process used to transform the latent process is constant in xI , the transformation is
global and not just near the nullity zone. The resulting process is entirely disturbed.

3.2.2 Psi process

Another transformation to impose the nullity property while modifying the latent process
only near the nullity subspace consists in multiplying the latent process by a function null on
the nullity subspace {(xJ , g(xJ)), xJ ∈ [0, 1]dJ} and equal to one far from it. The resulting
process is called the Psi process:

ZPsi(xJ , xI) = Ψ (xI − g(xJ))
∼
Z(xJ , xI).

with Ψ equal to:

Ψ(t) = 1− exp

(
−

dI∑

i=1

t2i
2δ2
i

)

The parameter δi (i ∈ J1, dIK) controls the speed at which Ψ goes to 0 in the direction ti.
The smaller δi is, the steeper is the slope toward 0.

The Psi process is a centered Gaussian process of covariance kernel σ2ρPsi with:

ρPsi((xJ , xI), (tJ , tI)) = Ψ (xI − g(xJ)) Ψ (tI − g(tJ)) r ((xJ , xI), (tJ , tI))

As the Psi function used to transform the latent process is almost constant equal to 1 except
near the nullity zone where it quickly goes down to 0, the transformation is local, located
around the nullity zone. The resulting process is disturbed near the nullity zone, but the
disturbation is important and not smooth.

34

3.2.3 P (Preconditioned) process

An alternative local and smooth transformation of the latent process to impose the nullity
property consists in conditioning the latent process to be null on the nullity subspace D =
{(xJ , g(xJ)), xJ ∈ [0, 1]dJ}. As this nullity subspace is an infinite continuous set of points,
the usual conditioning seen in proposition 2 in chapter 2 cannot be used directly. Instead,
a generalization of the conditioning defined in [Gauthier and Bay, 2012b] and detailed in
subsection 2.2.2 in chapter 2 is used. The resulting process is called the P process:

ZP (xJ , xI) =
∼
Z(xJ , xI)− E

[∼
Z(xJ , xI) |

∼
Z(sJ , g(sJ)),∀sJ ∈ [0, 1]dJ

]
. (3.5)

The term E
[∼
Z(xJ , xI) |

∼
Z(sJ , g(sJ)),∀sJ ∈ [0, 1]dJ

]
is the orthogonal projection of

∼
Z(xJ , xI)

in the sub Gaussian Space engendered by the family
∼
Z(D) =

(∼
Z(sJ , g(sJ))

)
sJ∈[0,1]dJ

. Its

general expression is given in subsection 2.2.2 in chapter 2 and is recalled below:

E
[∼
Z(x) |

∼
Z(D)

]
=

+∞∑

n=1

φn(x)

∫

S

∼
φn(s)

∼
Z(xs)dν(s), (3.6)

with D = {xs, s ∈ S} the nullity subspace, S its index set, ν a measure on S, and

φn(x) = 1
λn

∫
S σ

2r(x, xs)
∼
φn(s)dν(s).

(λn,
∼
φn)n>1 are solutions of the eigen problem :

∫

S
σ2r (xs, xu)

∼
φn(u)dν(u) = λn

∼
φn(s), ∀s ∈ S,

such that ∫

S

∼
φn(s)

∼
φm(s)dν(s) = δnm ∀n,m > 1,

where δnm is the Kronecker symbol. It is applied to the case:



S = [0, 1]dJ ,
ν any measure on [0, 1]dJ ,
xs = (sJ , g(sJ)).

This kernel cannot be used just as it is in practice, because the solutions of the eigenvalue
problem are not explicit in general and the sums are infinite. Two ways of computing this
kernel are proposed. The first is based on the discretization of the spectral decomposition.
The second is based on a wise choice of r (the correlation kernel of the latent process

∼
Z) for

which an explicit formula is known.

In this paragraph, a first way of computing the kernel is given by an approximation based
on the discretization of the spectral decomposition that reduces the functional eigenvalue
problem to a finite dimensional one. In that case, the terms from the spectral decomposition
vanish and the formula of the resulting approximate kernel only depends on the kernel of the
latent process.

35

Proposition 9 Discretizing the spectral decomposition of the P process Z by a quadrature
method (as in the 2D example in subsection 3.2.4) using weights (ωi)

L
i=1, quadrature points

(s(i))Li=1, and the associated discretized nullity subspace D =
{

(s(i), g(s(i))), i ∈ J1, LK
}
, is

equivalent to approximating the P process by the process
∼
Z conditioned to be null on the

points of D :
ZD =

[∼
Z |

∼
Z(D) = 0

]
.

It is a centered Gaussian process of covariance kernel σ2ρD :

ρD(x, t) = r(x, t)− r(x,D)r(D,D)−1r(D, t) ∀x, t ∈ [0, 1]dJ+dI .

Proof It is a straightforward application of proposition 8 with D = D, S = S, and ν =∑L
i=1 ωiδs(i). An alternative proof is suggested in appendix 9.3.1 in the case of a Monte-Carlo

method.

This process does not suit the original expectations as the nullity is not fully respected on
the continous set of points. The size of D must be high to approach correctly the full nullity.
It is more and more difficult as the dimension of the input space increases, and it leads to
very expensive computations (with inversion of huge matrices). A second way of computing
this kernel is proposed. It consists in finding forms of the kernel of

∼
Z that enable the kernel

of ZP to be tractable.
Proposition 10 Let rJ and rI be two stationary correlation kernels. If the covariance kernel
of
∼
Z is of the form σ2r with:

r((xJ , xI), (tJ , tI)) = rJ(xJ , tJ)rI(xI − g(xJ), tI − g(tJ)),

then the P process is a centered Gaussian process equal to :

ZP (xJ , xI) =
∼
Z(xJ , xI)− rI(xI − g(xJ), 0)

∼
Z(xJ , g(xJ)),

whose covariance kernel is σ2ρP with:

ρP ((xJ , xI), (tJ , tI)) = rJ(xJ , tJ) [rI(xI − g(xJ), tI − g(tJ))− rI(xI − g(xJ), 0)rI(0, tI − g(tJ))] .

Proof See appendix 9.3.2 for the proof of this proposition.

Corollary 1 If g is constant equal to c ∈ [0, 1]dI and if r is a stationary kernel of the form

r((xJ , xI), (tJ , tI)) = rJ(xJ , tJ)rI(xI , tI),

then the P process is a centered Gaussian process equal to :

ZP (xJ , xI) =
∼
Z(xJ , xI)− rI(xI , c)

∼
Z(xJ , g(xJ)),

whose covariance kernel is σ2ρP with:

ρP ((xJ , xI), (tJ , tI)) = rJ(xJ , tJ) [rI(xI , tI)− rI(xI , c)rI(c, tI)] .
Proof The proof is straightforward, by applying proposition 10 with g(xJ) = c and using the
stationarity of rI : rI(xI − c, tI − c) = rI(xI , tI).

The model presented in the corollary (where the variables that are released were previously
fixed at a constant value) is illustrated in figure 3.1.

The expectation used to transform the latent process is smooth and equal to zero near the
nullity zone. The transformation is local, located around the nullity zone. The resulting
process is disturbed near the nullity zone, but the disturbation is smooth. In the following,
the P processes are assumed to be built as in proposition 10 or corrollary 1.

36

(a) Visualization of Yn and Yn−1 (b) Isocontours of Yn (c) Visualization of Yn−1

Figure 3.1: Illustration of the coincidance of Yn and Yn−1 when x̀In is constant.

3.2.4 Example in 2D

This subsection describes the three candidates in the context of the 2D example defined in
subsection 3.1.2. They are candidates for the correction process Z2 which verifies the nullity
property Z2(x1, g(x1)) = 0, where g(x1) = 0.7x1 + 0.2.

Red process If Z2 is a Red process, it is defined as:

Z2(x1, x2) =
∼
Z2(x1, x2)−

∼
Z2(x1, 0.7x1 + 0.2).

This transformation of
∼
Z2 is linear and therefore, the Gaussian law is preserved. The nullity

property is easily verified and the kernel can directly be expressed as a linear transformation
of the latent kernel so stays computable. The covariance kernel of Z2 is equal to σ2

2ρ
Red
2 with:

ρRed2 ((x1, x2), (t1, t2)) = r2((x1, x2), (t1, t2)) + r2((x1, 0.7x1 + 0.2), (t1, 0.7t1 + 0.2))
− r2((x1, x2), (t1, 0.7t1 + 0.2))− r2((x1, 0.7x1 + 0.2), (t1, t2)).

The different processes involved are shown in figure below: the Red process in left panel, the
latent process on middle panel, and its value on the line x2 = 0.7x1 + 0.2 (which is a process
function of x1 that can be seen as a process function of (x1, x2) constant in x2) on right panel.

ZRed2 (x1, x2)
∼
Z2(x1, x2)

∼
Z2(x1, 0.7x1 + 0.2)

37

Psi process The Psi process is defined as:

Z2(x1, x2) = Ψ(x2 − 0.7x1 − 0.2)
∼
Z2(x1, x2),

with Ψ(t) = 1− exp
(
t2

2δ2

)
for all t in [−1, 1]. The function Ψ is null at 0 and near 1 far from

0, and the parameter δ controls the speed at which Ψ goes to 0. The smaller δ is, the steeper
is the slope toward 0, as illustrated on the figure below.

δ = 0.1 δ = 0.3

The covariance kernel of Z2 is equal to σ2
2ρ

Psi
2 with:

ρ2((x1, x2), (t1, t2)) = Ψ(x2 − 0.7x1 − 0.2)Ψ(t2 − 0.7t1 − 0.2)r2((x1, x2), (t1, t2)).

The different processes involved are shown in figure below: the Psi process in left panel, the
latent process on middle panel, and the function Ψ(x2 − 0.7x1 − 0.2) on right panel.

ZPsi2 (x1, x2)
∼
Z2(x1, x2) Ψ(x2 − 0.7x1 − 0.2)

P process The P process is defined as:

Z2(x1, x2) =
∼
Z2(x1, x2)− E

[∼
Z2(x1, x2) |

∼
Z2(t1, 0.7t1 + 0.2)∀t1 ∈ [0, 1]

]
,

where E
[∼
Z2(x1, x2) |

∼
Z2(t1, 0.7t1 + 0.2)∀t1 ∈ [0, 1]

]
(denoted by E(x1, x2) to simplify nota-

tions) is itself a generalization of the conditional expectation, defined as the projection of
∼
Z2(x1, x2) in the subGaussian space generated by

(∼
Z2(t1, 0.7t1 + 0.2)

)
t1∈[0,1]

. The formula

38

of the expectation, taken from the proposition 7 and recalled in the next paragraph, is here
adapted to the case D = {(s, 0.7s+ 0.2), s ∈ [0, 1]}, S = [0, 1], and ν any measure on S:

E(x1, x2) =
+∞∑

n=1

φn(x1, x2)

∫ 1

0

∼
φn(s)

∼
Z2(s, 0.7s+ 0.2)dν(s),

where:

φn(x1, x2) =
1

λn

∫ 1

0

σ2
2r2((x1, x2), (s, 0.7s+ 0.2))

∼
Z2(s, 0.7s+ 0.2)dν(s),

and (λn,
∼
φn)+∞

n=1 are the solutions of the eigenvalue problem:
∫ 1

0

σ2
2r2((s, 0.7s+ 0.2), (u, 0.7u+ 0.2))

∼
φn(u)dν(u) = λn

∼
φn(s).

(
∼
φn)n>1 is an orthonormal basis of L2([0, 1], ν):

∫ 1

0

∼
φn(s)

∼
φm(s)dν(s) = δnm.

The first way to compute its kernel is based on the discretization of its spectral decomposi-
tion. Discretizing the spectral decomposition of the P process means that the integrals are
approximated by quadrature methods, i.e.

∫ 1

0
g(s)dν(s) ≈ ∑L

i=1 ωig(s(i)) with (ωi)
L
i=1 the

weigths and (s(i))Li=1 the quadrature points choosen in [0, 1]. For example, in the case of
the Monte-Carlo method, ωi = 1

L
and S =

(
s(i)
)L
i=1

is choosen uniformly in [0, 1]. Using a
quadrature approximation of the integral, the eigenvalue problem becomes:

L∑

i=1

ωiσ
2
2r2((s, 0.7s+ 0.2), (s(i), 0.7s(i) + 0.2))

∼
φ(s(i)) ≈ λ

∼
φ(s), ∀s ∈ [0, 1].

Then, by considering only the values of the eigenfunction
∼
φ at the quadrature points (s(i))Li=1,

the eigenvalue problem is replaced by a finite dimensional one:

σ2
2r2(D,D)WΦ = γΦ,

where D = (s(i), 0.7s(i) + 0.2)Li=1 is the discretization of the nullity subspace D corresponding

to S (discretization of S), W =




ω1 0 . . . 0

0
.

... 0
0 . . . 0 ωL


 is the diagonal matrix whose diagonal

components are the weights of the quadrature method. According to proposition 7, there
exist (γn,Φn)Ln=1 solutions of this finite dimensional eigenvalue problem such that (Φn)Ln=1 is
an orthonormal basis of RL for the scalar product associated with W :

Φ′nWΦm = δnm.

The functions (φn)Ln=1 can be approximated in the same way by:

φD
n(x1, x2) = 1

γn
σ2

2r2((x1, x2),D)WΦn.

39

The expectation E(x1, x2) is approximated by:

ED(x1, x2) =
L∑

n=1

φn(D)(x1, x2)
[
Φ′nW

∼
Z(D)

]
.

The P process Z2 is approximated by:

ZD
2 (x1, x2) =

∼
Z2(x1, x2)− ED(x1, x2).

According to proposition 9, this approximation of the P process is equal to the process
∼
Z2

conditioned to be null on the subspace D:

ZD
2 (x1, x2) =

[∼
Z2(x1, x2) |

∼
Z2(D) = 0

]
.

The second way is to find a covariance kernel of
∼
Z2 such that the kernel of Z2 is computable.

If the covariance kernel of
∼
Z2 is of the form:

σ2
2r2((x1, x2), (t1, t2)) = σ2r2,1(x1, t1)r2,2(x2 − 0.7x1, t2 − 0.7t1),

with r2,1 and r2,2 stationary kernels, and if Z2 is a P process, then according to proposition
10, it is equal to:

Z2(x1, x2) =
∼
Z2(x1, x2)− r2,2(x2 − 0.7x1 − 0.2, 0)

∼
Z2(x1, 0.7x1 − 0.2).

It is a centered Gaussian process of covariance kernel σ2
2ρ2 with:

ρ2((x1, x2), (t1, t2)) = r2,1(x1, t1) [r2,2(x2 − 0.7x1, t2 − 0.7t1)
−r2,2(x2 − 0.7x1 − 0.2, 0)r2,2(t2− 0.7t1 − 0.2, 0)] .

The different processes involved are shown in figure below: the P process in left panel,
the latent process on middle panel, and the expectation E(x1, x2) = r2,2(x2 − 0.7x1 −
0.2, 0)

∼
Z2(x1, 0.7x1 + 0.2) on right panel.

ZP2 (x1, x2)
∼
Z2(x1, x2) E(x1, x2)

The example in 4D can be found in appendix 9.1.1.

40

3.3 Qualitative comparison of the processes
In this section, the name Classic process denotes a stationary Gaussian process. The processes
Classic, Psi, Red and P (the three later are built using the Classic process as latent process)
are compared in terms of path shape and influence of parameters. The processes are defined
in the context of the example in 2D from subsection 3.1.2. The nullity property (see equation
(3.4)) has to be verified at the line x2 = 0.7x1 + 0.2. The figures follow the same color code
: the paths of the Classic process are in grey, those of the Psi process are in green, those of
the Red process are in red, and those of the P process are in blue.

All the processes are centered. The different parameters at stake are σ2 the variance pa-
rameter, θ = (θ1, θ2) the covariance parameters, and δ the additional parameter of the Psi
process. The covariance kernel of the Classic process is the Matern 5

2
kernel:

kClassic((x1, x2), (t1, t2)) = σ2

2∏

i=1

(1 +

√
5 |xi − ti|
θi

+
5(xi − ti)2

3θ2
i

) exp

(
−
√

5 |xi − ti|
θi

)
.

3.3.1 Shapes of the paths

Figure 3.2 shows a path of each process : Classic (see panel 3.2a), Psi (see panel 3.2b), Red
(see panel 3.2c), and P (see panel 3.2d). Each path x 7→ Z(x, ω) was taken at the same
value of ω and with the same parameters : σ2 = 1, θ = (

√
2

4
,
√

2
4

), δ = 0.1. The orange
line is the zone of nullity of the Psi, Red and P processes. It corresponds to the input zone
x2 = 0.7x1 + 0.2. As the same ω was taken for each process, the shapes have similarities.
The Red process seems to accentuate the elevations and depressions of the Classic one while
the Psi and P processes keep the same order of smoothness.

A possible interpretation of that phenomenon is that the Classic process (see panel 3.2a),
used as latent process for Psi, Red and P, is disturbed locally in the case of the Psi and P
processes, whereas it is disturbed globally in the case of the Red process. An illustration of
the processes at stake in the construction of Psi, Red and P processes is shown in figure 3.3.
∼
Z(x1, 0.7x1 + 0.2) (see panel 3.3b), which is subtracted from the latent process to build the
Red process, is constant in x2, and consequently generates a disruption of the latent process
∼
Z(x1, x2) in the whole input space [0, 1]2. On the contrary, the conditional expectation
E
[∼
Z(x1, x2) |

∼
Z(t1, 0.7t1 + 0.2), ∀t1 ∈ [0, 1]

]
(see panel 3.3c), which is subtracted from the

latent process to build the P process, depends on x2, especially near the line x2 = 0.7x1 +0.2,
and tends to 0 far from the line. The modification it implies on the latent process is therefore
located almost only along the line. Similarly, Ψ(x2 − 0.7x1 − 0.2) (see panel 3.3a), which is
multiplied by the latent process to build the Psi process, is equal to 0 on the line and to 1
far from the line. Although the disturbations are both local, they are of different nature: the
one of the P process is smoother than the one of Psi. The P process combines the locality of
the disturbation of the Psi process and the smoothness of disturbation of the Red process.

3.3.2 Influence of σ2

Figure 3.4 shows paths of the Classic, Psi, Red, and P processes with the same parameters
than in figure 3.2 except that σ2 = 3. Consequently to the increase of σ2, all the paths have
a bigger range. The influence of σ2 is the same for all processes. It defines the degree of
dispersion of the path. The bigger σ2 is, the more the path is dispersed.

41

(a) Classic (latent process) (b) Psi

(c) Red (d) P

Figure 3.2: Comparison of Classic, Psi, Red and P paths. Visualization of a path
x 7→ Z(x, ω) of each process. The same ω is used for every process. The orange line
is the line x2 = 0.7x1 + 0.2 on which the Psi, Red and P processes are null. On topleft, panel
3.2a shows a path of the Classic process. On topright, panel 3.2b shows a path of the Psi
process. On bottomleft, panel 3.2c shows a path of the Red process. On bottomright, panel
3.2d shows a path of the P process.

42

(a) Psi function (b) Value of the latent process on
the line

(c) Expectation of the latent pro-
cess

Figure 3.3: Processes used to transform the latent process in order to verify the nullity
property. The processes on panel 3.3a, 3.3b, and 3.3c are used respectively to build the Psi,
Red and P processes.

3.3.3 Influence of θ1

Figure 3.5 shows paths of the Classic, Psi, Red, and P processes with the same parameters
than in figure 3.2 except that θ1 = 0.1. The influence of θ1 is the same for all processes. It
defines the degree of chaos of the path in the x1 direction. The smaller θ1 is, the more chaotic
the path is in the x1 direction.

3.3.4 Influence of θ2

Figure 3.6 shows paths of the Classic, Psi, Red, and P processes with the same parameters
than in figure 3.2 except that θ2 = 0.1. This time, the influence of θ2 is not the same for all
the processes. For the Classic and Psi processes, it defines the degree of chaos of the path in
the direction x2. For the P process, it defines the degree of chaos of the path in the direction
orthogonal to the line x2 = 0.7x1 + 0.2. It is due to the fact that the variable associated to
θ2 in the covariance kernel is not x2 but x2 − 0.7x1 − 0.2 (see subsection 3.2.3). For the Red
process, θ2 defines the degree of chaos both in x2 and x1 directions. It is due to the fact that
both x2 and 0.7x1 + 0.2 are associated with θ2 in the covariance kernel (see subsection 3.2.1).

3.3.5 Influence of δ

Figure 3.7 shows paths of the Psi process with δ = 0.05 and δ = 0.3. δ acts as a smoother of
the Psi paths in the direction orthogonal to the line x2 = 0.7x1 + 0.2. Increasing δ implies a
wider zone centered on the line where the path is flat near 0. In both cases, the Psi process
is really disturbing the initial Classic path in the area of action delimited by δ. Indeed, for
small δ, it gives a really sharp zone where the path brutally goes to 0. For big δ, it gives a
really flat path in the middle, and looking like the initial Classic path only on the sides of
the input space.

43

(a) Classic (latent process) (b) Psi

(c) Red (d) P

Figure 3.4: Paths of Classic, Psi, Red, and P processes for σ2 = 3 instead of σ2 = 1 in figure
3.2. The other parameters are unchanged : θ1 = θ2 =

√
2

4
, δ = 0.1.

44

(a) Classic (latent process) (b) Psi

(c) Red (d) P

Figure 3.5: Paths of Classic, Psi, Red, and P processes for θ1 = 0.1 instead of θ1 =
√

2
4

in
figure 3.2. The other parameters are unchanged : σ2 = 1, θ2 =

√
2

4
, δ = 0.1.

45

(a) Classic (latent process) (b) Psi

(c) Red (d) P

Figure 3.6: Paths of Classic, Psi, Red, and P processes for θ2 = 0.1 instead of θ2 =
√

2
4

in
figure 3.2. The other parameters are unchanged : σ2 = 1, θ1 =

√
2

4
, δ = 0.1.

46

(a) δ = 0.05 (b) δ = 0.3

Figure 3.7: Path of the Psi process for δ = 0.05 (panel 3.7a) and δ = 0.3 (panel 3.7b). The
other parameters are the same as in figure 3.2 : σ2 = 1, θ1 = θ2 =

√
2

4
, δ = 0.1.

3.4 Estimation of the parameters
The current section aims at knowing if the candidates Psi, Red, and P can be used in pratice
in the method seqGPR. A quantitative comparison is carried out between the processes
Classic, Psi, Red, and P, about their performance in parameter estimation which is done by
maximum likelihood. The goal is to find the process parameters from observations of these
processes. These observations are generated by simulations. In the real studies, observations
of the correction processes are not always available (only if the samples are nested as in
subsection 4.1.1 in chapter 4).
Following subsection 2.1.2 in chapter 2, the training data is composed of simulations, denoted
by z = (z1, · · · , znX)′, of the candidate process Z ∼ GP(0, (σsimu)

2 ρξsimu(x, t)) (where σsimu

and ξsimu are the true parameters) on a set of points X =



x(1)

...
x(nX)


 of size nX. The notation

ξsimu is introduced to caracterize all the covariance parameters except σsimu .The parameters
η = (σ2, ξ) are estimated from the training data by maximizing the likelihood L(η; z) or
equivalently by minimizing the loss function l(ξ;Z) defined by :

l(ξ;Z) = nX log(σ2(ξ)) + log |ρξ(X,X)| ,

with σ2(ξ) =
z′ ρξ(X,X)−1 z

nX
the estimation of σ2 as a function of ξ (see subsection 2.1.2 in

chapter 2).

The notations XJ , XI , used in the expressions of the likelihood, are explained in this para-
graph. XJ (resp. XI) is the submatrix of X taking only the first dJ components (resp. the
last dI components) of each x(i). The matrix (XJ , g(XJ)) is equal to the matrix X where

the last dI components of each x(i) have been replaced by g(x
(i)
J). If X =



x

(1)
J x

(1)
J

...
x

(nX)
J x

(nX)
J


,

47

then the matrices XJ , XI and g(XJ) are defined as XJ =



x

(1)
J
...

x
(nX)
J


, XI =



x

(1)
I
...

x
(nX)
I


 and

g(XJ) =



g(x

(1)
J)
...

g(x
(nX)
J)


. Finally, the matrix (XJ , g(XJ)) is equal to :

(XJ , g(XJ)) =



x

(1)
J g(x

(1)
J)

...
x

(nX)
J g(x

(nX)
J)


 .

In the example in 2D from subsection 3.1.2, a DoE X is of the form X =



x

(1)
1 x

(1)
2

...
...

x
(nX)
1 x

(nX)
2


.

The matrices XJ , XI , g(XJ), and (XJ , g(XJ)) are equal to: XJ =



x

(1)
1
...

x
(nX)
1


, XI =



x

(1)
2
...

x
(nX)

2


,

g(XJ) =




0.7x
(1)
1 + 0.2
...

0.7x
(nX)
1 + 0.2


, (XJ , g(XJ)) =



x

(1)
1 0.7x

(1)
1 + 0.2

...
...

x
(nX)
1 0.7x

(nX)
1 + 0.2


. An example of samples

X and (XJ , g(XJ)) is given on figure below:

The minimization problem resulting from the maximum likelihood estimation is given for
the Psi, Red and P process. The maximum likelihood estimation is then performed for each
process on the example in 2D.

3.4.1 Psi Likelihood

In the case of the Psi process, the correlation parameters are ξ = (θ, δ). As a recall, the
correlation kernel of the latent process is denoted by rθ. The correlation matrix on the DoE

48

is equal to

ρθ,δ(X,X) = diag(Ψδ(XI − g(XJ)))rθ(X,X)diag(Ψδ(XI − g(XJ))),

where diag(Ψδ(XI − g(XJ))) is the diagonal matrix whose diagonal components are the com-
ponents of the vector Ψδ(XI − g(XJ)) =

(
Ψδ(x

(i)
I − g(x

(i)
J))

)
i∈J1,nXK

.

The estimation problem consists in finding (θ, δ) minimizing :

l(θ, δ; z) = nX log σ2(θ, δ) + log |rθ(X,X)|+ 2

nX∑

i=1

Ψδ(x
(i)
I − g(x

(i)
J)),

with

σ2(θ, δ) =

∼
z
′
δrθ (X,X)−1 ∼zδ

nX
,

where
∼
zδ =

(
zi

Ψδ(x
(i)
I −g(x

(i)
J))

)

i∈J1,nXK
.

Remark If δ is known, the problem is equivalent to minimizing the loss function of the
latent process

∼
Z based on its observations

∼
zδ on the sample X.

3.4.2 Red Likelihood

In the case of the Red (Reduced) process, the correlation parameters are ξ = θ. The estima-
tion problem consists in finding θ minimizing

l(θ; z) = nX log
(
σ2(θ)

)
+ log |ρθ(X,X)| ,

with
σ2(θ) =

z′ρθ(X,X)−1z

nX
,

where

ρθ(X,X) = rθ(X,X)− rθ(X, (XI , g(XJ)))− rθ((XI , g(XJ)) ,X) + rθ((XI , g(XJ)) , (XI , g(XJ)))).

3.4.3 P Likelihood

In the case of the P (Preconditioned) process, the correlation parameters are equal to ξ =
θ. The correlation kernel of the latent process is decomposed as : rθ ((xJ , xI), (tJ , tI)) =
rθJ (xJ , tJ)rθI (xI − g(xJ), tI − g(tJ)), where θ = (θJ , θI). The estimation problem consists in
finding θ minimizing

l(θ;Z) = nX log
(
σ2(θ)

)
+ log |ρθ(X,X)| ,

with
σ2(θ) =

z′ρθ(X,X)−1z

nX
,

where
ρθ(X,X) = rθJ (XJ ,XJ)

◦
[
rθI (XI − g(XJ),XI − g(XJ))
−rθI (XI − g(XJ), 0) rθI (0,XI − g(XJ))

]
.

The notation ◦ is used to denote the pointwise product.

49

3.4.4 Comparison of the estimations on a 2D example

In this subsection, the three previously defined Gaussian processes (Psi, Red and P) are
compared in terms of parameter estimation, based on a simulation of themselves (with im-
posed parameter values) on a training sample. This comparison is done in the context of the
example in 2D from subsection 3.1.2. The goal is to recover the values of the parameters
used in the simulation, which are mentioned using the subscript simu (θsimu, σ2

simu, and
δsimu). The Classic process is added to the comparison as a "control" individual. The same
definition of the processes as in section 3.3 is taken. In the following example, the processes
are defined on [0, 1]2, and the Psi, Red and P processes verify the nullity property (3.4) on
the line x2 = 0.7x1 + 0.2. The processes are defined as follows:

• Classic: the Classic Gaussian process of parameters σ2
simu, θsimu, with a covariance

kernel of type stationary tensor product matern 5
2
whose fomula is recalled in subsection

2.1.1 in chapter 2 and in section 3.3.

• P: the P process built on a latent process, of parameters σ2
simu and θsimu, derived from

the Classic process, whose covariance kernel is defined as:

k(x, t) = σ2rθ1(x1, t1)rθ2(x2 − 0.7x1 − 0.2, t2 − 0.7t1 − 0.2),

where rθ1 and rθ2 are 1D Matern 5
2
kernels.

• Psi: the Psi process built on a latent process equal to the Classic process, of parameters
σ2
simu, θsimu, δsimu.

• Red: the Red process built on a latent process equal to the Classic process, of param-
eters σ2

simu, θsimu.

The following values are taken for the parameters : σ2
simu = 1, θsimu =

(√
2

4
,
√

2
4

)
(called

thetamin) or
(
2
√

2, 2
√

2
)
(called thetamax), and δsimu =

√
2

4
(called deltamin) or

√
2 (called

deltamax). Each process is simulated on a DoE in [0, 1]2 of size 10 or 100 and its parame-
ters are reestimated by maximum likelihood on the simulated data, using the minimization
problems defined in subsections 3.4.1, 3.4.2, and 3.4.3. For the Classic process, the training
sample is an LHS optimized for the generalized maximin criterion with p = 50 (see subsec-
tion 2.1.5 in chapter 2) using the R package DiceDesign. For the other processes, the design
is built as described in section 5.1 in chapter 5, such that it is well spread in [0, 1]2, it is
sufficiently far from the line x2 = 0.7x1 + 0.2, and its projection on the x1 direction is equal
to (i

nX−1
)i∈J0,nX−1K (with nX = 10 or 100).

The boxplots of the parameter estimators are computed other 100 simulations for each train-
ing size. The boxplots corresponding to an estimation over the Classic, Psi, Red and P
processes are respectively in grey, green, red and blue. A distinction is made for the Psi
process between an estimation when δ =

√
2

4
(called Psi_deltamin in lightgreen) and δ =

√
2

(called Psi_deltamax in green).

θ estimation Figure 3.8 shows boxplots of estimated values of θ1 and θ2 for the two sizes of
the training sample. All estimations are centered on the true values θsimu and become more
accurate when the training size increases. This result seems to indicate that the maximum
likelihood estimators converge towards the true values when the sample size goes to +∞. For
a training size of 100, all processes have similar performances. For a training size of 10, the

50

Classic process is more robust than the others. This can be due to the fact that this process
is stationary, but also that the DoE’s are better spread in the input space (because subject
to less constraints in their building). Red and P are comparable and Psi (Psi_deltamin or
Psi_deltamax) is a bit worse than the others. This result may be explained by the fact that
the Psi process has one more parameter to estimate and that can disturb the estimation.

σ2 estimation Figure 3.9 shows boxplots of estimated values of σ2 for the two sizes of the
design. All estimations seem to converge except in the case θsimu = (

√
2

4
,
√

2
4

), δsimu =
√

2.
Furthermore, the estimation of σ2 is really bad for a training size of 10 in the case of the Psi
process, compared to the other processes.

δ estimation for Psi Figure 3.10 shows boxplots of estimated values of δ for the different
training sizes and values of δsimu and θsimu. In all cases except θsimu = (

√
2

4
,
√

2
4

), δsimu =
√

2,
the estimation of δ seems to converge towards the true value δsimu. For this particular case
when it does not converge, the estimations are very scattered from 0 to 10. The problem
is probably that δ and θ play similar roles of caracteristic lengths and that may make their
separate estimation impossible.

3.5 Conclusion

This chapter defines the underlying Gaussian processes and their relations in the seqGPR
metamodel: a Gaussian process Y1 modeling the training data at step 1, and correction
processes modeling the additional pieces of information brought about by the successive steps.
The different processes are assumed independent to simplify calculations. This hypothesis
is necessary and not directly implied by their definition. The correction processes must be
Gaussian processes null on an infinite continuous set of points.

Three candidates are defined for the correction processes: Red, Psi and P. They result from
transformations of a latent process whose kernel is numerically computable. The Red process
is the most simple candidate. It is equal to the latent process reduced by its value on the
subspace of nullity. This transformation disturbs the value of the latent process in the entire
input space. Therefore, a second candidate is suggested, called Psi, which consists in multi-
plying the latent process by a function null on the subspace of nullity. This transformation
of the latent process is local (near the nullity subspace), but not as smooth as the previous
one, as the Psi process is equal to the latent process far from the nullity zone, but is forced
to go to zero on this zone. Finally, a last candidate is proposed, called P, which is nearer
to the Red process. The difference is that the latent process is not reduced directly by its
value on the nullity subspace, but by its expectation. The expectation being dependent on
all the inputs, the transformation is smoother than for Psi but stays local, and far from the
nullity subspace, the P process is equal to the latent process. The problem of this process
is that its kernel is not always numerically computable. Two methods are tried to obtain
that computability. The first one, consisting in discretizing its spectral decomposition is not
retained, as it does not preserve the nullity in the whole nullity subspace. The second method
is prefered, which directly gives an analytical formula for a particular choice of the latent
process kernel.

The parameter influences on the path shapes of the candidates and the Classic process (which
is used as latent process to build them) are compared in the 2D example. The shapes are

51

(a) Estimation of θ1 with θsimu = (
√
2
4 ,
√
2
4) (b) Estimation of θ2 with θsimu = (

√
2
4 ,
√
2
4)

(c) Estimation of θ1 with θsimu = (2
√

2, 2
√

2)(d) Estimation of θ2 with θsimu = (2
√

2, 2
√

2)

Figure 3.8: Estimation, on 100 training samples, of the covariance parameters of the different
processes (Classic, Psi, Red, P) : θ1 (panels 3.8a and 3.8c) and θ2 (panels 3.8b and 3.8d).
Different values of θ are used in the DoE : θsimu = (

√
2

4
,
√

2
4

) (in panels 3.8a and 3.8b), or
θsimu = (2

√
2, 2
√

2) (in panels 3.8c and 3.8d), along with different sizes of training sample
(10 or 100). The variance parameter σ2

simu is set to 1. In the case of the Psi process, the
parameter δsimu is set to

√
2

4
(legend Psi_deltamin) or

√
2 (legend Psi_deltamax). In each

boxplot, the black horizontal line is the value of θsimu. The estimated value of θ results from
the joint estimation of (θ, σ2, δ) by maximization of the likelihood.

52

(a) θsimu = (
√
2
4 ,
√
2
4) (b) θsimu = (2

√
2, 2
√

2)

Figure 3.9: Estimation of the variance parameter σ2. The true value σ2
simu, represented by

the black horizontal line, is set to 1. θsimu is set to (
√

2
4
,
√

2
4

) (panel 3.9a) or (2
√

2, 2
√

2)

(panel 3.9b). δsimu is set to
√

2
4

or
√

2. For each training size (10 or 100), from left to right
are represented the boxplots of the following processes : Classic, Psi (Psi_deltamin when
δsimu =

√
2

4
and Psi_deltamax when δsimu =

√
2), Red and P. The y-axis is plotted on a

logarithmic scale.

similar, the one of the Red process is more different as the transformation concerns the entire
input space. The influence of σ2 and θ1 are the same for all processes: σ2 determines the
dispersion of the path, and θ1 monitors the smoothness in the x1 direction. θ2 has a different
meaning depending on the process. For Classic and Psi, it influences the smoothness of the
path in the x2 direction, for P it influences the smoothness in the direction orthogonal to the
nullity subspace, for Red it influences the smoothness in x1 and x2 directions. δ determines
the speed at which the Psi process goes from 0 to the value of the latent process.

It seems that the maximum likelihood estimation of the parameters of the Psi process is not
robust (especially for the δ parameter), even in a simple case like the one of the 2D example
(with only two inputs and a big training sample of size 100). Furthermore, a big dimension
implies a lot more parameters to estimate than the other processes. The estimation of the
Red and P parameters is of good quality: it converges with the size of the DoE and it is of
the same order of magnitude as the estimation of the Classic process parameters. The latter
is a little bit more robust because Red and P processes are more complicated as they are not
second-order stationary, but they seem viable. From these observations, only the processes
Red and P, whose paths are smoother and whose parameter estimation is robust, are kept to
build the metamodel seqGPR.

53

(a) θsimu = (
√
2
4 ,
√
2
4),δsimu =

√
2
4 (b) θsimu = (

√
2
4 ,
√
2
4),δsimu =

√
2

(c) θsimu = (2
√

2, 2
√

2),δsimu =
√
2
4

(d) θsimu = (2
√

2, 2
√

2),δsimu =
√

2

Figure 3.10: Estimation of δ for the Psi process. The true value δsimu, represented by the
black horizontal line, is set to

√
2

4
(panels 3.10a and 3.10c) or

√
2 (panels 3.10b and 3.10d).

θsimu is set to (
√

2
4
,
√

2
4

) (panels 3.10a and 3.10b) or (2
√

2, 2
√

2) (panels 3.10c and 3.10d).
σ2
simu is set to 1. The training sizes are equal to 10 or 100.

54

Chapter 4

seqGPR methodology

Chapter 3 proposes the methodology seqGPR taking into account results from numerical
simulations y1, ..., yN , obtained from DoE’s X1, ..., XN in spaces of increasing dimension
[0, 1]d1 , ..., [0, 1]d1+···+dN (see subsection 3.1.1 in chapter 3). More precisely, y1, ..., yN are
assumed to be the realizations of the processes Y1, ..., YN at the designs X1, ..., XN , where
(for xI1∪···∪In in [0, 1]d1+···+dn):




Y1(xI1) = m+ Z1(xI1),

Yn(xI1∪···∪In−1 , xIn) = Yn−1(xI1∪···∪In−1) + Zn(xI1∪···∪In−1 , xIn), ∀n ∈ J2, NK,
(4.1)

where:

• The processes (Zn)Nn=1 are independent Gaussian processes of law:

Zn ∼ GP(0, σ2
nρn(xI1∪···∪In , tI1∪···∪In)), ∀n ∈ J1, NK. (4.2)

• The processes (Zn)Nn=2 verify the following property:

Zn(xI1∪···∪In−1 , x̀In) = 0, ∀n ∈ J2, NK,∀xI1∪···∪In−1 ∈ [0, 1]d1+···+dn−1 . (4.3)

The issue of defining the correction processes (Zn)Nn=2 as Gaussian processes verifying the
nullity property (4.3) is solved in chapter 3 where two candidates are retained: the Red and
P processes. This new chapter deals with the estimation of the parameters of the processes
involved in the model (4.1), and the prediction of the model.

The law of Y1 (see equations (4.1) and (4.2)) depends on the parameters: m (scalar mean
parameter), σ2

1 (scalar variance parameter), and θ1 (vector of covariance parameters). For all
n ∈ J2, NK, Zn (see equation (4.2)) is either a Red or P process built on the latent process
∼
Zn ∼ GP(0, σ2

nrn) (see chapter 3) of parameters: σ2
n (scalar variance parameter), θn (vector

of covariance parameters). In order to emphasize the dependence of ρn (the covariance kernel
of Zn, n ∈ J1, NK) on the parameter θn, this kernel is denoted by ρθn . The purpose of this
chapter is to estimate the parameters η = (m,σ2

1, θ1︸ ︷︷ ︸
η1

, σ2
2, θ2︸ ︷︷ ︸
η2

, · · · , σ2
n, θn︸ ︷︷ ︸
ηn

, · · · , σ2
N , θN︸ ︷︷ ︸
ηN

) based

on the observed data. The maximum likelihood estimator is used. Using the notations
y′ = (y1

′, · · · ,yN ′) and Y ′ = (Y1(X1)′, · · · , YN(XN)′), the following loss function 1 has to be
minimized:

l(η;y) = log |Covη(Y ,Y)|+ (y − Eη[Y])′Covη(Y ,Y)−1(y − Eη[Y]).

1equal to twice the negative log-likelihood up to a constant

55

This optimization problem is complex as η can reach big dimensions.

To optimize this loss function, similarly to what occurs in a mutifidelity context, two cases
may be distinguished. When the designs are nested [Le Gratiet and Garnier, 2014], observa-
tions of Y1, Y2 ..., YN imply observations of Y1, Z2, ..., ZN . The likelihood can be decoupled
into independent parts to be optimized in small dimension. For each Zn, the estimation of its
parameters is reduced to the case treated in section 3.4 in chapter 3. The case with nested
designs is tackled in subsection 4.1.1. When the designs are non-nested [Zertuche, 2015],
the loss function cannot be decoupled and an EM (Expectation-Maximization, see subsec-
tion 2.1.2 in chapter 2) algorithm is used instead. In subsection 4.1.2, the EM algorithm is
adapted to the seqGPR metamodel, in order to optimize the joint loss function while taking
advantage of the underlying additive model involving independent processes. In section 4.2,
the seqGPR metamodel is tested on two analytic and one industrial test cases.

4.1 Estimation and prediction
This section shows estimation and prediction methods for the seqGPR metamodel in case of
nested or non-nested designs.

4.1.1 Nested designs

Definition 7 (Nested designs) In what follows, the notation Xn @ Xn−1 means that the
submatrix of Xn composed of the columns corresponding to xI1∪···∪In−1 is included in Xn−1.
In this case, the designs Xn and Xn−1 are said nested.

Proposition 11 If all the designs are nested: XN @ · · · @ X1 (see definition 7), then the
loss function can be decoupled:

l(η;y) = l1(η1;y1) +
N∑

n=2

ln(ηn; zn),

with l1(η1;y1) (respectively ln(ηn; zn), n ∈ J2, NK) the loss function associated with the train-
ing data Y1(X1) = y1 (respectively Zn(Xn) = zn).

Proof (zn)26n6N is observed because the designs are nested. The loss function can be decou-
pled because (Y1, Z2, · · · , ZN) are independent.

If all the designs are nested, the parameters ηn can be estimated separately by optimizing
the loss functions ln. The formulae of the loss functions (ln)Nn=2 are given in subsections 3.4.2
or 3.4.3 depending whether Zn is a Red or P process. The formula of l1 is given in subsection
2.1.2 in chapter 2.

The same conclusion can be done for the prediction mean and variance:

Proposition 12 If all the designs are nested: XN @ · · · @ X1 (see definition 7), the predic-
tion formulae can be decoupled:





ŷ(x) = E [Y1(x) | Y1(X1) = y1] +
N∑

n=2

E [Zn(x) | Zn(Xn) = zn] ,

v̂(x) = V ar [Y1(x) | Y1(X1) = y1] +
N∑

n=2

V ar [Zn(x) | Zn(Xn) = zn] .

56

Proof Same arguments as for proposition 11.

In fact, the metamodel is the sum of N independent metamodels.

Remark (properties of nested designs) To optimize the likelihoods, the matrices
cov(Zn(Xn), Zn(Xn)) = σ2

nρθn(Xn,Xn) (n in J1, NK) must be inverted. First, for all n in
J1, NK, the design Xn is assumed not having any redundant points such that the associated
covariance matrix has no identical rows. Furthermore, the points must be sufficiently far from
each other to ensure the good conditioning of the matrix. This condition is sufficient for the
first matrix as long as ρθ1 is a positive definite kernel. As it is not the case for the (ρθn)Nn=2, to
ensure that the matrices are not singular, each Xn (n in J2, NK) is also supposed to not con-
tain any point belonging to the nullity zone {(xI1∪···∪In−1 , x̀In), xI1∪···∪In−1 ∈ [0, 1]d1+···+dn−1}
so there are no rows full of zeros in the matrices. Section 5.1 in chapter 5 describes the
building method retained for the samples in this context.

Drawbacks This nesting constraint on the designs implies that the size of Xn cannot
increase with n. This is problematic as conversely the dimension of the input space increases
with n, so more and more information should be brought as n increases. Furthermore, this
limits the exploration of the first dimensions as the same values are used in all the designs.
That is why an alternative is proposed in the next subsection with designs that are subject
to less radical constraints.

4.1.2 Non-nested designs

In this subsection, the designs are said non-nested if for all n in J1, NK, the xI1∪···∪In part
of Xn, · · · , XN have no points in common. If the designs are non-nested, the loss function
is not decoupled and therefore is difficult to optimize. An EM (Expectation-Maximization,
see subsection 2.1.2 in chapter 2) algorithm is then used to reduce the dimension of the
optimization problem. To define this algorithm, the notion of complete data is introduced.

Definition 8 (Complete data) Let
∼
Xn (∀1 6 n 6 N) denote the union of all designs that

concern Zn.
∼
Xn is a matrix of d1 + · · · + dn columns, composed of the concatenation of the

parts of Xn, · · · ,XN corresponding to the input variables xI1∪···∪In. The complete data is the
random vector: T = (Y1(

∼
X1), Z2(

∼
X2), · · · , ZN(

∼
XN)).

In the case of non-nested designs
∼
X1, · · · ,

∼
XN have no redundant points and are nested in

each other, so they play the role of X1, · · · ,XN in the case of nested designs. According to
proposition 11, if the values of Y1 on

∼
X1, denoted by z1, and the values of the Zn on the

∼
Xn

(n ∈ J2, NK), denoted by zn, were observed, the loss function associated to all those DoE’s
(equal to twice the negative loglikelihood of the complete data up to a constant), denoted by
lc, could be decomposed as

lc(η; z1, · · · , zn) =
N∑

n=1

lnc (ηn; zn),

where l1c(η1; z1) is the loss function associated to the training data Y1(
∼
X1) = z1, and lnc (ηn; zn)

(n ∈ J2, NK) is the loss function associated to the training data Zn(
∼
Xn) = zn.

57

As some of the complete data is not observed (missing data), an EM algorithm seems adequate
to optimize the loss function.

Definition 9 (EM algorithm) The EM algorithm is defined by

• Expectation Instead of the observed data loss function, the expectation of the complete
data loss function conditioned by the observed data is considered. This quantity can be
decomposed in N terms:

Q(η, η∗) = Eη∗ [lc(η;T) | Y = y] ,

=
N∑

n=1

Qn(ηn; η∗),

with ∀n ∈ J1, NK

Qn(ηn, η
∗) = Eη∗

[
lnc (ηn;Zn(

∼
Xn)) | Y = y

]
.

• Maximization The EM algorithm consists in building the sequence (η(i))i>0 =

(η
(i)
1 , · · · , η(i)

N)i>0 such that η(0) is user defined and ∀i > 0, η(i+1) is solution of the
optimization problem:

min
η
Q(η, η(i)).

For all n ∈ J1, NK, η(i+1)
n is solution of the following optimization problem:

min
ηn
Qn(ηn, η

(i)). (4.4)

See appendix 9.4.1 for the explicit formulae of the Qn. In the usual EM algorithm (see
subsection 2.1.2 in chapter 2), the maximization step consists in a maximization problem
because the Q criterion is built on the loglikelihood. However, in this case, the Q criterion
is built on twice the negative loglikelihood, that is why the optimization problem becomes
a minimization one. Finally, η is estimated by a term of the sequence of sufficiently high
rank, the choice of the rank being done by imposing a maximum number of iterations and a
threshold on the variation of the loss function between iterations.

Remark (properties of non-nested designs) To optimize Qn, the matrices
cov
(
Zn(

∼
Xn), Zn(

∼
Xn)
)

= σ2
nρθn(

∼
Xn,

∼
Xn) (n ∈ J1, NK) need to be inverted. First, for all

n ∈ J1, NK,
∼
Xn is assumed not having any redundant points such that the matrices have

no identical rows. This condition is sufficient for the first matrix to be invertible as long as
ρθ1 is a positive-definite kernel. As it is not the case of the ρθn (n > 2), to ensure that the
matrices are not singular, each

∼
Xn (n ∈ J2, NK) is also supposed not to contain any point in

the nullity subspace {(xI1∪···∪In−1 , x̀In), xI1∪···∪In−1 ∈ [0, 1]d1+···+dn−1} so there are no rows full
of zeros in the matrices. Section 5.2 in chapter 5 describes the building method retained for
the samples satisfying these constraints.

4.1.3 Example in 2D

This section illustrates the building methods of the seqGPR metamodel in the case of the
example in 2D defined in subsection 3.1.2 in chapter 3.

58

Nested designs The two samples X1 and X2 are assumed nested (denoted by X2 @ X1,
see definition 7 in subsection 4.1.1), i.e. they are of the form:

X1 =



x

(1)
1
...

x
(n1)
1


 , X2 =



x

(i1)
1 x

(i1)
2

...
x

(in2)
1 x

(in2)
2


 , {i1, · · · , in2} ⊂ {1, · · · , n1}.

The values of x1 contained in X2 are also contained in X1. An example of such samples is
shown in figure below:

If X1 and X2 are nested, then the values of Y1 and Z2 on X2 can be deduced. Indeed, let

denote by y1 =



y

(1)
1
...

y
(n1)
1


 and y2 =



y

(1)
2
...

y
(n2)
2


 the components of y1 and y2, and let (x

(ik)
1 , x

(ik)
2)

denote a point from X2, then:

Y2(x
(ik)
1 , x

(ik)
2)︸ ︷︷ ︸

=y
(k)
2

= Y1(x
(ik)
1)︸ ︷︷ ︸

=y
(ik)
1

+Z2(x
(ik)
1 , x

(ik)
2)︸ ︷︷ ︸

=z
(k)
2

.

The value of Y2(x
(ik)
1 , x

(ik)
2) is deduced by taking the kth term of the vectorial equality

Y2(X2) = y2. The value of Y1(x
(ik)
1) is deduced by taking the ikth term from the vecto-

rial equality Y1(X1) = y1, because x
(ik)
1 is the x1 component of the kth point of X2 but, as

X2 @ X1 (see definition 7 in subsection 4.1.1), it is also the x1 component of the ikth point
of X1. The value of Z2(x

(ik)
1 , x

(ik)
2) is then deduced by subtraction: z(k)

2 = y
(k)
2 − y(ik)

1 . Thus,
a new training data is known: {

Y1(X1) = y1
Z2(X2) = z2,

with z2 the vector whose kth component is equal to z(k)
2 . The likelihood to maximize becomes

(with hV (v) denoting the density of random vector V taken at v):

hY (y) = hY1(X1),Y2(X2)(y1,y2)
= hY1(X1),Z2(X2)(y1, z2)
= hY1(X1)(y1)hZ2(X2)(z2).

59

The last equality is explained by the independence of Y1 and Z2. As a consequence, the loss
function l(η;y), equal to −2 log(hY (y)) up to a constant, is decomposed as the sum of the
two loss functions associated with Y1(X1) and Z2(X2):

l(η;y) = l1(η1;y1) + l2(η2; z2).

These two loss functions can be optimized separately, which leads to two simple optimization
problems instead of one complex optimization problem. Thus, the parameter estimation is
made easier. The same decoupling property is observed for the prediction:

{
ŷ(x1, x2) = E [Y1(x1) | Y1(X1) = y1] + E [Z2(x1, x2) | Z2(X2) = z2] ,
v̂(x1, x2) = V ar (Y1(x1) | Y1(X1) = y1) + V ar (Z2(x1, x2) | Z2(X2) = z2) .

In order to compute the likelihoods and the predictions, the matrices cov(Y1(X1), Y1(X1)) =
σ2

1ρθ1(X1,X1) and cov(Z2(X2), Z2(X2)) = σ2
2ρθ2(X2,X2) must be invertible. If a positive

definite covariance kernel is taken for Y1, the fact that X1 is composed of distinct points
sufficiently far from each other is sufficient to ensure the invertibility of the first matrix, as
the matrix has distinct rows in this case. Because of the nullity property of Z2: Z2(x1, 0.7x1 +
0.2) = 0 (for all x1 in [0, 1]), its covariance kernel is not positive definite, therefore the same
constraint on X2 is not sufficient. An additional constraint must be added, that the points
of X2 are sufficiently far from the nullity subspace D = {(x1, 0.7x1 + 0.2), x1 ∈ [0, 1]}, i.e.
for all k in J1, n2K, x(ik)

2 must be sufficiently far from 0.7x
(ik)
1 + 0.2. This second constraint

ensures that the covariance matrix has no rows full of zeros.

Non-nested designs The designs X1 and X2 are said non-nested if they have no common
values of x1, i.e. if they are of the form:

X1 =



x

(1)
1
...

x
(n1)
1


 , X2 =



x

(n1+1)
1 x

(n1+1)
2

...
...

x
(n1+n2)
1 x

(n1+n2)
2


 , {x(1)

1 , . . . , x
(n1)
1 } ∩ {x(n1+1)

1 , . . . , x
(n1+n2)
1 } = ∅.

An example of such designs is shown in figure below:

60

The prediction cannot be simplified but the estimation can. To be reduced to the previous
case with nested designs, new designs must be defined, that take the role previously played

by X1 and X2. These new designs, denoted
∼
X1 and

∼
X2, are defined as:

∼
X1 =




x
(1)
1
...

x
(n1+n2)
1


,

∼
X2 =



x

(n1+1)
1 x

(n1+1)
2

...
...

x
(n1+n2)
1 x

(n1+n2)
2


 = X2.

∼
X1 contains all the x1 values of the matrices X1 and X2.

∼
X2 contains all the (x1, x2) values of X2 so is equal to X2. The building of

∼
X1 and

∼
X2 is

illustrated in figure below:

These new designs are nested:
∼
X2 @

∼
X1 (see definition 7 in subsection 4.1.1) and thus, the

complete data loss function (i.e. associated to (Y1(
∼
X1), Z2(

∼
X2)), which can be decoupled, is

more adapted than the loss function associated with (Y1(X1), Y2(X2)), which cannot. The
problem is that the value of Y1 is not known everywhere in

∼
X1, so some data is missing to

use the complete data loss function. The EM algorithm is then used, in which the complete
data loss function is replaced by its expectation conditioned by the training data:

Q(η, η∗) = Eη∗
[
l1(η1;Y1(

∼
X1)) + l2(η2;Z2(

∼
X2)) | Y = y

]

= Eη∗
[
l1(η1;Y1(

∼
X1)) | Y = y

]

︸ ︷︷ ︸
=Q1(η1,η∗)

+Eη∗
[
l2(η2;Z2(

∼
X2)) | Y = y

]

︸ ︷︷ ︸
=Q2(η2,η∗)

.

The EM algorithm consists in computing a sequence (η(i))i>0 in which η(i+1) is built from η(i)

by minimizing Q(η, η(i)). The subvectors η(i+1)
1 and η(i+1)

2 are built separately by minimizing
respectively Q1(η1, η

(i)) and Q2(η2, η
(i)).

To optimize Q1 and Q2, the matrices cov
(
Y1(

∼
X1), Y1(

∼
X1)
)

= σ2
1ρθ1(

∼
X1,

∼
X1) and

cov
(
Z2(

∼
X2), Z2(

∼
X2)
)

= σ2
2ρθ2(

∼
X2,

∼
X2) need to be inverted. As for the nested case,

∼
X1 must

have distinct points sufficiently far from each other, and
∼
X2 must have distinct points suffi-

ciently far from each other and sufficiently far from the nullity subspace x2 = 0.7x1 + 0.2.
The last constraint means that, for all k in J1, n2K, x(n1+k)

2 must be sufficiently far from
0.7x

(n1+k)
1 + 0.2.

61

Figure 4.1: Example of training samples used for the test of the EM estimation.

m = 0 σ2
1 = 1 θ1 = 0.5 σ2

2 = 1 θ21 = 0.5 θ22 = 0.5

Red P Red P Red P Red P Red P Red P

Median −0.18 −0.10 0.31 0.4 0.41 0.42 1.00 1.04 0.50 0.54 0.51 0.53
Interquartile range 0.94 0.79 0.62 0.95 0.20 0.23 1.07 1.22 0.19 0.17 0.22 0.24

Table 4.1: Estimations of the seqGPR parameters in case Z2 is a P or Red process. Results
are shown in terms of median and interquartile range of estimation. The best results are in
bold.

Application The EM algorithm is tested in the context of the example in 2D from sub-
section 3.1.2 in chapter 3, where the process Y2(x1, x2) = Y1(x1) + Z2(x1, x2), with Y1(x1) =
m + Z1(x1) and Z2(x1, 0.7x1 + 0.2) = 0, is simulated. The mean of the process is equal to
m = 1. Z1 (resp. Z2) has a variance parameter equal to σ2

1 = 1 (resp. equal to σ2
2 = 1) and

a covariance parameter equal to θ1 = 0.5 (resp. equal to θ2 = (0.5, 0.5)). The simulation of
the process Y2 is realised 100 times, each time on a DoE X1 of size 8 and a DoE X2 of size
18 (see figure 4.1). X1 and X2 are non-nested, X2 is built following the method described in
section 5.2 in chapter 5.

For both Red and P the EM algorithm seems to have converged towards a local optimum of
the likelihood as shown for one particular DoE in figure 4.2.

The comparison of the estimations in the case Z2 is a Red or P process is shown in table
4.1. The estimations are good for the covariance parameters (θ1 and θ2) and less precise for
the mean and variance parameters. Red and P are globally equivalent in terms of parameter
estimation.

See appendix 9.1.2 for the example in 4D.

Now that the metamodel building method is complete, it must be evaluated.

62

(a) Red (b) P

(c) Red,zoom (d) P,zoom

Figure 4.2: Convergence of the loss function in the EM algorithm. Panels 4.2c and 4.2d show
the values of the loss function starting from iteration 2 of the EM algorithm, whereas panels
4.2a and 4.2b show the values of the loss function starting from iteration 1.

63

4.2 Test cases

In what follows, three metamodels are compared on different test cases:

• seqGPR: the metamodel introduced in this thesis. The kernel of Y1 and the ones on
which are based (Zn)Nn=2 are stationary tensor product matern 5

2
covariance kernels.

• K_N (N being the number of the last step): a classic kriging metamodel with a sta-
tionary tensor product matern 5

2
covariance kernel and a constant mean which is built

on the last training sample (XN ,yN).

• K_tot: a classic kriging metamodel similar to K_N, but built on all training samples
(X1,y1), · · · , (XN ,yN).

Four versions of seqGPR are compared. P_full and P_rob (resp. Red_full and Red_rob)
use P (resp. Red) processes defined in section 3.2.3 (resp. 3.2.1) in chapter 3, respectively
of type Full and Robust for the (Zn)Nn=2 (the types are developed in subsection 4.2.1). The
metamodels are compared in terms of RMSE on a test sample. The RMSE formula is recalled
below:

RMSE =

√∑ntest
i=1 (y

(i)
test − ŷ(x

(i)
test))

2

ntest
,

with (x
(i)
test)

ntest
i=1 the test sample, (y

(i)
test)

ntest
i=1 the observations on the test sample, and (ŷ(x

(i)
test))

ntest
i=1

the predictions of the metamodel on the test sample. A simple likelihood estimation is used
for the two kriging models K_N and K_tot. An estimation by EM (in the non-nested case)
or by independent maximization of the likelihoods of Y1 and the (Zn)Nn=2 (in the nested case)
is carried out for the metamodel seqGPR. Two test cases involve an analytic output and one
describes an industrial case.

4.2.1 Robustness

The philosophy of the method seqGPR is to explain a maximum of the data by Y1, and to
correct it thanks to the (Zn)Nn=2, so all the parameters for Y1 are estimated individually and
on the contrary some parameters of the (Zn)Nn=2 are grouped, all parameters being equal in
the same group. Two types of parametrization for the correction processes are defined:

• The first type is called Full. It is the usual one, where all components are esti-
mated individually. The vector θn, of covariance parameters of Zn, is equal to θn =
(θ1
n, · · · , θd1+···+dn

n), with one component θin for each input variable xi. This type of
parametrization has the advantage of giving a great flexibility in the fitting to the
training data, however it may lack robustness in the prediction on other data.

• The second type is called Robust. Some components are affected the same value and are
estimated together while some others are estimated individually. The vector θn is equal
to θn = (αn, · · · , αn︸ ︷︷ ︸

I1∪···∪In−1

, θ1
n, · · · , θdnn︸ ︷︷ ︸

In

), with αn common to all components of xI1∪···∪In−1 ,

and one parameter θin for each component of xIn . This type is motivated by a search
for compromise between bias and variance. Diminishing the number of parameters to
estimate automatically decreases the chances of overfitting.

64

4.2.2 Analytic test case in dimension 4

The output f considered in this test case is a function of 4 inputs x = (x1, x2, x3, x4):
f(x1, x2, x3, x4) = g1(x1, x2) + g2(x1, x2, x3, x4), with:





g1(x1, x2) =
[
4− 2.1(4x1 − 2)2 + (4x1−2)4

3

]
(4x1 − 2)2

+ (4x1 − 2)(2x2 − 1) + [−4 + 4(2x2 − 1)2] (2x2 − 1)2,

g2(x1, x2, x3, x4) = 4 exp
(
−‖x− 0.3‖2) .

g1 is the six-hump camel back resized in [0, 1]2. It is a heckled 2D surface. g2 is a smoother
Gaussian function of 4 inputs. The study is composed of two steps:

• At step 1, computer code evalutations are run at DoE X1 in dimension 2, such that
f1(X1) = y1, with f1 defined by f1(x1, x2) = f(x1, x2, x̀3, x̀4). Only the first two
variables x1 and x2 are free and the other two variables are fixed: x̀3 = x1+x2

2
, x̀4 =

0.2x1 + 0.7.

• At step 2, new simulations are launched at points X2, a design in dimension 4. The
last two variables (x3, x4) are now released.

The total number of variables is d = 4, the number of steps is N = 2, the index set of
variables released at step 1 is I1 = {1, 2} and the index set of variables released at step 2 is
I2 = {3, 4}.

Figure 4.3 shows RMSE of the different methods computed on a Sobol sequence of size 10000
used as a test set. The RMSE is computed for 100 different DoE’s (X1,y1) and (X2,y2). The
100 RMSE’s are represented by a boxplot for each metamodel. Different sizes of DoE’s are
tested. A comparison is made between nested designs (built following section 5.1 in chapter
5) and non-nested ones (built following section 5.2 in chapter 5). Different sizes of design are
also compared to see the evolution of the RMSE with the number of training points and see
the influence of the size of X1 relative to the size of X2:

• X1 bigger than X2: 10pts/5pts (X1 of size 10 and X2 of size 5), 20pts/10pts

• X1 smaller than X2: 10pts/20pts, 20pts/40pts

• X1 of same size as X2: 10pts/10pts, 15pts/15pts, 20pts/20pts, 30pts/30pts.

The standard deviation of the output on the test set is represented by the black horizontal
line. If the RMSE reaches this value, the corresponding metamodel is considered as not
predictive.

As regards the influence of the training samples, all metamodel performances improve with
the size of the training sample. Results show that including the previous information of
(X1,y1) is useful, as it greatly improves the performances of the metamodels. Indeed K_2
is by far the worst metamodel and sometimes is even not predictive, as it reaches the black
line. The metamodels built on non-nested designs are often singularly more accurate than
the metamodels built on nested designs. In the case of non-nested designs, which is the most
interesting, no significant difference is shown in the distribution of training points between
X1 and X2: the case with 10 points for X1 and 20 points for X2, or with 15 points for X1

and 15 points for X2 give similar accuracy. The same conclusion can be drawn from the

65

(a) small nested designs (b) small non-nested designs

(c) big nested designs (d) big non-nested designs

Figure 4.3: RMSE’s (see equation 2.2) of the different metamodels on 100 studies. The black
line is the standard deviation of the output on the test sample. In panels 4.3a and 4.3b,
small training sizes are tested : 10pts/5pts (X1 of size 10, X2 of size 5), 10pts/10pts (X1 of
size 10, X2 of size 10), 10pts/20pts (X1 pf size 10, X2 of size 20), and 15pts/15pts (X1 of size
15, X2 of size 15). In panels 4.3c and 4.3d, bigger training sizes are tested : 20pts/10pts (X1

of size 20, X2 of size 10), 20pts/20pts (X1 of size 20, X2 of size 20), 20pts/40pts (X1 of size
20, X2 of size 40), and 30pts/30pts (X1 of size 30, X2 of size 30). In panels 4.3a and 4.3c, the
designs are nested whereas in panels 4.3b and 4.3d, the designs are non-nested.

66

comparison of the case with 20 points for X1 and 40 points for X2, or with 30 points for X1

and 30 points for X2.
As regards the comparison of the metamodels for the non-nested design case, the robust
seqGPR metamodels are better than the full, they are equivalent to or better than K_tot. It
seems that the cases with a small or high number of training points are more discriminating
than the middle cases. With a small number of points (10pts/5pts), K_tot seems more
destabilized than seqGPR. With a high number of points (20pts/40pts), seqGPR is more
accurate than K_tot. Finally, seqGPR using Red is better than seqGPR using P.

In the following test cases, only the robust versions of seqGPR, which are more performing
and whose parameter estimation is less complex, are compared to K_tot, and only the non-
nested designs are used.

4.2.3 Analytic test case in dimension 15

The following test case should be less favorable to seqGPR. The objective function considered
is in higher dimension and not decomposed as a sum of functions that respects the order in
which the variables are released

f : [−3, 3]15 → R
x 7→ a′1x+ a′2 sinx+ a′3 cosx+ x′Mx.

(4.5)

The function f was first used in [Oakley and O’Hagan, 2004]. The values of its coefficients
a1, a2, a3 and M can be found in www.sheffield.ac.uk/st1jeo. The inputs are rescaled in [0, 1]
and are rearranged by decreasing order of Sobol index, but for the sake of simplicity, the
resulting output is still denoted by f .

In practice, the first studies are done on the most influential inputs, chosen according to
experts’ physical knowledge. Here, as the function is analytical, the choice of the releasing
order for the inputs is made by sensitivity analysis, which is directly performed on the
function. Following the distribution of the Sobol indices (see subsection 2.1.4 in chapter 2
for their definition) shown on figure 4.4, a study of N = 3 steps is made, adding respectively
the groups of variables I1 = {1, 2, 3}, I2 = {4, 5, 6, 7, 8, 9}, and I3 = {10, 11, 12, 13, 14, 15}.
The variables that are fixed are set to 0.5. Three non-nested designs (built following the
method suggested in section 5.2 in chapter 5), one for each step, are generated with 5 points
per dimension considered at the step: X1 ⊂ [0, 1]3 of size 15, X2 ⊂ [0, 1]9 of size 45, and
X3 ⊂ [0, 1]15 of size 75. A Sobol sequence of size 10000 in dimension 15 is used as a test
sample. The study is done 100 times, each time with new DoE’s.

The performances of the metamodels are shown in table 4.2. All versions of seqGPR are
better than the classic kriging, with a slight improvement for the Red version in comparison
with the P version. Red and P are almost equivalent as opposed to the previous test case.
This can be due to the fact that the P version is this time based on a stationary latent process
contrarily to the previous test case. Indeed the variables which are fixed at a given step are
set to a constant instead of varying in function of the free variables, as it is the case in the
previous test case.

4.2.4 Industrial test case

The industrial product which is studied in this section is the fan system (presented in section
1.1 in chapter 1) which is part of a car engine cooling system from Valeo company (see figure

67

Figure 4.4: Sobol indices of the objective function (4.5).

K_tot P_rob Red_rob
Median (·10−4) 46.039 37.135 36.903

Interquartile range (·10−4) 7.258 6.660 6.570

Table 4.2: Performance of the metamodels for the 100 studies made on the analytic 15D test
case. The performances are shown in terms of median of RMSE’s and interquartile range
(q75% − q25%). The best performances are in bold.

68

(a) Car engine cooling system (b) Fan system

Figure 4.5: On left panel, diagram of the car engine cooling system. On right panel, diagram
of fan system. [Valeo,]

Figure 4.6: Description of the environment chosen to model the fan system in the computer
code. The flowrate is imposed by an air generator. [Valeo,]

4.5). As a recall, the car engine is cooled by a fluid. The temperature of this fluid is then
decreased by passing through a heat exchanger, which constitutes an interface between the
fluid and a wind projected on it. The wind can be generated naturally by the car speed, or
by fans which are activated when the car speed is not sufficient.

The fan is modeled outside the engine cooling system (see figure 4.6). The output considered
here is the Pressure difference (∆P) between the upstream and the downstream of the air
flow crossing the fan. 15 variables are kept as input of the model. The first input of the model
is the flowrate (see figure 4.6) which is not generated by the fan but by an air generator. The
14 others are geometric: 5 stagger angles and chord lengths corresponding to the five sections
monitoring the geometry of the blade, and 4 sweeps for sections 2 to 4 (see figure 4.7). The
chord is the line joining the two borders of the blade at the considered section. The stagger
angle is the inclination angle of the chord. The sweep is the distance between the black line,
intersecting the rotation axis and the leading edge (right border on the figure) at the first
section, and the leading edge at the considered section (see figure 4.7c).
To summarize, the variables are

• The flowrate: Q

69

(a) Sections (b) Chord length and stagger angle
at a given section

(c) Definition of the sweep at sec-
tion 5

Figure 4.7: On the left panel, visualization of the five sections of the blade. On the middle
panel, definition of the stagger angle and the chord length at a given section. On the right
panel, definition of the sweep at section 5.

• The stagger angles at the five sections: Stag1, Stag2, Stag3, Stag4, Stag5

• The chord lengths at the five sections: Chord1, Chord2, Chord3, Chord4, Chord5

• The sweeps at sections 2 to 5: Swe2, Swe3, Swe4, Swe5

In the rest of this test case, all variables are adimensionalized in [0, 1] and the output ∆P is
adimensionalized in [−1, 1].

Industrial experts at Valeo have carried out a two-step (N = 2) study in the context of this
work.

• At step 1, all the sweeps are fixed to constants: Swe2 = 0.517645, Swe3 = 0.82,
Swe4 = 1, Swe5 = 1. An OLH (see subsection 2.1.5 in chapter 2 for its definition) of
size 126 has been created on the 11 free inputs (I1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}).

• At step 2, all the inputs are free (I2 = {12, 13, 14, 15}). An OLH of size 299 has been
created for the 15 inputs.

The seqGPR metamodel is fitted on X1 and X2 where X1 (resp. X2) is a subset of size 50
extracted from the OLH generated at step 1 (resp. a subset of size 50 extracted from the
OLH generated at step 2). The two subsets X1 and X2 are optimized for the generalized
maximin criterion, they are non-nested. The complementary subset of X2 is used as a test
sample to evaluate the method. The procedure is made 30 times, each time new X1 and X2

are extracted. This cross-validation methodology enables to have a robust comparison of the
models, and to test them in an extreme case with very few training points.

Table 4.3 shows performances of the different metamodels on the test samples. The meta-
model seqGPR is better than K_tot. Its version with P is this time slightly better than with
Red, again probably because the fixed inputs are constant as in the previous test case.

70

K_tot P_rob Red_rob
Median (·10−3) 44.585 41.207 42.088

Interquartile range (·10−3) 5.892 4.657 4.609

Table 4.3: Performance of the metamodels for the 100 studies made on the industrial 15D
test case. The performances are shown in terms of median of RMSE’s and interquartile range
(q75% − q25%). The best performances are in bold.

4.3 Conclusion
In this chapter, two estimation methods are suggested. The first one is a decoupling of the
likelihoods in case the designs are nested. The parameters of the Zi are estimated individually
by optimizing the likelihoods of the Zi whose formulae are written in 3.4. The use of nested
designs has the advantage of decoupling the predictions too. Their drawbacks are that they
limit the size of the designs and the exploration of the input space. The second method
is an EM algorithm that uses this decoupling of the likelihood in a sequential way. It uses
non-nested designs that have the drawback of not decoupling the likelihood and prediction
anymore. However, their size is not limited and neither is the exploration of the input space.
This new estimation method, which transforms one complex optimization problem in several
easier ones, is tested on a simulated example and the estimations are compared between Red
and P processes. The conclusion is that they are equivalent and that the estimation is good
for the covariance parameters and less accurate for the variance and mean parameters as it
is the case for classic kriging.

The prediction accuracy of different versions of the metamodel seqGPR is compared to a
classic kriging metamodel on one simple analytic test case, one more complicated and the
industrial test case which motivated the thesis. The first conclusion is that the previous
training samples, generated before the current step, bring useful information and improve the
prediction of the metamodels. The second conclusion is that the non-nested DoE’s give better
results than the nested ones. Finally, the method seqGPR is competitive, and especially its
Red_robust version (using Red process for the (Zn)Nn=2 with robust parametrization of their
kernel).

71

72

Chapter 5

Designs of Experiments

This chapter describes building methods for the DoE’s X1, · · · ,XN in the seqGPR metamodel
context (see equation (3.1) in chapter 3). As ρ1 is a usual positive-definite kernel used in
kriging, the only source of singularity due to X1 for the covariance matrices involved in
the estimation process is the presence of identical rows caused by redundant points in X1.
A good value of the generalized maximin criterion (see subsection 2.1.5 in chapter 2) is
sufficient to ensure a good space filling property of X1 in [0, 1]d1 and the good conditioning of
ρ1(X1,X1) (as the points are far from each other). Therefore, X1 is taken as an LHS optimized
for the generalized maximin criterion. However, the (Xn)Nn=2 must verify other properties.
The building methods introduced below enable a good space-filling of the samples and the
invertibility of the covariance matrices involved in the estimation process (see chapter 4). It
is assumed that the training sample sizes nn of Xn (n ∈ J1, NK) are imposed, that the designs
are built recursively and greedily (first X1, then X2, · · · , then XN), and that the building
method is identical for all designs from X2 to XN .

A building method of (Xn)n∈J2,NK must be defined in a nested designs context. These designs
are interesting as they enable the decoupling of the loss function for the parameter estimation
(see subsection 4.1.1 in chapter 4). However, they are very constrained on the size which
cannot increase with the step, and on the input space exploration, which is limited. In the
case of nested designs, the covariance matrices that need to be inverted in the likelihoods
are the (cov(Zn(Xn), Zn(Xn)))Nn=1. A building method must also be suggested to generate
non-nested samples for the seqGPR metamodel. Non-nested designs have the advantage of
being more flexible: no constraint on the size and more possibility to explore the input space.
However the parameter estimation is more complicated as the loss function is not decoupled.
The covariance matrices that need to be inverted in the EM algorithm (see subsection 4.1.2 in

chapter 4) are the
(
cov(Zn(

∼
Xn), Zn(

∼
Xn))

)N
n=1

. Nested and non-nested designs are illustrated
on figure 5.1 in the case of the example in 2D of subsection 3.1.2 in chapter 3.

Building methods are described for samples X2 to XN , in the case of nested designs in section
5.1, and in the case of non-nested designs in section 5.2.

5.1 Nested designs
This section describes the building method for nested designs. The constraints on Xn (n >
2), necessary to invert cov(Zn(Xn), Zn(Xn)), are enumerated and lead to an optimization
problem. An algorithm is then implemented to solve this optimization problem. As a recall,
the size of the design Xn cannot increase with n: nN 6 nN−1 6 · · · 6 n1.

73

(a) Nested designs (b) Non-nested designs

Figure 5.1: Illustration of nested (panel 5.1a) and non-nested (panel 5.1b) designs for the 2D
example of subsection 3.1.2 in chapter 3. X1 (resp. X2) is represented by black points (resp.
red points). The nullity subspace x2 = 0.7x1 + 0.2 is represented by the black line.

5.1.1 Iterative construction procedure

In addition to the space-fillingness and remoteness of the points, Xn must be nested in
Xn−1 (Xn @ Xn−1, see definition 7 in subsection 4.1.1 in chapter 4), that means that it
must share the same values for the columns corresponding to the variables xI1∪···∪In−1 . Sec-
ondly, because of the nullity property (see equation (3.3)) of Zn, a new source of singular-
ity appears which is the presence of rows full of zeros at points where Zn is null almost
surely. Xn must then have an additional property which is its remoteness from the subspace
{(xI1∪···∪In−1 , x̀In), xI1∪···∪In−1 ∈ [0, 1]d1+···+dn−1}.

The following optimization problem is chosen to build Xn:





min
n⊂[0,1]d1+···+dn

Φn(Xn),

under the constraint: Xn @ Xn−1,

with Φn derived from the generalized maximin criterion (see subsection 2.1.5 in chapter 2):

Φn(Xn) =



∑

x,t∈Xn
x 6=t

(
1

‖x− t‖2
[0,1]d1+···+dn

)p



1
p

︸ ︷︷ ︸
=φ1

+

(∑

x∈Xn

(
1

‖xIn − x̀In‖2
[0,1]dn

)p) 1
p

︸ ︷︷ ︸
φ2

.

φ1 ensures the space-fillingness and remoteness of the points of Xn and φ2 ensures that Xn

is far from the subspace where Zn is null. The default value of p is 50 in the R package
DiceDesign and this value is imposed in what follows.

74

5.1.2 Numerical implementation

The algorithm consists in interverting rows from an initial design X(0) by a simulated anneal-
ing process. Denoting the sample Xn−1 by:

Xn−1 =



x

(1)
I1∪···∪In−1

...
x

(nn−1)
I1∪···∪In−1


 ,

the initial design is taken equal to:

X(0) =




x
(1)
I1∪···∪In−1

1
2nn

. . . 1
2nn...

...
...

x
(k)
I1∪···∪In−1

1
2nn

+ k−1
nn

. . . 1
2nn

+ k−1
nn...

...
...

x
(nn)
I1∪···∪In−1

1− 1
2nn

. . . 1− 1
2nn

x
(nn+1)
I1∪···∪In−1

−1 . . . −1
...

...
...

x
(nn−1)
I1∪···∪In−1

−1 . . . −1




The leftmost columns correspond to the already free variables at step n − 1, xI1∪···∪In−1 . In
the simulated annealing algorithm, all the rows can be interverted from row 1 to row nn−1 for
these columns. To keep the nesting property, the components on the same row are constrained
to stay together, i.e. only interversions between entire x(i)

I1∪···∪In−1
are allowed. The rightmost

columns correspond to the newly released variables at step n, xIn . Their values in the design
belong to the dicretization { 1

2nn
+ k−1

nn
, k ∈ J1, nnK}. In the simulated annealing algorithm,

only rows from 1 to nn can be interverted, so that the "-1" stay in the last rows. The "-1" are
just added to complete the lines that are not kept. The initial associated candidate sample
is :

X(0)
c =




x
(1)
I1∪···∪In−1

1
2nn

. . . 1
2nn...

...
...

x
(k)
I1∪···∪In−1

1
2nn

+ k−1
nn

. . . 1
2nn

+ k−1
nn...

...
...

x
(nn)
I1∪···∪In−1

1− 1
2nn

. . . 1− 1
2nn

.




The simulated annealing algorithm is shown in algorithm 1 in appendix 9.4.2. It generates a
sequence

(
X(l)
)
l>0

from which the corresponding sequence of candidate samples
(
X(l)
c

)
l>0

is

deduced by removing the rows of X(l) containing components equal to -1. Xn is then equal
to the last term of the sequence

(
X(l)
c

)
l>0

, when the maximum of iterations or the threshold
temperature has been reached.

5.1.3 Example in 2D

In the example in 2D from subsection 3.1.2 in chapter 3, in order for ρ2(X2,X2) to be well-
conditioned, X2 must have distinct points sufficiently far from each other (to avoid identical

75

rows) and from the nullity subset of Z2 (to avoid rows full of zeros): D = {(x1, 0.7x1 +

0.2), x1 ∈ [0, 1]}. The last constraint means that: for all k in J1, n2K, x(ik)
2 must be far from

0.7x
(ik)
1 + 0.2.

The following optimization problem is chosen to built X2:





min
X2⊂[0,1]2

Φ2(X2),

under the constraint: X2 @ X1,

with Φ2 derived from the generalized maximin criterion (see subsection 2.1.5 in chapter 2):

Φ2(X2) =




n2∑

k=1

n2∑

l=1
l 6=k

(
1

(x
(ik)
1 − x(il)

1)2 + (x
(ik)
2 − x(il)

2)2

)50



1
50

︸ ︷︷ ︸
=φ1

+




n2∑

k=1

(
1

(x
(ik)
2 − 0.7x

(ik)
1 − 0.2)2

)50



1
50

︸ ︷︷ ︸
=φ2

.

To illustrate the building algorithm, it is assumed that nested samples X1, X2, respectively
of size 4, and 3, must be generated. At step 1, the training sample is supposed to be equal

to X1 =




0.2
0.4
0.6
0.8


. The variable x2 is fixed to 0.7x1 + 0.2. At step 2, the goal is to generate a

sample X2 nested in X1. X2 contains the values of x1, x2. The nesting property of X2 implies
that its size is smaller than or equal to the size of X1. For example, it is here imposed to
3. To build X2, a matrix is created containing the first column of X1 and initializing the

values of x2 in the second column as a discretization of [0, 1]:




0.2 1
6

0.4 3
6

0.6 5
6

0.8 −1




. The matrix X2

is deduced by taking the rows where x2 6= −1. The initial value of X2 is illustrated in figure
below.

76

Φ(X2) = 52.57

The building algorithm consists in permutating rows inside each column until finding the
optimal combination for the criterion Φ. The -1 stays at the bottom of the second column.
X2 is then deduced by keeping only the first 3 rows. The permutation is done on all rows in
the first column and on the first three rows in the second column. One example of possible
permutations is shown in figure below. Inside the first column (resp. the second column),
the permutation

(
4 2 1 3

)
(resp.

(
2 3 1

)
) is carried out.

Φ(X2) = 7.69

The optimal permutations for the criterion Φ are shown in figure below. They are found
using algorithm 1 in appendix 9.4.2.

Φ(X2) = 6.21

77

(a) X2 nested in X1 (b) X3 nested in X2

Figure 5.2: Nested designs: X1 in black, X2 in red, and X3 in green. Panel 5.2a is a 2D
representation of X1 and X2. The dotted red lines show that X2 is nested in X1 (shares same
values of x1). Panel 5.2b is a 3D representation of X1, X2, and X3. The green lines show that
X3 is nested in X2 (shares same values of (x1, x2)).

The example in 4D is shown in appendix 9.1.3.

5.1.4 Other illustrations

Two examples in dimension 3 are considered, one with three steps and one with two steps.

Three-step example In this first example, the three steps are defined by:

• Step 1: x1 is free. (x2, x3) is fixed equal to (0.7x1 + 0.2, x1+0.7x1+0.2
2

).

• Step 2: x1 and x2 are free. x3 is fixed to x1+x2

2
.

• Step 3: all variables are free.

Three nested DoE’s X1, X2, X3 of size 20 are generated. X1 is a grid in [0, 1]. X2 and X3 are
built following algorithm 1. They are shown in figure 5.2. The design X2 (resp. X3) verifies
the nesting property X2 @ X1 (resp. X3 @ X2), is well spread in [0, 1]2 (resp. in [0, 1]3), and
is far from the subspace (x2, x3) = (0.7x1 + 0.2, x1+0.7x1+0.2

2
) represented by the black line on

panel 5.2a (resp. the subspace x3 = x1+x2

2
represented by the black plane in panel 5.2b).

Two-step example In this second example, the two steps are defined by:

• Step 1: x1 is free. (x2, x3) is fixed equal to (0.7x1 + 0.2,−0.3x1 + 0.5).

• Step 2: all variables are free.

Two nested designs X1 and X2 respectively of size 15 and 10 are generated, X1 composed of
equispaced points in [0, 1], and X2 built following algorithm 1. They are shown in figure 5.3.

78

Figure 5.3: 3D representation of the nested DoE’s: X1 in black and X2 in red. The red plans
show that X2 is nested in X1 as it shares the same values of x1.

5.2 Non-nested designs
This section deals with the building method of Xn (n > 2) in a non-nested training designs
context. In this case, the designs

∼
Xn (n > 2) play the role that was embodied by (Xn)Nn=1 in

the previous section as they are nested.
∼
Xn is defined as the concatenations of the parts of

Xn, ..., XN corresponding to the variables xI1∪···∪In (see definition 8 in chapter 4). In order to
invert the matrices (cov(Zn(

∼
Xn), Zn(

∼
Xn)))Nn=1, the designs

∼
Xn must have points sufficiently

appart from each other (for n > 1) and far from the nullity subspaces (for n > 2). From
this wish, optimization problems are defined for the different submatrices of the designs and
solved by a simulated annealing algorithm.

5.2.1 Iterative construction procedure

The design
∼
Xn (n ∈ J1, NK) must verify the same constraints than Xn in section 5.1:

• It must be space-filling in [0, 1]d1+···+dn and have distinct points sufficiently far from
each other.

• It must have points far from the subspace on which Zn is null (for n > 2).

These two properties are conditions to the invertibility of the covariance matrices.

The design Xn (n ∈ J2, NK) is involved in
∼
X1, · · · ,

∼
Xn. In particular, at step n, the following

samples Xn+1, · · · , XN do not exist yet and are not taken into account in the samples
∼
X1,

· · · ,
∼
Xn. The parts of the samples

∼
X1, · · · ,

∼
Xn taken into account in the building of Xn (that

are formed only using X1, · · · , Xn) are called
∼
X
n

1 , · · · ,
∼
X
n

n. To ensure the properties that must
be verified by these samples, the chosen approach is to build Xn by group of variables: first
build the columns corresponding to xI1 (called Xn,I1), then build the columns corresponding
to xI2 (called Xn,I2), · · · , then to xIn (called Xn,In). Each part of Xn must solve a particular
optimization problem.

79

• Xn,I1 must solve the following optimization problem

min
Xn,I1⊂[0,1]d1

Φn,1(Xn,I1),

with Φn,1 equal to:

Φn,1(Xn,I1) =



∑

x,t∈
∼
X
n

1
x 6=t

(
1

‖x− t‖2
[0,1]d1+···+dn

)50




1
50

Φn,1 is the generalized maximin applied to the sample
∼
X
n

1 .

• Xn,Ik (k ∈ J2, nK) must solve the following optimization problem:




min
Xn,Ik⊂[0,1]d1+···+dk

Φn,k(Xn,Ik),

under the constraint: Xn,I1∪···∪Ik @ Xn,I1∪···∪Ik−1
,

with Φn,k equal to:

Φn,k(Xn,Ik) =



∑

x,t∈
∼
X
n

k
x 6=t

(
1

‖x− t‖2
[0,1]d1+···+dn

)50




1
50

+


 ∑

x∈Xn,I1∪···∪Ik

(
1

‖xIk − x̀Ik‖2
[0,1]dk

)50



1
50

.

The first part is the generalized maximin applied to
∼
X
n

k , the second part ensures that
Xn,I1∪···∪Ik is far from the nullity subspace {(xI1∪···∪Ik−1

, x̀Ik), xI1∪···∪Ik−1
∈ [0, 1]d1+···+dk−1}

where Zk is null almost surely.

5.2.2 Numerical implementation

From X1, · · · ,Xn−1, Xn is built block by block.

• If I1 = {1}, the matrix Xn,I1 is a column whose components are adjusted by hand to
have a good value of Φn,1. If I1 is of length greater than 1, the matrix Xn,I1 is created by
interverting rows from an initial design X(0) by a simulated annealing process, in order
to minimize the criterion Φn,1(Xn,I1). X(0) is an LHS design of size nn independent from
∼
X
n−1

1 , with d1 columns. The simulated annealing algorithm is described in algorithm 2
in appendix 9.4.2.

• For k ∈ J2, nK, Xn,I1∪···∪Ik is created by interverting rows from an initial design X(0) by
a simulated annealing process, in order to minimize the criterion Φn,k(Xn,Ik). Denoting
the sample Xn,I1∪···∪Ik−1

by:

Xn,I1∪···∪Ik−1
=



x

(1)
I1∪···∪Ik−1

...
x

(nn)
I1∪···∪Ik−1


 ,

80

the initial design is taken equal to:

X(0) =




x
(1)
I1∪···∪Ik−1

1
2nn

. . . 1
2nn...

...
...

x
(i)
I1∪···∪Ik−1

1
2nn

+ i−1
nn

. . . 1
2nn

+ i−1
nn...

...
...

x
(nn)
I1∪···∪Ik−1

1− 1
2nn

. . . 1− 1
2nn




The simulated annealing algorithm is again algorithm 1, as in section 5.1, where
Xn,I1∪···∪Ik (resp. Xn,I1∪···∪Ik−1

and Φn,k) plays the role of Xn (resp. Xn−1 and Φn).
This time both samples are of the same size, all the rows are kept, and there is no need
to intervert rows on the left side.

5.2.3 Examples

Example in 2D In the example in 2D from subsection 3.1.2 in chapter 3, X1 is supposed

equal to X1 =



x

(1)
1
...

x
(n1)
1


. The goal is to build X2 such that:

•
∼
X1 is space filling in [0, 1], has distinct points far from each other. This property is
illustrated below. All the points of

∼
X1 are represented in [0, 1]. A distinction is made

between the points coming from X1 in black, and those coming from X2 in red.

•
∼
X2 = X2 is space-filling in [0, 1]2, has distinct points far from each other and far from
the nullity subspace D = {(x1, 0.7x1 +0.2), x1 ∈ [0, 1]}. This design is illustrated below
with red points, their distance to the nullity subspace is shown in red arrow.

81

The chosen approach is to build X2 one column at a time.

• The first column X2,1 =



x

(n1+1)
1
...

x
(n1+n2)
1


 must solve the following optimization problem

min
X2,1⊂[0,1]

Φ2,1(X2,1),

with Φ2,1 equal to:

Φ2,1(X2,1) =



n1+n2∑

i=1

n1+n2∑

j=1

j 6=i

(
1

(x
(i)
1 − x(j)

1)2

)50



1
50

• When the first column is created, the problem is reduced to the one of the previous sub-

section, of generating a design X2 nested in X2,1. The second column X2,2 =



x

(n1+1)
2
...

x
(n1+n2)
2




must solve the following optimization problem:




min
X2,2⊂[0,1]

Φ2,2(X2,2),

under the constraint: X2 @ X2,1,

with Φ2,2 equal to:

Φ2,2(X2,2) =




n1+n2∑

i=n1+1

n1+n2∑

j=n1+1

j 6=i

(
1

(x
(i)
1 − x(j)

1)2 + (x
(i)
2 − x(j)

2)2

)50



1
50

+




n1+n2∑

i=n1+1

(
1

(x
(i)
2 − 0.7x

(i)
1 − 0.2)2

)50



1
50

.

82

To illustrate the building method, it is assumed that a design X1 =




1
6

3
6

5
6




has been generated

at step 1. The variable x2 is implicitely fixed to 0.7x1 + 0.2. The goal is now to build X2 of
size 4 with x2 that can take its values freely in [0, 1].

• The components of the first column X2,1 are adjusted by hand so that
∼
X1 has all the

required properties. For example, X2,1 is chosen equal to:

X2,1 =




0
6

2
6

4
6

6
6




.

The corresponding
∼
X1 is represented below.

• Then the second column is built so that X2 is nested in X2,1. It is initialized to X2 =


0
6

1
8

2
6

3
8

4
6

5
8

6
6

7
8




. The optimal design for the criterion Φ2 is obtained for the permutation

(
3 4 1 2

)
in the second column, giving the design: X2 =




0
6

5
8

2
6

7
8

4
6

1
8

6
6

3
8




. It is found using

algorithm 1 in appendix 9.4.2. The two designs are illustrated below.

83

Initial design: Φ2(X2) = 42.45 Optimal design: Φ2(X2) = 5.05

The example in 4D is shown in appendix 9.1.3.

Example in 3D In the examples in 2D (see paragraph above) and 4D (see appendix 9.1.3
), the case I1 of length greater than 1 is not tackled. So this case is illustrated in the following
example in 3D. In this example, the first two variables are released at step 1 (I1 = {1, 2}),
x3 being fixed to 0.6 and then released at step 2 (I2 = {3}). Designs X1 of size 4 and X2 of
size 5 must be created respectively at step 1 and 2.

• At step 1, the DoE X1 is taken as an LHS optimized for the generalized maximin
criterion:

X1 =




0.91 0.51
0.11 0.33
0.52 0.20
0.43 0.78




• At step 2, the goal is to create the design X2 of size 5.

– The submatrix X2,I1 composed of the first two columns of X2 is build in first. It

is initialized to an LHS: X2,I1 =




0.96 0.41
0.06 0.37
0.29 0.63
0.77 0.11
0.41 0.89



. The submatrix X2,I1 must be

optimal for the criterion Φ2,1 which is the generalized maximin criterion applied

84

to
∼
X

2

2 =




0.91 0.51
0.11 0.33
0.52 0.20
0.43 0.78
0.96 0.41
0.06 0.37
0.29 0.63
0.77 0.11
0.41 0.89




(the concatenation of X1 and X2,I1). The optimal design is

obtained for the permutation
(
2 1 4 3 5

)
in the first column of X2,I1 and for

the permutation
(
3 5 2 4 1

)
in its second column: X2,I1 =




0.06 0.63
0.96 0.89
0.77 0.37
0.29 0.11
0.41 0.41



. It

is found using algorithm 2 in appendix 9.4.2. The two designs are shown below.

Initial design:
Φ2,1(X2,I1) = 16.26

Optimal design:
Φ2,1(X2,I1) = 5.05

– X2 is then built as a design in dimension 3 nested in X2,I1 . The goal is to built its
third column. The design is initialized to

X2 =




0.06 0.63 1
10

0.96 0.89 3
10

0.77 0.37 5
10

0.29 0.11 7
10

0.41 0.41 9
10




, Φ2,2(X2) = 12.73.

The optimal design for the criterion Φ2,2 is obtained for the permutation
(
3 2 4 5 1

)

in the last column. It is found using algorithm 1 in appendix 9.4.2.

85

(a) Projections of X1, X2, X3 on
x1

(b) Projections of X2, X3 on
(x1, x2)

(c) X1, X2, X3 samples in 3D

Figure 5.4: X1 is represented by the black points. It is the sample from step 1 when x2 =
0.7x1 + 0.2 and x3 = x1+0.7x1+0.2

2
(black line). X2 is represented by the red points. It is the

sample from step 2 when x2 is released and x3 = x1+x2

2
. X3 is represented by the green points.

It is the sample from step 3 when all inputs are released. Its projections on the plane together
with the X2 points form a space filling design of [0, 1]2 (see panel 5.4b). Its projections on
the line together with X1 and X2 points form a space filling design of [0, 1] (see panel 5.5a).
X1, X2, and X3 are represented in 3D in panel 5.4c

X2 =




0.06 0.63 5
10

0.96 0.89 3
10

0.77 0.37 7
10

0.29 0.11 9
10

0.41 0.41 1
10




, Φ2,2(X2) = 11.89.

5.2.4 Other illustrations

Two examples in dimension 3 are considered, one with three steps and one with two steps.

Three-step example It is the same three-step example as in section 5.1 but this time X1

is taken of size 5, X2 of size 8, and X3 of size 12, which is not enabled in the previous case as
the size of Xn cannot increase with n. See figure 5.4. Here the algorithm 2 is not used as the
x1 values of the different samples are just taken from an equispaced discretization of [0, 1].

Two-step example In this example there are three inputs (x1, x2, x3).

• At step 1, x1 and x2 are free, x3 is fixed equal to x1+x2

2
.

• At step 2, all inputs are free.

86

(a) Projections of X1 and X2 on (x1, x2) (b) X1 and X2 samples in 3D

Figure 5.5: X1 is represented by the black points. It is the sample from step 1 when x3 = x1+x2

2

(black plane). X2 is represented by the red points. It is the sample from step 2 when x3

is released. Its projections on the plane together with the X1 points form a space filling
design of [0, 1]2. X1 and X2 are represented in the 3D input space on panel 5.5b. Their 2D
projections on the plane are shown on panel 5.5a.

X1 is of size 30 and X2 of size 20. See figure 5.5. This time, algorithm 2 has been used to
attribute the values of (x1, x2) to X2 such that its projection, together with X1, forms a space
filling design with remote points in [0, 1]2.

5.3 Conclusion

In this chapter, a building method is suggested to generate nested samples for the seqGPR
metamodel. From the wish to have designs with points sufficiently appart from each other and
far from the nullity subspaces, an optimization problem is defined and solved by a simulated
annealing algorithm. Two illustrations are then shown of the designs resulting from this
algorithm: one example with three steps respectively in 1D, 2D and 3D, and one example
with two steps respectively in 1D and 3D. Nested designs have the advantage of making the
parameter estimation of the seqGPR metamodel easier as the loss function can be decoupled,
however they limit the exploration of the input space as their building is very constrained,
and their size cannot increase with the number of the step which is problematic with the
increasing dimension of the subspace considered.

A building method is also suggested to generate non-nested samples for the seqGPR meta-
model. From the wish to have designs with points sufficiently appart from each other and far
from the nullity subspaces, optimization problems are defined for the different submatrices of
the designs and solved by a simulated annealing algorithm. Two illustrations are then shown
of the designs resulting from this algorithm: one example with three steps respectively in 1D,
2D and 3D, and one example with two steps respectively in 2D and 3D. Non-nested designs
have the advantage of being more flexible: no constraint on the size and more possibility to
explore the input space. However the parameter estimation is more complicated as the loss

87

function is not decoupled. This problem is solved in subsection 4.1.2 in chapter 4 with the
use of the EM algorithm.

88

Chapter 6

Additional contributions

Previous chapters define the seqGPR metamodel (caracterized by the equation (3.1) in chap-
ter 3), build its underlying processes, suggest estimation methods for its parameters, and
propose methodologies to generate its DoE’s. This chapter introduces new works on the se-
qGPR metamodel to try to answer some unsolved issues. Section 6.1 tackles the case where
multiple designs are generated at a given step for different values of the fixed variables. This
issue implies a new model than (3.1) as this previous model concerns only the case with one
design per step, associated with one value of the fixed variables. The goal of this section is
to build this new model and see if it performs as well as the classic kriging model on the
test cases of chapter 4. Section 6.2 deals with the enrichment of the training samples of
the seqGPR metamodel. Here, the original model (3.1) is considered. After having fitted
the seqGPR metamodel on the samples, the goal is to add relevant points to the samples to
improve its prediction. In particular, a criterion to use in the search for enrichment points is
proposed and the enrichment procedure is evaluated on the test cases of chapter 4.

6.1 Conditioning on multiple subspaces
This section describes the case where, at each step, several subspaces corresponding to differ-
ent values of the fixed inputs are considered (instead of one as that was the case until now).
The adapted seqGPR model is detailed and new candidates for the (Zn)n>2, which verify a
new nullity property, are suggested. The new metamodel is then compared to classic kriging
on analytic test cases.

6.1.1 Model

Let f(xI1 , · · · , xIN) be the output to approximate by a metamodel. Let

B2 =




0
b22
...
bK2
2


 ⊂ [0, 1]d2 , B3 =




0
b23
...
bK3
3


 ⊂ [0, 1]d3 , · · · , BN =




0
b2N
...

bKNN


 ⊂ [0, 1]dN ,

be matrices such that Bn contains the constant values which constitute the difference between
the subspaces at step n − 1. The DoE’s and subspaces considered are illustrated in figure
6.1.

The problem needs a new model which is different from (3.1) in chapter 3. At step n ∈
J1, N −1K, several subspaces are considered, corresponding to different values of xIn+1 : x̀In+1 ,

89

(a) Step n− 1 (b) Step n

Figure 6.1: Illustration of the designs in the subspaces at step n − 1 in panel 6.1a, and at
step n in panel 6.1b. Here, there are three subspaces at step n− 1, so Kn = 3, and there are
two subspaces at step n, so Kn+1 = 2.

x̀In+1 + b2
n+1, ..., x̀In+1 + b

Kn+1

n+1 . As a consequence, the process Yn modeling the output at step
n must also be function of xIn+1 . The problem is modeled by the following statistical model:





Y1(xI1 , xI2) = m+ Z1(xI1 , xI2),
Yn(xI1∪···∪In , xIn+1) = Yn−1(xI1∪···∪In) + Zn(xI1∪···∪In , xIn+1),
YN(xI1 , · · · , xIN) = YN−1(xI1 , · · · , xIN) + ZN(xI1 , · · · , xIN), .

(6.1)

where:

• The processes (Zn)16n6N are centered independent Gaussian processes of covariance
kernel (σ2

nρn)Nn=1

• They must verify the following property:
{
Zn(xI1∪···In−1 , x̀In + Bn, x̀In+1) = 0, ∀n ∈ J2, N − 1K,∀xI1∪···In−1 ∈ [0, 1]d1+···+dn−1 ,
ZN(xI1∪···∪IN−1

, x̀IN + BN) = 0, ∀xI1∪···∪IN−1
∈ [0, 1]d1+···+dN−1 .

(6.2)

Estimation and prediction of this metamodel is not different from the methodology described
in chapter 4. However, the nullity property (6.2) is more complicated than (3.3), as it is on
multiple subspaces and not just one. The definition of a correction process Zn (n > 2)
verifying it is the object of the next subsection.

6.1.2 Candidate for the correction processes

The goal of this subsection is to build a process Z : [0, 1]dJ+dI × Ω → R such that:

Z(xJ , g(xJ) + B) = 0 ∀xJ ∈ [0, 1]dJ , (6.3)

with g : [0, 1]dJ → [0, 1]dI a deterministic function, and B = {b1, · · · , bK} a finite sub-
set of [0, 1]dI . Z(xJ , g(xJ) + B) is the vector of size K whose component i (i ∈ J1, KK) is
equal to Z(xJ , g(xJ) + bi).

The proposed candidate is derived from the P process which is the easiest to generalize
to this case (see subsection 3.2.3 in chapter 3). It is built based on a latent process

∼
Z ∼

90

GP (0, σ2r((xJ , xI), (tJ , tI))) of covariance kernel σ2r. It is defined as:

ZP (xJ , xI) =
∼
Z(xJ , xI)− E

[∼
Z(xJ , xI) | Z(tJ , g(tJ) + b), ∀tJ ∈ [0, 1]dJ , ∀b ∈ B

]
,

where E
[∼
Z(xJ , xI) | Z(tJ , g(tJ) + b) ∀tJ ∈ [0, 1]dJ , ∀b ∈ B

]
is the projection of

∼
Z(xJ , xI) on

the sub-Gaussian space engendered by the family {
∼
Z(tJ , g(tJ) + b), tJ ∈ [0, 1]dJ , b ∈ B}. Its

general expression is given in subsection 2.2.2 in chapter 2 and is recalled below:

E
[∼
Z(x) |

∼
Z(D)

]
=

+∞∑

n=1

φn(x)

∫

S

∼
φn(s)

∼
Z(xs)dν(s), (6.4)

with D = {xs, s ∈ S}, ν a measure on S, and

φn(x) = 1
λn

∫
S σ

2r(x, xs)
∼
φn(s)dν(s).

(λn,
∼
φn)n>1 are solutions of the eigen problem:

∫

S
σ2r (xs, xu)

∼
φn(u)dν(u) = λn

∼
φn(s), ∀s ∈ S,

such that ∫

S

∼
φn(s)

∼
φm(s)dν(s) = δnm ∀n,m > 1,

where δnm is the Kronecker symbol. It is applied to the case:




D = {(sJ , g(sJ) + sI), s = (sJ , sI) ∈ S},
S = [0, 1]dJ × B = {(sJ , sI), sJ ∈ [0, 1]dJ , sI ∈ B},
ν = λ⊗

(∑K
i=1 δbi

)
,

xs = (sJ , g(sJ) + sI),

with λ the Lebesgues measure on [0, 1]dJ and δbi the Dirac measure at bi.

Proposition 13 Let rJ and rI be two stationary correlation kernels. If r is of the form:

r((xJ , xI), (tJ , tI)) = rJ(xJ , tJ)rI(xI − g(xJ), tI − g(tJ)),

then the process ZP is a centered Gaussian process equal to:

ZP (xJ , xI) =
∼
Z(xJ , xI)−rI(xI−g(xJ),B)rI(B,B)−1

∼
Z(xJ , g(xJ)+B), ∀(xJ , xI) ∈ [0, 1]dJ+dI .

whose covariance kernel is σ2ρP with:

ρP ((xJ , xI), (tJ , tI)) = rJ(xJ , tJ) [rI(xI − g(xJ), tI − g(tJ))
− rI(xI − g(xJ),B)rI(B,B)−1rI(B, tI − g(tJ))] .

Proof See appendix 9.3.3 for a proof of this proposition.

91

6.1.3 Example in 2D

The example in 2D from subsection 3.1.1 in chapter 3 is here adapted to the multi-conditioning
case. A two-step study is carried out:

• At step 1, two subspaces are considered: x2 = 0.7x1 + 0.2 and x2 = 0.7x1.

Here, each subspace is indexed by x1: {(x1, 0.7x1+0.2), x1 ∈ [0, 1]} and {(x1, 0.7x1), x1 ∈
[0, 1]}. The restrictions of f on these two subspaces f(x1, 0.7x1 + 0.2) and f(x1, 0.7x1)
need to be approximated. These restrictions are modeled by one Gaussian process
Y1(x1, x2) = m + Z1(x1, x2) with m a scalar equal to the mean of Y1, and Z1 a cen-
tered Gaussian process of covariance kernel k1((x1, x2), (t1, t2)). The difference with
the previous model is that Y1 is also a function of x2. This process is such that
f(x1, 0.7x1 + 0.2) (resp. f(x1, 0.7x1)) is the realization of its restriction on the first
subspace Y1(x1, 0.7x1 + 0.2) (resp. on the second subspace Y1(x1, 0.7x1)). Two DoE’s

are generated: X1
1 =



x

(1,1)
1 0.7x

(1,1)
1 + 0.2

...
...

x
(1,n1)
1 0.7x

(1,n1
1)

1 + 0.2


 belonging to the first subspace and

X2
1 =



x

(1,n1
1+1)

1 0.7x
(1,n1

1+1)
1

...
...

x
(1,n1

1+n2
1)

1 0.7x
(1,n1

1+n2
1)

1


 belonging to the second subspace. The values of f at

the points of X1
1 are known, equal to y1

1 =




f1(x
(1,1)
1 , 0.7x

(1,1)
1 + 0.2)

...
f1(x

(1,n1
1)

1 , 0.7x
(1,n1

1)
1 + 0.2)


. Similarly, the

values of f at the points of X2
1 are known, equal to y2

1 =




f1(x
(1,n1

1+1)
1 , 0.7x

(1,n1
1+1)

1)
...

f1(x
(1,n1

1+n2
1)

1 , 0.7x
(1,n1

1+n2
1)

1)


.

• At step 2, the entire input space [0, 1]2 is considered. The function to approximate is
now f2(x1, x2) = f(x1, x2). It is modeled by a Gaussian process Y2(x1, x2) linked to
Y1(x1, x2) by the formula Y2(x1, x2) = Y1(x1, x2) + Z2(x1, x2). This formula looks like
the multifidelity metamodel, but the difference is that Y1 and Y2 model the same level
of fidelity. Thus, they must coincide on the subspaces x2 = 0.7x1 + 0.2 and x2 = 0.7x1.
This coincidence, shown in the figures below, implies that Z2(x1, 0.7x1 + 0.2) = 0 and
Z2(x1, 0.7x1) = 0. Figures on the top show Y2 (on the left) and Y1 (on the right) and

92

their coincidence on the first subspace in orange and on the second subspace in blue.
Their restriction on these subspaces are illustrated on the bottom figures (subspace
x2 = 0.7x1 + 0.2 on the left and x2 = 0.7x1 on the right).

Visualization of Y2 Y1 as a function of (x1, x2)

First restriction of Y1 Second restriction of Y1

A DoE is generated X2 =



x

(2,1)
1 x

(2,1)
2

...
...

x
(2,n2)
1 x

(2,n2)
2


 containing values of (x1, x2). The values

of f2 at the points of X2 are known, equal to y2 =




f2(x
(2,1)
1 , x

(2,1)
2)

...
f2(x

(2,n2)
1 , x

(2,n2)
2)


. An example

of the DoE’s X1
1, X2

1 and X2 is shown in the figure below:

93

The samples X1
1, X2

1, X2 belong to the same space [0, 1]2. To apply the EM algorithm,
a new definition of

∼
X1 and

∼
X2 is used, as shown below:

The goal is to find a candidate for the process Z2(x1, x2), modeling the piece of information
added at step 2 by releasing x2 which was fixed to 0.7x1 + 0.2 or 0.7x1 at step 1. On the
nullity subspaces D1 = {(x1, 0.7x1 + 0.2), x1 ∈ [0, 1]} and D2 = {(x1, 0.7x1), x1 ∈ [0, 1]}, Z2

adds no information and must be equal to 0:
{
Z2(x1, 0.7x1 + 0.2) = 0, ∀x1 ∈ [0, 1],
Z2(x1, 0.7x1) = 0, ∀x1 ∈ [0, 1].

How to find a Gaussian process Z2 verifying this nullity property and having a computable
covariance kernel ? The idea suggested in what follows is to build Z2 by a transformation of a
latent centered Gaussian process

∼
Z2 whose kernel σ2

2r2 is known and computable. The trans-
formation must impose the nullity property, keep the law of the process Gaussian, and keep
the computability of the kernel. The transformation consists in conditioning the latent pro-
cess to be null on the reunion of the nullity subspacesD1 andD2. As this nullity subspace is an

94

infinite continuous set of points, the usual conditioning seen in proposition 2 cannot be used
directly. Instead, a generalization of the conditioning, defined in [Gauthier and Bay, 2012b],
is used. The resulting process, derived from the P process, is defined as:

Z2(x1, x2) =
∼
Z2(x1, x2)− E

[∼
Z2(x1, x2) |

∼
Z2(t1, 0.7t1 + 0.2),

∼
Z2(t1, 0.7t1)∀t1 ∈ [0, 1]

]
,

where E
[∼
Z2(x1, x2) |

∼
Z2(t1, 0.7t1 + 0.2),

∼
Z2(t1, 0.7t1)∀t1 ∈ [0, 1]

]
(denoted by E(x1, x2) to sim-

plify notations) is itself a generalization of the conditional expectation, defined as the projec-
tion of

∼
Z2(x1, x2) in the subGaussian space generated by

(∼
Z2(t1, 0.7t1 + 0.2),

∼
Z2(t1, 0.7t1)

)
t1∈[0,1]

.

The formula of the expectation, taken from the proposition 7 and recalled in the next
paragraph, is here adapted to the case D = D1 ∪ D2 = {(s1, 0.7s1 + s2), s = (s1, s2) ∈
[0, 1]× {0, 0.2}}, S = [0, 1]× {0, 0.2}, and ν any measure on S:

E(x1, x2) =
+∞∑

n=1

φn(x1, x2)

∫

s∈S

∼
φn(s)

∼
Z2(s1, 0.7s1 + s2)dν(s),

where:

φn(x1, x2) =
1

λn

∫

s∈S
σ2

2r2((x1, x2), (s1, 0.7s1 + s2))
∼
Z2(s1, 0.7s1 + s2)dν(s),

and (λn,
∼
φn)+∞

n=1 are the solutions of the eigenvalue problem:
∫

s∈S
σ2

2r2((s1, 0.7s1 + s2), (u1, 0.7u1 + u2))
∼
φn(u)dν(u) = λn

∼
φn(s).

(
∼
φn)n>1 is an orthonormal basis of L2([0, 1], ν):

∫

s∈S

∼
φn(s)

∼
φm(s)dν(s) = δnm.

This kernel cannot be used just as it is in practice, because the solutions of the eigenvalue
problem are not explicit in general and the sums are infinite. To make this kernel tractable,
a wise choice of r2 (the correlation kernel of the latent process

∼
Z2) is suggested, for which an

explicit formula is known. If the covariance kernel of
∼
Z2 is of the form:

σ2
2r2((x1, x2), (t1, t2)) = σ2

2r2,1(x1, t1)r2,2(x2 − 0.7x1, t2 − 0.7t1),

with r2,1 and r2,2 stationary kernels, and if Z2 is a P process, then according to proposition
13, it is equal to:

Z2(x1, x2) =
∼
Z2(x1, x2)

−
(
r2,2(x2 − 0.7x1, 0) r2,2(x2 − 0.7x1, 0.2)

)(r2,2(0, 0) r2,2(0, 0.2)
r2,2(0.2, 0) r2,2(0.2, 0.2)

)−1(∼
Z2(x1, 0.7x1)

∼
Z2(x1, 0.7x1 + 0.2)

)
.

It is a centered Gaussian process of covariance kernel σ2
2ρ2 with:

ρ2((x1, x2), (t1, t2)) = r2,1(x1, t1)[r2,2(x2 − 0.7x1, t2 − 0.7t1)

−
(
r2,2(x2 − 0.7x1, 0) r2,2(x2 − 0.7x1, 0.2)

)(r2,2(0, 0) r2,2(0, 0.2)
r2,2(0.2, 0) r2,2(0.2, 0.2)

)−1(
r2,2(t2 − 0.7t1, 0)
r2,2(t2 − 0.7t1, 0.2)

)
].

95

6.1.4 Test cases

The seqGPR metamodel is compared to the classic kriging metamodel (called K_tot) in
the two analytic test cases from section 4.2 in chapter 4. Two types of parametrization are
proposed for the (Zn)Nn=1 in the seqGPR metamodel:

• Semi-robust: Z1 with one covariance parameter θi1 for each input variable xi, i ∈ I1∪I2,
for all n in J2, N −1K, Zn with one covariance parameter αn common to all components
of xI1∪···∪In−1 , and one covariance parameter θin for each component of xIn∪In+1 , and ZN
with one covariance parameter αN common to all components of xI1∪···∪IN−1

, and one
covariance parameter θiN for each input xi, i ∈ IN):





θ1 =


θ1

1, · · · , θd1
1︸ ︷︷ ︸

I1

, θd1+1
1 , · · · , θd1+d2

1︸ ︷︷ ︸
I2


 ,

θn =


αn, · · · , αn︸ ︷︷ ︸

I1∪···∪In−1

, θ1
n, · · · , θdnn︸ ︷︷ ︸

In

, θdn+1
n , · · · , θdn+dn+1

n︸ ︷︷ ︸
In+1


 , ∀n ∈ J2, N − 1K,

θN =


αN , · · · , αN︸ ︷︷ ︸

I1∪···∪IN−1

, θ1
N , · · · , θdNN︸ ︷︷ ︸

IN


 .

• Robust: Z1 with one covariance parameter θi1 for each variable xi, i ∈ I1, and one
covariance parameter β1 common to all variables xi, i ∈ I2, for all n in J2, N − 1K,
Zn with one covariance parameter αn common to all components of xI1∪···∪In−1 , one
covariance parameter θin for each component of xIn , and one covariance parameter βn
common to all components of xIn+1 , and ZN with one covariance parameter αN common
to all components of xI1∪···∪IN−1

, and one covariance parameter for each variable xi,
i ∈ IN .





θ1 =


θ1

1, · · · , θd1
1︸ ︷︷ ︸

I1

, β1, · · · , β1︸ ︷︷ ︸
I2


 ,

θn =


αn, · · · , αn︸ ︷︷ ︸

I1∪···∪In−1

, θ1
n, · · · , θdnn︸ ︷︷ ︸

In

, βn, · · · , βn︸ ︷︷ ︸
In+1


 , ∀n ∈ J2, N − 1K,

θN =


αN , · · · , αN︸ ︷︷ ︸

I1∪···∪IN−1

, θ1
N , · · · , θdNN︸ ︷︷ ︸

IN


 .

The classic kriging metamodel, K_tot, is trained on the reunion of the designs (X1
1,y

1
1),

(X2
1,y

2
1) and (X2,y2). The covariance kernels of K_tot, Z1, and

(∼
Zn

)N
n=2

(the latent processes

on which are built (Zn)Nn=2) are tensor product Matern 5
2
kernels, defined in subsection 2.1.1

in chapter 2.

96

Test case from subsection 4.2.2 in chapter 4 The output is the same as in subsection
4.2.2 in chapter 4:





f(x1, x2, x3, x4) = g1(x1, x2) + g2(x1, x2, x3,4)
with
g1(x1, x2) =

[
4− 2.1(4x1 − 2)2 + (4x1−2)4

3

]
(4x1 − 2)2

+ (4x1 − 2)(2x2 − 1) + [−4 + 4(2x2 − 1)2] (2x2 − 1)2,

g2(x1, x2, x3, x4) = 4 exp
(
−‖x− 0.3‖2) .

The study is composed of two steps

• At step 1, three different restrictions are considered




f 1
1 (x1, x2) = f(x1, x2, 0.4757155, 0.7005368),
f 2

1 (x1, x2) = f(x1, x2, 0.2092920, 0.2661060),
f 3

1 (x1, x2) = f(x1, x2, 0.9114971, 0.3639307).

The fixed values of (x3, x4) are chosen so that they form an LHS optimized for the
generalized maximin criterion in [0, 1]2. The DoE is of the form:

X1 =




x
(1)
1 x

(1)
2 0.4757155 0.7005368

...
...

...
...

...
x

(10)
1 x

(10)
2 0.4757155 0.7005368

x
(1)
1 x

(1)
2 0.2092920 0.2661060

...
...

...
...

...
x

(10)
1 x

(10)
2 0.2092920 0.2661060

x
(1)
1 x

(1)
2 0.9114971 0.3639307

...
...

...
...

...
x

(10)
1 x

(10)
2 0.9114971 0.3639307




.

The same values of (x1, x2) are taken in the subspaces. They form an LHS optimized
for the generalized maximin criterion in [0, 1]2.

• At step 2, new simulations are launched at points X2, a design of size 20 in dimension
4. The last two variables (x3, x4) are now released. X2 is an LHS, independent from
X1, also optimized for the generalized maximin criterion.

Table 6.1 shows RMSE median and interquartile range of the different methods computed
on a Sobol sequence of size 10000 used as a test set. The results are computed for 100 DoE’s.
The two versions of the seqGPR metamodel have worse performances than K_tot (higher
median and wider interquartile interval). No type of parametrization stands out from the
other. One explanation for this counter performance of the method is that it is more complex
than in the previous case with one subspace at each step. The input spaces of the (Zn)Nn=1

are in higher dimension and the initial philosophy that consists in explaining a maximum of
the data thanks to the small dimension is lost.

Test case from subsection 4.2.3 in chapter 4 The output is the same as in subsection
4.2.3 in chapter 4:

f : [−3, 3]15 → R
x 7→ a′1x+ a′2 sinx+ a′3 cosx+ x′Mx.

97

K_tot Semi-robust Robust

Median (·10−1) 51.131 55.499 55.529
Interquartile range (·10−1) 16.037 23.102 22.741

Table 6.1: Performance of the metamodels for the 100 studies made on the analytic 4D test
case. The performances are shown in terms of median of RMSE’s and interquartile range
(q75% − q25%). The best performances are in bold.

45pts-45pts/45pts 45pts-45pts/75pts 90pts-90pts/150pts

K S R K S R K S R

Median (·10−4) 62.014 62.464 62.527 39.287 39.645 39.634 7.605 7.622 7.620
Interquartile range (·10−4) 7.025 6.343 6.342 6.709 6.879 6.939 0.594 0.599 0.599

Table 6.2: Performance of the metamodels for the 100 studies made on the analytic 15D
test case. The performances are shown in terms of median of RMSE’s and interquartile
range (q75% − q25%). K denotes K_tot, S denotes the semi-robust version of seqGPR, and R
denotes the robust version of seqGPR. 45pts-45pts/45pts means that X1 is of size 90 (with
45 points in the first subspace and 45 points in the second subspace), and that X2 is of size
45. 45pts-45pts/75pts means that X1 is of size 90 (with 45 points in the first subspace and
45 points in the second subspace), and that X2 is of size 75. 90pts-90pts/150pts means that
X1 is of size 180 (with 90 points in the first subspace and 90 points in the second subspace),
and that X2 is of size 150. The best performances are in bold.

The inputs are rescaled in [0, 1] and are rearranged by decreasing order of Sobol index, but
for the sake of simplicity, the resulting output is still denoted by f . The study is composed
of two steps:

• At step 1, two restrictions are considered:

{
f1(x1, x2, x3, x4, x5, x6, x7, x8, x9) = f(x1, x2, x3, x4, x5, x6, x7, x8, x9, 0, 0, 0, 0, 0, 0),
f2(x1, x2, x3, x4, x5, x6, x7, x8, x9) = f(x1, x2, x3, x4, x5, x6, x7, x8, x9, 1, 1, 1, 1, 1, 1).

A DoE X1 is generated, with the same values of (x1, · · · , x9) taken in each subspace,
such that they form an LHS optimized for the generalized maximin criterion.

• At step 2, the last variables (x10, · · · , x15) are released. New simulations are launched
at points X2 ⊂ [0, 1]15. X2 is an LHS, independent from X1, also optimized for the
generalized maximin criterion.

The RMSE median and interquartile range, computed on a Sobol sequence of size 10000 used
as a test set, are given for 100 different DoE’s (X1,y1) and (X2,y2) in table 6.2. The perfor-
mances of the metamodels increase with the size of the training sample, but the comparison
between the metamodels is the same for each training sample. Again, the same conclusion
can be drawn: the two versions of the seqGPR metamodel have worse performances than
K_tot (higher median and wider interquartile interval).

98

6.2 Enrichment

In this section, the non-nested designs are used: for all n in J1, NK, the xI1∪···∪In part of Xn,
· · · , XN have no points in common (see section 5.2 in chapter 5). An enrichment method for
the DoE XN of the seqGPR metamodel is suggested. The proposed optimization problem
and the associated enrichment method are detailed. The method is then tested on analytic
test cases.

6.2.1 Process of enrichment

The following optimization problem (derived from the one of [Le Gratiet, 2013b] described
in subsection 2.1.5 in chapter 2) is chosen to seek an interesting point to add to the training
sample





max
x∈X

v̂(x) ·
[

1 +

n1+...+nN∑

i=1

(yi − ŷ−i(x(i)))2

v̂−i(x(i))
1x∈Vi

]
,

under the constraints:

∣∣∣∣∣
dist(xI1 ,

∼
X1) > u,

dist(xIn , x̀In) > vn, ∀n ∈ J2, NK

(6.5)

The thresholds u and (vn)Nn=2 are user defined. The constraints aim at keeping the invert-

ibility property of the
(∼
Xn

)N
n=1

(so that
(
ρn

(∼
Xn,

∼
Xn

))N
n=1

are invertible). The constraint

dist(xI1 ,
∼
X1) > u also implies that dist(xI1∪···∪xIn ,

∼
Xn) is sufficiently big for n > 2.

The goal is to add a batch of points of size L (specified by the user) to the design XN , by
solving the previously defined optimization problem. The enrichment algorithm is described
below. It requires DoE’s (X1,y1), ..., (XN ,yN), and a seqGPR metamodel trained on these
samples.

1. Compute the LOO-CV errors (yi−ŷ−i(x(i)))2

v̂−i(x(i))
of the seqGPR metamodel. These will not

be updated during the algorithm.

2. Generate a sobol sequence of size 1000000 in the whole input space [0, 1]d1+···+dN . The
batch of enrichment points will be choosen among these points.

3. Keep only the points verifying the constraints.

4. Choose the point optimal for the criterion.

5. Add the point to XN and update the prediction variance v̂ of the seqGPR metamodel,
but not the LOO-CV errors.

6. Start again to phase 3, until the size L has been reached.

99

6.2.2 Example in 2D

In the example in 2D from subsection 3.1.2 in chapter 3, the metamodel seqGPR has been
built on the non-nested samples:

X1 =



x

(1)
1
...

x
(n1)
1


 , X2 =



x

(n1+1)
1 x

(n1+1)
2

...
...

x
(n1+n2)
1 x

(n1+n2)
2


 ,

with the associated output values y1 and y2. The goal is to add new relevant points to X2 to
improve the metamodel accuracy. An optimization problem is defined which has to be solved
by the new point. This optimization problem involves an objective function to maximize
defined by [Le Gratiet, 2013b] (see subsection 2.1.5 in chapter 2):

τ(x) = v̂(x)




1 +

n1∑

i=1

(yi − ŷ−i(x(i)
1 , 0.7x

(i)
1 + 0.2))2

v̂−i(x
(i)
1 , 0.7x

(i)
1 + 0.2)

1Vi(x)

︸ ︷︷ ︸
=τ1(x)

+

n1+n2∑

i=n1+1

(yi − ŷ−i(x(i)
1 , x

(i)
2))2

v̂−i(x
(i)
1 , x

(i)
2)

1x∈Vi

︸ ︷︷ ︸
=τ2(x)




This enrichment criterion is the product of two terms. The first one is the prediction variance
of the seqGPR metamodel, it is a spatial criterion that favours points far from the designs X1

and X2. The second one takes into account the prediction error of the seqGPR metamodel by
involving an LOO-CV criterion. τ1 (resp. τ2) is an LOO-CV criterion applied to the design
X1 (resp. X2). ŷ−i and v̂−i are the prediction mean and variance if the ith training point is
not used in the metamodel fitting, and yi − ŷ−i(x(i)

1 , 0.7x
(i)
1 + 0.2) (resp. yi − ŷ−i(x(i)

1 , x
(i)
2))

is the associated prediction error. Vi is the Voronoï cell of the ith training point. The
Voronoï cells (Vi)

n1+n2
i=1 form a partition of the input space, for each i, Vi contains the points

that are closer to the ith training point than the other training points. The prediction
variance is an estimation of the prediction error and the criterion τ acts as a corrected
estimation of the prediction error. Indeed, in areas where the prediction error is supposedly
underestimated, i.e. in Vi such that (yi − ŷ−i(x(i)

1 , 0.7x
(i)
1 + 0.2))2 >> v̂−i(x

(i)
1 , 0.7x

(i)
1 + 0.2)

(resp. (yi − ŷ−i(x(i)
1 , x

(i)
2))2 >> v̂−i(x

(i)
1 , x

(i)
2)), the second factor contributes to increasing the

value of τ .

Let x = (x1, x2) denote the new point. The enriched designs are now denoted by X+
2 ,
∼
X

+

1 :

∼
X

+

1 =




x
(1)
1
...

x
(n1+n2)
1

x1


 , X+

2 =




x
(n1+1)
1 x

(n1+1)
2

...
...

x
(n1+n2)
1 x

(n1+n2)
2

x1 x2


 .

Some regions of the input space are ineligible to contain x in order to maintain the invertibility

of ρ1(
∼
X

+

1 ,
∼
X

+

1) and ρ2(X+
2 ,X+

2) (the covariance matrices involved in the EM algorithm, see
subsection 4.1.2).

• In order for ρ1(
∼
X

+

1 ,
∼
X

+

1) to be well-conditioned, x1 cannot already belong to
∼
X1. The

related constraint for the optimization problem is dist(x1,
∼
X1) > u1 with u1 > 0 a

user-defined scalar and:

dist(x1,
∼
X1) = min

16i6n1+n2

∣∣∣x1 − x(i)
1

∣∣∣ .

100

• In order for ρ2(X+
2 ,X+

2) to be well-conditioned, x = (x1, x2) cannot already belong to
X2. The related constraint for the optimization problem is dist(x,X2) > u2 with u2 > 0
a user-defind scalar and:

dist(x,X2) = min
n1+16i6n1+n2

√
(x1 − x(i)

1)2 + (x2 − x(i)
2)2.

In fact, the first constraint implies this one, which is not kept.

• In order for ρ2(X+
2 ,X+

2) to be well-conditioned, x must also not belong to the nullity
zone of Z2, i.e. x2 must be different from 0.7x1 + 0.2. The related constraint for the
optimization problem is dist(x2, 0.7x1 + 0.2) > v with v > 0 a user-defined scalar and:

dist(x2, 0.7x1 + 0.2) = |x2 − 0.7x1 − 0.2| .

To summarize, the optimization problem contains two constraints:
{
dist(x1,

∼
X1) > u,

dist(x2, 0.7x1 + 0.2) > v.

The areas which are not eligible are illustrated in green in the graph below:

The goal may be to add several points at a time. In this case, the enrichment algorithm is
described below.

1. Compute the LOO-CV errors (yi−ŷ−i(x
(i)
1 ,0.7x

(i)
1 +0.2))2

v̂−i(x
(i)
1 ,0.7x

(i)
1 +0.2)

(1 6 i 6 n1) and (yi−ŷ−i(x
(i)
1 ,x

(i)
2))2

v̂−i(x
(i)
1 ,x

(i)
2)

(n1 + 1 6 i 6 n1 + n2) of the seqGPR metamodel. These will not be updated during
the algorithm.

2. Generate a sobol sequence of size 1000000 in the whole input space [0, 1]2. The batch
of enrichment points will be choosen among these points.

101

3. Keep only the points verifying the constraints.

4. Choose the point optimal for the criterion.

5. Add the point to X2 and update the prediction variance v̂ of the seqGPR metamodel,
but not the LOO-CV errors.

6. Start again to phase 3, until the required number of points is reached.

6.2.3 Test cases

The tests are done with the seqGPR metamodel with the Red process and robust kernel (see
section 4.2 in chapter 4). On the different test cases, the initial metamodel (I) is compared
to the one enriched with 10 points. Three methods are tried to seek the enrichment points:

• C (criterion): the method described in the previous subsection 6.2.1.

• V (var): same method as C but replacing the criterion to optimize by the prediction
variance alone v̂ (without the LOO-CV errors).

• R (random): ten points taken randomly among the points of the sobol sequence of size
10000.

The test cases are the same than in section 4.2 in chapter 4. The initial seqGPR model is
the one computed during these test cases.

Test case from subsection 4.2.2 in chapter 4 It is the exact same test case with the
same step definition. The enrichment method is tested on the cases 10pts/20pts (X1 of size
10 and X2 of size 20) and 20pts/40pts (X1 of size 20 and X2 of size 40) with non-nested
designs. The results are shown on table 6.3. In the case 10ts/20pts, only the R enrichment
approach improves the accuracy of the metamodel, the two others disturb it (same median but
higher interquartile range than the initial metamodel). However, in the case 20pts/40pts,
the enrichments V and C, using the variance or the criterion of subsection 6.2.1 perform
better, and especially the method C which is the best in this case. One conclusion is that
the method C seems efficient only if the metamodel is sufficiently accurate. The enrichment
can be divided in two parts, one with random points added until the metamodel has reached
a certain accuracy level, and the following part with points added using the method C. One
perspective is then to determine when to switch from one part to the other and when to stop
the enrichment.

Test case from subsection 4.2.3 in chapter 4 As a recall, X1 is of size 15, X2 of size
45 and X3 of size 75 and the designs are not nested. The results are shown on table 6.4.
This time the median of V and C are equivalent and C has a smaller interquartile range.
Therefore, it seems to be the best enrichment strategy, but not by much.

Location of the enrichment points Figure 6.2 (resp. figure 6.3) shows the locations of
the enrichment points for the analytic test case in 4D described in subsection 4.2.2 in chapter
4 with initial DoE’s X1 of size 10 and X2 of size 20 (resp. X1 of size 20 and X2 of size 40).
Figure 6.4 shows the locations of the enrichment points for the analytic test case in 15D
described in subsection 4.2.3 in chapter 4. The same conclusion can be drawn from all the
figures. The enrichment points choosen at random are unsurprisingly uniformly spread in

102

10pts/20pts 20pts/40pts

I R V C I R V C

Median (·10−2) 42.108 31.915 40.079 38.041 7.292 4.586 4.044 3.916
Interquartile range (·10−2) 9.588 5.870 13.331 15.651 2.100 1.360 1.050 0.847

Table 6.3: Performance of the metamodels for the 100 studies made on the analytic 4D test
case. The performances are shown in terms of median of RMSE’s and interquartile range
(q75% − q25%). I denotes the initial metamodel seqGPR, R denotes the metamodel enriched
with random points, V denotes the metamodel enriched by maximum variance, and C denotes
the metamodel enriched with maximum criterion (defined in subsection 6.2.1). 10pts/20pts
means that X1 is of size 10 and that X2 is of size 20. 20pts/40pts means that X1 is of size 20
and that X2 is of size 40. The best performances are in bold.

I R V C

Median (·10−4) 36.903 29.151 26.763 27.208
Interquartile range (·10−4) 6.570 6.947 6.693 5.594

Table 6.4: Performance of the metamodels for the 100 studies made on the analytic 15D
test case. The performances are shown in terms of median of RMSE’s and interquartile
range (q75% − q25%). I denotes the initial metamodel seqGPR, R denotes the metamodel
enriched with random points, V denotes the metamodel enriched by maximum variance, and
C denotes the metamodel enriched with maximum criterion (defined in subsection 6.2.1).
The best performances are in bold.

103

(a) Random (b) criterion (c) Variance

Figure 6.2: Location of the enrichment points of the 100 studies on the analytic 4D test case
using the seqGPR metamodel based on the training samples X1 in 2D of size 10 and X2 in 4D
of size 20. The enrichment points in left panel are choosen at random, those on middle panel
are choosen using the criterion defined in (6.5), and those on the right panel are choosen
using the prediction variance.

the input space. The enrichment points choosen by maximum prediction variance are mostly
located on the sides and corners of the input space (and especially in the corners in the 4D
analytic test case). Those choosen by the criterion defined in (6.5) are also located on the
sides of the input space for most of them but there are more points within the input space.

6.3 Conclusion
This chapter tackles the case where multiple subspaces are explored at each step instead of
one. An adaptation of the seqGPR metamodel is suggested and a new candidate for Zn (n in
J2, NK) is introduced, derived from the P process. The method is compared to a classic kriging
metamodel on the same test cases as in section 4.2 in chapter 4, but this time, the seqGPR
metamodel is not better than K_tot. This adapted version of the seqGPR metamodel may
be too complex, the advantage of Zn (with n small) learning f in small dimension is lost.

This chapter also deals with the issue of enriching the DoE’s of the seqGPR metamodel.
A strategy is proposed to add a batch of points verifying some constraints proper to the
seqGPR metamodel and optimal for a criterion found in the literature. The method is
compared to other enrichment strategies on the test cases of section 4.2 in chapter 4. It is
not as convincing as expected. A study of the enrichment points location shows that they are
mostly located in the sides of the input space, even if this trend is less pronounced than for
the maximum prediction variance enrichment. As an enrichment within the input space is
more interesting (see [Henner et al., 2019] in appendix 9.5.1), a new enrichment method can
be proposed, either by applying the criteria defined in (6.5) but adding to the constraints a
minimal distance to the sides, or by defining a new criteria derived from the one defined in
(6.5), taking into account the distance to the sides:

v̂(x)

[
1 +

n1+...+nN∑

i=1

(yi − ŷ−i(x(i)))2

v̂−i(x(i))
1x∈Vi

] [
1 +

d1+...+dN∑

i=1

−xi(xi − 1)

]
.

The new factor is maximal when all x components are equal to 0.5 (see figure 6.5).

104

(a) Random (b) Criterion (c) Variance

Figure 6.3: Location of the enrichment points of the 100 studies on the analytic 4D test case
using the seqGPR metamodel based on the training samples X1 in 2D of size 20 and X2 in 4D
of size 40. The enrichment points in left panel are choosen at random, those on middle panel
are choosen using the criterion defined in (6.5), and those on the right panel are choosen
using the prediction variance.

(a) Random (b) criterion (c) Variance

Figure 6.4: Location of the enrichment points of the 100 studies on the analytic 15D test
case using the seqGPR metamodel based on the training samples X1 in 3D of size 15, X2 in
9D of size 45, and X3 in 15D of size 75. The enrichment points in left panel are choosen at
random, those on middle panel are choosen using the criterion defined in (6.5), and those on
the right panel are choosen using the prediction variance.

105

Figure 6.5: Visualization of −xi(xi− 1), the term associated to the component xi of the new
factor.

106

Chapter 7

Conclusions and perspectives

7.1 Conclusions

The goal of this thesis is to build a metamodel defined on nested subspaces of increasing
dimension, i.e. some input variables are fixed and then released progressively. The work
first consists in the definition of a method, called seqGPR (sequential Gaussian process
regression). It consists in creating a kriging metamodel with a particular kernel on the
reunion of all DoE’s. A probabilistic framework is defined in which the kernel (which is
unstationary) is the covariance kernel of a Gaussian process (modeling the output at the last
step) defined recursively. At a given step, the process modeling the output is equal to the
sum of the process modeling the output at the previous step and an independent correction
term.

The correction term is a Gaussian process null on a continuous part of its definition space.
One issue raised by the probabilistic framework is then to define such a process both verifying
the nullity property and with a tractable kernel. Three candidates are proposed : Psi (latent
process multiplied a deterministic function null on the concerned subspace), Red (latent pro-
cess minus its value on the subspace), and P (latent process minus its conditional expectation
on the subspace). The P process comes from the literature, and a work is done in the thesis
to make it tractable. The Psi process is not retained, as it has the drawback of generating
disturbed paths and as it has more parameters to estimate.

Another issue raised by the definition of the seqGPR metamodel is the estimation of its
parameters. The choice is set on the maximum likelihood estimation and two simplifica-
tions are made : decoupling of the likelihood in the case of nested designs, use of an EM
(Expectation-Maximization) algorithm when the designs are non-nested.

The metamodel seqGPR is tested on two analytic test cases and an industrial one. Different
types of parametrization are tested and the method is compared to a classic kriging meta-
model. Results show that non-nested designs are more performant than nested designs, the
method seqGPR is better than the classic kriging metamodel, the best metamodel is the
seqGPR with a Red robust kernel.

Methods are detailed to generate nested or non-nested designs in case they are not furnished
by the user. These methods enable a good conditioning of the matrices to invert in the
parameter estimation and a good space filling property of the designs.

107

Figure 7.1: Diagrams of the car engine cooling system and its radiator. [Valeo,]

7.2 Perspectives

7.2.1 Multi-conditioning

The first perspective is to adapt the seqGPR metamodel in the case of multiple subspaces
at each step. A first suggestion of adaptation is made, involving a generalization of the
P process. The tests on analytical test cases show similar accuracy between the adapted
seqGPR metamodel and the classic kriging metamodel. Future work will consist in finding
alternative ways of defining the seqGPR metamodel in this context.

7.2.2 Enrichment

The second perspective is to enrich the training samples of the seqGPR metamodel to improve
its accuracy. A strategy is suggested to enrich the training sample with a batch of points of
size defined by the user. This batch of points must verify a certain optimization problem.
This enrichment strategy does not give significantly better results than more classical ones on
the two analytical test cases it was tested on. Future work will consist in studying alternative
enrichment criteria like the one proposed in the conclusion of chapter 6 that involves a factor
taking into account the distance to the input space sides. A completely new optimization
problem can also be searched, mixing mathematical and physical knowledge.

7.2.3 Categorical variables

The next step is then to adapt the seqGPR metamodel to a test case mixing continuous and
categorical variables. Such a test case is already studied in Valeo. As for the fan system
(see section 1.1 in chapter 1), the newly studied system is also part of the car engine cooling
system (see figure 7.1). Via this system, a cooling fluid circulates in the engine to decrease
its temperature. On the left part of figure 7.1, the hot fluid getting out of the engine is
represented in red. The fluid itself is then cooled down in the radiator via the fan system
which projects air on it. The cold fluid getting out of the radiator is represented in blue.
The middle part of the figure represents the radiator. It is composed of a vertical stacking
of, alternately, fluid circulation tubes and air inlets, as shown in the right part.
The studied system is part of an air inlet (see figure 7.2). The air inlet plays the role of
a turbulence generator, to favour heat exchange. The air inlet is constituted of a periodic
horizontal juxtaposition of an elementary pattern. The middle part of the figure represents
one air inlet with a circulation tube. The system studied in this subsection is this elementary
pattern, called fin system, whose diagram is represented on the right part of the figure.

108

Figure 7.2: Diagrams of the exchange surface air-fluid and of the elementary pattern. [Valeo,]

Figure 7.3: Diagram of the fin system and its parameters. [Valeo,]

Figure 7.3 shows a view from below of the elementary component. On the diagram, the air
circulates from left to right and the fluid from top to bottom. The number of louvers of
the fin system, denoted by Nbr, takes its values in the set {10, 12, 14, 16, 18, 20, 22}. It is a
categorical variable with 7 levels. The flat area on the sides of the louvers, has its length
K1 varying between 0.5 and 1mm. The louvers are distributed on two parallel rows. The
two rows are identical to each other. The fin length is Lf = 12mm. In the direction of air
propagation, the total length granted to the louvers on each row is Lf − 2K1. The louvers
are numbered from 1 to Nbr. The ith louver has a rotation angle γi with respect to the air
direction varying between 17 and 30 degrees. For the moment, all the louver lengths li are
fixed at a nominal value.
The angles cannot be taken as input variables as they are not the same for different values of
Nbr. Valeo experts rather choose to model the angle distribution by a parameterized curve,
piecewise affine, as shown in figure 7.4d. The curve is defined on [0, 1]. Its has 5 parameters:
α1, α2, α3, α4, α5, which are respectively the curve values at 0, 1, 0.5, 0.25, and 0.75. Then
the angle values γ1, · · · , γNbr are determined by taking the curve values at evenly distributed
points in [0, 1].
The input variables of the model are: Nbr, K1, α1, α2, α3, α4, α5. The output of interest is
the pressure lost (in Pa). A study of 4 steps is done on the fin system:

• At step 1 , the values of α3, α4, and α5 are respectively fixed to α′3 =
α′4+α′5

2
= α1+α2

2
,

109

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 7.4: Curves modeling the angle distribution at the different steps. The angles values
are shown by the black vertical lines.

α′4 =
α1+α′3

2
= 3α1+α2

4
, α′5 =

α′3+α2

2
= α1+3α2

4
(see figure 7.4a). The variables Nbr, K1,

α1, α2 are free.

• At step 2, α3 is released. α4 and α5 are still fixed to α′4 = α1+α3

2
and α′5 = α3+α2

2
(see

figure 7.4b). The variables Nbr, K1, α1, α2, α3 are free.

• At step 3, α4 is released. α5 is still fixed to α′5 = α3+α2

2
(see figure 7.4c). The variables

Nbr, K1, α1, α2, α3, α4 are free.

• At step 4, α5 is released (see figure 7.4d). All variables are free.

Thus one perspective is to adapt the seqGPR metamodel to this test case which has the
particularity of involving a categorical variable Nbr.

110

Chapter 8

Résumé en Français

Le but de cette thèse est d’approximer par un métamodèle une fonction f(x1, · · · , xd) dont
on connait les valeurs en plusieurs plans d’entraînement (X1,y1), · · · , (XN ,yN), qui ont
été construits au cours d’une étude composée de N étapes. Le plan Xn ⊂ [0, 1]d1+···+dn ,
généré à l’étape n ∈ J1, NK, est localisé dans une zone précise de l’espace des entrées. Il
contient les valeurs des variables (xI1 , · · · , xIn) tandis que les variables (xIn+1 , · · · , xIN) sont
fixées aux valeurs (x̀In+1 , · · · , x̀IN) (ces valeurs sont imposées, elles peuvent être constantes
ou dépendre de façon déterministe des variables libres). Le vecteur In contient les indices
des variables libérées à l’étape n. Pour prendre en compte cette distribution particulière des
plans d’expérience, la modélisation suivante est proposée. La fonction f est supposée être la
réalisation d’un certain processus Gaussien YN défini récursivement par:

{
Y1(xI1) = m+ Z1(xI1),
Yn(xI1 , · · · , xIn−1 , xIn) = Yn−1(xI1 , · · · , xIn−1) + Zn(xI1 , · · · , xIn−1 , xIn), ∀n ∈ J2, NK.

Le processus Zn (n > 2) est un processus correctif captant l’information apportée par les
variables nouvellement libérées. Il est nul sur la partie de l’espace correspondant à l’étape
n− 1 afin que le processus Yn coincide avec le processus Yn−1 sur cette zone:

Zn(xI1 , · · · , xIn−1 , x̀In) = 0.

Le métamodèle seqGPR utilise les formules habituelles de moyenne et variance de prédiction,
qui sont les moments du processus conditionnel [YN(x) | Y1(X1) = y1, · · · , YN(XN) = yN]:

{
ŷ(x) = E [YN(x) | Y1(X1) = y1, · · · , YN(XN) = yN] ,
v̂(x) = V ar (YN(x) | Y1(X1) = y1, · · · , YN(XN) = yN) .

Trois questions se posent. Comment construire les processus (Zn)Nn=2 ? Comment construire
les plans (Xn)Nn=1 ? Comment estimer les paramètres du modèle ?

8.1 Définition des processus correctifs (Zn)
N
n=2

La première question à résoudre est de définir un tel processus Zn Gaussien, vérifiant la
propriété de nullité, et dont le noyau soit facilement calculable. Trois candidats sont proposés,

111

les processus Psi, Red et P définis par:




ZPsi
n (xI1∪···∪In−1 , xIn) = Ψ(xIn − x̀In)

∼
Zn(xI1∪···∪In−1 , xIn),

ZRed
n (xI1∪···∪In−1 , xIn) =

∼
Zn(xI1∪···∪In−1 , xIn)−

∼
Zn(xI1∪···∪In−1 , x̀In),

ZP
n (xI1∪···∪In−1 , xIn) =

∼
Zn(xI1∪···∪In−1 , xIn)

−E
[∼
Zn(xI1∪···∪In−1 , xIn)) |

∼
Zn(tI1∪···∪In−1 , t̀In), ∀tI1∪···∪In−1 ∈ [0, 1]d1+···+dn−1

]
.

∼
Zn est un processus Gaussien dont le noyau de covariance est calculable directement. Il est
appelé processus latent. C’est à partir de lui que sont construits les trois candidats. La
fonction Ψ est définie par :

Ψ(t) = 1− exp

(
−

dn∑

i=1

ti
2δi

)
.

Elle s’annule en 0 et vaut 1 loin de 0. Enfin l’espérance intervenant dans la définition
du processus P est la projection orthogonale de

∼
Zn(xI1∪···∪In−1 , xIn) sur l’espace Gaussien

engendré par les variables
(∼
Zn(tI1∪···∪In−1 , t̀In)

)
tI1∪···∪In−1

∈[0,1]d1+···+dn−1
. Le processus P a une

forme analytique facilement calculable numériquement dans le cas précis où le processus
latent

∼
Zn a un noyau de covariance de la forme :

k((xI1∪···∪In−1 , xIn), (tI1∪···∪In−1 , tIn)) = σ2r1(xI1∪···∪In−1 , tI1∪···∪In−1)r2(xIn − x̀In , tIn − t̀In).

Dans ce cas, le processus P s’écrit :

ZP
n (xI1∪···∪In−1 , xIn) =

∼
Zn(xI1∪···∪In−1 , xIn)− r2(xIn − x̀In , 0)

∼
Zn(xI1∪···∪In−1 , x̀In).

Le processus Psi est finalement abandonné car l’estimation de ses paramètres est plus com-
pliquée que pour les deux autres.

8.2 Construction des plans (Xn)
N
n=1

Deux types de familles de plans sont considérés : les plans imbriqués et les plans non im-
briqués.

8.2.1 Les plans imbriqués

Le plan Xn (n > 2) est dit imbriqué dans Xn−1 s’ils sont de la forme :




Xn−1 =



x

(1)
I1∪···∪In−1

· · ·
x

(nn−1)
I1∪···∪In−1


 ,

Xn =



x

(i1)
I1∪···∪In−1

x
(i1)
In

· · ·
x

(inn)
I1∪···∪In−1

x
(inn)
In


 , with {i1, · · · , inn} ⊂ {1, · · · , nn−1}.

112

Le block de Xn correspondant aux variables xI1∪···∪In−1 reprend les lignes de Xn−1. Pour
construire le plan Xn à partir du plan Xn−1, un algorithme de recuit simulé est utilisé pour
intervertir les lignes de la matrice :




x
(1)
I1∪···∪In−1

1
2nn

. . . 1
2nn...

...
...

x
(k)
I1∪···∪In−1

1
2nn

+ k−1
nn

. . . 1
2nn

+ k−1
nn...

...
...

x
(nn)
I1∪···∪In−1

1− 1
2nn

. . . 1− 1
2nn

x
(nn+1)
I1∪···∪In−1

−1 . . . −1
...

...
...

x
(nn−1)
I1∪···∪In−1

−1 . . . −1




.

Dans la partie gauche, les lignes x(k)
I1∪···∪In−1

(k dans J1, nn−1K) doivent être interverties d’un
block. Dans la partie droite, les intervertions se font à l’intérieur d’une même colonne. Xn

est finalement égale à la matrice résultant de ce recuit simulé dont sont enlevées les lignes
comportant des −1. Le recuit simulé se fait dans le but de minimiser la fonction objectif
suivante :



∑

x,t∈Xn
x 6=t

(
1

‖x− t‖2
[0,1]d1+···+dn

)50



1
50

︸ ︷︷ ︸
=φ1

+


∑

x∈Xn

(
1

‖xIn − x̀In‖2
[0,1]dn

)50



1
50

︸ ︷︷ ︸
φ2

,

où Φ1 est un critère de maximin généralisé qui fait en sorte que les points soient bien répartis
dans [0, 1]d1+···+dn , et Φ2 impose que Xn soit éloigné de la zone d’annulation de Zn.

113

8.2.2 Les plans non imbriqués

Dans le cas des plans non imbriqués, Xn (n > 2) se construit à partir de tous les plans
précédents : X1, · · · , Xn−1. Les matrices X1, · · · , Xn sont notées :





X1 =



x

(1)
I1...

x
(n1)
I1


 ,

X2 =



x

(n1+1)
I1

x
(n1+1)
I2...
...

x
(n1+n2)
I1

x
(n1+n2)
I2


 ,

...

Xn−1 =




x
(n1+···+nn−2+1)
I1

· · · x
(n1+···+nn−2+1)
In−1

...
...

...
x

(n1+···+nn−2+nn−1)
I1

· · · x
(n1+···+nn−2+nn−1)
In−1


 ,

Xn =



x

(n1+···+nn−1+1)
I1

· · · x
(n1+···+nn−1+1)
In−1

x
(n1+···+nn−1+1)
In

...
...

...
x

(n1+···+nn−1+nn)
I1

· · · x
(n1+···+nn−1+nn)
In−1

x
(n1+···+nn−1+nn)
In


 .

Le plan Xn est construit par block de variables : d’abord les colonnes correspondant à xI1
(notées Xn,I1), auxquelles sont ajoutées celles correspondant à xI2 (notées Xn,I2) pour former
Xn,I1∪I2 , · · · , enfin celles correspondant à xIn (notées Xn,In), pour former Xn tout entier.

• Les colonnes Xn,I1 sont construites en générant un LHS dans [0, 1]d1 . Cet LHS est
ensuite optimisé par recuit simulé pour minimiser le critère de maximin généralisé
appliqué à la concaténation des colonnes correspondant à xI1 des matrices X1 à Xn :


x
(1)
I1...

x
(n1+···+nn)
I1


.

• Les colonnes Xn,Ik (k ∈ J2, NK) sont construites en générant un plan Xn,I1∪···∪Ik (con-
tenant les colonnes de Xn associées aux variables (xI1 , · · · , xIk)) imbriqué dans Xn,I1∪···∪Ik−1

(voir section précédente), minimisant la fonction objectif suivante :



∑

x,t∈
∼
X
n

k
x 6=t

(
1

‖x− t‖2
[0,1]d1+···+dn

)50




1
50

+


 ∑

x∈Xn,I1∪···∪Ik

(
1

‖xIk − x̀Ik‖2
[0,1]dk

)50



1
50

,

avec :

∼
X
n

k =




x
(n1+···+nk−1+1)
I1

· · · x
(n1+···+nk−1+1)
Ik...

...
...

x
(n1+···+nk−1+···+nn)
I1

· · · x
(n1+···+nk−1+···+nn)
Ik


 .

114

8.3 Estimation des paramètres
La méthode choisie dans cette thèse est la maximisation de la vraisemblance. Ainsi, en notant
(η1, · · · , ηN) les paramètres respectifs de (Y1, · · · , YN), la vraisemblance vaut :

L(η1, · · · , ηN ;y1, · · · ,yN) = hY (y).

C’est la densité du vecteur Y = (Y1(X1), · · · , YN(XN)) appliquée aux observations y =
(y1, · · · ,yN). Dans le cas où les plans sont imbriqués, les observations de (Zn(Xn))Nn=2 sont
connues (et notées (zn)Nn=2). L’indépendance des Zn conduit au découplage des vraisem-
blances :

L(η1, · · · , ηN ;y1, · · · ,yN) = L(η1;y1) ·
N∏

n=2

L(ηn; zn).

Celles-ci peuvent alors être optimisées séparément ce qui simplifie l’estimation. Dans le cas où
les plans ne sont pas imbriqués, la vraisemblance ne peut pas être découplée et un algorithme
d’EM (Expectation-Maximisation) est utilisé. L’idée est de se ramener au cas découplé en

considérant les
∼
X
N

n , qui sont bien imbriqués les uns dans les autres, à la place des Xn, et les

observations de Y1(
∼
X
N

1) et des
(
Zn(

∼
X
N

n)

)N

n=2

à la place de y1 et des (zn)Nn=2. La différence

est que ces observations ne sont plus connues. Les vraisemblances L(ηn; zn) (respectivement
L(η1;y1)) sont remplacées par leurs estimations a posteriori :





Q1(η1, η
∗) = Eη∗

[
L
(
η1;Y1

(
∼
X
N

1

))
| Y = y

]
,

Qn(η1, η
∗) = Eη∗

[
L
(
ηn;Zn

(∼
XN
n

))
| Y = y

]
.

L’algorithme consiste alors a créer une suite
(
η(i)
)
i>0

où, à chaque nouvelle itération i + 1,
les paramètres η(i+1)

n sont solutions de :

max
ηn
Qn(ηn, η

(i)
n).

L’estimation des paramètres, qui est censée être la limite de cette suite, est prise en tronquant
la suite à partir d’un certain rang. L’algorithme EM permet de passer d’un seul problème
d’optimisation complexe à plusieurs problèmes d’optimisation simples.

8.4 Cas test
Le métamodèle seqGPR est testé sur trois cas test : deux analytiques et un provenant d’un
code de calcul industriel. Comme il y a beaucoup de paramètres à estimer dans ce méta-
modèle, une tentative de simplification est faite en imposant que des groupes de paramètres
soient de même valeur. Ainsi chaque processus correctif Zn (n > 2) est doté d’un vecteur de
paramètres de covariance de la forme :

θn =


αn, · · · , αn︸ ︷︷ ︸

I1∪···∪In−1

, θ1
n, · · · , θdnn︸ ︷︷ ︸

In


 .

La version de seqGPR avec ce regroupement de paramètres est appelée Robust, tandis que
celle avec tous les paramètres dissociés est appelée Full. Sont également comparées les versions
avec des processus correctifs de type Red ou de type P. Enfin, le métamodèle seqGPR est
comparé à un krigeage classique entrainé sur tous les plans.

115

8.4.1 Cas test analytique en dimension 4

La fonction à approximer par un métamodèle est une fonction de quatre variables décom-
posée en la somme d’une fonction de deux variables et d’une fonction de quatre variables
f(x1, x2, x3, x4) = g1(x1, x2)+g2(x1, x2, x3, x4). Les deux fonctions sont définies de la manière
suivante :





g1(x1, x2) =
[
4− 2.1(4x1 − 2)2 + (4x1−2)4

3

]
(4x1 − 2)2

+ (4x1 − 2)(2x2 − 1) + [−4 + 4(2x2 − 1)2] (2x2 − 1)2,

g2(x1, x2, x3, x4) = 4 exp
(
−‖x− 0.3‖2) .

g1 est la fonction six-hump Camel redimensionnée dans [0, 1]2. C’est une fonction assez
chahutée. g2 est une gaussienne beaucoup plus lisse. L’étude réalisée sur cette fonction est
composée de deux étapes :

• A l’étape 1, les variables (x1, x2) sont libres et les variables (x3, x4) sont fixées aux
valeurs (x1+x2

2
, 0.2x1 + 0.7).

• A l’étape 2, toutes les variables sont libres.

Des plans de différentes natures sont générés durant ces deux étapes : imbriqués ou non-
imbriqués, et de différentes tailles. Plusieurs résultats sont montrés par ce cas test. D’abord,
les plans non-imbriqués donnent de meilleurs résultats à taille fixée. Ensuite, la version
robuste du métamodèle seqGPR est meilleure que la version full et que le krigeage classique.
Enfin, la version Red est plus performante que la version P. De ces conclusions sont tirées
deux mesures appliquées dans la suite : l’utilisation de plans non-imbriqués et de la version
robuste du métamodel seqGPR.

8.4.2 Cas test analytique en dimension 15

La nouvelle fonction à approximer est une fonction de 15 variables :

f : [−3, 3]15 → R
x 7→ a′1x+ a′2 sinx+ a′3 cosx+ x′Mx,

dont les entrées sont réarrangées par ordre décroissant d’indice de Sobol, et redimensionnées
dans [0, 1]15. Cette fois-ci, une étude de trois étapes est réalisée : libérant les trois premières
variables, puis les 6 suivantes, et enfin les 6 dernières. Des plans d’entraînement X1, X2, X3

sont générés, respectivement de taille 15, 45, et 75. A chaque étape, les variables fixées sont
prises de valeur 0.5. Les mêmes conclusions sont tirées par rapport au cas test précédent :
à savoir que le métamodèle seqGPR est meilleur que le krigeage classique, et que la version
Red est meilleure que la version P.

8.4.3 Cas test industriel en dimension 15

Le dernier cas test, qui est celui ayant motivé cette thèse, comporte également 15 entrées.
Une étude de deux étapes est réalisée : dans la première, les 11 premières variables sont
libres et les 4 dernières sont fixées à une constante, dans la deuxième, toutes les variables
sont libres. Un plan est réalisé à l’étape 1, de taille 126, et un autre à l’étape 2, de taille 299.
L’évaluation des métamodèles est réalisée sous la forme d’une validation croisée. X1 prend 50
points du plan généré à l’étape 1, tandis que X2 prend 50 points parmi ceux générés à l’étape

116

2, laissant les autres comme ensemble test. 30 évaluations des métamodèles sont réalisées
(avec des X1 et X2 différents à chaque fois). Encore une fois, le métamodèle seqGPR a de
meilleurs résultats de prédiction que le krigeage classique, cette fois-ci avec un léger avantage
pour la version P.

8.5 Tentatives d’approfondissement de la méthode

8.5.1 Conditionnement multiple

Dans cette sous-section, les études changent légèrement de forme. A chaque étape n ∈
J1, N − 1K, plusieurs plans sont générés dans différents sous-espaces : X1

n, · · · , XKn+1
n . Ces

Kn+1 sous-espaces sont liés par le fait que les variables xIn+2 , · · · , xIN sont fixées aux mêmes
valeurs : x̀In+2 , · · · , x̀IN (qui dépendent des variables xI1 , · · · , xIn+1), et que d’un autre côté,
les valeurs des variables xIn+1 dans ces sous-espaces diffèrent d’une constante bin+1, valant
x̀In+1 + bin+1 dans le sous-espace i ∈ J1, Kn+1K. La dernière étape N est inchangée, où un
unique plan XN est généré dans l’espace tout entier. Cette multiplicité des sous-espaces à
étape fixée oblige à une modification de la modélisation dans laquelle les processus des étapes
intermédiaires doivent prendre en compte un groupe de variable supplémentaire:




Y1(xI1 , xI2) = m+ Z1(xI1 , xI2),
Yn(xI1∪···∪In , xIn+1) = Yn−1(xI1∪···∪In) + Zn(xI1∪···∪In , xIn+1), ∀n ∈ J2, N − 1K,
YN(xI1 , · · · , xIN) = YN−1(xI1 , · · · , xIN) + ZN(xI1 , · · · , xIN).

La nouvelle propriété de nullité vérifiée par les (Zn)Nn=2 est :
{
Zn(xI1∪···In−1 , x̀In + Bn, x̀In+1) = 0, ∀n ∈ J2, N − 1K,∀xI1∪···In−1 ∈ [0, 1]d1+···+dn−1 ,
ZN(xI1∪···∪IN−1

, x̀IN + BN) = 0, ∀xI1∪···∪IN−1
∈ [0, 1]d1+···+dN−1 .

avec Bn =



b1
n
...
bKnn


, pour tout n > 2.

Si la méthodologie d’estimation par EM fonctionne encore dans ce nouveau format, il faut
reconstruire les (Zn)Nn=2 dont la propriété de nullité est désormais multiple. Le choix est porté
sur une généralisation du processus P à plusieurs plans :





Zn(xI1∪···In−1 , xIn , xIn+1) =
∼
Zn(xI1∪···In−1 , xIn , xIn+1)

−E
[∼
Zn(xI1∪···In−1 , xIn , xIn+1) |

∼
Zn(Dn)

]
, ∀n ∈ J2, N − 1K,

ZN(xI1∪···IN−1
, xIN) =

∼
ZN(xI1∪···IN−1

, xIN)

−E
[∼
ZN(xI1∪···IN−1

, xIN) |
∼
ZN(DN)

]
.

où Dn = {(tI1∪···In−1 , t̀In +Bn, t̀In+1), tI1∪···In−1 ∈ [0, 1]d1+···+dn−1} est la zone de nullité à l’étape
n et DN = {(tI1∪···IN−1

, t̀IN + BN), tI1∪···IN−1
∈ [0, 1]d1+···+dN−1} est la zone de nullité à l’étape

N . Une nouvelle fois, une forme particulière des noyaux des processus latents
(∼
Zn

)N
n=2

qui
est la même que dans le cas présenté dans la section 8.1 permet de donner une forme explicite

117

au processus P :




kn((xI1∪···∪In−1 , xIn∪In+1), (tI1∪···∪In−1 , tIn∪In+1)) =
σ2
nr

1
n(xI1∪···∪In−1 , tI1∪···∪In−1)r2

n(xIn∪In+1 − x̀In∪In+1 , tIn∪In+1 − t̀In∪In+1), ∀n ∈ J2, N − 1K,

kN((xI1∪···∪IN−1
, xIN), (tI1∪···∪IN−1

, tIN)) =
σ2
Nr

1
N(xI1∪···∪IN−1

, tI1∪···∪IN−1
)r2
N(xIN − x̀IN , tIN − t̀IN).

Dans ce cas les processus P valent :




Zn(xI1∪···∪In−1 , xIn∪In+1) =
∼
Zn(xI1∪···∪In−1 , xIn∪In+1)

−r2
n(xIn∪In+1 ,Bn)r2

n(Bn,Bn)
∼
Zn(xI1∪···∪In−1 , x̀In∪In+1 + Bn), ∀n ∈ J2, N − 1K,

ZN(xI1∪···∪IN−1
, xIN) =

∼
ZN(xI1∪···∪IN−1

, xIN)

−r2
N(xIN ,BN)r2

N(BN ,BN)
∼
ZN(xI1∪···∪IN−1

, x̀IN + BN),

avec Bn =



b1
n 0
...

...
bKnn 0


, de sorte que x̀In∪In+1 + Bn =

(
x̀In + Bn, x̀In+1

)
.

L’évaluation de cette adaptation du métamodèle seqGPR sur les cas test précédents ne révèle
aucune amélioration par rapport au krigeage classique dans ce cas. Sans doute la complexité
trop élevée du modèle n’est cette fois-ci pas compensée par son adaptation au format des
données d’entraînement.

8.5.2 Enrichissement des plans

La deuxième piste d’approfondissement est l’enrichissement des plans d’expérience, dans le
cadre de plans non-imbriqués. L’enrichissement se fait en sélectionnant un point solution d’un
certain problème d’optimisation. Le choix se porte sur le problème d’optimisation suivant :





max
x∈X

v̂(x)

[
1 +

n∑

i=1

(yi − ŷ−i(x(i)))2

v̂−i(x(i))
1x∈Vi

]
,

sous les contraintes :

∣∣∣∣∣∣
dist

(
xI1∪···∪In ,

∼
X
N

n

)
> un, ∀n ∈ J1, NK

dist(xIn − x̀In) > vn, ∀n ∈ J2, NK

Vi designe la cellule de Voronoï du point d’entraînement x(i). La fonction objectif veille à ce
que le point soit choisi dans une zone de forte variance de prédiction v̂(x), c’est-à-dire loin des
points d’entraînement déjà présents, mais également dans une zone où l’erreur de prédiction
réelle est potentiellement forte (ici c’est l’erreur de prédiction du point d’entraînement le

plus proche qui donne une idée de sa valeur). Les contraintes veillent à ce que les
∼
X
N

n aient
des points suffisamment éloignés les uns des autres, et que le point x soit éloigné de tous les
sous-espaces des étapes précédentes, le but ultime étant que les matrices mises en jeu dans
l’EM soient inversibles.

Etant donné que l’enrichissement ne se fait pas point par point mais plutôt par paquets de
points choisis en même temps, une procédure gloutonne utilisant le problème d’optimisation

118

précédemment défini est mise en place. Le paquet de points, dont la taille est imposée
par l’utilisateur, est sélectionné parmi une suite de Sobol qui forme un ensemble de points
candidats. La procédure consiste à, de manière séquentielle, retirer les points candidats ne
vérifiant pas les contraintes, puis choisir le point candidat optimal pour la fonction objectif,
ensuite mettre à jour le critère de prédiction avec ce nouveau point, et enfin recommencer
jusqu’à avoir atteint la taille requise. Le paquet ainsi confectionné peut alors enfin être soumis
au code de calcul, pour en connaître la valeur de sortie, et ajouté à l’ensemble d’entraînement
du métamodèle seqGPR.

La comparaison de cette méthode d’enrichissement avec d’autres méthodes comme le maxi-
mum de variance de prédiction ou encore la sélection d’un paquet aléatoire donne des résultats
assez différents suivant les cas test. Il semble que globalement cette méthode d’enrichissement
ne soit pas très performante tant que le métamodèle n’est pas assez prédictif.

119

120

Chapter 9

Appendix

9.1 Example in 4D
This section develops the example in 4D, introduced in subsection 3.1.2 in chapter 3, for the
different chapters of the thesis.

9.1.1 Illustration of chapter 3

Red process

• If Z2 is a Red process, it is defined as

Z2(x1, x2, x3) =
∼
Z2(x1, x2, x3)−

∼
Z2(x1, 0.4, 0.5).

Its covariance kernel is equal to σ2
2ρ2 with

ρ2 ((x1, x2, x3), (t1, t2, t3)) = r2 ((x1, x2, x3), (t1, t2, t3))
+ r2 ((x1, 0.4, 0.5), (t1, 0.4, 0.5))
− r2 ((x1, x2, x3), (t1, 0.4, 0.5))
− r2 ((x1, 0.4, 0.5), (t1,2 , t3)) .

• If Z3 is a Red process, it is defined as

Z3(x1, x2, x3, x4) =
∼
Z3(x1, x2, x3, x4)−

∼
Z3

(
x1, x2, x3,

x1 + x2 + x3

4

)
.

Its covariance kernel is equal to σ2
3ρ3 with

ρ3 ((x1, x2, x3, x4), (t1, t2, t3, t4)) = r3 ((x1, x2, x3, x4), (t1, t2, t3, t4))
+ r3

(
(x1, x2, x3,

x1+x2+x3

4
), (t1, t2, t3,

t1+t2,t3
4

)
)

− r3

(
(x1, x2, x3, x4), (t1, t2, t3,

t1+t2+t3
4

)
)

− r3

(
(x1, x2, x3,

x1+x2+x3

4
), (t1, t2, t3, t4)

)

Psi process

• If Z2 is a Psi process, it is defined as

Z2(x1, x2, x3) = Ψ2 (x2 − 0.4, x3 − 0.5)
∼
Z2(x1, x2, x3),

121

with for all (t1, t2) in [−1, 1]2, Ψ2(t1, t2) = 1−exp
(
− t21

2δ2
2,1
− t22

2δ2
2,2

)
. Its covariance kernel

is equal to σ2
2ρ2 with

ρ2 ((x1, x2, x3), (t1, t2, t3)) = Ψ2 (x2 − 0.4, x3 − 0.5)
× Ψ2 (t2 − 0.4, t3 − 0.5)
× r2 ((x1, x2, x3), (t1, t2, t3)) .

• If Z3 is a Psi process, it is defined as

Z3(x1, x2, x3, x4) = Ψ3

(
x4 −

x1 + x2 + x3

4

)
∼
Z3(x1, x2, x3, x4),

with for all t in [0, 1], Ψ3(t) = 1 − exp
(
− t2

2δ2
3

)
. Its covariance kernel is equal to σ2

3ρ3

with

ρ3 ((x1, x2, x3, x4), (t1, t2, t3, t4)) = Ψ3

(
x4 − x1+x2+x3

4

)

× Ψ3

(
t4 − t1+t2+t3

4

)

× r3 ((x1, x2, x3, x4), (t1, t2, t3, t4)) .

P process

• If Z2 is a P process, it is defined as

Z2(x1, x2, x3) =
∼
Z2(x1, x2, x3)− r2,3 ((x2, x3), (0.4, 0.5))

∼
Z2(x1, 0.4, 0.5).

where
∼
Z2 ∼ GP (0, σ2

2r1 (x1, t1) r2,3 ((x1, x2), (t1, t2))) with r1 and r2,3 stationary corre-
lation kernels. Its covariance kernel is equal to σ2

2ρ2 with

ρ2 ((x1, x2, x3), (t1, t2, t3)) = r1 (x1, t1)× [r2,3 ((x2, x3), (t2, t3))
− r2,3 ((x2, x3), (0.4, 0.5)) r2,3 ((0.4, 0.5), (t2, t3))] .

• If Z3 is a P process, it is defined as

Z3(x1, x2, x3, x4) =
∼
Z3(x1, x2, x3, x4)

− r4

(
x4 − x1+x2+x3

4
, 0
) ∼
Z3

(
x1, x2, x3,

x1+x2+x3

4

)
.

Where
∼
Z3 ∼ GP

(
0, σ2

3r1,2,3 ((x1, x2, x3), (t1, t2, t3)) r4

(
x4 − x1+x2+x3

4
, t4 − t1+t2+t3

4

))
with

r1,2,3 and r4 stationary correlation kernels. Its covariance kernel is equal to σ2
3ρ3 with

ρ3 ((x1, x2, x3, x4), (t1, t2, t3, t4)) = r1,2,3 ((x1, x2, x3), (t1, t2, t3))
×

[
r4

(
x4 − x1+x2+x3

4
, t4 − t1+t2+t3

4

)

− r4

(
x4 − x1+x2+x3

4
, 0
)
r4

(
0, t4 − t1+t2+t3

4

)]
.

122

9.1.2 Illustration of chapter 4

Nested designs The designs X1, X2, and X3 are nested (X3 @ X2 @ X1) if they are of the
form:





X1 =



x

(1)
1
...

x
(n1)
1


 ,

X2 =



x

(i1)
1 x

(i1)
2 x

(i1)
3

...
...

...
x

(in2)
1 x

(in2)
2 x

(in2)
3


 , with {i1, · · · , in2} ⊂ {1, · · · , n1},

X3 =



x

(j1)
1 x

(j1)
2 x

(j1)
3 x

(j1)
4

...
...

...
...

x
(jn3)
1 x

(jn3)
2 x

(jn3)
3 x

(jn3)
4


 , with {j1, · · · , jn3} ⊂ {i1, · · · , in2}.

In order to compute the likelihoods and the predictions, the matrices cov(Y1(X1), Y1(X1)) =
σ2

1ρθ1(X1,X1), cov(Z2(X2), Z2(X2)) = σ2
2ρθ2(X2,X2), and cov(Z3(X3), Z3(X3)) = σ2

3ρθ3(X3,X3)
must be invertible. X1 must be composed of distinct points sufficiently far from each
other to ensure the invertibility of the first matrix. Because of the nullity property of
Z2: Z2(x1, 0.4, 0.5) = 0 for all x1 in [0, 1] (resp. Z3: Z3(x1, x2, x3,

x1+x2+x3

4
) = 0 for all

(x1, x2, x3) ∈ [0, 1]3), its covariance kernel is not positive definite, therefore the same con-
straint on X2 (resp. X3) is not sufficient. An additional constraint must be added, that the
points of X2 (resp. X3) are sufficiently far from the nullity subspace D2 = {(x1, 0.4, 0.5), x1 ∈
[0, 1]} (resp. D3 = {(x1, x2, x3,

x1+x2+x3

4
), (x1, x2, x3) ∈ [0, 1]3}), i.e. for all k in J1, n2K,

(x
(ik)
2 , x

(ik)
3) must be sufficiently far from (0.4, 0.5) (resp. for all k in J1, n3K, x(jk)

4 must be suf-

ficiently far from x
(jk)
1 +x

(jk)
2 +x

(jk)
3

4
). This second constraint ensures that the covariance matrix

has no rows full of zeros.

Non-nested designs The designs X1, X2 and X3 are non-nested if they are of the form:





X1 =



x

(1)
1
...

x
(n1)
1


 ,

X2 =



x

(n1+1)
1 x

(n1+1)
2 x

(n1+1)
3

...
...

...
x

(n1+n2)
1 x

(n1+n2)
2 x

(n1+n2)
3


 ,

X3 =



x

(n1+n2+1)
1 x

(n1+n2+1)
2 x

(n1+n2+1)
3 x

(n1+n2+1)
4

...
...

...
...

x
(n1+n2+n3)
1 x

(n1+n2+n3)
2 x

(n1+n2+n3)
3 x

(n1+n2+n3)
4


 ,

with the following constraints:

123







x

(1)
1
...

x
(n1)
1


 ∩



x

(n1+1)
1

...
x

(n1+n2)
1


 = ∅,




x
(1)
1
...

x
(n1+n2)
1


 ∩



x

(n1+n2+1)
1

...
x

(n1+n2+n3)
1


 = ∅,



x

(n1+1)
1 x

(n1+1)
2 x

(n1+1)
3

...
...

...
x

(n1+n2)
1 x

(n1+n2)
2 x

(n1+n2)
3


 ∩



x

(n1+n2+1)
1 x

(n1+n2+1)
2 x

(n1+n2+1)
3

...
...

...
x

(n1+n2+n3)
1 x

(n1+n2+n3)
2 x

(n1+n2+n3)
3


 = ∅.

An illustration of the different
∼
Xn is shown in figure below.

To compute Q1, Q2 and Q3, the designs
∼
X1,

∼
X2, and

∼
X3 must have distinct points sufficiently

far from each other.
∼
X2 (respectively

∼
X3) should have points sufficiently far from the nullity

subset D2 = {(x1, 0.4, 0.5), x1 ∈ [0, 1]} (resp. D3 = {(x1, x2, x3,
x1+x2+x3

4
), (x1, x2, x3) ∈

[0, 1]3}). For all k in J1, n2 + n3K, (x
(n1+k)
2 , x

(n1+k)
3) must be far from (0.4, 0.5), and for all k

in J1, n3K, x(n1+n2+k)
4 must be far from x

(n1+n2+k)
1 +x

(n1+n2+k)
2 +x

(n1+n2+k)
3

4
.

9.1.3 Illustration of chapter 5

Nested designs

• The Φ2 criterion applied to X2 is equal to:

Φ2(X2) =


∑n2

k=1

∑n2
l=1
l 6=k

(
1

‖x(ik)−x(il)‖2

[0,1]3

)50



1
50

+

(
∑n2

k=1

(
1

(x
(ik)
2 −0.4)2+(x

(ik)
3 −0.5)2

)50
) 1

50

.

124

• The Φ3 criterion applied to X3 is equal to:

Φ3(X3) =


∑n3

k=1

∑n3
l=1
l 6=k

(
1

‖x(jk)−x(jl)‖2

[0,1]4

)50



1
50

+


∑n3

k=1

(
1

(x
(jk)
4 −

x
(jk)
1 +x

(jk)
2 +x

(jk)
3

4
)2

)50



1
50

.

The building algorithm is illustrated below.

• At step 1, a design X1 =




0.2
0.4
0.6
0.8


 has been generated. The values of x2 and x3 are

respectively fixed to 0.4 and 0.5. The values of x4 are fixed to x1+x2+x3

4
.

• At step 2, the goal is to generate a design X2 of size 3 nested in X1. The following

matrix is defined




0.2 1
6

1
6

0.4 3
6

3
6

0.6 5
6

5
6

0.8 −1 −1




, from which the initialization of X2 is deduced by

keeping the first three rows. The initialization of the design X2 is illustrated in figure
below.

Φ2(X2) = 11.98.

An example of candidate for X2 resulting from permutations of the rows of the initial
candidate is illustrated in figure below. It is obtained by performing the permutation(
1 4 2 3

)
in the first column, the permutation

(
2 1 3

)
in the second column, and

the permutation
(
2 3 1

)
in the third column.

125

Φ2(X2) = 11.95.

The optimal candidate for the criteria Φ2 is shown in figure below. It is found using
algorithm 1 in appendix 9.4.2.

Φ2(X2) = 4.20.

• At step 3, the goal is to generate a design X3 of size 3 nested in X2. The initialization
of the design X3 is illustrated below:

Φ3(X3) = 61.20.

126

The possible candidates for X3 result from permutations of rows in the initial candidate.
Two kinds of permutations of rows are possible, by block (the blocks are represented
by the orange rectangles with mixed dashes) in the first three columns, by component
in the 4th column. An example of candidate is shown in figure below. It is built by
applying the permutation

(
2 1 3

)
for the blocks of the first three columns, and the

permutation
(
1 3 2

)
in the last column.

Φ3(X3) = 9.78.

The optimal candidate for the criterion Φ3 is shown below. It is found using algorithm
1 in appendix 9.4.2.

Φ3(X3) = 4.35.

Non-nested designs

• X1 is of the form X1 =



x

(1)
1
...

x
(n1)
1


.

• X2 is of the form X2 =



x

(n1+1)
1 x

(n1+1)
2 x

(n1+1)
3

...
...

...
x

(n1+n2)
1 x

(n1+n2)
2 x

(n1+n2)
3


. It must ensure that the design:

∼
X

2

1 =




x
(1)
1
...

x
(n1)
1

x
(n1+1)
1
...

x
(n1+n2)
1




,

127

is space-filling with points distant from each other in [0, 1] (it is the part of
∼
X1 concerned

at the time, here X3 is not taken into account). X2 itself (equal to
∼
X

2

2) must be space-
filling with remote points in [0, 1]3 and verifying that (x

(n1+i)
2 , x

(n1+i)
3) (i ∈ J1, n2K) is

far from (0.4, 0.5). X2 is built in two phases:

– The first column X2,I1 =



x

(n1+1)
1
...

x
(n1+n2)
1


 (I1 = {1} is the index set of the variables

released at step 1) is built first to ensure the properties of
∼
X

2

1. X2,I1 must minimize:

Φ2,1(X2,I1) =



n1+n2∑

i=1

n1+n2∑

j=1

j 6=i

(
1

(x
(i)
1 − x(j)

1)2

)50



1
50

which is the generalized maximin criterion applied to
∼
X

2

1.

– The columns two and three X2,I2 =



x

(n1+1)
2 x

(n1+1)
3

...
...

x
(n1+n2)
2 x

(n1+n2)
3


 (I2 = {2, 3} is the index

set of the variables released at step 2) are built together to ensure the properties

of
∼
X

2

2. The goal is to create the design X2 such that it is nested in X2,I1 . X2,I2

must minimize:

Φ2,2(X2,I2) =

(
∑n1+n2

i,j=n1+1

j 6=i

(
1

(x
(i)
1 −x

(j)
1)2+(x

(i)
2 −x

(j)
2)2+(x

(i)
3 −x

(j)
3)2

)50
) 1

50

+

(
∑n1+n2

i=n1+1

(
1

(x
(i)
2 −0.4)2+(x

(i)
3 −0.5)2

)50
) 1

50

.

The first part is the generalized maximin applied to
∼
X

2

2, the second part ensures
that X2 is far from the subspace where Z2 is null.

• X3 is of the form X3 =



x

(n1+n2+1)
1 x

(n1+n2+1)
2 x

(n1+n2+1)
3 x

(n1+n2+1)
4

...
...

...
...

x
(n1+n2+n3)
1 x

(n1+n2+n3)
2 x

(n1+n2+n3)
3 x

(n1+n2+n3)
4


. It must

ensure that
∼
X

3

1 =
∼
X1 is space-filling with points remote from each other in [0, 1]. It

must also ensure that
∼
X

3

2 =
∼
X2 is space-filling with remote points in [0, 1]3 and verifying

that (x
(n1+i)
2 , x

(n1+i)
3) (i ∈ J1, n2 +n3K) is far from (0.4, 0.5). X3 itself (equal to

∼
X

3

3) must
be space-filling with remote points in [0, 1]4 and verifying that x(n1+n2+i)

4 (i ∈ J1, n3K)
is far from x

(n1+n2+i)
1 +x

(n1+n2+i)
2 +x

(n1+n2+i)
3

4
. X3 is built in three phases:

– The first column X3,I1 =



x

(n1+n2+1)
1

...
x

(n1+n2+n3)
1


 is built to ensure the properties of

∼
X1.

128

X3,I1 must minimize:

Φ3,1(X3,I1) =



n1+n2+n3∑

i=1

n1+n2+n3∑

j=1

j 6=i

(
1

(x
(i)
1 − x(j)

1)2

)50



1
50

which is the generalized maximin criterion applied to
∼
X1.

– The columns two and three X3,I2 =



x

(n1+n2+1)
2 x

(n1+n2+1)
3

...
...

x
(n1+n2+n3)
2 x

(n1+n2+n3)
3


 are built together

to ensure the properties of
∼
X2. The goal is to create the design X3,I1∪I2 grouping

the first three columns of X3 such that it is nested in X3,I1 . X3,I2 must minimize:

Φ3,2(X3,I2) =

(
∑n1+n2+n3

i,j=n1+1

j 6=i

(
1

(x
(i)
1 −x

(j)
1)2+(x

(i)
2 −x

(j)
2)2+(x

(i)
3 −x

(j)
3)2

)50
) 1

50

+

(
∑n1+n2+n3

i=n1+1

(
1

(x
(i)
2 −0.4)2+(x

(i)
3 −0.5)2

)50
) 1

50

.

The first part is the generalized maximin applied to
∼
X2, the second part ensures

that
∼
X2 is far from the subspace where Z2 is null.

– The last column X3,I3 (I3 = {4} is the index set of the variables released at step

3) is finally built to ensure the properties of
∼
X3 = X3. The goal is to create the

design X3 such that it is nested in X3,I1∪I2 . X3,I3 must minimize:

Φ3,3(X3,I3) =

(
∑n1+n2+n3

i,j=n1+n2+1

j 6=i

(
1

(x
(i)
1 −x

(j)
1)2+(x

(i)
2 −x

(j)
2)2+(x

(i)
3 −x

(j)
3)2+(x

(i)
4 −x

(j)
4)

)50
) 1

50

+


∑n1+n2+n3

i=n1+n2+1

(
1

(x
(i)
4 −

x
(i)
1 +x

(i)
2 +x

(i)
3

4
)2

)50



1
50

.

The first part is the generalized maximin applied to X3, the second part ensures
that X3 is far from the subspace where Z3 is null.

To illustrate the building algorithm, it is assumed that 3 non-nested designs X1, X2, X3

respectively of size 2, 3, and 4, must be created.

• At step 1, X1 is taken equal to X1 =

(
0
1

)
.

• At step 2, the goal is to create X2 of size 3.

– The first column X2,I1 is adjusted by hand to have a good value of Φ2,1. X2,I1 is

129

taken equal to X2,I1 =




2
8

4
8

6
8



. The resulting

∼
X

2

1 =




0
8

8
8

2
8

4
8

6
8




(the part of
∼
X1 concerned

at step 2) is formed of equispaced points in [0, 1].

– X2 is created as a design nested in X2,I1 . It is initialized to

X2 =




2
8

1
6

1
6

4
8

3
6

3
6

6
8

5
6

5
6



, Φ2,2(X2) = 11.90.

The optimal design for the criterion Φ2,2 is obtained for the permutation
(
3 1 2

)

in the second column and the permutation
(
2 3 1

)
in the third column

X2 =




2
8

5
6

3
6

4
8

1
6

5
6

6
8

3
6

1
6



, Φ2,2(X2) = 4.33.

It is found using algorithm 1 in appendix 9.4.2.

• At step 3, the goal is to create X3 of size 4.

– The first column X3,I1 is adjusted by hand to have a good value of Φ3,1. X3,I1 is

taken equal to X3,I1 =




1
8

3
8

5
8

7
8




. The resulting
∼
X1 =




0
8

8
8

2
8

4
8

6
8

1
8

3
8

5
8

7
8




is formed of equispaced

points in [0, 1].

130

– The submatrix X3,I1∪I2 composed of the first three columns of X3 is created as a
design nested in X3,I1 . It is initialized to:

X3,I1∪I2 =




1
8

1
8

1
8

3
8

3
8

3
8

5
8

5
8

5
8

7
8

7
8

7
8




, Φ3,2(X3,2) = 10.21.

The optimal design for the criterion Φ3,2 is obtained for the permutation
(
2 3 1 4

)

in the second column and the permutation
(
1 4 2 3

)
in the third column

X3,I1∪I2 =




1
8

3
8

1
8

3
8

5
8

7
8

5
8

1
8

3
8

7
8

7
8

5
8




, Φ3,2(X3,2) = 5.58.

It is found using algorithm 1 in appendix 9.4.2. The resulting
∼
X2 =




2
8

5
6

3
6

4
8

1
6

5
6

6
8

3
6

1
6

1
8

3
8

1
8

3
8

5
8

7
8

5
8

1
8

3
8

7
8

7
8

5
8




has the good properties: space-filling with separate points and far from the nullity
zone (x2, x3) = (0.4, 0.5).

– X3 is finally created as a design nested in X3,I1∪I2 . It is initialized to

X3 =




1
8

3
8

1
8

1
8

3
8

5
8

7
8

3
8

5
8

1
8

3
8

5
8

7
8

7
8

5
8

7
8




, Φ3,3(X2) = 33.29.

The optimal design for the criterion Φ3,3 is obtained for the permutation
(
2 1 3 4

)

131

in the last column:

X3 =




1
8

3
8

1
8

3
8

3
8

5
8

7
8

1
8

5
8

1
8

3
8

5
8

7
8

7
8

5
8

7
8




, Φ3,3(X2) = 6.08.

It is found using algorithm 1 in appendix 9.4.2.

9.1.4 Illustration of chapter 6

Multi-conditioning The example in 4D is modified to take into account multiple sub-
spaces. The output considered is still a function of 4 inputs f(x1, x2, x3, x4). The study is
composed of 3 steps with I1 = {1}, I2 = {2, 3} and I3 = {4}.

• At step 1, x1 is released and (x2, x3, x4) are fixed. Three different restrictions are con-
sidered: f(x1, 0.4, 0.5,

x1+0.4+0.5
4

), f(x1, 0.1, 0.7,
x1+0.1+0.7

4
), and f(x1, 0.8, 0.3,

x1+0.8+0.3
4

).
On the three subspaces considered, the values of (x2, x3) are modified by an additive
constant: 




x̀I2 = (0.4, 0.5),

B2 =




0 0
−0.3 0.2
0.4 −0.2


 .

and x4 is equal to the same function of (x1, x2, x3): x̀4 = x1+x2+x3

4
. The restrictions can

be summarized in the notation f(xI1 , x̀I2 +B2, x̀I3). The three restrictions are modeled
by Y1(x1, x2, x3) = m + Z1(x1, x2, x3), such that f(x1, 0.4, 0.5,

x1+0.4+0.5
4

) is the realiza-
tion of Y1(x1, 0.4, 0.5), f(x1, 0.1, 0.7,

x1+0.1+0.7
4

) is the realization of Y2(x1, 0.1, 0.7), and
f(x1, 0.8, 0.3,

x1+0.8+0.3
4

) is the realization of Y3(x1, 0.8, 0.3). This can be summarized
by saying that f(xI1 , x̀I2 + B2, x̀I3) is the realization of Y1(xI1 , x̀I2 + B2). Z1 is a cen-
tered Gaussian process of covariance kernel σ2

1ρ1((x1, x2, x3), (t1, t2, t3)). Three DoE’s
are generated X1

1,X2
1,X3

1 ⊂ [0, 1]3, of the form:

X1
1 =




x
(1,1)
1 0.4 0.5
...

...
...

x
(1,n1

1)
1 0.4 0.5


 , X2

1 =




x
(1,n1

1+1)
1 0.1 0.7

...
...

...
x
(1,n1

1+n2
1)

1 0.1 0.7


 , X3

1 =




x
(1,n1

1+n2
1+1)

1 0.8 0.3
...

...
...

x
(1,n1

1+n2
1+n3

1)
1 0.8 0.3


 ,

with y1
1, y

2
1, y

3
1 the corresponding output values.

• At step 2, (x2, x3) are released and x4 is still fixed. Two different restrictions are
considered: f(x1, x2, x3,

x1+x2+x3

4
) and f(x1, x2, x3,

x1+x2+x3

4
+ 1

4
). The first subspace has

the same x4 value than at step 1, the value of x4 on the second subspace is modified
by an additive constant: 




x̀I3 = x1+x2+x3

4
,

B3 =

(
0
1
4

)
.

The restrictions can be summarized in the notation f(xI1 , xI2 , x̀I3 + B3). The two re-
strictions are modeled by Y2(x1, x2, x3, x4) = Y1(x1, x2, x3)+Z2(x1, x2, x3, x4), such that

132

f(x1, x2, x3,
x1+x2+x3

4
) is the realization of Y2(x1, x2, x3,

x1+x2+x3

4
), and f(x1, x2, x3,

x1+x2+x3

4
+

1
4
) is the realization of Y2(x1, x2, x3,

x1+x2+x3

4
+ 1

4
). This can be summarized by saying

that f(xI1 , xI2 , x̀I3 + B3) is the realization of Y2(xI1 , xI2 , x̀I3 + B3). Z2 is a centered
Gaussian process of covariance kernel σ2

2ρ2((x1, x2, x3, x4), (t1, t2, t3, t4)) such that:





Z2(x1, 0.4, 0.5,
x1+0.4+0.5

4
) = 0, ∀x1 ∈ [0, 1],

Z2(x1, 0.1, 0.7,
x1+0.1+0.7

4
) = 0, ∀x1 ∈ [0, 1],

Z2(x1, , 0.8, 0.3,
x1+0.8+0.3

4
) = 0, ∀x1 ∈ [0, 1].

This can be summarized in: Z2(xI1 , x̀I2 + B2, x̀I3) = 0, for all x1 in [0, 1]. Two DoE’s
are generated X1

2,X2
2 ⊂ [0, 1]4, of the form:





X1
2 =




x
(2,1)
1 x

(2,1)
2 x

(2,1)
3

x
(2,1)
1 +x

(2,1)
2 +x

(2,1)
3

4


 ,

...
...

...
...

x
(2,n1

2)
1 x

(2,n1
2)

2 x
(2,n1

2)
3

x
(2,n1

2)

1 +x
(2,n1

2)

2 +x
(2,n1

2)

3
4

X2
2 =




x
(2,n1

2+1)
1 x

(2,n1
2+1)

2 x
(2,n1

2+1)
3

x
(2,n1

2+1)

1 +x
(2,n1

2+1)

2 +x
(2,n1

2+1)

3
4 + 1

4


 ,

...
...

...
...

x
(2,n1

2+n2
2)

1 x
(2,n1

2+n2
2)

2 x
(2,n1

2+n2
2)

3
x

(2,n1
2+n2

2)

1 +x
(2,n1

2+n2
2)

2 +x
(2,n1

2+n2
2)

3
4 + 1

4

with y1
2, y

2
2 the corresponding output values.

• At step 3, x4 is released. f is modeled as the realization of Y3 which is defined by
Y3(x1, x2, x3, x4) = Y2(x1, x2, x3, x4) + Z3(x1, x2, x3, x4). Z3 is a centered Gaussian pro-
cess of covariance kernel σ2

3ρ3((x1, x2, x3, x4), (t1, t2, t3, t4)) such that:

{
Z3(x1, x2, x3,

x1+x2+x3

4
) = 0, ∀(x1, x2, x3) ∈ [0, 1]3,

Z3(x1, x2, x3,
x1+x2+x3

4
+ 1

4
) = 0, ∀(x1, x2, x3) ∈ [0, 1]3.

This can be summarized in: Z3(xI1 , xI2 , x̀I3 + B3) = 0, for all (xI1 , xI2) in [0, 1]3. One
DoE X3 ⊂ [0, 1]4 is generated with the corresponding output value y3:

X3 =



x

(3,1)
1 x

(3,1)
2 x

(3,1)
3 x

(3,1)
4

...
...

...
...

x
(3,n3)
1 x

(3,n3)
2 x

(3,n3)
3 x

(3,n3)
4


 .

The new definition of
∼
X1,

∼
X2, and

∼
X3 is shown on figure below.

133

The goal is now to find candidates for the correction processes.

• At step 2, J = {1}, I = {2, 3, 4}. Z2(x1, x2, x3, x4) must be null on:

D2 = {(s1, g2(s1) + (s2, s3, s4)), s = (s1, s2, s3, s4) ∈ [0, 1]× B2︸ ︷︷ ︸
=S2

},

with 



g2(s1) = (0.4, 0.5, s1+0.4+0.5
4

), ∀s1 ∈ [0, 1],

B2 =




0 0 0
−0.3 0.2 −0.3+0.2

4

0.4 −0.2 0.4−0.2
4


 .

Z2 is defined as:

Z2(x1, x2, x3, x4) =
∼
Z2(x1, x2, x3, x4)− E

[∼
Z2(x1, x2, x3, x4) |

∼
Z2(D2)

]
,

with
∼
Z2 a centered Gaussian process of covariance kernel equal to

σ2
2r2,1(x1, t1)r2,2((x2, x3, x4) − g2(x1), (t2, t3, t4) − g2(t1)) and r2,1, r2,2 stationary

correlation kernels. It is equal to:

Z2(x1, x2, x3, x4) =
∼
Z2(x1, x2, x3, x4)

− r2,2 ((x2, x3, x4)− g(x1),B2) r2,2 (B2,B2)−1
∼
Z2(x1, g(x1) + B2).

134

• At step 3, J = {1, 2, 3}, I = {4}. Z3 must be null on:

D3 = {(s1, s2, s3, g3(s1, s2, s3) + s4), (s1, s2, s3, s4) ∈ [0, 1]3 × B3︸ ︷︷ ︸
=S3

},

with 



g3(x1, x2, x3) = x1+x2+x3

4
, ∀(x1, x2, x3) ∈ [0, 1]3

B3 =

(
0
1
4

)
.

Z3 is defined as:

Z3(x1, x2, x3, x4) =
∼
Z3(x1, x2, x3, x4)− E

[∼
Z3(x1, x2, x3, x4) |

∼
Z3(D3)

]
,

with
∼
Z3 a centered Gaussian process of covariance kernel equal to

σ2
3r3,1((x1, x2, x3), (t1, t2, t3))r3,2(x4 − g3(x1, x2, x3), t4 − g3(t1, t2, t3)) and r3,1, r3,2

stationary correlation kernels.It is equal to:

Z3(x1, x2, x3, x4) =
∼
Z3(x1, x2, x3, x4)

−r3,2 (x4 − g3(x1, x2, x3),B3) r3,2 (B3,B3)−1
∼
Z3(x1, x2, x3, g3(x1, x2, x3) + B3)).

Enrichment In the example in 4D from subsection 3.1.1 in chapter 3, the metamodel
seqGPR has been built on the non-nested samples:





X1 =



x

(1)
1
...

x
(n1)
1


 ,

X2 =



x

(n1+1)
1 x

(n1+1)
2 x

(n1+1)
3

...
...

...
x

(n1+n2)
1 x

(n1+n2)
2 x

(n1+n2)
3


 ,

X3 =



x

(n1+n2+1)
1 x

(n1+n2+1)
2 x

(n1+n2+1)
3 x

(n1+n2+1)
4

...
...

...
...

x
(n1+n2+n3)
1 x

(n1+n2+n3)
2 x

(n1+n2+n3)
3 x

(n1+n2+n3)
4


 .

with the associated output values y1, y2, and y3. The designs
∼
X1 and

∼
X2 are defined as:





∼
X1 =




x
(1)
1
...

x
(n1+n2+n3)
1


 ,

∼
X2 =




x
(n1+1)
1 x

(n1+1)
2 x

(n1+1)
3

...
...

...
x

(n1+n2+n3)
1 x

(n1+n2+n3)
2 x

(n1+n2+n3)
3


 .

The enrichment point x = (x1, x2, x3, x4) must maximize the following objective function
which is an adjusted prediction variance taking into account the LOO-CV prediction error:

τ(x) = v̂(x) [1 + τ1(x) + τ2(x) + τ3(x)]

135

with: 



τ1(x) =

n1∑

i=1

(
yi − ŷ−i

(
x

(i)
1 , 0.4, 0.5,

x
(i)
1 +0.9

4

))2

v̂−i

(
x

(i)
1 , 0.4, 0.5,

x
(i)
1 +0.9

4

) 1Vi(x),

τ2(x) =

n1+n2∑

i=n1+1

(
yi − ŷ−i

(
x

(i)
1 , x

(i)
2 , x

(i)
3 ,

x
(i)
1 +x

(i)
2 +x

(i)
3

4

))2

v̂−i

(
x

(i)
1 , x

(i)
2 , x

(i)
3 ,

x
(i)
1 +x

(i)
2 +x

(i)
3

4

) 1Vi(x),

τ3(x) =

n1+n2+n3∑

i=n1+n2+1

(
yi − ŷ−i

(
x

(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4

))2

v̂−i

(
x

(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4

) 1Vi(x).

τ1, τ2, τ3 are LOO-CV criteria respectively applied to X1, X2, and X3.

The enrichment point must verify some constraints:




dist(xI1 ,
∼
X1) > u,

dist(xI2 , x̀I2) > v2,
dist(xI3 , x̀I3) > v3.

• The constraint dist(xI1 ,
∼
X1) > u ensures that

∼
X1,

∼
X2 and X3 enriched with x are still

composed of points sufficiently distant from each other. This constraint can be rewritten
as:

min
16i6n1+n2+n3

∣∣∣x1 − x(i)
1

∣∣∣ > u.

• The constraint dist(xI2 , x̀I2) > v2 ensures that
∼
X2 enriched with x is still far from the

nullity subspace D2 = {(x1, 0.4, 0.5), x1 ∈ [0, 1]}. This constraint can be rewritten as:
√

(x2 − 0.4)2 + (x3 − 0.5)2 > v2.

• The constraint dist(xI3 , x̀I3) > v3 ensures that X3 enriched with x is still far from the
nullity subspace D3 =

{
(x1, x2, x3,

x1+x2+x3

4
), (x1, x2, x3) ∈ [0, 1]3

}
. This constraint can

be rewritten as: ∣∣∣∣x4 −
x1 + x2 + x3

4

∣∣∣∣ > v3.

The optimization problem is then equal to:

min
x∈[0,1]4

τ(x),

∣∣∣∣∣∣∣∣∣∣∣

min
16i6n1+n2+n3

∣∣∣x1 − x(i)
1

∣∣∣ > u,

√
(x2 − 0.4)2 + (x3 − 0.5)2 > v2,

∣∣x4 − x1+x2+x3

4

∣∣ > v3.

136

9.2 Proofs state-of-the-art
This section gives the proofs of the propositions of chapter 2 which draws up a state of the
art of the tools linked to the thesis. As a recall, all equalities between processes are in L2(Ω)
(see definition 1):

X = Y ⇔ E
[
(X − Y)2

]
= 0.

9.2.1 Proof of proposition 1

This subsection deals with the proof of proposition 1, which gives an explicit formula of the
conditional expectation in the Gaussian case for any covariance matrix Σ22. As a reminder,
V = (V1,V2) is a Gaussian vector of mean vector and covariance matrix given by:





E [V] =

(
m1

m2

)
,

Cov (V ,V) =

(
Σ11 Σ12

Σ21 Σ22

)
,

wherem1 = E [V1],m2 = E [V2], Σ11 = Cov (V1,V1), Σ12 = Cov (V1,V2), Σ21 = Cov (V2,V1),
and Σ22 = Cov (V2,V2).

Proof Let V1 =
(
V

(1)
1 , · · · , V (m)

1

)′
and V 2 =

(
V

(1)
2 , · · · , V (n)

2

)′
denote the components of

V1 and V2. E [V1 | V2] is easier to compute component by component, i.e. E
[
V

(i)
1 | V2

]
.

• First case: m1 = m2 = 0. The goal is to find α = (α1, · · · , αn) solution of

min
α

E
[(
V

(i)
1 −α′V2

)2
]

Then the conditional expectation is equal to:

E
[
V

(i)
1 | V2

]
= α′V2.

The expectation to minimize can be rewritten as

E
[(
V

(i)
1 −α′V2

)2
]

= V ar
(
V

(i)
1

)
+α′Σ22α− 2α′Cov

(
V2, V

(i)
1

)
. (9.1)

As Σ22 is a covariance matrix, it is positive semidefinite and can be decomposed as:

Σ22 = PSP ′ (9.2)

with P × P ′ = I and S =




λ1 0 . . . 0 0 . . . 0

0
.

...
...

... 0
...

...

0 . . . 0 λq 0
... 0

0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0




where (λ1, · · · , λq) are the

positive eigen values of Σ22. Then, injecting the spectral decomposition of Σ22 (equation

137

(9.2)) in the expectation (equation (9.1)) and using PP ′ = I, it becomes:

E
[(
α′V2 − V (i)

1

)2
]

= V ar
(
V

(i)
1

)
+α′PSP ′α− 2α′P × P ′Cov

(
V2, V

(i)
1

)

= V ar
(
V

(i)
1

)
+ x′Sx− x′c,

with x = P ′α and c = 2P ′Cov
(
V2, V

(i)
1

)
. Then, denoting x = (x1, · · · , xn)′ and

c = (c1, · · · , cn)′, the goal is to find x minimizing

q∑

j=1

λjx
2
j −

n∑

j=1

cjxj

– If q = n (i.e. Σ22 is positive definite), then x must minimize
∑n

j=1 λjx
2
j − cjxj.

So each xj must minimize a quadratic polynomial λjx2
j − cjxj. The solution is

xj =
cj

2λj
, or

x =




c1
2λ1...
cn

2λn




= 1
2
S−1c

= S−1P ′Cov
(
V2, V

(i)
1

)
.

In this case
α = Px

= PS−1P ′Cov
(
V2, V

(i)
1

)

= Σ−1
22 Cov

(
V2, V

(i)
1

)
.

– If q < n, then x must minimize
∑q

j=1(λjx
2
j − cjxj) −

∑n
j=q+1 cjxj. In fact, for

all j > q + 1, cj = 0. Indeed, if there exists j > q + 1 such that cj 6= 0, then by

taking x =




1 0
...

...
j − 1 0

j cj +
V ar(V

(i)
1)

cj
j + 1 0
...

...
n 0




(or the corresponding α = P ′x), the initial

expectation to minimize becomes

E
[(
α′V2 − V (i)

1

)2
]

= V ar
(
V

(i)
1

)
+ x′Sx− x′c

= V ar
(
V

(i)
1

)
+ 0− c2

j − V ar
(
V

(i)
1

)

= −c2
j < 0

which is impossible (the expectation of a square in non-negative). This time, x

138

must minimize
∑q

j=1 λjx
2
j − cjxj. There is apparently an infinite number of solu-

tions x ∈








c1
2λ1...
cq

2λq

xq+1
...
xn




, (xq+1, · · · , xn) ∈ Rn−q





,

or α ∈





P




c1
2λ1...
cq

2λq

xq+1
...
xn




, (xq+1, · · · , xn) ∈ Rn−q





, but the corresponding random vari-

ables are all equal in L2(Ω). Indeed:

E
[((

c1
2λ1

. . . cq
2λq

xq+1 . . . xn
)
P ′ V2 −

(
c1

2λ1
. . . cp

2λq
tq+1 . . . tn

)
P ′ V2

)2
]

= E
[((

0 . . . 0 xq+1 . . . xn
)
P ′ V2 −

(
0 . . . 0 tq+1 . . . tn

)
P ′ V2

)2
]

= E
[((

0 . . . 0 xq+1 − tq+1 . . . xn − tn
)
P ′ V2

)2
]

=
(
0 . . . 0 xq+1 − tq+1 . . . xn − tn

)
P ′Σ22P︸ ︷︷ ︸

=S




0
...
0

xq+1 − tq+1
...

xn − tn




= 0

In particular, the simplest solution is:

α = P




c1
2λ1...
cq

2λq

0
...
0




= 1
2
P




1
λ1

0 · · · 0 0 · · · 0

0
.

...
...

... 0
... · · · ...

0 · · · 1
λq

0 · · · 0

0 · · · 0 0 · · · 0
...

...
...

0 · · · 0 0 · · · 0




c

= PS+P ′Cov
(
V2, V

(i)
1

)

= Σ+
22Cov

(
V2, V

(i)
1

)

139

The conditional expectation is equal to:

E [V1 | V2] =




E
[
V

(1)
1 | V2

]

...
E
[
V

(m)
1 | V2

]




=




Cov
(
V

(1)
1 ,V2

)
Σ+

22V2

...
Cov

(
V

(m)
1 ,V2

)
Σ+

22V2




=




Cov
(
V

(1)
1 ,V2

)

...
Cov

(
V

(m)
1 ,V2

)


Σ+

22V2

= Σ12Σ+
22V2

• Second case: m1 6= 0, m2 6= 0. V1 −m1 and V2 −m2 are centered Gaussian vectors.
The previous formula can be used:

E [V1 −m1 | V2 −m2] = Σ12Σ+
22 (V2 −m2) .

As the conditional expectation is linear and the event spaces generated by V2 and V2−
m2 are equal, it follows that:

E [V1 | V2] = m1 + Σ12Σ+
22 (V2 −m2) .

The mean of E [V1 | V2] is m1 and its covariance matrix is:

Cov (E [V1 | V2] ,E [V1 | V2]) = Cov
(
Σ12Σ+

22V2,Σ12Σ+
22V2

)

= Σ12 Σ+
22Σ22Σ+

22︸ ︷︷ ︸
=Σ+

22

Σ21

= Σ12Σ+
22Σ21.

9.2.2 Proof of proposition 2

This section deals with the proof of proposition 2, which gives a formula of the conditional
vector [V1 | V2 = v], following the notations of subsection 9.2.1.

Proof • First case: m1 = m2 = 0. As for all i in J1,mK, E
[
V

(i)
1 | V2

]
is the orthogonal

projection V (i)
1 in span(V2), V1 can be decomposed as

V1 = E [V1 | V2] + (V1 − E [V1 | V2])
= Σ12Σ+

22V2 + (V1 − E [V1 | V2])
(9.3)

with for all i in J1,mK, V (i)
1 − E

[
V

(i)
1 | V2

]
⊥ span(V2). Then conditioning by V2 = v

in equation (9.3):

[V1 | V2 = v] = Σ12Σ+
22v + (V1 − E [V1 | V2]) . (9.4)

For all i in J1,mK, V (i)
1 − E

[
V

(i)
1 | V2

]
is unchanged because of its orthogonality to

span(V2).

140

• Second case: m1 6= 0, m2 6= 0. The previous formula can be applied to V1 −m1 and
V2 −m2:

[V1 −m1 | V2 −m2 = v −m2] = Σ12Σ+
22 (v −m2) + (V1 −m1 − E [V1 −m1 | V2 −m2]) ,

⇔ [V1 | V2 = v]−m1 = Σ12Σ+
22 (v −m2) + (V1 −m1 − E [V1 | V2] +m1) ,

⇔ [V1 | V2 = v] = m1 + Σ12Σ+
22 (v −m2) + (V1 − E [V1 | V2]) ,

The expectation of [V1 | V2 = v] has the same formula as E [V1 | V2] but V2 is replaced by v:

E [V1 | V2 = v] = m1 + Σ12Σ+
22 (v −m2) .

The covariance matrix of [V1 | V2 = v] is equal to:

Cov ([V1 | V2 = v] , [V1 | V2 = v]) = Cov (V1 − E [V1 | V2] ,V1 − E [V1 | V2])
= Cov (V1,V1) + Cov (E [V1 | V2] ,E [V1 | V2])
− 2Cov (V1,E [V1 | V2])

= Σ11 + Σ12Σ+
22Σ21 − 2Σ12Σ+

22Σ21

= Σ11 − Σ12Σ+
22Σ21

9.2.3 Proof of proposition 3

This subsection deals with the proof of proposition 3, which gives the equivalence between
all the ways of conditioning a Gaussian vector. As a recall, (U,V ,W) is a Gaussian vector
with U a Gaussian variable and V and W Gaussian vectors.

Proof • Case where all variables are centered.

– First way of conditioning U : Z1 = [U | V = v,W = w]. U can be decomposed as

U = E [U | V ,W] + T
= α′V + β′W + T,

(9.5)

with T ⊥ span(V ,W). Using the decomposition (9.5), Z1 is equal to:

Z1 = α′v + β′w + T.

– Second way of conditioning U : X = [U | V = v], Y = [W | V = v] and then
Z2 = [X | Y = w]. Using the decomposition of U in equation (9.5), X is equal to:

X = α′v + β′Y + T

because T ⊥ V . Then Z2 is equal to

Z2 = α′v + β′w + [T | Y = w] .

As Y ∈ span(V), T ⊥ Y , so [T | Y = w] = T . Finally:

Z2 = α′v + β′w + T = Z1.

141

• General case: let mU , mV , andmW denote the means of U , V , andW . The previous
formulae can be applied using Û = U−mU , V̂ = V −mV , v̂ = v−mV , Ŵ = W−mW ,
ŵ = w −mW , X̂ =

[
Û | V̂ = v̂

]
, Ŷ =

[
Ŵ | V̂ = v̂

]
, Ẑ1 =

[
Û | V̂ = v̂, Ŵ = ŵ

]
,

and Ẑ2 =
[
X̂ | Ŷ = ŵ

]
. Ẑ1 can be rewritten as

Ẑ1 =
[
Û | V̂ = v̂, Ŵ = ŵ

]

=
[
U −mU | V −mV = v −mV , Ŵ −mW = w −mW

]

= [U | V = v,W = w]−mU

= Z1 −mU .

X̂ can be rewritten as

X̂ =
[
Û | V̂ = v̂

]

= [U | V = v]−mU

= X −mU .

Similarly, Ŷ is equal to Ŷ = Y −mW . Finally Ẑ2 is equal to

Ẑ2 =
[
X̂ | Ŷ = ŵ

]

= [X | Y = w]−mU

= Z2 −mU .

The study of the previous case implies Ẑ1 = Ẑ2. As a consequence Z1 = Z2.

9.2.4 Proof of proposition 4 [Friedman et al., 2001]

This subsection deals with the proof of proposition 4, which says that the likelihood increases
at each iteration of the EM algorithm.

Proof By definition of the conditional density

hZ;η̂(z) =
hZ,Zm;η̂(z,zm)

hZm|Z=z;η̂(zm)

=
hT ;η̂(t)

hZm|Z=z;η̂(zm)

Taking the log:
l(η̂, z) = l0(η̂, t)− log(hZm|Z=z;η̂(z

m))

Randomizing the expression:

l(η̂, Z) = l0(η̂, T)− log(hZm|Z=z;η̂(Z
m)1Z=z)

Taking the expectation conditionally to Z = z with the assumption that Z distribution is

142

parameterized by η̂(k):

l(η̂; z) = Eη̂(k) [l0(η̂;T) | Z = z]
︸ ︷︷ ︸

Q(η̂,η̂(k))

−Eη̂(k)

[
log
(
hZm|Z=z;η̂(Z

m)
)
| Z = z

]

= Q(η̂, η̂(k))− Eη̂(k)


log


hZm | Z = z︸ ︷︷ ︸

∼
Z
m

;η̂
(Zm | Z = z︸ ︷︷ ︸

∼
Z
m

)







= Q(η̂, η̂(k))− Eη̂(k)

[
log

(
h∼
Z
m

;η̂
(
∼
Z
m

)

)]

︸ ︷︷ ︸
R(η̂,η̂(k))

= Q(η̂, η̂(k))−R(η̂, η̂(k))

Then:

l(η̂(k+1), z)− l(η̂(k), z) =
(
Q(η̂(k+1), η̂(k))−Q(η̂(k); η̂(k))

)
−
(
R(η̂(k+1), η̂(k))−R(η̂(k); η̂(k))

)

By definition of η̂(k+1):

Q(η̂(k+1), η̂(k))−Q(η̂(k); η̂(k)) > 0

So it must be shown that:

R = R(η̂(k+1), η̂(k))−R(η̂(k); η̂(k)) 6 0

143

Indeed:
R = Eη̂(k)

[
log

(
h∼
Z
m

;η̂(k+1)
(
∼
Z
m

)

)]
− Eη̂(k)

[
log

(
h∼
Z
m

;η̂(k)
(
∼
Z
m

)

)]

= Eη̂(k)

[
log

(
h∼
Z
m

;η̂(k+1)
(
∼
Z
m

)

h∼
Z
m

;η̂(k)
(
∼
Z
m

)

)]

6 log



Eη̂(k)




h∼
Z
m

;η̂(k+1)
(
∼
Z
m

)

h∼
Z
m

;η̂(k)
(
∼
Z
m

)
︸ ︷︷ ︸

g(
∼
Z
m

)







(Jensen inequality applied to a concave function)

6 log

(
Eη̂(k)

[
g(
∼
Z
m

)

])

6 log
(∫

g(
∼
z
m

)h∼
Z
m

;η̂(k)
(
∼
z
m

)dµ(
∼
z
m

)
)

Law of the unconscious statistician

6 log

(
∫ h∼

Z
m

;η̂(k+1)
(
∼
z
m

)

h∼
Z
m

;η̂(k)
(
∼
z
m

)
h∼
Z
m

;η̂(k)
(
∼
z
m

)dµ(
∼
z
m

)

)

6 log
(∫

h∼
Z
m

;η̂(k+1)
(
∼
z
m

)dµ(
∼
z
m

)
)

6 log(1)

6 0

9.2.5 Proof of proposition 5 [Zertuche, 2015]

This subsection deals with the proof of proposition 5 which gives the formulae used in the
EM algorithm.

Proof • The randomized complete data loglikelihood is equal to

l0(η;Y1(X1), Y1(X2), Yc(X2)) = log hY1(X1),Y1(X2),Yc(X2);η (Y1(X1), Y1(X2), Yc(X2))
= log hY1(X1),Y1(X2);η1 (Y1(X1), Y1(X2)) + log hYc(X2);ηc (Yc(X2))

• The expectation to maximize is

Q(η, η∗) = Eη∗ [l0(η;Y1(X1), Y1(X2), Yc(X2)) | Y1(X1) = y1, Y2(X2) = y2]
= Eη∗

[
log hY1(X1),Y1(X2);η1 (Y1(X1), Y1(X2)) | Y1(X1) = y1, Y2(X2) = y2

]
︸ ︷︷ ︸

=Q1(η1,η∗)

+Eη∗
[
log hYc(X2);ηc (Yc(X2)) | Y1(X1) = y1, Y2(X2) = y2

]
︸ ︷︷ ︸

Qc(ηc,η∗)

144

• Q1 can be rewritten as:
Q1(η1, η

∗) = Eη∗
[
log hY1(X1),Y1(X2);η1

(Y1(X1), Y1(X2)) | Y1(X1) = y1, Y2(X2) = y2
]

= Eη∗


log hY1(X1),Y1(X2);η1


y1, Y1(X2) | Y1(X1) = y1, Y2(X2) = y2︸ ︷︷ ︸

=
∼
Y 1(X2)







= −n1+n2
2 log 2π − 1

2 log |Σθ1 |

− Eη∗




(y1 −m11n1)′
(
∼
Y 1(X2)−m11n2

)′Σ−1
θ1

 y1 −m11n1∼
Y 1(X2)−m11n2


2




= −n1+n2
2 log 2π − 1

2 log |Σθ1 |

−1
2 tr

(
Σ−1
θ1
covη∗

((
y1 −m11n1∼

Y 1(X2)−m11n2

)
,

(
y1 −m11n1∼

Y 1(X2)−m11n2

)))

︸ ︷︷ ︸
=t

−1
2




(y1 −m11n1)′



Eη∗

[
∼
Y 1(X2)

]

︸ ︷︷ ︸
=
∼
µη∗

−m11n2




′


Σ−1
θ1




y1 −m11n1

Eη∗
[
∼
Y 1(X2)

]

︸ ︷︷ ︸
=
∼
µη∗

−m11n2




The last equality is obtained using the expectation of a quadratic form formula. Using
the componentwise matrix inversion of Σθ1, the trace term is equal to:

t = tr


Σ−1

θ1




0n1,n1 0n1,n2

0n2,n1 covη∗(
∼
Y 1(X2),

∼
Y 1(X2))︸ ︷︷ ︸

=
∼
Ση∗







= tr
(

(kθ1(X2,X2)− kθ1(X2,X1)kθ1(X1,X1)−1kθ1(X1,X2))
−1
∼
Ση∗

)

• Qc can be rewritten as
Qc(ηc, η∗) = Eη∗

[
log hYc(X2);ηc (Yc(X2)) | Y1(X1) = y1, Y2(X2) = y2

]

= Eη∗
[
log hYc(X2);ηc (Y2(X2)− g(X2) ◦ Y1(X2)) | Y1(X1) = y1, Y2(X2) = y2

]

= Eη∗
[
log hYc(X2);ηc

(
y2 − g(X2) ◦

∼
Y 1(X2)

)]

= −n2
2 log 2π − 1

2 log |Σθc |

−1
2Eη∗

[(
y2 − g(X2) ◦

∼
Y 1(X2)−mc1n2

)′
Σ−1
θc

(
y2 − g(X2) ◦

∼
Y 1(X2)−mc1n2

)]

= −n2
2 log(2π)− 1

2 log(|Σθd |)
−1

2 tr

(
Σ−1
θd
diag(g(X2))

∼
Ση∗diag(g(X2))

)

−1
2

(
Y2 − g(X2) ◦ ∼

µη∗ −md1n2

)′
Σ−1
θd

(
Y2 − g(X2) ◦ ∼

µη∗ −md1n2

)

145

9.2.6 Proof of proposition 6 [Le Gratiet, 2013a]

This subsection deals with the proof of proposition 6 which gives a formula of the sobol index
easy to implement by a Monte-Carlo estimation.

Proof Let X = (X1, · · · , Xi−1, Xi, Xi+1, · · · , Xd) be a random vector. Let
∼
X =

(
∼
X1, · · · ,

∼
X i−1, Xi,

∼
X i+1, · · · ,

∼
Xd) be another random vector with

∼
Xj independent of same

law than Xj. The covariance between f(X) and f(
∼
X) can be rewritten as:

Cov(f(X), f(
∼
X)) = E

[
f(X)f(

∼
X)
]
− E [f(X)]E

[
f(
∼
X)
]

= E
[
f(X)f(

∼
X)
]
− E [f(X)]2 , because f(X)

L
= f(

∼
X)

= E
[
E
[
f(X)f(

∼
X) | Xi

]]
− E [E [f(X) | Xi]]

2

= E
[
E [f(X) | Xi]E

[
f(
∼
X) | Xi

]]
− E [E [f(X) | Xi]]

2 , because
∼
Xj ⊥ Xj

= E
[
E [f(X) | Xi]

2]− E [E [f(X) | Xi]]
2

= V ar(E [f(X) | Xi]).

9.2.7 Proof of proposition 7

This subsection deals with the proof of proposition 7 which gives a formula of the expectation
of a centered Gaussian process

∼
Z of kernel k conditioned on any set of points D indexed by

a set S of measure ν. This expectation is defined as the projection on the Gaussian space
generated by {

∼
Z(t), t ∈ D} and is denoted by:

P (
∼
Z)(x) = E

[∼
Z(x) |

∼
Z(t), t ∈ D

]
.

The proof given in this appendix is different from the one proposed by [Gauthier, 2011]. It
uses the Karhunen-Loeve decomposition.

Proof • The first step consists in focusing on the restriction of P (
∼
Z) on D, as in this

case P (
∼
Z) =

∼
Z. They can be considered as functions of s defined on S. The Karhunen-

Loeve decomposition of
∼
Z (and so of P (

∼
Z)) on D is:

P (
∼
Z)(xs) =

+∞∑

n=1

∼
φn(s)

∫

S

∼
φn(s)

∼
Z(xs)dν(s).

(
∼
φn)+∞

n=1 is an orthonormal basis of L2(S, ν) of eigenfunctions of the eigenvalue problem:
∫

S
k(xs, xu)

∼
φn(u)dν(u) = λn

∼
φn(s)

with ∫

S

∼
φn(s)

∼
φm(s)dν(s) = δnm.

146

•
∼
φn can be seen as the restriction on D of a function φn defined on XZ:

∼
φn(s) = φn(xs).

Then, the expectation is searched of the form:

P (
∼
Z)(x) =

+∞∑

n=1

φn(x)

∫

S

∼
φn(s)

∼
Z(xs)dν(s), ∀x ∈ XZ .

The goal is to find φn such that P (
∼
Z)(x) is the orthogonal projection of

∼
Z(x) on the

Gaussian space generated by
∼
Z(D):

Cov
(∼
Z(x)− P (

∼
Z)(x), P (

∼
Z)(x)

)
= 0

⇔ Cov
(∼
Z(x), P (

∼
Z)(x)

)
− Cov

(
P (
∼
Z)(x), P (

∼
Z)(x)

)
= 0

(9.6)

The first term is equal to:

Cov
(∼
Z(x), P (

∼
Z)(x)

)
= Cov

(∼
Z(x),

∑+∞
n=1 φn(x)

∫
S

∼
φn(s)

∼
Z(xs)dν(s)

)

=
∑+∞

n=1 φn(x)
∫
S

∼
φn(s)Cov

(∼
Z(x),

∼
Z(xs)

)
dν(s)

=
∑+∞

n=1 φn(x)
∫
S

∼
φn(s)k(x, xs)dν(s).

the second term is equal to:

Cov
(
P (
∼
Z)(x), P (

∼
Z)(x)

)
= Cov

(∑+∞
n=1 φn(x)

∫
S

∼
φn(s)

∼
Z(xs)dν(s),

∑+∞
m=1 φm(x)

∫
S

∼
φm(u)

∼
Z(xu)dν(u)

)

=
∑+∞

n=1

∑+∞
m=1 φn(x)φm(x)

∫
S

∼
φn(s)

∫
S

∼
φm(u)Cov (Z(xs), Z(xu)) dν(u)dν(s)

=
∑+∞

n=1

∑+∞
m=1 φn(x)φm(x)

∫
S

∼
φn(s)

∫

S

∼
φm(u)k(xs, xu)dν(u)

︸ ︷︷ ︸
λm
∼
φm(s)

dν(s)

=
∑+∞

n=1

∑+∞
m=1 λmφn(x)φm(x)

∫

S

∼
φn(s)

∼
φm(s)dν(s)

︸ ︷︷ ︸
δnm

=
∑+∞

n=1 λnφn(x)2.

Using the expressions obtained above, equation (9.6) becomes:

+∞∑

n=1

φn(x)

[∫

S

∼
φn(s)k(x, xs)dν(s)− λnφn(x)

]
= 0.

This equation is satisfied by defining:

φn(x) =
1

λn

∫

S
k(x, xs)

∼
φn(s)dν(s).

147

With this definition,
∼
φn is the restriction of φn on D:

φn(xs) = 1
λn

∫

S
k(xs, xu)

∼
φn(u)dν(u)

︸ ︷︷ ︸
λn
∼
φn(s)

=
∼
φn(s).

9.2.8 Proof of proposition 8 [Gauthier and Bay, 2012a]

This subsection recalls the proof of proposition 8, which establishes, when D = D is finite,
the equality between the two formulae of Z(x) =

∼
Z(x)−E

[∼
Z(x) | Z(D)

]
, with

∼
Z a centered

Gaussian process defined on X = Rd of covariance kernel k, and D = {xs, s ∈ S} a subset of
X indexed by S of measure ν. The first formula of this process is described in proposition 2:

Z(x) =
[∼
Z(x) |

∼
Z(D) = 0

]
=
∼
Z(x)− k(x,D)k(D,D)−1

∼
Z(D).

The second formula is given in proposition 7, the reader can refer to it for the notations:

Z(x) =
∼
Z(x)−

L∑

n=1

φn(x)

∫

S

∼
φn(s)

∼
Z(xs)dν(s).

Proof Let D =
{
x(1), . . . , x(L)

}
denote the elements of D. D is indexed by S = {1, . . . , L}

of measure ν =
∑L

i=1 ωiδi, with δi the Dirac measure of integer i and ωi > 0 the weight
associated with i. X = Rd is provided with the scalar product (x, y)W = x′Wy with W =


ω1 0 . . . 0

0
.

... 0
0 . . . 0 ωL


.

• Eigenvalue problem. The eigenvalue problem is equal to:
∫
S k(xt, xs)

∼
φ(s)dν(s) = λ

∼
φ(t), ∀t ∈ S,

⇔ ∑L
j=1 k(x(i), x(j))ωj

∼
φ(j) = λ

∼
φ(i), ∀i ∈ {1, . . . , L} ,

⇔ k(D,D)W
∼
φ(S) = λ

∼
φ(S),

⇔ TW
∼
φ(S) = λ

∼
φ(S),

where T = k(D,D), λ is an eigen value of the problem, and especially of the matrix
TW , and

∼
φ : S → R is an eigen function of the problem and can be seen as an

eigen vector of the matrix TW , by denoting it as
∼
φ(S).

• Eigen values and orthonormal eigen vectors. The endomorphism TW is a self-
adoint endomorphism of Rd for the scalar product (,)W :

(TWx, y)W = (TWx)′Wy
= x′WTWy
= x′W (TWy)
= (x, TWy)W .

148

As a consequence (see theorem 3 of [Gourdon, 1994]), there exist eigen vectors (
∼
φn(S))Ln=1

of TW that form an orthonormal basis of X = Rd for the scalar product (,)W . Let de-
note by (λn)Ln=1 the associated eigen values of TW , the spectral decomposition of TW
is TW = PΛP−1 where

Λ =




λ1 0 . . . 0

0
.

... 0
0 . . . 0 λL


 , P =



| |

∼
φ1(S) . . .

∼
φL(S)

| |


 ,

with P ′WP = IL.

• Formula of φn: The function φn(x) (x ∈ X) is equal to:

φn(x) = 1
λn

∫
S k(x, xs)

∼
φn(s)dν(s)

= 1
λn
k(x,D)W

∼
φn(S)

= 1
λn

∼
φn(S)′Wk(D, x).

The functional vector φ(x) =



φ1(x)
...

φL(x)


 is equal to:

φ(x) = Λ−1P ′Wk(D, x).

• Value of the expectation. The formula of the expectation E
[∼
Z(x) |

∼
Z(D)

]
given in

proposition 7 becomes:

E
[∼
Z(x) |

∼
Z(D)

]
=

∑L
n=1 φn(x)

∫
S

∼
φn(s)

∼
Z(xs)dν(s)

=
(
φ1(x) . . . φL(x)

)



∫
S

∼
φ1(s)

∼
Z(xs)dν(s)
...

∫
S

∼
φL(s)

∼
Z(xs)dν(s)




= φ(x)′




∼
φ1(S)′W

∼
Z(D)

...
∼
φL(S)′W

∼
Z(D)




= φ(x)′




∼
φ1(S)′

...
∼
φL(S)′


W

∼
Z(D)

= φ(x)′P ′W
∼
Z(D)

= k(x,D)WPΛ−1P ′W
∼
Z(D)

= k(x,D)WPΛ−1P ′WPP−1
∼
Z(D)

= k(x,D)WPΛ−1P−1
∼
Z(D)

= k(x,D)W (TW)−1
∼
Z(D)

= k(x,D)WW−1T−1
∼
Z(D)

= k(x,D)T−1
∼
Z(D)

= k(x,D)k(D,D)−1
∼
Z(D).

149

This formula coincides with the formula given in proposition 1 and gives the equality
wanted.

9.3 Proofs of PhD propositions
This section deals with all the proofs related to the analytical formulae of the P process in
the context of the seqGPR metamodel.

9.3.1 Proof of proposition 9 for a Monte-Carlo method

This subsection deals with the proof of proposition 9, which establishes the equivalence
between approximating the process ZP (defined in equation (3.5)) by discretizing its spectral
decomposition with a Monte-Carlo method and conditioning it on the discretization points.

Proof D = {(sJ , g(sJ)), sJ ∈ [0, 1]dJ} is indexed by S = [0, 1]dJ of measure ν = λ (Lebesgues
measure).

• The eigenvalue problem is equal to:

∫
S k(xsJ , xuJ)

∼
φ(uJ)duJ = λ

∼
φ(sJ), ∀sJ ∈ S,

⇔
∫

[0,1]dJ
σ2r((sJ , g(sJ)), (uJ , g(uJ)))

∼
φ(uJ)duJ = λ

∼
φ(sJ) ∀sJ ∈ [0, 1]dJ .

It is discretized using a Monte-Carlo method. A sample S = (s
(i)
J)16i6L is generated

uniformly in [0, 1]dJ to build D =
(
s

(i)
J , g(s

(i)
J)
)

16i6L
which is a discretization of the

subspace D = {(sJ , g(sJ)), sJ ∈ [0, 1]dJ}. The Monte-Carlo approximation of the inte-
gral in the eigenvalue problem is:

1

L

L∑

i=1

σ2r((sJ , g(sJ)), (s
(i)
J , g(s

(i)
J)))

∼
φ(s

(i)
J) ≈ λ

∼
φ(sJ).

Considering only the values of
∼
φ in S, the eigenvalue problem becomes a finite dimen-

sional one: (
1

L
σ2r(D,D)

)
∼
Φ = γ

∼
Φ. (9.7)

The solutions of (9.7) are noted (γn, Vn)16n6L. The Vn are taken such that they verify:

V ′n Vm = δnm.

The discretization of
∼
φn (noted

∼
Φn) must verify the discrete equivalent of

∫

[0,1]dJ

∼
φn(sJ)

∼
φm(sJ)dsJ = δnm,

which is
1

L

∼
Φ
′

n

∼
Φm = δnm.

So the following relation between Vn and
∼
Φn is verified: Vn = 1√

L

∼
Φn ⇔

∼
Φn =

√
LVn.

150

• Approximation of φn:
As

φn(xJ , xI) = 1
λn

∫
[0,1]dJ

σ2r ((xJ , xI), (sJ , g(sJ)))
∼
φn(sJ)dsJ ∀(xJ , xI) ∈ [0, 1]dJ × [0, 1]dI ,

using the same Monte-Carlo approximation and replacing (λn,
∼
φn) by (γn,

∼
Φn), the fol-

lowing approximation of φn is obtained:

φD
n(x) = 1

γn
1
L
σ2r(x,D)

∼
Φn ∀x ∈ [0, 1]dJ+dI .

• Decomposition of the matrix (σ2r(D,D))
−1

(γn, Vn)n>1 are the eigenvalues and (orthonormal) eigenvectors of 1
L
σ2r(D,D). So

(1
γn
, Vn)n>1 are the eigenvalues and (orthonormal) eigenvectors of L (σ2r(D,D))

−1, and:

L (σ2r(D,D))
−1

=
L∑

n=1

1

γn
VnV

′
n,

=
L∑

n=1

1

γn

(
1√
L

∼
Φn

)(
1√
L

∼
Φ
′

n

)
,

=
1

L

L∑

n=1

γn
∼
Φn

∼
Φ
′

n.

So
(
σ2r(D,D)

)−1
=

1

L2

L∑

n=1

γn
∼
Φn

∼
Φ
′

n.

• Approximation of the process ZP :

The integral
∫

[0,1]dJ

∼
φn(tJ)

∼
Z(tJ , g(tJ))dtJ , involved in the formula of ZP (see (3.5)), is

discretized the same way as before. It becomes:
1

L

∼
Φ
′

n

∼
Z(D).

The approximation of the process is:

ZD(x) =
∼
Z(x)−

L∑

n=1

φD
n(x)

(
1

L

∼
Φ
′

n

∼
Z(D)

)
,

=
∼
Z(x)−

L∑

n=1

(
1

L

1

γn
σ2r(x,D)

∼
Φn

)(
1

L

∼
Φ
′

n

∼
Z(D)

)
,

=
∼
Z(x)− (σ2r(x,D))

(
1

L2

L∑

n=1

1

γn

∼
Φn

∼
Φ
′

n

)
∼
Z(D),

=
∼
Z(x)− (σ2r(x,D)) (σ2r(D,D))

−1
∼
Z(D),

=
∼
Z(x)− E[

∼
Z(x) |

∼
Z(D)],

=
[∼
Z(x) |

∼
Z(D) = 0

]
.

The process approximating ZP is the conditioned (on a finite set of points) Gaussian process
ZD. It is a centered Gaussian process of covariance kernel σ2ρD with:

ρD(x, x′) = r(x, x′)− r(x,D)r(D,D)−1r(D, x′) ∀x, x′ ∈ [0, 1]dJ+dI .

151

9.3.2 Proof of proposition 10

This subsection deals with the proof of proposition 10 which gives a closed form formula
of the process ZP =

∼
Z − E

[∼
Z |

∼
Z(D)

]
(where D = {(sJ , g(sJ))︸ ︷︷ ︸

xsJ

, sJ ∈ S} is indexed by

S = [0, 1]dJ of measure ν) for a particular choice of the kernel of
∼
Z: k((xJ , xI), (tJ , tI)) =

σ2rJ(xJ , tJ)rI(xI − g(xJ), tI − g(tJ)) with rJ and rI two stationary correlation kernels. In
this case, the formula is:

ZP (xJ , xI) =
∼
Z(xJ , xI)− rI(xI − g(xJ), 0)

∼
Z(xJ , xI).

Proof • The eigenvalue problem is equal to:

∫
S
(
σ2r (xsJ , xuJ)

)∼
φn(uJ)dν(uJ) = λn

∼
φn(sJ), ∀sJ ∈ S,

⇔
∫

[0,1]dJ

(
σ2r ((sJ , g(sJ)), (uJ , g(uJ)))

)∼
φn(uJ)dν(uJ) = λn

∼
φn(sJ), ∀sJ ∈ [0, 1]dJ ,

⇔
∫

[0,1]dJ

(
σ2rJ(sJ , uJ)

)
rI (g(sJ)− g(sJ), g(uJ)− g(uJ))

∼
φn(uJ)dν(uJ) = λn

∼
φn(sJ),

⇔
∫

[0,1]dJ

(
σ2rJ(sJ , uJ)

)
rI(0, 0)︸ ︷︷ ︸

=1

∼
φn(uJ)dν(uJ) = λn

∼
φn(sJ),

⇔
∫

[0,1]dJ

(
σ2rJ(sJ , uJ)

)∼
φn(uJ)dν(uJ) = λn

∼
φn(sJ).

(9.8)

• Expression of φn:
φn can be rewritten as (for (xJ , xI) in [0, 1]dJ × [0, 1]dI):

φn(xJ , xI) = 1
λn

∫
[0,1]dJ

(
σ2r ((xJ , xI), (sJ , g(sJ)))

)∼
φn(sJ)dν(sJ),

= 1
λn

∫
[0,1]dJ

(
σ2rJ(xJ , sJ)

)
rI (xI − g(xJ), g(sJ)− g(sJ))

∼
φn(sJ)dν(sJ),

= 1
λn

(∫
[0,1]dJ

(
σ2rJ(xJ , sJ)

)∼
φn(sJ)dν(sJ)

)
rI (xI − g(xJ), 0)) ,

= 1
λn

(
λn
∼
φn(xJ)

)
rI (xI − g(xJ), 0)) ,

=
∼
φn(xJ)rI (xI − g(xJ), 0)) .

The second last equality is due to the fact that
∼
φn is solution of the eigenvalue problem

(9.8).

• The P process can be rewritten as (for (xJ , xI) in [0, 1]dJ × [0, 1]dI):

ZP (xJ , xI) =
∼
Z(xJ , xI)−

+∞∑

n=1

φn(xJ , xI)

∫

[0,1]dJ

∼
φn(sJ)

∼
Z(sJ , g(sJ))dν(sJ),

=
∼
Z(xJ , xI)−

+∞∑

n=1

∼
φn(xJ)rI (xI − g(xJ), 0))

∫

[0,1]dJ

∼
φn(sJ)

∼
Z(sJ , g(sJ))dν(sJ),

=
∼
Z(xJ , xI)−

(
+∞∑

n=1

∼
φn(xJ)

∫

[0,1]dJ

∼
φn(sJ)

∼
Z(sJ , g(sJ))dν(sJ)

)
rI (xI − g(xJ), 0) ,

and, because
∼
Z(xJ , g(xJ)) belongs to the sub Gaussian space engendered by the

{
∼
Z(sJ , g(sJ)) ∀sJ ∈ [0, 1]dJ}, its projection in this subspace is equal to itself:

152

∼
Z(xJ , g(xJ)) = E[

∼
Z(xJ , g(xJ)) |

∼
Z(sJ , g(sJ))∀sJ], ∀xJ ∈ [0, 1]dJ ,

=
+∞∑

n=1

φn(xJ , g(xJ))

∫
∼
φn(sJ)

∼
Z(sJ , g(sJ))dν(sJ),

=
+∞∑

n=1

∼
φn(xJ) rI (g(xJ)− g(xJ), 0))︸ ︷︷ ︸

=1

∫
∼
φn(sJ)

∼
Z(sJ , g(sJ))dν(sJ),

=
+∞∑

n=1

∼
φn(xJ)

∫
∼
φn(sJ)

∼
Z(sJ , g(sJ))dν(sJ).

The second equality is the formula of the conditional expectation (see (3.6)).
Finally:

ZP (x) =
∼
Z(x)− rI (xI − g(xJ), 0)

∼
Z(xJ , g(xJ)).

9.3.3 Proof of proposition 13

This subsection deals with the proof of proposition 13, which gives an analytical formula of
the P process in the case where the conditioning is done on multiple subspaces.

Proof The notations of subsection 2.2.2 in chapter 2 are adapted to proposition 13: D =
{xs, s ∈ S}, with S = [0, 1]dJ ×B. ν = λ⊗ (

∑nB
i=1 δbi) is choosen as a measure on S. λ is the

Lebesgues measure on [0, 1]dJ , bi is the ith component of B, K is the size of B, and δbi is the
Dirac measure at bi.

• The eigenvalue problem can be rewritten as (for (sI , sJ) in S):
∫
S σ

2r((sJ , g(sJ) + sI − g(sJ)), (tJ , g(tJ) + tI − g(tJ)))
∼
φn(tJ , tI)dν(tJ , tI) = λn

∼
φn(sJ , sI)

↔
∫
S σ

2r((sJ , sI), (tJ , tI))
∼
φn(tJ , tI)dν(tJ , tI) = λn

∼
φn(sJ , sI)

⇔
∫
[0,1]dJ

σ2rJ(sJ , tJ)

(
∫
B rI(sI , tI)

∼
φn(tJ , tI)(

K∑

i=1

dδbi(tI))

)
dtJ = λn

∼
φn(sJ , sI),

⇔
∫
[0,1]dJ

σ2rJ(sJ , tJ)

(
K∑

i=1

rI(sI , bi)
∼
φn(tJ , bi)

)
dtJ = λn

∼
φn(sJ , sI),

This eigenvalue problem has the following matricial form:

σ2rI(B,B)
(∫

[0,1]dJ
rJ(sJ , tJ)

∼
φn(tJ ,B)dtJ

)
= λn

∼
φn(sJ ,B) ∀sJ ∈ [0, 1]dJ , (9.9)

with rI(B,B) = (rI(bi, bj))16i6j6K the covariance matrix composed of the rI(bi, bj), and
∼
φn(·,B) the column vector whose components are the functions xJ 7→

∼
φn(xJ , bi) .

• φn(xJ , xI) (n > 1, (xJ , xI) ∈ [0, 1]dJ+dI) is equal to:

φn(xJ , xI) = 1
λn

∫
[0,1]dJ×B σ

2r((xJ , xI), (tJ , tI))
∼
φn(tJ , tI)dν(tJ , tI),

= σ2

λn

∫
[0,1]dJ rJ(xJ , tJ)

(∑
tI∈B rI(xI , tI)

∼
φn(tJ , tI)dν(tI)

)
dtJ

= rI(xI ,B)

(
σ2

λn

∫
[0,1]dJ rJ(xJ , tJ)

∼
φn(tJ ,B)dtJ

)

= rI(xI ,B)rI(B,B)−1

(
σ2rI(B,B)

λn

∫
[0,1]dJ rJ(xJ , tJ)

∼
φn(tJ ,B)dtJ

)

= rI(xI ,B)rI(B,B)−1
∼
φn(xJ ,B) (using (9.9)).

153

• The expectation E
[∼
Z(xJ , xI) |

∼
Z(tJ , g(tJ) + tI) ∀(tJ , tI) ∈ [0, 1]dJ × B

]
can be rewritten

(for (xJ , xI) in [0, 1]dJ+dI):

E
[∼
Z(xJ , xI) |

∼
Z(tJ , g(tJ) + tI) ∀(tJ , tI) ∈ [0, 1]dJ × B

]

=
+∞∑

n=1

φn(xJ , xI)

∫

[0,1]dJ×B

∼
φn(tJ , tI)

∼
Z(tJ , tI)dµ(tJ , tI)

= rI(xI ,B)rI(B,B)−1

(
+∞∑

n=1

∼
φn(xJ ,B)

∫

[0,1]dJ×B

∼
φn(tJ , tI)

∼
Z(tJ , tI)dµ(tJ , tI)

)

and, because
∼
Z(xJ , g(xJ) + B) belongs to the sub Gaussian space engendered by the

{
∼
Z(tJ , g(tJ) + tI) ∀(tJ , tI) ∈ [0, 1]dJ × B}, its projection in this subspace is itself:

∼
Z(xJ , g(xJ) + B) = E

[∼
Z(xJ , g(xJ) + B) |

∼
Z(tJ , g(tJ) + tI) ∀(tJ , tI) ∈ [0, 1]dJ × B

]

=
+∞∑

n=1

φn(xJ ,B)

∫

[0,1]dJ×B

∼
φn(tJ , tI)

∼
Z(tJ , g(tJ) + tI)dµ(tJ , tI)

=
+∞∑

n=1

rI(B,B)rI(B,B)−1

︸ ︷︷ ︸
IK

∼
φn(xJ ,B)

∫

[0,1]dJ×B

∼
φn(tJ , tI)

∼
Z(tJ , g(tJ) + tI)dµ(tJ , tI)

=
+∞∑

n=1

∼
φn(xJ ,B)

∫

[0,1]dJ×B

∼
φn(tJ , tI)

∼
Z(tJ , g(tJ) + tI)dµ(tJ , tI).

IK is the identity matrix of size K × K. The expectation becomes (for (xJ , xI) in
[0, 1]dI):

E
[∼
Z(xJ , xI) |

∼
Z(tJ , g(tJ) + tI) ∀(tJ , tI) ∈ [0, 1]dJ × B

]
= rI(xI ,B)rI(B,B)−1

∼
Z(xJ , g(xJ) + B).

• Finally, the P process is equal to

ZP (xJ , xI) =
∼
Z(xJ , xI)− rI(xI ,B)rI(B,B)−1

∼
Z(xJ , g(xJ) + B) ∀(xJ , xI) ∈ [0, 1]dJ × [0, 1]dI .

9.4 Fomulae and algorithms

9.4.1 Formulae of the EM procedure

This subsection gives the formulae of the Qn involved in the optimization problems (4.4)
used to estimate the parameters ηn in the EM algorithm. 1∼

X1
is the unit column vector

of size nrows
(∼
X1

)
. Denoting by X1 and X2 two DoE’s, 0X1,X2 is the null matrix of size

nrows(X1)× nrows(X2).

154

Using the expectation of a quadratic form formula to Gaussian vectors:





Q1(η1, η
∗) = n∼

X1
log σ2

1 + log
∣∣∣ρθ1

(∼
X1,

∼
X1

)∣∣∣

+
Tr

(
ρθ1 (

∼
X1,
∼
X1)−1C1(η∗)

)
σ2

1

+
(E1(η∗)−m1∼

X1

)′ρθ1 (
∼
X1,
∼
X1)−1(E1(η∗)−m1∼

X1

)

σ2
1

,

∀n ∈ J2, NK,
Qn(ηn, η

∗) = n∼
Xn

log σ2
n + log

∣∣∣ρθn
(∼
Xn,

∼
Xn

)∣∣∣

+
Tr

(
ρθn (

∼
Xn,
∼
Xn)−1Cn(η∗)

)
σ2
n

+
En(η∗)′ρθn (

∼
Xn,
∼
Xn)−1En(η∗)

σ2
n

,

with





E1(η∗) = m∗1∼
X1

+(σ∗1)2ρθ∗1

(∼
X1,

∼
X1

)
Covη∗ (Y ,Y)−1 (y − Eη∗ [Y]) ,

C1(η∗) = (σ∗1)2ρθ∗1

(∼
X1,

∼
X1

)
− (σ∗1)2ρθ∗1

(∼
X1,

∼
X1

)
Covη∗ (Y ,Y)−1 (σ∗1)2ρθ∗1

(∼
X1,

∼
X1

)
,

En(η∗) = Covη∗
(
Zn

(∼
Xn

)
,Y
)
Covη∗ (Y ,Y)−1 (y − Eη∗ [Y]) , ∀n ∈ J1, NK,

Cn(η∗) = (σ∗n)2 ρθ∗n

(∼
Xn,

∼
Xn

)

−Covη∗
(
Zn

(∼
Xn

)
,Y
)
Covη∗ (Y ,Y)−1Covη∗

(
Y , Zn

(∼
Xn

))
.

(9.10)

Partial analytical solution The optima m(i+1) and σ
(i+1)
n (n ∈ J1, NK) have analytical

forms obtained by solving the system formed when the corresponding partial derivatives of
the Qn vanish. Finally, at each new iteration i + 1, the goal is to find θ

(i+1)
n (n ∈ J2, NK)

solution of the following problem





min
θn

n∼
Xn

log

((
σ

(i+1)
n (θn)

)2
)

+ log
(∣∣∣ρθn

(∼
Xn,

∼
Xn

)∣∣∣
)
,

with
(
σ

(i+1)
n (θn)

)2

=
Tr

(
ρθn (

∼
Xn,
∼
Xn)−1Cn(η(i))

)
+En(η(i))′ρθn (

∼
Xn,
∼
Xn)−1En(η(i))

n∼
Xn

,

155

and θ(i+1)
1 solution of the following problem





min
θ1

n∼
X1

log

((
σ

(i+1)
1 (θ1)

)2
)

+ log
(∣∣∣ρθ1

(∼
X1,

∼
X1

)∣∣∣
)
,

with
(
σ

(i+1)
1 (θ1)

)2

=
Tr

(
ρθ1 (

∼
X1,
∼
X1)−1C1(η(i))

)
+(E1(η(i))−m(i+1)(θ1)1∼

X1

)′ρθ1 (
∼
X1,
∼
X1)−1(E1(η(i))−m(i+1)(θ1)1∼

X1

)

n∼
X1

,

and m(i+1)(θ1) =
1′∼
X1

ρθ1

(
∼
X1,
∼
X1

)−1

E1(η(i))

1′∼
X1

ρθ1

(
∼
X1,
∼
X1

)−1

1∼
X1

,

where En(η(i)) and Cn(η(i)) (n ∈ J1, NK) are given in equation (9.10).

9.4.2 Algorithms of chapter 5

Algorithm 1 optimizes a nested design of higher dimension. Algorithm 2 optimizes a non-
nested design of same dimension. In both algorithms, mopt takes the successive values of
the sequence X(l). For any sample m, m[R,C] denotes the submatrix of m located at rows
indexed by the vector R and columns indexed by the vector C. m[R,] denotes the submatrix
located at rows indexed by R and containing all columns. Similarly, m[, C] denotes the
submatrix located at columns indexed by C and containing all rows. U (V) denotes the
uniform distribution among V components.

9.5 Papers

9.5.1 Paper: Sampling strategies for metamodel enrichment and
automative fan optimization [Henner et al., 2019]

This paper was written in the context of an ANR project called PEPITO which focused on
sampling strategies for metamodels applied on industrial issues, and more precisely on the
fan system of Valeo. The paper in itself tackles the definition of the geometric parameters,
the construction of the input space controlled by geometric constraints, and the enrichment
strategy of the training samples for the metamodels.

156

Paper ID: ETC2019-322 Proceedings of 13th European Conference on Turbomachinery Fluid dynamics & Thermodynamics
ETC13, April 8-12, 2019; Lausanne, Switzerland

OPEN ACCESS
Downloaded from www.euroturbo.eu

1 Copyright © by the Authors

SAMPLING STRATEGIES FOR METAMODEL ENRICHMENT
AND AUTOMOTIVE FAN OPTIMIZATION

M. Henner1 - B. Demory1 - T. Gonon1 – C. Helbert2

1VALEO Thermal Systems - France
2 Ecole Centrale de Lyon - Institut Camille Jordan - UMR CNRS 5208 - Ecully, France

ABSTRACT

The strategy aimed at reducing the development time for a fan, which is oriented through the
use of large meta-models which can be re-used and enriched along time. Efforts have been brought
in the parameterization of the geometry and in the simulation process which provides pressure rise,
torque and consequently efficiency.

Numerical Designs of Experiments (DoE) are then conducted in an 11 factor problem to fill the
space and to build a first kriging model. This latter assumes that the output is a gaussian field for
which parameters are computed by maximum likelihood estimation based on the numerical runs.
Uncertainties associated with any predicted values can then be assessed using the variance, and two
small validation plans are used to measure statistically the errors.

The variance given by the model is further used to map the areas in the domain which would
need additional sampling. Then, two strategies are tested to select the most relevant sampling
points, the first one being to reduce the range of the parameter variation, and the other one being to
select them according to turbomachine design rules which would have dismiss some factor
combinations. These two methods for sequential enrichment of the response are then compared and
can even be combined with a trend given on the pressure rise. Answers from the kriging models are
then assessed again in terms of statistical errors. These strategies will be described in the proposed
paper through model comparison and optimization results.

KEYWORDS

Fan system – Optimization – Kriging - Sampling - Design of Experiment

NOMENCLATURE

DoE Design of experiment

RMSE Root Mean Square of the prediction Error of the metamodel on a test sample

LIST OF SYMBOLS

A' transpose of A, with A a matrix
x=(x1,...,x11) vector of design variables (input variables), called point
Y(x) gaussian process, function of the design variables, used by the kriging model for the

output
m mean of the gaussian process Y
Z(x) gaussian process with zero mean part of the writing of Y

k(x,x') covariance kernel of Z
σ2 variance of Z
θ range of Z
𝑟ఏ(𝑥, 𝑥′) correlation kernel of Z
ℒ(m,σ2,θ) likelihood function of m, σ^2, and θ
x(i) ith training point, or i
X matrix of all training points,
y vector of output values associated with training points, or with test points
R correlation matrix of the training points
r(x) correlation vector between x and the training points
αi coefficient
hi(xi) usual function applied to a
RMSE Root Mean Square of the prediction Error of the metamodel on a test sample
N number of test points
𝑛 number of training points
𝑓(𝑥) computer code value
𝑚ෝ(𝑥) kriging prediction, also called Kriging mean
𝜎ොଶ(𝑥) variance of kriging prediction, a

INTRODUCTION

Specifications in automotive applications can cover a wide range of operating points since
design, architecture and engine power are very different from one vehicle model to the other. Each
new development for a fan involves therefore a new optimization process to reach nominal pressure
rise and torque. Typical pressure and efficiency curves versus flow rate are presented in figure 1
with indications on operating points.

Figure 1: pressure and efficiency curves

 Optimization is therefore perfectly adapted, and the current strategies aimed at reducing the
development time for the fan, and
be re-used and enriched along time.
aimed to prepare a methodology for large dimensions, i.e. starting from 30 and going beyond,
possibly up to 60. Accuracy must not be compromised neither by the space dimension (given by the
number of parameters), nor by the widest range of possible variation
run has a non-neglectable cost which is not compatible with an intense sampling campaign. In the
present case, 11 design variables
simulations, which is of course simply not possible.

2

ance kernel of Z

correlation kernel of Z
likelihood function of m, σ^2, and θ

training point, or ith test point
matrix of all training points, also called design matrix, its lines are the x^((i))

tor of output values associated with training points, or with test points
correlation matrix of the training points
correlation vector between x and the training points

usual function applied to a design variable
Mean Square of the prediction Error of the metamodel on a test sample

umber of test points
umber of training points
omputer code value
riging prediction, also called Kriging mean

riging prediction, also called kriging variance

Specifications in automotive applications can cover a wide range of operating points since
design, architecture and engine power are very different from one vehicle model to the other. Each

n involves therefore a new optimization process to reach nominal pressure
Typical pressure and efficiency curves versus flow rate are presented in figure 1

with indications on operating points.

Figure 1: pressure and efficiency curves with operating points

Optimization is therefore perfectly adapted, and the current strategies aimed at reducing the
, and are then oriented through the use of large meta

used and enriched along time. Investigations done on the current 11 parameters DoE are
methodology for large dimensions, i.e. starting from 30 and going beyond,

Accuracy must not be compromised neither by the space dimension (given by the
arameters), nor by the widest range of possible variations. However, each simulation

neglectable cost which is not compatible with an intense sampling campaign. In the
design variables have been selected and the full factorial plan would yield 2

simulations, which is of course simply not possible.

lines are the x^((i))
tor of output values associated with training points, or with test points

Mean Square of the prediction Error of the metamodel on a test sample

Specifications in automotive applications can cover a wide range of operating points since
design, architecture and engine power are very different from one vehicle model to the other. Each

n involves therefore a new optimization process to reach nominal pressure
Typical pressure and efficiency curves versus flow rate are presented in figure 1

with operating points

Optimization is therefore perfectly adapted, and the current strategies aimed at reducing the
are then oriented through the use of large meta-models which can

vestigations done on the current 11 parameters DoE are
methodology for large dimensions, i.e. starting from 30 and going beyond,

Accuracy must not be compromised neither by the space dimension (given by the
. However, each simulation

neglectable cost which is not compatible with an intense sampling campaign. In the
l plan would yield 211

3

Some strategies are then investigated in order to enrich initial Design of Experiment (DoE)
which are classically based on a statistical approach uncorrelated from the studied physics. The
question is to find a proper way to select the most relevant points which would improve the
accuracy. However, one can object that the accuracy is only of interest for some limited set of
parameters, when geometries are conforming to turbomachine laws. Therefore, in the context of a
limited simulation budget, should the enrichment be based on a purely statistical approach, or is it
worthy to use geometrical rules which exclude any sampling on a priori non interesting areas?

OBJECTIVES

The objectives of the current work are to investigate a sequential strategy for fan optimization,
in the context of a limited simulation budget, which uses at first a meta-model from a kriging
method, and secondly a genetic algorithm for optima research. Such methods have been intensively
used and presented for low speed fans, for instance by Bamberger [1] or Verstraete [2].

Several strategies for the selection of potential additional runs are proposed and compared
between them. Performances of these methods are assessed through different criteria measured on
each surrogate model, which are given by global or local variances, by discrepancies with numerical
results from either a global or a local validation plan, and by comparing the optimized final designs.

Geometrical parameterization of the fans and simulation processes are explained in the next
paragraph, followed by some theoretical information on the kriging method which has been used.
Sequential plans and methods for comparison are then presented before giving results and
commenting on their respective efficiencies in the conclusion.

PARAMETERIZATION AND SIMULATIONS

Fan parameterization

A typical automotive fan is presented in figure 2. Several characteristics are frozen to standard
values, and the selected parameters for optimization are the chord lengths and the stagger angles for
five different radius. These ten geometrical factors are then completed by the flow rate which is
imposed in the numerical experiment.

DoE must have independent parameters and ensure that all their combinations are feasible in the
ranges of variation, meaning that no effect between them would prevent any geometry to be tested.
However, it can lead to the creation of designs which can be said at least unconventional, or at
worst opposite to the rule of turbomachine design. One can appreciate in figure 3, as an example a
surprising resulting geometry on which the DoE can ask an evaluation of performances. In such
cases, the heckled surfaces lead to chaotic flow patterns, yielding poor fan efficiencies and difficult
numerical convergences (and consequently “signal” noise during the creation of meta-models). At a
first thought, they are not representing the most interesting sampling points.

Numerical modeling

As presented in [3], performance predictions for the DoE are obtained, thanks to RANS
simulations with the commercial code CCM+, using polyhedra meshes and an accurate description
of the test rig (figure 4). The simulation process takes one hour of meshing (a new mesh is produced
for each geometry), and requires between 4 to 8 wall clock time with 196 CPU (depending on the
convergence). Mesh parameters are kept constant from one geometry to the other in order to
minimize discrepancies. An accuracy assessment is provided in [3], and allow us to determine the
mesh size above which variations remain below 1%. About 20 millions polyhedra are used, mainly

concentrated in the rotating domain (15 millions). The motion of the fan in the steady state run is
modeled through multiple frames of refe
equations model k-ω SST from Menter, and a two layer
boundary layer on the walls. The layers of cell extruded from the surface mesh yield to an average
wall y+ close to 1 on the fan blades. The flow rate is imposed at the inlet plenum of the test rig,
whereas an atmospheric condition is imposed in the far field.

Figure 2: typical automotive fan

It allows us to monitor the performances with the pressure rise between
(static to static) and the torque exerted by the fluid on the fan.
achieved when these values remain stable over a sufficient period of time, in addition
below 10-4. Selected output responses are then the pressure rise (ΔP in Pa), the torque (T in N.m)
and the global efficiency (%) deduced from the formula
(m3/s) and Ω the rotational speed (rad

4

concentrated in the rotating domain (15 millions). The motion of the fan in the steady state run is
modeled through multiple frames of references. Turbulence is modeled with the classical 2

ω SST from Menter, and a two layers model is used to predict accurately the
boundary layer on the walls. The layers of cell extruded from the surface mesh yield to an average

e to 1 on the fan blades. The flow rate is imposed at the inlet plenum of the test rig,
whereas an atmospheric condition is imposed in the far field.

: typical automotive fan Figure 3: example of a surprising geometry

r the performances with the pressure rise between
(static to static) and the torque exerted by the fluid on the fan. Convergence is considered to be
achieved when these values remain stable over a sufficient period of time, in addition

Selected output responses are then the pressure rise (ΔP in Pa), the torque (T in N.m)
and the global efficiency (%) deduced from the formula ղ= (ΔP*Q)/(T*Ω), Q being the flow rate
(m3/s) and Ω the rotational speed (rad/s).

Figure 4: Simulation domain

concentrated in the rotating domain (15 millions). The motion of the fan in the steady state run is
Turbulence is modeled with the classical 2

model is used to predict accurately the
boundary layer on the walls. The layers of cell extruded from the surface mesh yield to an average

e to 1 on the fan blades. The flow rate is imposed at the inlet plenum of the test rig,

: example of a surprising geometry

r the performances with the pressure rise between an inlet and outlet
Convergence is considered to be

achieved when these values remain stable over a sufficient period of time, in addition to residues
Selected output responses are then the pressure rise (ΔP in Pa), the torque (T in N.m)

= (ΔP*Q)/(T*Ω), Q being the flow rate

5

DOE AND KRIGING METHOD

DOE’s building [4]

All factors have been dimensionalized in the range [-1, 1], the set of data with 11 factors at zero
being the center of the domain. An Orthogonal Latin Hypercube (OLH) plan has been selected for
the initial sampling and the training of the meta-model. It is composed of 127 points that have been
selected in the [-1, 1]11 domain, according to the theory which imposes at first that each point must
have a different value for each direction (a direction corresponding to an input variable), and
secondly that the columns of the design matrix are orthogonal (one column contains the observed
values of one design variable).

Two other Latin Hypercube Samples (LHS) designs (which were optimized for discrepancy) of
25 points each have been established for testing the meta-models trained from the 127 runs (and the
points for enrichment if any). The first one is set in [-1, 1]11, and the second one in [-0.5, 0.5]11. For
this later it means that all factors are limited in the range [-0.5, 0.5], i.e. only a central part of the
domain is considered

Kriging meta-model building [5]

The kriging meta-model models the computer code, f, as a realization of a random field {Y(x), x
in [-1, 1]11}. Each component of x is a particular input variable of the simulator. This random field
is supposed to be such that:

𝑌(𝑥) = 𝑚 + 𝑍(𝑥) (1)

where m is a scalar constant, called trend, and Z is a gaussian field with zero mean and a
covariance function of the type :

𝑘(𝑥, 𝑥ᇱ) = 𝜎ଶ𝑟ఏ(𝑥, 𝑥ᇱ) (2)

𝑟ఏ is called the correlation function. The one used in this work is a tensor product of the Matern
ହ

ଶ
 kernel :

𝑟ఏ(𝑥, 𝑥′) = ∏ (1 +
√ହ ቚ୶ౡି୶ౡ

′ ቚ

஘ౡ
+

ହቚ୶ౡି୶ౡ
′ ቚ

ଷ஘ౡ
మ)exp(−

√ହ ቚ୶ౡି୶ౡ
′ ቚ

஘ౡ
)ଵଵ

୩ୀଵ (3)

The Matern
ହ

ଶ
 kernel is the most commonly used because it is twice differentiable and it is the

most realistic with respect to the actual simulation outputs. Other properties of gaussian kernel or
exponential kernel are detailed for instance in [6].

The three parameters m, σ2, and θ are determined by maximizing the likelihood function. θ is a
vector of 11 components aimed to take into account of the anisotropy of the model. If we consider
the set of training observations y, the likelihood function is:

ℒ(𝑚, 𝜎ଶ, 𝜃) = ℙ(𝑌 = 𝑦|𝑚, 𝜎ଶ, 𝜃) = ቀ
ଵ

ଶ஠஢మ
ቁ

౤

మ
 ቀ

ଵ

ௗ௘௧(ோ)
ቁ

భ

మ
exp(−

(୷ି୫ଵ౤)ᇲோషభ(௬ି௠ଵ೙)

ଶ஢మ
) (4)

6

where 𝑅 = ቀ𝑟ఏ൫𝑥(௜), 𝑥(௝)൯ቁ is the correlation matrix on the design points 𝑥(ଵ),…,𝑥(௡). The

matrix of the observations (whose lines are the 𝑥(௜)) is noted 𝑋, and is called design matrix. The
estimation of 𝑚 is different from the least square estimation. The least square estimation of 𝑚

would be given by the formula:
𝒚(𝟏)ା⋯ା𝒚(𝒏)

𝒏
=

𝟏𝒏
ᇲ 𝒚

𝟏𝒏
ᇲ 𝟏𝒏

. However, the likelihood estimation of 𝑚 is

given by the formula:
ଵ೙

ᇲ ோషభ௬

ଵ೙
ᇲ ோషభଵ೙

. The least square estimation is a particular case of the maximum

likelihood estimation when the correlation matrix 𝑅 is equal to the identity matrix.

Given that, the prediction is:

𝑦ො(𝑥) = 𝐸[𝑌(𝑥)|𝑌(𝑋) = 𝑦] = 𝑚 + 𝑟ᇱ(𝑥)𝑅ିଵ(𝑦 − 𝑚1௡) (5)

where 𝑟(𝑥) = (𝑟ఏ(𝑥, 𝑥(௜)))௜ is the vector containing the correlation between Y(x) and
𝑌(𝑥(ଵ)),…,𝑌(𝑥(௡)).

A kriging variance is also associated to each point of the input domain. It measures the
uncertainty of the prediction at this point. The kriging variance is given by:

𝜎ොଶ(𝑥) = 𝜎ଶ − 𝑟ᇱ(𝑥)𝑅ିଵ𝑟(𝑥) (6)

Finally, if the main effects of the design variables 𝑥௞ are near known functions ℎ௞(𝑥௞), this
information can be added to the model by using a trend equal to a linear combination of the main
effects rather than a constant trend. The prediction becomes:

𝑦ො(𝑥) = 𝑚 + ∑ 𝛼௞ℎ௞(𝑥௞) + 𝑟ᇱ(𝑥)𝑅ିଵ(𝑦 − 𝐹 𝛼)௡
௞ୀଵ (7)

where 𝐹 = (1௡ 𝐻), 𝐻 = ൬ℎ௞ቀ𝑥௞
(௟)

ቁ൰
௟∈{ଵ,…,௡},௞∈{ଵ,…,ଵଵ}

,and 𝛼 = (𝑚 𝛼ଵ … 𝛼௡)ᇱ.

The vector 𝛼 is estimated by maximum likelihood. It is computed by the formula :
(𝐹ᇱ𝑅ିଵ𝐹)ିଵ𝐹ᇱ𝑅ିଵ𝑦. The least square estimation would be : (𝐹ᇱ𝐹)ିଵ𝐹ᇱ𝑦. Again, the least square
estimation is a particular case of the maximum likelihood estimation when the correlation
matrix 𝑅 is equal to the identity matrix.

The goal is to improve the accuracy by adding global information on the “shape” of the meta-
model.

SAMPLING METHODS

A previous approach studied by Ribaud [7] consists of adding points in the area of interest,
extracting them from the Pareto front and selecting them according to a robustness criterion. This
method is relevant for a known optimization problem (i.e. when the process can be guided in a
limited area of the solution domain), but has no benefit for the global improvement of the meta-
model. One proposal from Zhang [8] consists of, in using a small training sample (for example
OLH) and then in adding points. His method proved to be very fast because he could use a co-
kriging technique that drew additional information from the first and second derivatives. Of course,
the great difficulty there is to have access to these values, and it implies either to derive the Navier-
Stokes equations [9][10] or to assess the derivative with a differentiation method [11].

Enrichment in a restricted hypercube

The first trial consists of selecting one round
introduced in the equation (6), the objective being to find the points with the maximum varia
which can help to improve the model globally by filling the most uncertain areas
(factors equal to 1 or -1) are systematically proposed (figure
zone where the variance becomes large. Unfortunately,
improvement by selecting the 211

of interest since it would help to improve the model in the 11 directions. By limiting the selection in
the [-0.5, 0.5]11 domain, it is observed that the first point is very close to the center (red point in
figure 6), and then the other points

Figure 5. Added points with the maximal
variance in [−1, 1]ଵଵfor ΔP.

To compare the effect of adding point either
Sobol sequence were generated and used to compare the mean of their kriging variance.
the mean of the variance criteri
because it is the first added point of the second method.
meta-model each time another point has been added at
black curve (figure 7) shows the
in [-1, 1]11 whereas the red curve is
worthy, and then the rate of improvement is rather equivalent

Figure 7. Comparison of
the methods on the mean of
variance criterion.

7

in a restricted hypercube

selecting one round of the 10 points according to the variance criteri
the objective being to find the points with the maximum varia

which can help to improve the model globally by filling the most uncertain areas
1) are systematically proposed (figure 5), since they are in the extrapolation

zone where the variance becomes large. Unfortunately, it would be hopeless to try any global
11 corners. Alternatively, adding information in the center could be

of interest since it would help to improve the model in the 11 directions. By limiting the selection in
domain, it is observed that the first point is very close to the center (red point in

points are in the corners of the limited domain.

. Added points with the maximal Figure 6. Added points with the maximal
variance in [−0.5, 0.5]ଵଵ for

adding point either in [-1, 1]11 or in [-0.5, 0.5]11

were generated and used to compare the mean of their kriging variance.
the mean of the variance criterion was assessed by removing the central point of this sequence
because it is the first added point of the second method. This mean criterion is computed on the ΔP

model each time another point has been added at location of maximum kriging variance
) shows the decrease of the mean variance when adding sequentially the points

whereas the red curve is for [-0.5, 0.5]11. Initially, adding the central point is obviously
the rate of improvement is rather equivalent.

. Comparison of
the methods on the mean of

Figure 8: Examples
satisfying the stagger angle
constraints (red) or not
satisfying them (blue, geometry
from fig.3).

Figure
satisfying the chord length
constraints
satisfying
geometry from fig.3

the 10 points according to the variance criterion
the objective being to find the points with the maximum variance,

which can help to improve the model globally by filling the most uncertain areas. The corners
), since they are in the extrapolation

it would be hopeless to try any global
corners. Alternatively, adding information in the center could be

of interest since it would help to improve the model in the 11 directions. By limiting the selection in
domain, it is observed that the first point is very close to the center (red point in

Added points with the maximal
for ΔP.

11, 10000 points from a
were generated and used to compare the mean of their kriging variance. However

was assessed by removing the central point of this sequence
This mean criterion is computed on the ΔP

location of maximum kriging variance. The
when adding sequentially the points

the central point is obviously

gure 9: Examples
satisfying the chord length
constraints (red) or not
satisfying them (blue,
geometry from fig.3).

8

The first method to be evaluated in this article will be the one that adds points of maximum
kriging variance in the restricted domain [-0.5, 0.5]11.

Adding geometrical constraints

Points which are added must be relevant from a turbomachine point of view, in order to avoid
strange geometries like in figure 3. When adding geometrical constraints, the selection process for
the additional points simply discards the geometries which are not considered credible, and iterates
until a validated point is found. The rules are simply based on the observation that irrelevant
geometries are characterized by abrupt variations and large amplitudes of both chord length and
stagger angles. It does not make sense to have angles of incidence which vary greatly from one
radius to another, and that the load is not distributed smoothly along the blade span. Two rules are
therefore applied and must be verified simultaneously, one concerning stagger angles and one
concerning chord lengths.

The rules are defined to limit variations from one radius to another. The examples of figures 8
and 9 show possible evolutions, when variation for stagger angles are limited to +/-10%, and chord
lengths do not deviate from the mean line between bottom and top by more than +/-10%. For the
sake of comparison, the variations of the fan of figure 3 are presented on the graph. It is obvious
that these former geometries don’t follow these rules.

The second method to be evaluated in this article will be the one that adds points of maximum
kriging variance among the points that satisfy geometrical constraints.

Adding a linear trend

As introduced by the formula (7), the trend can be defined by the following formula (given in
eleven dimensions): 𝑚 + ∑ ∝௞ ℎ௞(𝑥௞)ଵଵ

௞ୀଵ . This method can be used by considering the pressure
rise variation (ΔP) which is rather linear, and systematically decreasing versus flow rate (Qv). The
linear trend will therefore have the following shape: 𝑚 + 𝛼ொ𝑄. In the article, the constant trend and
the linear trend will be tested and compared for the ouput ∆𝑃.

Comparing methods

The two validation plans (in [-1, 1]11, and in [-0.5, 0.5]11) are used to assess a criterion based on
the Root Mean Square Error (RMSE), according to the formula:

𝑅𝑀𝑆𝐸 = ට∑ (𝒚(𝒊)ି𝒎ෝ (𝒙(𝒊)))𝟐𝑵
𝒊స𝟏

𝑵
 (8)

𝑥(௜) is the ith point of the test sample. 𝑦(௜) is the true output value associated to 𝑥(௜). 𝑚ෝ(𝑥(௜)) is
the meta-model predicted output value associated to 𝑥(௜). 𝑁 is the number of points in the test
sample.

Accuracy assessment in the Whole Domain

The objective in this paragraph is to compare the quality of two different strategies of
enrichment which use only 10 additional points each. Of course these points are not the same
according to the strategy. The two methods will be compared to the so-called “initial” model, for
which the training sample is limited to the initial sample of 127 points. In the first method, ten
points of maximum variance have been selected in [-0.5, 0.5]11 and added to the initial training
sample (forming a new training sample of 137 points). In the second model, ten points of maximum
variance among points satisfying the geometrical rules have been added to the initial training

9

sample (forming another training sample of 137 points). In addition with these sampling strategies,
linear and constant trends on the pressure curves have been compared.

In summary, there are 3 models with constant trend for the pressure rise, three others with linear
trend for the same output, and 3 models for the torque (only constant trend on torque). Table 1 gives
the comparison for initial model and the 2 sampling methods.

It can be observed that the enrichment methods have a low incidence on the RMSE criterion
since the mean error remains at 12 Pa for the pressure rise, and at 0.03 N.m for the torque. Adding a
trend is more promising since it improves the RMSE by 1 to 2 Pa. .

 RMSE on ΔP RMSE on T

 With
constant trend

With linear
trend

Initial 12 Pa 11 Pa 0.03 N.m

Enrichment in [-0.5, 0.5]11 12 Pa 10 Pa 0.03 N.m

Enrichment with geometrical rules 12 Pa 11 Pa 0.03 N.m

Table 1: Error assessment of the meta-model in the whole domain

Accuracy assessment in the Middle of the Domain

Table 2 shows the results obtained with the same models than table 1, but evaluated in the
domain [-0.5, 0.5]11. Once again, the linear trend provides a rather good improvement of the RMSE
of 1 to 3 Pa. Comparing the two sampling methods, it shows this time a noticeable difference: the
geometrical rules even deteriorate the meta-model globally. However it does not state if it is
relevant for an optimization which is supposed to go only in areas of interest for turbomachine
design.

 RMSE on ΔP RMSE on T

 With
constant trend

With linear
trend

Initial 10 Pa 8 Pa 0.05 N.m

Enrichment in [-0.5, 0.5]11 9 Pa 8 Pa 0.03 N.m

Enrichment with geometrical rules 19 Pa 16 Pa 0.06 N.m

Table 2: Error assessment of the meta-model in the middle of the domain

OPTIMIZATION

The meta-models are then compared

 Maximize ΔP, T=<1N.m, Q set at a given nominal flow rate

 Minimize T, ΔP>=250 Pa, Q set at a given nominal flow rate

Figures 10 and 11 show the set of data for the optimized solutions (
kriging respectively without constant or linear
similar, i.e. with the initial DoE
that the meta-model is already relevant and a small enrichment, despite being based on a statistical
approach with variance, does not improve the result. In addition, the small improvement noticed on
the RMSE with the trend does not reall
an optimized fan is shown in figure 1

The result is slightly different when using the meta
fulfilling some criteria based on design rules.
angles and in chord length from a radius to another, indicating that the rules have modified the
meta-model around their domains of validity. However, despite being less chaotic, the stagger
angles still show a big variation from radius 1 to 2 and from radius 4 to 5. For the chord length,
there is still a big change from radius 4 to 5. As a consequence, it must be noticed that the optimized
solutions using the meta-model with rules are outside these rules.

Figure 10: solutions when using ΔP meta
models with constant trend (first optim.)

Errors given by the meta-models are presented in table 3, where the act
those given by the simulation. The table shows the results obtained when using the

10

models are then compared on two optimization problems:

Maximize ΔP, T=<1N.m, Q set at a given nominal flow rate

Minimize T, ΔP>=250 Pa, Q set at a given nominal flow rate

show the set of data for the optimized solutions (maximizing
constant or linear trend. In both cases, the first two

 and the enrichment in the middle. At this point, it
model is already relevant and a small enrichment, despite being based on a statistical

approach with variance, does not improve the result. In addition, the small improvement noticed on
the RMSE with the trend does not really change the optimum proposed. For information, a view of

figure 12.

The result is slightly different when using the meta-model which has been enriched with points
fulfilling some criteria based on design rules. The set of data shows smaller variations in stagger
angles and in chord length from a radius to another, indicating that the rules have modified the

model around their domains of validity. However, despite being less chaotic, the stagger
on from radius 1 to 2 and from radius 4 to 5. For the chord length,

there is still a big change from radius 4 to 5. As a consequence, it must be noticed that the optimized
model with rules are outside these rules.

solutions when using ΔP meta-
(first optim.)

Figure 11: solutions when using ΔP meta
models with linear trend (first optim.)

Figure 12: optimized fan

models are presented in table 3, where the act
those given by the simulation. The table shows the results obtained when using the

maximizing ΔP), using
trend. In both cases, the first two models are rather

and the enrichment in the middle. At this point, it would indicate
model is already relevant and a small enrichment, despite being based on a statistical

approach with variance, does not improve the result. In addition, the small improvement noticed on
or information, a view of

model which has been enriched with points
ows smaller variations in stagger

angles and in chord length from a radius to another, indicating that the rules have modified the
model around their domains of validity. However, despite being less chaotic, the stagger

on from radius 1 to 2 and from radius 4 to 5. For the chord length,
there is still a big change from radius 4 to 5. As a consequence, it must be noticed that the optimized

: solutions when using ΔP meta-
trend (first optim.)

models are presented in table 3, where the actual performances are
those given by the simulation. The table shows the results obtained when using the linear trend in

11

the meta-model, however the results are quite similar without it as demonstrated by comparing
figures 10 and 11. All proposed solutions are within a reasonable range of performance which is at
the state of the art for such fans, i.e. close to 50% of static to static efficiency.

The enrichment in [-0.5, 0.5]11 , despite showing no RMSE improvement, has however brought
a noticeable improvement in efficiency (+0.4% and +1.5%) versus the initial DoE. As no
improvement is noticed in accuracy between these optimizations from the two meta-model, it would
suggest that expecting accuracy is not the point, but rather having the good trend.

The last model which has introduced some rules for the choice of added points is finally the less
performing one. Efficiencies are almost 3% below those obtained with the enrichment in the
middle. Removing some points where the variance was important because of the geometrical
criteria has probably lowered the ability of the kriging process to find good trends in the whole
domain.

 Optim 1 (Maximize ΔP) Optim 2 (Minimize T)

 Values with linear
trend

Errors with linear
trend

Values with linear
trend

Errors with linear
trend

Initial ΔP = 186 Pa
T = 1.07 N.m
E = 47.9 %

Δ(ΔP) = 11 Pa
Δ(T) = 0.07 N.m
Δ(E) = 6.4 %

ΔP = 226 Pa
T = 1.29 N.m
E = 48.5 %

Δ(ΔP) = 24 Pa
Δ(T) = 0.06 N.m
Δ(E) = 7.8 %

Enrichment
in
[-0.5, 0.5] 11

ΔP = 190 Pa
T = 1.08 N.m
E = 48.3 %

Δ(ΔP) = 11 Pa
Δ(T) = 0.08 N.m
Δ(E) = 7.3 %

ΔP = 235 Pa
T = 1.3 N.m
E = 50 %

Δ(ΔP) = 15 Pa
Δ(T) = 0.11 N.m
Δ(E) = 7.8 %

Enrichment
with rules

ΔP = 173 Pa
T = 1.06 N.m
E = 45.1 %

Δ(ΔP) = 27 Pa
Δ(T) = 0.06 N.m
Δ(E) = 10.0 %

ΔP = 218 Pa
T = 1.28 N.m
E = 47.1 %

Δ(ΔP) = 32 Pa
Δ(T) = 0.04 N.m
Δ(E) = 8.4 %

Table 3: Actual performances for the optima, and errors of meta-model predictions

CONCLUSIONS

Investigations have been conducted in order to define the most relevant strategy for meta-
modeling with sequential enrichment. It is assumed that the number of added points must be
limited, and therefore a smart solution for optimizing the proposed runs must be found.

Two enrichment methods have been proposed, one being based on the variance in the center of
the domain, and one adding some geometrical rules aimed to discard non conventional designs. In
addition, a linear trend on the pressure rise has been included in the models and compared to the
usual constant trend.

Accuracy assessment obtained with a RMSE criterion on validation designs has shown that
limiting the sampling in the center of the domain seems to be an interesting strategy for scarce
additional points, and that adding the trend improves the models. This would be all the more to be
confirmed since tests with optimization have shown a small gain on maximum efficiency.

Conversely using geometrical rules for the enrichment does not help and even deteriorate
quality of both the meta-model and the optimization. It is still not explained, but presuming
solutions is ultimately more counterproductive than letting the model learn from all points,
including from those that are not good geometries.

ACKNOWLEDGMENTS

This work is being supported by the French Research Agency ANR [12], for the project PEPITO
(“Plan d’Experience Pour l’Industrie du Transport et l’Optimisation”)

REFERENCES

[1] K. Bamberger, T. Carolus, “Opt
losses and noise reduction”, FAN 2012 Senlis (France) 18

[2] T. Verstraete, P. Roytta, M. Henner, et al.
automotive applications”. In: Proceedings of the 9th European conference on turbomachinery fluid
dynamics and thermodynamics (ETC’9), Istanbul, Turkey, 2011, pp. 1485

[3] Henner M., Demory B., Franquelin F. and al., (2014).
measurement for low loaded high diameter fan for automotive application”
Frankfort, Germany, 2014.

[4] Qian P. Z., (2009). “Nested latin hypercube designs

[5] Rasmussen C. E. and Williams C. K. I., (2006). “
MIT Press.

[6] Loic Le Gratiet. “Multi-fidelity Gaussian process regression for computer experiments

[stat.ML]. Université Paris-Diderot -

[7] Ribaud M., Blanchet C., Gillot F., and Helbert C., (2018). “
optimization”. https://hal.archives

[8] Z. Zhang, B. Demory, M. Henner
meta-model for multi-objective optimization of an engine cooling fan
Dusseldorf, GT2014 June 16-20.

[9] L. Soulat, P. Ferrand, S. Moreau, S. Aubert, M. Buisson, “

design problems in fluid mechanics

86

[10] M. Buisson, P. Ferrand, L. Soulat, S. Aubert, S. Moreau, C. Rambeau, M. Henner,

design of an automotive fan using the Turb

July 2013, pp 207-213

12

al rules for the enrichment does not help and even deteriorate
model and the optimization. It is still not explained, but presuming

solutions is ultimately more counterproductive than letting the model learn from all points,
ncluding from those that are not good geometries.

This work is being supported by the French Research Agency ANR [12], for the project PEPITO
(“Plan d’Experience Pour l’Industrie du Transport et l’Optimisation”)

Optimization of axial fans with highly swept blades with respect to
”, FAN 2012 Senlis (France) 18-20 April 2012

T. Verstraete, P. Roytta, M. Henner, et al. “Design and off-design optimization of a fan for
”. In: Proceedings of the 9th European conference on turbomachinery fluid

dynamics and thermodynamics (ETC’9), Istanbul, Turkey, 2011, pp. 1485–1496.

[3] Henner M., Demory B., Franquelin F. and al., (2014). “Test rig effect on performance
low loaded high diameter fan for automotive application”

Nested latin hypercube designs”. Biometrika.

Rasmussen C. E. and Williams C. K. I., (2006). “Gaussian Processes for Machine L

fidelity Gaussian process regression for computer experiments

- Paris VII, 2013. Français. 〈tel-00866770v2〉.

[7] Ribaud M., Blanchet C., Gillot F., and Helbert C., (2018). “Robustness kriging
https://hal.archives-ouvertes.fr, <hal-01829889>

[8] Z. Zhang, B. Demory, M. Henner, B. demory, F. Franquelin, “Space infill study of
objective optimization of an engine cooling fan”, ASME Turbo Expo 2014,

[9] L. Soulat, P. Ferrand, S. Moreau, S. Aubert, M. Buisson, “Efficient optimisation procedure for

design problems in fluid mechanics”, Computers & Fluids, Volume 82, 15 Augus

[10] M. Buisson, P. Ferrand, L. Soulat, S. Aubert, S. Moreau, C. Rambeau, M. Henner,

design of an automotive fan using the Turb-Opty meta-model”, Computers & Fluids, Volume 80, 10

al rules for the enrichment does not help and even deteriorates the
model and the optimization. It is still not explained, but presuming

solutions is ultimately more counterproductive than letting the model learn from all points,

This work is being supported by the French Research Agency ANR [12], for the project PEPITO

imization of axial fans with highly swept blades with respect to

design optimization of a fan for
”. In: Proceedings of the 9th European conference on turbomachinery fluid

1496.

“Test rig effect on performance
low loaded high diameter fan for automotive application”. ASME Turbo Expo,

Gaussian Processes for Machine Learning”.

fidelity Gaussian process regression for computer experiments”. Autres

.

Robustness kriging-based

Space infill study of Kriging
”, ASME Turbo Expo 2014,

ptimisation procedure for

, 15 August 2013, Pages 73-

[10] M. Buisson, P. Ferrand, L. Soulat, S. Aubert, S. Moreau, C. Rambeau, M. Henner, ”Optimal

”, Computers & Fluids, Volume 80, 10

13

[11] Z. Zhang, M. Buisson, P. Ferrand, M. Henner and F. Gillot, “Meta-model based optimization of

a large diameter semi-radial conical hub engine cooling fan”, Mechanics & Industry, Volume 16,

Number 1, 2015.

[12]http://www.agence-nationale-recherche.fr/projetanr/?tx_lwmsuivibilan_pi2[CODE]=ANR-14-
CE23-0011

Algorithm 1 Compute Xn

Require: X(0)

m← X(0)

i← 0
T ← 10
critm ← Φn(m[J1, nXnK,])
mopt ← m
critopt ← critm
while T > 0 & i < 200000 do
for k = 1 : 10 do
G← m
c ∼ U ({1} ∪ In)
if c = 1 then
r1 ∼ U

(
J1, nXn−1K

)

r2 ∼ U
(
J1, nXn−1K\r1

)

G[r1, I1 ∪ · · · ∪ In−1]↔ G[r2, I1 ∪ · · · ∪ In−1]
else
r1 ∼ U (J1, nXnK)
r2 ∼ U (J1, nXnK\r1)
G[r1, c]↔ G[r2, c]

end if
critG ← Φn(G[J1, nXnK,])
p← min

(
exp

(
critm−critG

T

)
, 1
)

if p = 1 then
m← G
critm ← critG
if critm < critopt then
mopt ← m
critopt ← critm

end if
else
b ∼ B(p)
if b = 1 then
m← G
critm ← critG

end if
end if

end for
i← i+ 1
T ← T

log(i+2)

end while
Xn ← mopt[J1, nXnK,]
return Xn

170

Algorithm 2 Compute Xn,I1

Require: X(0) ⊂ [0, 1]d1 LHS of size nXn
m← X(0)

i← 0
T ← 10
critm ← Φn,1(m)
mopt ← m
critopt ← critm
while T > 0 & i < 200000 do
for k = 1 : 10 do
G← m
c ∼ U (I1)
r1 ∼ U (J1, nXnK)
r2 ∼ U (J1, nXnK\r1)
G[r1, c]↔ G[r2, c]
critG ← Φn(G)
p← min

(
exp

(
critm−critG

T

)
, 1
)

if p = 1 then
m← G
critm ← critG
if critm < critopt then
mopt ← m
critopt ← critm

end if
else
b ∼ B(p)
if b = 1 then
m← G
critm ← critG

end if
end if

end for
i← i+ 1
T ← T

log(k+2)

end while
X(D0)
n ← m

return X(D0)
n

171

9.5.2 Paper : Gaussian process regression on nested subspaces
[Gonon et al., 2021]

This submitted paper deals with the main work of this thesis, which is to build a metamodel
based on Gaussian process regression, which takes into account different DoE’s, defined on
nested subspaces of the input space, of increasing dimension.

172

Gaussian process regression on nested spaces

Thierry Gonon1, Céline Helbert1, Christophette Blanchet-Scalliet1, and Bruno Demory2

1Univ Lyon, Ecole Centrale de Lyon, CNRS UMR 5208, Institut Camille Jordan, 36 avenue
Guy de Collongue, F-69134 Ecully Cedex, France

2VALEO Thermal Systems, 8 rue Louis Lormand, 78321 La Verrière, France

Abstract Metamodels are widely used in industry to predict the output of an expensive computer code.
As industrial computer codes involve a large amount of input variables, creating directly one big metamodel
depending on the whole set of inputs may be a very challenging problem. Industrialists choose instead to
proceed sequentially. They build metamodels depending on nested sets of variables (the variables that are set
aside are fixed to nominal values), i.e. the dimension of the input space is progressively increased. However,
at each step, the previous piece of information is lost as a new Design of Experiment (DoE) is generated
to learn the new metamodel. In this paper, an alternative approach will be introduced, based on all the
DoEs rather than just the last one. This metamodel uses Gaussian process regression and is called seqGPR
(sequential Gaussian process regression). At each step n, the output is supposed to be the realization of the
sum of two independent Gaussian processes Yn−1 +Zn. The first one Yn−1 models the output at step n− 1.
It is defined on the input space of step n− 1 which is a subspace of the one of step n. The second Gaussian
process Zn is a correction term defined on the input space of step n. It represents the additional information
provided by the newly released variables. Zn has the particularity of being null on the subspace where Yn−1
is defined so that there is a coherence between the steps. Firstly, some candidate Gaussian processes for
(Zn)n>2 are suggested, which have the property of being null on an infinite continuous set of points. Then,
an EM (Expectation-Maximization) algorithm is implemented to estimate the parameters of the processes.
Finally, the metamodel seqGPR is compared to a classic kriging metamodel where the output is assumed to
be the realization of one second order stationary Gaussian process. The comparison is made on two analytic
examples, a first one with two steps, up to dimension 4, and a second one with three steps, up to dimension
15. The introduced methodology is also tested on an industrial example which goes from dimension 11 to
dimension 15. In all these test cases, seqGPR performs better than, or at least as well as kriging.

Keywords: Metamodel, Kriging, Gaussian process regression, High dimension, Infinite conditioning,
Multifidelity, Nested spaces, Variable-size design space problems.

1 Introduction
In industry, numerical codes are widely used to model physical phenomena involved in manufacturing (see
section 5.3 for an example of industrial product). Computer experiments make the search for performance
easier and cheaper than physical experiments. However, computer codes are confronted to some limitations.
As they model complex physical phenomena, they are often computationally expensive. This problem is solved
by the use of metamodels [Forrester et al., 2008], [Sacks et al., 1989]. A metamodel is a simpler statistical
model, like radial basis neural network [Cheng and Titterington, 1994], kriging model [Santner et al., 2003],
[Roustant et al., 2012], support vector regression [Clarke et al., 2005]. This simpler model is fit on a sample of
well-chosen runs, also called design of experiments (DoE) [Pronzato and Müller, 2012], [Dupuy et al., 2015].
Metamodels provide fast approximations of the code outputs. Besides, they have a proactive role as they help
to select relevant simulations to be run [Jones et al., 1998]. The computer code is then used more efficiently.

Building surrogate models can be difficult when numerical codes involve lots of variables: geometrical
parameters, environmental ones etc. Complex engineering systems can be found in [Makowski et al., 2006],
[Lefebvre et al., 2010], [Auder et al., 2012]. Dimension reduction is a common approach to deal with it. It
consists in considering only the influential inputs. The influential inputs are often detected by sensitivity
analysis methods ([Saltelli, 2000],[Sobol, 1993],[Iooss and Prieur, 2019]). However, this approach leads to a
vicious circle. Indeed, on one side, the variables selected by sensitivity analysis are relevant only if the

1

metamodel is sufficiently accurate, and on the other side, the dimension reduction is used to increase the
metamodel accuracy. An alternative method that is usually chosen in industry is to act step by step. The first
studies carried out on the code have focused on a small amount of variables deemed as important based on
expert knowledge. The other variables are set to nominal values. A metamodel is created and used only for
these variables until the understanding of their influence is sufficient. Then, to obtain better performances,
finer studies are proceeded with, in which new variables are added progressively. The classical approach is
to build a metamodel on a new independent space-filling design in the wider input space. Yet, this approach
may be criticized as the information provided by the previous DoE’s and metamodels is disregarded.

In the present work, an original metamodel is introduced, which takes into account the information from
all the steps. The chosen approach consists in creating dependent metamodels from one step to another. The
metamodels are based on Gaussian process regression [Santner et al., 2003] [Williams and Rasmussen, 2006].
One way of taking into account the different designs could be to use a multifidelity model for which the levels
are not defined on the same input space. That is what is done in [Hebbal et al., 2021] with deep Gaussian
processes. Nevertheless, this model is really expensive to learn. Furthermore, the multifidelity context is
not suitable since the runs obtained at the previous steps have the same accuracy level. Another way could
be to define a virtual categorical input, equal to the number of the step, that influences the choice of the
input variables to consider. [Pelamatti et al., 2021] defines a Gaussian process whose input space varies
dynamically with this virtual categorical input. This modelization does not take into account the fact that
the input sets are entwined from one step to another. This particularity can lead to a simpler modelization.
The approach in this work, called seqGPR (sequential Gaussian process regression), is based on a recursive
statistical model inspired by the autoregressive multifidelity model [Kennedy and O’Hagan, 2000] but with
the same accuracy for all the runs and with an input space of increasing dimension. The output of the code
at a given step is modeled as the realization of a Gaussian process being the sum of the Gaussian process that
models the previous step and a correction term. The correction term stands for the information provided by
the new variables.

As regards this probabilistic model, one first difficulty is to build an appropriate correction term to rep-
resent the gap between the same numerical model observed on two nested subspaces. Thus, the correction
process must be null on the subspace corresponding to the previous step. As this subspace is composed of
an infinite continuous set of points, the question is then how to build a Gaussian process null on an infinite
continuous set of points with a numerically computable covariance kernel. One idea could be to enjoin the
prediction to verify the nullity property. For example, relevant points from the concerned subspace can
be added to the training sample. This technique is used in [Da Veiga and Marrel, 2012] in the context of
monotonicity, boundedness, convexity constraints. One drawback is the greediness of that method. Besides,
the nullity cannot be verified in the whole subspace. Instead of establishing the nullity in retrospect, it can
be verified at first glance, as an intrinsic property of the correction term. The correction process could be
defined in a finite dimensional way, with adequate basis functions, as it is done in [Maatouk and Bay, 2017],
[Lopera, 2019], [Bachoc et al., 2020] to ensure some properties of monotonicity, boundedness, convexity. Yet,
this approach is greedy as the number of basis functions increases with the dimension. In this paper, the
Gaussian process introduced in [Gauthier and Bay, 2012] which is an extension of the conditional expectation
to an infinite continuous set of points is retained. A tractable kernel is sought for this process which is then
compared to another candidate verifying the nullity condition.

Once a tractable candidate for the correction term is proposed, another difficulty lies in the estimation of
the hyperparameters. One way is to optimize the likelihood. This task can be numerically difficult, since the
likelihood involves several sets of hyperparameters for the different processes. One way to reduce the dimen-
sion of the optimization space is to propose nested designs as it is done in [Le Gratiet and Garnier, 2014]. In
this paper an alternative based on the expectation maximization algorithm [Friedman et al., 2001] is intro-
duced. It allows the reduction of the dimension with limited constraints on the designs.

The formulation of the metamodel seqGPR (sequential Gaussian process regression) is detailed in section
2. Two candidates for the correction term are proposed in section 3. An EM (expectation-maximization)
algorithm is suggested in section 4 to estimate the model parameters. Finally, the method seqGPR is tested
on two analytic examples and one industrial case in section 5.

2

2 Metamodel
Underlying processes Let f : [0, 1]d → R be an output of an expensive simulation code depend-
ing on d variables. A response surface of f has to be created taking into account that N − 1 previous studies
of increasing dimension have already been completed. Each of these steps is a focus on the relation between
the output and a subset of free variables. The other variables are temporarily fixed but then progressively
released in the further steps. This paper deals with the handling of the last step, denoted by N , where all
inputs are free.
Let In denote the index set of the variables that are released at step n ∈ J1, NK and dn = card(In). For
every index set I, let xI denote the associated subvector of x. The following framework, based on Gaussian
process regression, is introduced to model the successive studies:

• At step 1, a first series of computer code evaluations is run. The set xI1 of the first d1 components
of x, is free in [0, 1]d1 . Different values are explored. They are stored in DoE X1 ⊂ [0, 1]d1 . The
other components are fixed to preset values x̀I2∪···∪IN (entirely determined by xI1). Let f1 denote the
corresponding restriction of f on the subspace [0, 1]d1 . The function f1 is assumed to be the realization
of a stationary Gaussian process Y1 = m+ Z1 of mean m ∈ R and with Z1 : Ω× [0, 1]d1 → R,
a centered Gaussian Process of covariance kernel σ2

1ρ1. Let y1 = f1(X1) represent the vector of
observations of the output on DoE X1.

• At step 2, a second range of simulations is then launched on a subspace of a higher dimension [0, 1]d1+d2 .
The variables xI2 , fixed at step 1, are released. Different values of xI1∪I2 , stored in DoE X2, are explored.
The other variables xI3∪···∪IN are fixed to the new set of values x̀I3∪···∪IN ∈ [0, 1]d3+···+dN . Let f2 be
the corresponding restriction of f on the subspace [0, 1]d1+d2 .
The function f2 is assumed to be the realization of a Gaussian process Y2 : Ω× [0, 1]d1+d2 → R,
which is the sum of the process at step 1 Y1, and a correction term Z2, which represents the additional
information provided by the released variables. As f1 and f2 are restrictions of the same function f ,
Y1 and Y2 have to coincide on the subspace defined at step 1. This results in the following definition of
Y2:

Y2(xI1 , xI2) = Y1(xI1) + Z2(xI1 , xI2), ∀(xI1 , xI2) ∈ [0, 1]d1+d2 ,

with Z2 a centered Gaussian process independent from Z1, of covariance kernel σ2
2ρ2 such that for all

xI1 in [0, 1]d1 , Z2(xI1 , x̀I2) = 0. Let y2 = f2(X2) denote the vector of observations for this step.

• In the same way as previous steps, at step n ∈ J3, NK, a DoE Xn is created in the higher space
[0, 1]d1+···+dn . The variables xI1∪···∪In−1 and xIn are free and the others xIn+1∪···∪IN are set to
x̀In+1∪···∪IN ∈ [0, 1]dn+1+···+dN . The corresponding restriction of f on this subspace, fn, is evalu-
ated on Xn. The values are stored in yn = fn(Xn). The function fn is modeled as the realization of a
Gaussian process Yn : Ω× [0, 1]d1+···+dn → R. Following the same arguments as in step 2, Yn
is defined as:

Yn(xI1∪···∪In−1
, xIn) = Yn−1(xI1∪···∪In−1

) + Zn(xI1∪···∪In−1
, xIn), ∀(xI1∪···In−1

, xIn) ∈ [0, 1]d1+···+dn ,

with Zn a centered Gaussian process independent from (Z1, · · · , Zn−1) of covariance kernel σ2
nρn and

such that Zn(xI1∪···∪In−1
, x̀In) = 0,∀xI1∪···∪In−1

∈ [0, 1]d1+···+dn−1 .

The coincidence of the (Yn)16n6N on the subspaces is illustrated on figure 1 for N = 2.

Metamodel seqGPR Finally, the problem is modeled by the following statistical model:





Y1(xI1) = m+ Z1(xI1), ∀xI1 ∈ [0, 1]d1 ,

Yn(xI1∪···∪In−1
, xIn) = Yn−1(xI1∪···∪In−1

) + Zn(xI1∪···∪In−1
, xIn),

∀n ∈ J2, NK,
∀xI1∪···∪In ∈ [0, 1]d1+···+dn ,

(1)
where:

• The processes (Zn)16n6N are independent Gaussian processes of law:

Zn ∼ GP(0, σ2
nρn(xI1∪···∪In , tI1∪···∪In)) ∀n ∈ J1, NK. (2)

3

(a) Visualization of Y2 and Y1 (b) Isocontours of Y2 (c) Visualization of Y1

Figure 1: Illustration of the model for N = 2. f is the realization of Y2 (see panels on the left and center).
On the cross section of equation xI2 = x̀I2 , Y2 = Y1 (see panels on the left and right)

• The processes (Zn)26n6N verify the following property:

Zn(xI1∪···In−1
, xIn) = 0, ∀n ∈ J2, NK,∀xI1∪···In−1

∈ [0, 1]d1+···+dn−1 . (3)

The same formulas of prediction as for a classic kriging metamodel apply. For every x ∈ [0, 1]d, the
prediction mean ŷ(x) and variance v̂(x) are defined by

{
ŷ(x) = E [YN (x) | Y1(X1) = y1, · · · , YN (XN) = yN] ,
v̂(x) = V ar (YN (x) | Y1(X1) = y1, · · · , YN (XN) = yN) .

Issues This model raises two issues. The first difficulty is to build (Zn)26n6N such that it verifies the
nullity property (cf (3)). This issue is tackled in section 3. Secondly, the estimation of the parameters of Y1
and (Zn)26n6N at step N , in the presence of training samples from the different steps, stands ahead as a
thorny hurdle to overcome. It is detailed in section 4.

3 Candidates for the correction process
This section answers the first issue, which is to build a process that is null on an infinite continuous set of
points. More precisely, the goal is to build a process Z : [0, 1]dJ+dI × Ω → R such that:

Z(xJ , g(xJ)) = 0 ∀xJ ∈ [0, 1]dJ , (4)

with g : [0, 1]dJ → [0, 1]dI a deterministic function. In this section, two candidates are suggested

for the process Z, both based on a latent Gaussian process
∼
Z ∼ GP

(
0, σ2r((xJ , xI), (tJ , tI))

)
of covariance

kernel σ2r.

3.1 Red (reduced) process

A natural idea to obtain the nullity property (4) is to subtract from
∼
Z its value on the subspace of [0, 1]dJ+dI

equal to {(xJ , g(xJ)) | xJ ∈ [0, 1]dJ}. The first candidate is:

ZRed(xJ , xI) =
∼
Z(xJ , xI)−

∼
Z(xJ , g(xJ)).

It is called the Red process. It is a centered Gaussian process of covariance kernel σ2ρRed with:

ρRed((xJ , xI), (tJ , tI)) = r ((xJ , xI), (tJ , tI))− r ((xJ , xI), (tJ , g(tJ)))
−r ((xJ , g(xJ)), (tJ , tI)) + r ((xJ , g(xJ)), (tJ , g(tJ)) .

4

3.2 P (preconditioned) process
Another way to obtain the nullity property (4) is to use the “conditional expectation” [Gauthier and Bay, 2012].
The second candidate is defined by

ZP (xJ , xI) =
∼
Z(xJ , xI)− E

[∼
Z(xJ , xI) |

∼
Z(sJ , g(sJ)),∀sJ ∈ [0, 1]dJ

]
, ∀(xJ , xI) ∈ [0, 1]dJ+dI . (5)

It is called the P process. The term E
[∼
Z(xJ , xI) |

∼
Z(sJ , g(sJ)),∀sJ ∈ [0, 1]dJ

]
is the orthogonal projection

of
∼
Z(xJ , xI) in the sub Gaussian space engendered by the

(∼
Z(sJ , g(sJ))

)

sJ∈[0,1]dJ
. Its expression is given

by [Gauthier and Bay, 2012]:

E
[∼
Z(xJ , xI) |

∼
Z(sJ , g(sJ)),∀sJ ∈ [0, 1]dJ

]
=

+∞∑

n=1

φn(xJ , xI)

∫

[0,1]dJ

∼
φn(sJ)

∼
Z(sJ , g(sJ))dsJ , (6)

with:
φn(xJ , xI) = 1

λn

∫
[0,1]dJ

σ2r((xJ , xI), (sJ , g(sJ)))
∼
φn(sJ)dsJ ,

and (λn,
∼
φn)n>1 are solutions of the eigen problem:

∫

[0,1]dJ
σ2r ((xJ , g(xJ)), (sJ , g(sJ)))

∼
φn(sJ)dsJ = λn

∼
φn(xJ), ∀xJ ∈ [0, 1]dJ ,

such that: ∫

[0,1]dJ

∼
φn(sJ)

∼
φm(sJ)dsJ = δnm, ∀n,m > 1,

where δnm is the Kronecker symbol. ZP is a centered Gaussian process of covariance kernel:

σ2ρP ((xJ , xI), (tJ , tI)) = σ2r((xJ , xI), (tJ , tI))−
+∞∑

n=1

λnφn(xJ , xI)φn(tJ , tI),
∀(xJ , xI) ∈ [0, 1]dJ × [0, 1]dI ,
∀(tJ , tI) ∈ [0, 1]dJ × [0, 1]dI .

This kernel cannot be used just as it is in practice, because the solutions of the eigen problem are not explicit
in general and the sums are infinite. In this paper, two ways of computing this kernel are proposed. The first
is based on the discretization of the spectral decomposition. The second is based on a wise choice of r (the

correlation kernel of the latent process
∼
Z) for which an explicit formula is known.

Numerical approximation In this paragraph, a first way of computing the kernel is given by an approx-
imation based on the discretization of the spectral decomposition that reduces the functional eigen problem
to a finite dimensional one. In that case, the terms from the spectral decomposition vanish and the formula
of the resulting approximate kernel only depends on the kernel of the latent process.

Proposition 1 Let D =
(
t
(i)
J , g(t

(i)
J)
)
16i6L

be a uniform sample in the subspace {(tJ , g(tJ)), tJ ∈ [0, 1]dJ}.
Then, discretizing the spectral decomposition of the P process Z by a Monte-Carlo method using D is equivalent
to approximating the P process by the process

∼
Z conditioned to be null on the points of D:

ZD =

[∼
Z |

∼
Z(D) = 0

]
.

ZD is a centered Gaussian process of covariance kernel σ2ρD:

ρD(x, t) = r(x, t)− r(x,D)r(D,D)−1r(D, t) ∀x, t ∈ [0, 1]dJ+dI .

See appendix A for the proof of this proposition.

This process does not match the original expectations as the nullity is not fully respected on the continous
set of points. The size of D must be high to correctly approach the full nullity. It is more and more difficult
as the dimension of the input space increases, and it leads to very expensive computations (with inversion of
huge matrices). Therefore, a second way of computing this kernel is proposed. It consists in finding forms of

the kernel of
∼
Z that enable the kernel of ZP to be tractable.

5

(a) Visualization of Y2 and Y1 (b) Isocontours of Y2 (c) Visualization of Y1

Figure 2: Illustration of the model for N = 2 (see figure 1), when x̀I2 is constant.

Analytical expression in the case of a product kernel

Proposition 2 Let rJ and rI be two stationary correlation kernels. If r is of the form:

r((xJ , xI), (tJ , tI)) = rJ(xJ , tJ)rI(xI − g(xJ), tI − g(tJ)),

then the P process is a centered Gaussian process equal to:

ZP (xJ , xI) =
∼
Z(xJ , xI)− rI(xI − g(xJ), 0)

∼
Z(xJ , g(xJ)),

whose covariance kernel is σ2ρP with:

ρP ((xJ , xI), (tJ , tI)) = rJ(xJ , tJ) [rI(xI − g(xJ), tI − g(tJ))− rI(xI − g(xJ), 0)rI(0, tI − g(tJ))] .

See appendix B for the proof of this proposition.

Corollary 1 If g is constant equal to c ∈ [0, 1]dI and if r is a stationary kernel of the form

r((xJ , xI), (tJ , tI)) = rJ(xJ , tJ)rI(xI , tI),

then the P process is a centered Gaussian process equal to:

ZP (xJ , xI) =
∼
Z(xJ , xI)− rI(xI , c)

∼
Z(xJ , c),

whose covariance kernel is σ2ρP with:

ρP ((xJ , xI), (tJ , tI)) = rJ(xJ , tJ) [rI(xI , tI)− rI(xI , c)rI(c, tI)] .

The model presented in the corollary (where the released variables were previously fixed at a constant value)
is illustrated in figure 2.

In the following, the P processes are assumed to be built as in proposition 2 or corollary 1.

3.3 Interpretation of the candidates
An illustration of the processes at stake in the construction of P and Red processes is shown in figure 3. They
are used to build Z(x1, x2) such that Z(x1, 0) = 0. One main difference between Red and P process is that
the initial latent process is disturbed locally in the case of the P process, whereas it is disturbed globally
in the case of the Red process. Indeed,

∼
Z(x1, 0) (see panel 3a), which is used to build the Red process, is

constant in x2 and consequently generates a disruption of
∼
Z(x1, x2) (see panel 3b) in the whole input space

[0, 1]2. On the contrary, the conditional expectation E
[∼
Z(x1, x2) |

∼
Z(t1, 0)∀t1 ∈ [0, 1]

]
(see panel 3c), used

to build the P process, depends on x2, especially near the line x2 = 0, and tends to 0 far from the line. The
modification it implies on the latent process is therefore located almost only along the line.

6

(a) Value of latent process on the border
x2 = 0

(b) Initial latent process (c) Conditional expectation of latent
process

Figure 3: On middle panel, a realization of the latent process from which are built the two candidates for Z1

that should be null on the line x2 = 0. On left panel, the process which is removed from the latent process
to create the Red process. On right panel, the process (denoted by E for expectation) which is removed from
the latent process to create the P process.

4 Estimation of the parameters
This section answers the second issue which is to estimate the parameters of the metamodel seqGPR defined
in section 2. An EM algorithm is presented to ease the maximization of the likelihood.

Notations At step N , the following training samples (also called observed data) are available: (X1,y1),
..., (XN ,yN). The training data can be written as:





Y1(X1) = y1,
...
YN−1(XN−1) = yN−1,
YN (XN) = yN,

or more simply:
Y = y,

with:

Y =



Y1(X1)

...
YN (XN)


 and y =



y1

...
yN


 .

The law of Y1 (see equations (1) and (2)) depends on the parameters: m (scalar mean parameter), σ2
1

(scalar variance parameter), and θ1 (vector of covariance parameters). For all n ∈ J2, NK, Zn (see equation

(2)) is either a Red or P process built on the latent process
∼
Zn ∼ GP(0, σ2

nrn) (see section 3) of parameters:
σ2
n (scalar variance parameter), θn (vector of covariance parameters). In order to emphasize the dependence

of ρn (the covariance kernel of Zn, n ∈ J1, NK) on the parameter θn, this kernel is denoted by ρθn . The
purpose of this section is to estimate the parameters η = (m,σ2

1 , θ1︸ ︷︷ ︸
η1

, σ2
2 , θ2︸ ︷︷ ︸
η2

, · · · , σ2
n, θn︸ ︷︷ ︸
ηn

, · · · , σ2
N , θN︸ ︷︷ ︸
ηN

) based

on the observed data. The maximum likelihood estimator is used. The following loss function 1 has to be
minimized:

l(η;y) = log |Covη(Y,Y)|+ (y − Eη[Y])′Covη(Y,Y)−1(y − Eη[Y]),

with for any matrix M , M ′ denoting the transpose of M . This optimization problem is complex as η can
reach big dimensions.

In what follows, the notation Xn ⊂ Xn−1 means that the submatrix of Xn composed of the columns
corresponding to xI1∪···∪In−1

is included in Xn−1. In this case, the designs Xn and Xn−1 are said nested.
1equal to twice the negative log-likelihood up to a constant

7

Figure 4: Definition of the
∼
Xn (n ∈ {1, 2, 3}) when N = 3 and I1 = {1}, I2 = {2}, I3 = {3}

4.1 Nested designs
Proposition 3 If all the designs are nested: XN ⊂ · · · ⊂ X1, then the loss function can be decoupled:

l(η;y) = l1(η1;y1) +
N∑

n=2

ln(ηn; zn),

with l1(η1;y1) (respectively ln(ηn; zn), n ∈ J1, NK) the loss function associated with the training data Y1(X1) =
y1 (respectively Zn(Xn) = zn).

Proof (zn)16n6N is observed because the designs are nested. The loss function can be decoupled because
(Y1, Z2, · · · , ZN) are independent.

If all the designs are nested, the parameters ηn can be estimated separately by optimizing the loss functions
ln.

4.2 Non nested designs
If the designs are not nested, the loss function is not decoupled. An EM (Expectation-Maximization, see
[Friedman et al., 2001]) algorithm is then used to reduce the dimension of the optimization problem. To
define this algorithm, the notion of complete data is introduced.

Definition 1 (Complete data) Let
∼
Xn (∀1 6 n 6 N) denote the union of all training samples that concern

Zn.
∼
Xn is a matrix of d1 + · · ·+dn columns, composed of the concatenation of the parts of Xn, · · · ,XN corre-

sponding to the input variables xI1∪···∪In . The complete data is the random vector: (Y1(
∼
X1), Z2(

∼
X2), · · · , ZN (

∼
XN)).

Figure 4 gives an illustration of the different
∼
Xn for N = 3 and I1 = {1}, I2 = {2}, I3 = {3}.

In the case of not nested designs
∼
X1, · · · ,

∼
XN play the role of X1, · · · ,XN in the case of nested designs.

According to proposition 3, if the values of Y1 on
∼
X1, denoted by z1, and the values of the Zn on the

∼
Xn

(n ∈ J2, NK), denoted by zn, were observed, the loss function associated to all those training samples, denoted
by lc, could be decomposed as

lc(η; z1, · · · , zn) =
N∑

n=1

lnc (ηn; zn),

8

where l1c(η1; z1) is the loss function associated to the training data Y1(
∼
X1) = z1, and lnc (ηn; zn) (n ∈ J2, NK)

is the loss function associated to the training data Zn(
∼
Xn) = zn.

As some of the complete data is not observed (missing data), an EM algorithm seems adequate to optimize
the loss function.

Definition 2 (EM algorithm) The EM algorithm is defined by

• Expectation Instead of the observed data loss function, the expectation of the complete data loss func-
tion conditioned by the observed data is considered. This quantity can be decomposed in N terms:

Q(η, η∗) = Eη∗ [lc(η;T) | Y = y] ,

=
N∑

n=1

Qn(ηn; η∗),

with ∀n ∈ J1, NK
Qn(ηn, η

∗) = Eη∗
[
lnc (ηn;Zn(

∼
Xn)) | Y = y

]
.

• Maximization The EM algorithm consists in building the sequence (η(i))i>0 = (η
(i)
1 , · · · , η(i)N)i>0 such

that η(0) is user defined and ∀i > 0, η(i+1) is solution of the optimization problem

min
η
Q(η, η(i)).

For all n ∈ J1, NK, η(i+1)
n is solution of the following optimization problem:

min
ηn
Qn(ηn, η

(i)). (7)

See appendix C for the explicit formulas of the Qn. It is known that the sequence (η(i))i>0 verifies that
(l(η(i);y))i>0 is a decreasing sequence (see appendix D). Finally, η is estimated by a term of the sequence of
sufficiently high rank, the choice of the rank being done by imposing a maximum number of iterations and
a threshold on the variation of likelihood between iterations.

Remark To optimize Qn, the matrices cov
(
Zn(

∼
Xn), Zn(

∼
Xn)

)
= σ2

nρθn(
∼
Xn,

∼
Xn) (n ∈ J1, NK) need to be

inverted. First, for all n ∈ J1, NK,
∼
Xn is assumed not having any redundant points such that the matrices

have no identical rows. This condition is sufficient for the first matrix to be invertible as long as ρθ1 is a
positive-definite kernel. As it is not the case of the ρθn (n > 2), to ensure that the matrices are not singular,

each
∼
Xn (n ∈ J2, NK) is also supposed to not contain any point on which Zn is null so there are no rows full

of zeros in the matrices.

5 Examples of application
In what follows, three metamodels are compared on three examples, two analytic functions and one output
from an industrial code:

• seqGPR: the metamodel introduced in this paper. The kernel of Y1 and the ones on which are based
(Zn)Nn=2 are stationary tensor product matern 5

2 covariance kernels.

• K_N: a classic kriging metamodel with a stationary tensor product matern 5
2 covariance kernel and a

constant mean which is built on the last training sample (XN ,yN).

• K_tot: a classic kriging metamodel similar to K_N, but built on all training samples
(X1,y1), · · · , (XN ,yN).

The philosophy of the method seqGPR is to explain a maximum of the data by Y1, and to correct it thanks
to the (Zn)Nn=2, so all the parameters for Y1 are estimated individually and on the contrary some parameters
of the Zn are grouped. Different parameter sparsities for the Zn are tried, to seek balance between fitting
and robustness:

9

• Full: θn = (θ1n, · · · , θd1+···+dnn), one component θin for each input variable xi.

• Robust: θn = (θI1∪···∪In−1
n , · · · , θI1∪···∪In−1

n︸ ︷︷ ︸
I1∪···∪In−1

, θ1n, · · · , θdnn︸ ︷︷ ︸
In

), with θ
I1∪···∪In−1
n common to all components

of xI1∪···∪In−1 , and one parameter θin for each component of xIn .

Four versions of seqGPR are compared. P_full and P_rob (resp. Red_full and Red_rob) use P (resp. Red)
processes defined in subsection 3.2 (resp. 3.1), respectively with parameter sparsity of type Full and Robust
for the (Zn)Nn=2. The metamodels are compared in terms of RMSE on a test sample. The training samples
are not nested so the EM algorithm is used to estimate the parameters of the 4 versions of seqGPR. A simple
likelihood estimation is used for the two kriging models.

5.1 Analytic example in dimension 4
The output f considered in this example is a function of 4 inputs x = (x1, x2, x3, x4): f(x1, x2, x3, x4) =
f1(x1, x2) + f2(x1, x2, x3, x4), with:





f1(x1, x2) =
[
4− 2.1(4x1 − 2)2 + (4x1−2)4

3

]
(4x1 − 2)2

+ (4x1 − 2)(2x2 − 1) +
[
−4 + 4(2x2 − 1)2

]
(2x2 − 1)2,

f2(x1, x2, x3, x4) = 4 exp
(
−‖x− 0.3‖2

)
.

The study is composed of two steps:

• At step 1, computer code evalutations are run at DoE X1 in dimension 2, such that f1(X1) = y1, with
f1 defined by f1(x1, x2) = f(x1, x2, x̀3, x̀4). Only the first two variables x1 and x2 are free and the
other two variables are fixed: x̀3 = x1+x2

2 , x̀4 = 0.2x1 + 0.7.

• At step 2, new simulations are launched at points X2, a design in dimension 4. The last two variables
(x3, x4) are now released.

The total number of variables is d = 4, the number of steps is N = 2, the index set of variables released at
step 1 is I1 = {1, 2} and the index set of variables released at step 2 is I2 = {3, 4}.

Figure 5 shows RMSE of the different methods computed on a Sobol sequence of size 10000 used as a test
set. The RMSE is computed on 100 different training samples (X1,y1) and (X2,y2). The 100 RMSE’s are
represented by a boxplot for each metamodel. Different sizes of training sample are tested. The standard
deviation of the output on the test set is represented by the black horizontal line.

All metamodel performances improve with the size of the training sample. Results show that including
the previous information of (X1,y1) is useful, as it greatly improves the performance of the kriging metamodel
(K_tot is better than K_2). The robust seqGPR metamodels are better than the full, they are equivalent
to or better than K_tot. It seems that the cases with a small or high number of training points are more
discriminating than in the middle cases. With a small number of points (10pts-5pts), K_tot seems more
destabilized than seqGPR. With a high number of points (20pts-40pts), seqGPR is more accurate than
K_tot. Finally, seqGPR using Red are better than seqGPR using P. In the following examples, only the
robust versions of seqGPR, which are more performing and whose parameter estimation is less complex, are
compared to K_tot.

5.2 Analytic example in dimension 15
The following example should be less favorable to seqGPR. The objective function considered is in higher
dimension and not decomposed as a sum of functions that respects the order in which the variables are
released

f : [−3, 3]15 → R
x 7→ a′1x+ a′2 sinx+ a′3 cosx+ x′Mx.

(8)

The function f was first used in [Oakley and O’Hagan, 2004]. The values of its coefficients a1, a2, a3
and M can be found in www.sheffield.ac.uk/st1jeo. The inputs are rescaled in [0, 1] and are rearranged by
decreasing order of Sobol index.

10

Figure 5: Boxplots of the metamodel RMSE’s on 100 studies, for the analytic example in 4D. In abscissa are
the sizes of the training samples.The following sizes are tested from left to right: X1 of size 10 and X2 of size
5 (10pts-5pts), X1 of size 10 and X2 of size 10 (10pts-10pts), X1 of size 10 and X2 of size 20 (10pts-20pts),
X1 of size 20 and X2 of size 10 (20pts-10pts), X1 of size 20 and X2 of size 20 (20pts-20pts), X1 of size 20 and
X2 of size 40 (20pts-40pts)

Figure 6: Sobol indices of the objective function (8).

11

K_tot P_rob Red_rob
Median (·10−4) 46.039 37.135 36.903

Interquartile range (·10−4) 7.258 6.660 6.570

Table 1: Performance of the metamodels for the 100 studies made on the analytic 15D example. The
performances are shown in terms of median of RMSE’s and interquartile range (q75% − q25%).

(a) Car engine cooling system (b) Fan system

Figure 7: On left panel, diagram of the car engine cooling system. On right panel, diagram of fan system.
[Valeo,]

In practice, the first studies are done on the most influential inputs, chosen according to experts’ physical
knowledge. Here, as the function is analytical, the choice of the releasing order for the inputs is made
by sensitivity analysis, which is directly performed on the function. Following the distribution of the Sobol
indices (see figure 6), a study of N = 3 steps is made, adding respectively the groups of variables I1 = {1, 2, 3},
I2 = {4, 5, 6, 7, 8, 9}, and I3 = {10, 11, 12, 13, 14, 15}. The variables that are fixed are set to 0.5. Three training
samples, one for each step, are generated with 5 points per dimension considered at the step: X1 ⊂ [0, 1]3 of
size 15, X2 ⊂ [0, 1]9 of size 45, and X3 ⊂ [0, 1]15 of size 75. A Sobol sequence of size 10000 in dimension 15 is
used as a test sample. The study is done 100 times, each time with new training samples.

The performances of the metamodels are shown in table 1. All versions of seqGPR are better than the
classic kriging, with a slight improvement for the Red version in comparison with the P version. Red and P
are almost equivalent as opposed to the previous example. This can be due to the fact that the P version
disturbs less the initial stationary kernel because the variables which are fixed at a given step are set to a
constant instead of varying in function of the free variables, as it is the case in the previous example.

5.3 Industrial example: fan system in dimension 15
The industrial product which is studied in this section is the fan system which is part of a car engine cooling
system from Valeo company (see figure 7). This cooling system is composed of a cold fluid circulating in part
in the car engine to regulate its temperature and in part in a radiator where it is itself cooled down. When
the car moves, the wind generated by the car speed and reaching the radiator is sufficient to evacuate the
heat from the fluid. When the car is motionless, the fan is activated to replace the wind.

The output considered here is the Pressure difference (∆P) between the upstream and the downstream
of the air flow crossing the fan. It is function of 15 input variables. One input is the flowrate (Q). The
14 others are geometric. The fan blade geometries are supposed identical with each other. The geometry is
monitored at 5 different sections (see figure 8a). At each section, the stagger angle and the chord length are
controlled (see figure 8b). The chord is the line formed by the two borders of the blade at the considered
section. The stagger angle is the angle between the chord and the rotation axis. The sweep is manipulated at
each section. It is defined as the distance between the line formed by the rotation axis and the right border
of the first section and the right border of the considered section (see figure 8c). At section 1, it is always
equal to 0 and therefore not kept as an input.

To summarize, the variables are

• The flowrate: Q

• The stagger angles at the five sections: Stag1, Stag2, Stag3, Stag4, Stag5

12

(a) Sections (b) Chord length and stag-
ger angle at a given section

(c) Definition of the sweep
at section 5

Figure 8: On the left panel, visualization of the five sections of the blade. On the middle panel, definition
of the stagger angle and the chord length at a given section. On the right panel, definition of the sweep at
section 5.

K_tot P_rob Red_rob
Median (·10−3) 44.585 41.207 42.088

Interquartile range (·10−3) 5.892 4.657 4.609

Table 2: Performance of the metamodels for the 100 studies made on the industrial 15D example. The
performances are shown in terms of median of RMSE’s and interquartile range (q75% − q25%)

• The chord lengths at the five sections: Chord1, Chord2, Chord3, Chord4, Chord5

• The sweeps at sections 2 to 5: Swe2, Swe3, Swe4, Swe5

In the rest of this example, all variables are adimensionalized in [0, 1] and the output ∆P is adimensionalized
in [−1, 1].

Industrial experts at Valeo have carried out a two-step (N = 2) study in the context of this work.

• At step 1, all the sweeps are fixed to constants: Swe2 = 0.517645, Swe3 = 0.82, Swe4 = 1, Swe5 = 1.
An OLH of size 126 has been created on the 11 free inputs (I1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}).

• At step 2, all the inputs are free (I2 = {12, 13, 14, 15}). An OLH of size 299 has been created for the
15 inputs.

In order to obtain robust results, a cross-validation procedure is implemented. Each OLH is decomposed
in 30 subsamples of size 50 optimized for the maximin criterion (they can share common points). The 30
complementary subsamples of size 249 from the OLH of step 2 are used as test samples.

Table 2 shows performances of the different metamodels on the test samples. The metamodel seqGPR is
better than K_tot. Its version with P is this time slightly better than with Red, again probably because the
fixed inputs are constant as in the previous example.

6 Conclusion
In the framework of Gaussian process regression, the problem of building metamodels in nested spaces of
increasing dimension is studied. The variables are first fixed and then released progressively. The suggested
method, called seqGPR, consists in creating a kriging metamodel with a non-stationary kernel on the reunion
of all training samples. This kernel is the covariance kernel of a process defined recursively. At a given step,
the process modeling the output is equal to the sum of the process modeling the output at the previous step
and an independent correction term.

The correction term must be a Gaussian process which is null on a part of the input space. Two candidates
are proposed: the Red (Reduced) process, and the P (Preconditioned) process. The P process, found in the

13

literature, is intractable. Two ways are tried to make it tractable. The first way is to discretize its spectral
decomposition. But this technique leads to a Gaussian process conditioned to be null on some points of the
space. This process is never exactly null everywhere in the part we want. To approach this nullity, a lot of
points are needed in the conditioning, and that is very computationally expensive. In a second approach, a
tractable exact expression is directly sought, in exchange for a modification of the latent process it is built
upon.

Then, the issue of the parameter estimation is addressed. Instead of directly optimizing the likelihood, an
EM algorithm is implemented, which is adapted to the additive structure composed of independent processes.

Finally, the metamodel seqGPR is compared to a classic kriging metamodel, based on a stationary kernel,
on two analytic and one industrial examples. Different levels of parameter sparsity for the correction processes
are tried. The level of sparsity that seems to always be better than classic kriging is the Robust one with
either Red or P processes. The Red version seems to achieve higher performances than the P version most
of the time, so the Red_rob version is recommended.

Software and Acknowledgments
Implementation have been done in R, where all the kernels and methods of estimation and prediction have
been implemented using the package RcppArmadillo.

This work, carried out at Ecole Centrale de Lyon, was financially subsidized by Valeo. The authors
wish to show their particular gratitude to Mr. Manuel Henner and Mr. Nicolas Yoan François for their
support and fruitful discussion on the industrial point of view. The authors are grateful to the Members
of GdRMascotnum for their useful advice, and in particular to Mr. Olivier Roustant and Mr. Xavier Bay
for constructive discussions on the subject on the theoretical point of view. The authors would also like to
acknowledge Mr. Philippe du Bouays and Ms. Laura Gay for their careful proofreading.

Appendix

A Proof of proposition 1
This section deals with the proof of proposition 1, which gives an approximation of the process ZP (defined
in equation (5)) by discretizing its spectral decomposition.

Proof • Approximation of (λn,
∼
φn):

The following eigenvalue problem is considered:
∫
[0,1]dJ

σ2r((xJ , g(xJ)), (sJ , g(sJ)))
∼
φ(sJ)dsJ = λ

∼
φ(xJ) ∀xJ ∈ [0, 1]dJ .

It is discretized using a Monte-Carlo method. A sample (s
(i)
J)16i6L is generated uniformly in [0, 1]dJ to

build D =
(
s
(i)
J , g(s

(i)
J)
)
16i6L

which is a discretization of the subspace {(sJ , g(sJ)), sJ ∈ [0, 1]dJ}. The

Monte-Carlo approximation of the integral is:

1

L

L∑

i=1

σ2r((xJ , g(xJ)), (s
(i)
J , g(s

(i)
J)))

∼
φ(s

(i)
J).

Discretizing in xJ with D, the eigen problem becomes a finite dimensional one:
(

1

L
σ2r(D,D)

) ∼
Φ = γ

∼
Φ. (9)

The solutions of (9) are noted (γn, Vn)16n6L. The Vn are taken such that they verify:

V ′n Vm = δnm.

The discretization of
∼
φn (noted

∼
Φn) must verify the discrete equivalent of
∫

[0,1]dJ

∼
φn(tJ)

∼
φm(tJ)dtJ = δnm,

14

which is
1

L

∼
Φ
′
n

∼
Φm = δnm.

So the following relation between Vn and
∼
Φn is verified: Vn = 1√

L

∼
Φn ⇔

∼
Φn =

√
LVn.

• Approximation of φn:

As

φn(xJ , xI) = 1
λn

∫
[0,1]dJ

σ2r ((xJ , xI), (sJ , g(sJ)))
∼
φn(sJ)dsJ ∀(xJ , xI) ∈ [0, 1]dJ × [0, 1]dI ,

using the same Monte-Carlo approximation and replacing (λn,
∼
φn) by (γn,

∼
Φn), the following approxi-

mation of φn is obtained:

φDn(x) = 1
γn

1
Lσ

2r(x,D)
∼
Φn ∀x ∈ [0, 1]dJ+dI .

• Decomposition of the matrix
(
σ2r(D,D)

)−1

(γn, Vn)n>1 are the eigenvalues and (orthonormal) eigenvectors of 1
Lσ

2r(D,D). So (1
γn
, Vn)n>1 are the

eigenvalues and (orthonormal) eigenvectors of L
(
σ2r(D,D)

)−1, and:

L
(
σ2r(D,D)

)−1
=

L∑

n=1

1

γn
VnV

′
n,

=
L∑

n=1

1

γn

(
1√
L

∼
Φn

)(
1√
L

∼
Φ
′
n

)
,

=
1

L

L∑

n=1

γn
∼
Φn
∼
Φ
′
n.

So
(
σ2r(D,D)

)−1
=

1

L2

L∑

n=1

γn
∼
Φn
∼
Φ
′
n.

• Approximation of the process ZP :

The integral
∫
[0,1]dJ

∼
φn(tJ)

∼
Z(tJ , g(tJ))dtJ , involved in the formula of ZP (see (5)), is discretized the

same way as before. It becomes:
1

L

∼
Φ
′
n

∼
Z(D).

The approximation of the process is:

ZD(x) =
∼
Z(x)−

L∑

n=1

φDn(x)

(
1

L

∼
Φ
′
n

∼
Z(D)

)
,

=
∼
Z(x)−

L∑

n=1

(
1

L

1

γn
σ2r(x,D)

∼
Φn

)(
1

L

∼
Φ
′
n

∼
Z(D)

)
,

=
∼
Z(x)−

(
σ2r(x,D)

)
(

1

L2

L∑

n=1

1

γn

∼
Φn
∼
Φ
′
n

)
∼
Z(D),

=
∼
Z(x)−

(
σ2r(x,D)

) (
σ2r(D,D)

)−1 ∼
Z(D),

=
∼
Z(x)− E[

∼
Z(x) |

∼
Z(D)],

=

[∼
Z(x) |

∼
Z(D) = 0

]
.

The process approximating ZP is the conditioned (on a finite set of points) Gaussian process ZD. It is a
centered Gaussian process of covariance kernel σ2ρD with:

ρD(x, x′) = r(x, x′)− r(x,D)r(D,D)−1r(D, x′) ∀x, x′ ∈ [0, 1]dJ+dI .

15

B Proof of proposition 2
This section deals with the proof of proposition 2 which gives a closed form formula of the process ZP (see

equation (5)) for a particular choice of the kernel of
∼
Z.

Proof • Eigenvalue problem:

The eigenvalue problem can be rewritten as:

∫
[0,1]dJ

(
σ2r ((xJ , g(xJ)), (sJ , g(sJ)))

)∼
φn(sJ)dsJ = λn

∼
φn(xJ), ∀xJ ∈ [0, 1]dJ ,

⇔
∫
[0,1]dJ

(
σ2rJ(xJ , sJ)

)
rI (g(xJ)− g(xJ), g(sJ)− g(sJ))

∼
φn(sJ)dsJ = λn

∼
φn(xJ),

⇔
∫
[0,1]dJ

(
σ2rJ(xJ , sJ)

)
rI(0, 0)︸ ︷︷ ︸

=1

∼
φn(sJ)dsJ = λn

∼
φn(xJ),

⇔
∫
[0,1]dJ

(
σ2rJ(xJ , sJ)

)∼
φn(sJ)dsJ = λn

∼
φn(xJ).

(10)

• Expression of φn:

φn can be rewritten as:

φn(xJ , xI) = 1
λn

∫
[0,1]dJ

(
σ2r ((xJ , xI), (sJ , g(sJ)))

)∼
φn(sJ)dsJ , ∀(xJ , xI) ∈ [0, 1]dJ × [0, 1]dI ,

= 1
λn

∫
[0,1]dJ

(
σ2rJ(xJ , sJ)

)
rI (xI − g(xJ), g(sJ)− g(sJ))

∼
φn(sJ)dsJ ,

= 1
λn

(∫
[0,1]dJ

(
σ2rJ(xJ , sJ)

)∼
φn(sJ)dsJ

)
rI (xI − g(xJ), 0)) ,

= 1
λn

(
λn
∼
φn(xJ)

)
rI (xI − g(xJ), 0)) ,

=
∼
φn(xJ)rI (xI − g(xJ), 0)) .

The second last equality is due to the fact that
∼
φn is solution of the eigenvalue problem (10).

• The P process can be rewritten as:

ZP (xJ , xI) =
∼
Z(xJ , xI)−

+∞∑

n=1

φn(xJ , xI)

∫ ∼
φn(sJ)

∼
Z(sJ , g(sJ))dsJ , ∀(xJ , xI) ∈ [0, 1]dJ+dI ,

=
∼
Z(xJ , xI)−

+∞∑

n=1

∼
φn(xJ)rI (xI − g(xJ), 0))

∫ ∼
φn(sJ)

∼
Z(sJ , g(sJ))dsJ ,

=
∼
Z(xJ , xI)−

(
+∞∑

n=1

∼
φn(xJ)

∫ ∼
φn(sJ)

∼
Z(sJ , g(sJ))dsJ

)
rI (xI − g(xJ), 0)) ,

and, because
∼
Z(xJ , g(xJ)) belongs to the sub Gaussian space engendered by the {

∼
Z(sJ , g(sJ)) ∀sJ ∈

[0, 1]dJ}, its projection in this subspace is equal to itself:

∼
Z(xJ , g(xJ)) = E[

∼
Z(xJ , g(xJ)) |

∼
Z(sJ , g(sJ))∀sJ], ∀xJ ∈ [0, 1]dJ ,

=
+∞∑

n=1

φn(xJ , g(xJ))

∫ ∼
φn(sJ)

∼
Z(sJ , g(tJ))dsJ ,

=
+∞∑

n=1

∼
φn(xJ) rI (g(xJ)− g(xJ), 0))︸ ︷︷ ︸

=1

∫ ∼
φn(sJ)

∼
Z(sJ , g(tJ))dsJ ,

=
+∞∑

n=1

∼
φn(xJ)

∫ ∼
φn(sJ)

∼
Z(sJ , g(sJ))dsJ .

The second equality is the formula of the conditional expectation (see (6)).

So
ZP (x) =

∼
Z(x)− rI (xI − g(xJ), 0)

∼
Z(xJ , g(xJ)).

16

C Formulas of the EM procedure
This section gives the formulas of the Qn involved in the optimization problems (7) used to estimate the

parameters ηn in the EM algorithm. 1∼
X1

is the unit column vector of size nrows
(∼
X1

)
. Denoting by X1 and

X2 two DoE’s, 0X1,X2 is the null matrix of size nrows(X1)× nrows(X2).
Using the expectation of a quadratic form formula to Gaussian vectors:





Q1(η1, η
∗) = n∼

X1

log σ2
1 + log

∣∣∣∣ρθ1
(∼
X1,

∼
X1

)∣∣∣∣

+
Tr

(
ρθ1 (

∼
X1,
∼
X1)
−1C1(η

∗)
)

σ2
1

+
(E1(η

∗)−m1∼
X1

)′ρθ1 (
∼
X1,
∼
X1)
−1(E1(η

∗)−m1∼
X1

)

σ2
1

,

∀n ∈ J2, NK,
Qn(ηn, η

∗) = n∼
Xn

log σ2
n + log

∣∣∣∣ρθn
(∼
Xn,

∼
Xn
)∣∣∣∣

+
Tr

(
ρθn (

∼
Xn,
∼
Xn)−1Cn(η

∗)
)

σ2
n

+
En(η

∗)′ρθn (
∼
Xn,
∼
Xn)−1En(η

∗)
σ2
n

,

with




E1(η∗) = m∗1∼
X1

+(σ∗1)2ρθ∗1

(∼
X1,

∼
X1

)
Covη∗ (Y,Y)

−1
(y − Eη∗ [Y]) ,

C1(η∗) = (σ∗1)2ρθ∗1

(∼
X1,

∼
X1

)
− (σ∗1)2ρθ∗1

(∼
X1,

∼
X1

)
Covη∗ (Y,Y)

−1
(σ∗1)2ρθ∗1

(∼
X1,

∼
X1

)
,

En(η∗) = Covη∗

(
Zn

(∼
Xn
)
,Y

)
Covη∗ (Y,Y)

−1
(y − Eη∗ [Y]) , ∀n ∈ J1, NK,

Cn(η∗) = (σ∗n)
2
ρθ∗n

(∼
Xn,

∼
Xn
)

−Covη∗
(
Zn

(∼
Xn
)
,Y

)
Covη∗ (Y,Y)

−1
Covη∗

(
Y, Zn

(∼
Xn
))

.

(11)

Partial analytical solution The optima m(i+1) and σ(i+1)
n (n ∈ J1, NK) have analytical forms obtained

by solving the system formed when the corresponding partial derivatives of the Qn vanish. Finally, at each
new iteration i+ 1, the goal is to find θ(i+1)

n (n ∈ J2, NK) solution of the following problem




min
θn

n∼
Xn

log

((
σ
(i+1)
n (θn)

)2)
+ log

(∣∣∣∣ρθn
(∼
Xn,

∼
Xn
)∣∣∣∣
)
,

with
(
σ
(i+1)
n (θn)

)2
=

Tr

(
ρθn (

∼
Xn,
∼
Xn)−1Cn(η

(i))

)
+En(η

(i))′ρθn (
∼
Xn,
∼
Xn)−1En(η

(i))

n∼
Xn

,

and θ(i+1)
1 solution of the following problem





min
θ1

n∼
X1

log

((
σ
(i+1)
1 (θ1)

)2)
+ log

(∣∣∣∣ρθ1
(∼
X1,

∼
X1

)∣∣∣∣
)
,

with
(
σ
(i+1)
1 (θ1)

)2
=

Tr

(
ρθ1 (

∼
X1,
∼
X1)
−1C1(η

(i))

)
+(E1(η

(i))−m(i+1)(θ1)1∼X1
)′ρθ1 (

∼
X1,
∼
X1)
−1(E1(η

(i))−m(i+1)(θ1)1∼X1
)

n∼
X1

,

and m(i+1)(θ1) =
1′∼

X1

ρθ1

(∼
X1,
∼
X1

)−1

E1(η
(i))

1′∼
X1

ρθ1

(∼
X1,
∼
X1

)−1

1∼
X1

,

17

where En(η(i)) and Cn(η(i)) (n ∈ J1, NK) are given in equation (11).

D Proof of the monotonicity of the sequence from the EM algorithm
Let Y = (Y1(X1), · · · , YN (XN)) denote the observed data. Let U =(
Z1

(∼
X1\X1

)
, Z2

(∼
X2\X2

)
, . . . , ZN−1

(∼
XN−1\XN−1

))
denote the unknown data. The complete

data is equal to: T =

(
Z1

(∼
X1

)
, · · · , ZN−1

(∼
XN−1

)
, ZN (XN)

)
. Let y, u, and t be the realizations of

respectively Y, U, and T. By definition of the conditional density:

hY;η(y) =
hT;η(t)

hU | Y = y︸ ︷︷ ︸
∼
U

;η
(u)

.

So
L(η;y) =

Lc(η; t)

h∼
U;η

(u)
.

So (up to a constant)
l(η;y)

c
= lc(η; t) + 2 log(h∼

U;η
(u)).

Replacing the observations by the corresponding random variables

l(η;Y)
c
= lc(η;T) + 2 log(h∼

U;η
(
∼
U)).

Taking the expectation assuming η′ and conditioning by Y = y

l(η;y)
c
= Q(η, η′) + 2R(η, η′),

with
R(η, η′) = Eη′

[
log(h∼

U;η
(
∼
U)) | Y = y

]
.

The difference between the loss function taken at the updated and previous terms of the EM sequence is the
sum of two quantities.

l(η(i+1))− l(η(i)) = Q(η(i+1), η(i))−Q(η(i), η(i))︸ ︷︷ ︸
60

+2
(
R(η(i+1), η(i))−R(η(i), η(i))

)

︸ ︷︷ ︸
=R

.

The first quantity is negative by definition of the EM algorithm. The second quantity can be rewritten as:

R = R(η(i+1), η(i))−R(η(i), η(i)),

= Eη(i)
[
log

(
h∼
U;η(i+1)

(
∼
U)

)]
− Eη(i)

[
log

(
h∼
U;η(i)

(
∼
U)

)]
,

= Eη(i)

[
log

(
h∼
U;η(i+1)

(
∼
U)

h∼
U;η(i)

(
∼
U)

)]
,

6 log

(
Eη(i)

[
h∼
U;η(i+1)

(
∼
U)

h∼
U;η(i)

(
∼
U)

])
,

6 log

(∫ h∼
U;η(i+1)

(u)

h∼
U;η(i)

(u) h∼U;η(i)
(u)du

)
,

6 log
(∫

h∼
U;η(i+1)

(u)du
)
,

6 log(1),
6 0.

Indeed the inequality l(η(i+1))−l(η(i)) 6 0 is verified by the sequence
(
η(i)
)
i
built following the EM algorithm.

18

References
[Auder et al., 2012] Auder, B., De Crecy, A., Iooss, B., and Marques, M. (2012). Screening and metamod-

eling of computer experiments with functional outputs. application to thermal–hydraulic computations.
Reliability Engineering & System Safety, 107:122–131.

[Bachoc et al., 2020] Bachoc, F., Lopera, A. F. L., and Roustant, O. (2020). Sequential construction and
dimension reduction of gaussian processes under inequality constraints. arXiv preprint arXiv:2009.04188.

[Cheng and Titterington, 1994] Cheng, B. and Titterington, D. M. (1994). Neural networks: A review from
a statistical perspective. Statistical science, pages 2–30.

[Clarke et al., 2005] Clarke, S. M., Griebsch, J. H., and Simpson, T. W. (2005). Analysis of support vector
regression for approximation of complex engineering analyses.

[Da Veiga and Marrel, 2012] Da Veiga, S. and Marrel, A. (2012). Gaussian process modeling with inequality
constraints. In Annales de la Faculté des sciences de Toulouse: Mathématiques, volume 21, pages 529–555.

[Dupuy et al., 2015] Dupuy, D., Helbert, C., Franco, J., et al. (2015). Dicedesign and diceeval: Two r
packages for design and analysis of computer experiments. Journal of Statistical Software, 65(11):1–38.

[Forrester et al., 2008] Forrester, A., Sobester, A., and Keane, A. (2008). Engineering design via surrogate
modelling: a practical guide. John Wiley & Sons.

[Friedman et al., 2001] Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statistical
learning, volume 1. Springer series in statistics New York.

[Gauthier and Bay, 2012] Gauthier, B. and Bay, X. (2012). Spectral approach for kernel-based interpolation.
In Annales de la Faculté des sciences de Toulouse: Mathématiques, volume 21, pages 439–479.

[Hebbal et al., 2021] Hebbal, A., Brevault, L., Balesdent, M., Talbi, E.-G., and Melab, N. (2021). Multi-
fidelity modeling with different input domain definitions using deep gaussian processes. Structural and
Multidisciplinary Optimization, pages 1–22.

[Iooss and Prieur, 2019] Iooss, B. and Prieur, C. (2019). Shapley effects for sensitivity analysis with correlated
inputs: comparisons with sobol’indices, numerical estimation and applications. International Journal for
Uncertainty Quantification, 9(5).

[Jones et al., 1998] Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization of
expensive black-box functions. Journal of Global optimization, 13(4):455–492.

[Kennedy and O’Hagan, 2000] Kennedy, M. C. and O’Hagan, A. (2000). Predicting the output from a com-
plex computer code when fast approximations are available. Biometrika, 87(1):1–13.

[Le Gratiet and Garnier, 2014] Le Gratiet, L. and Garnier, J. (2014). Recursive co-kriging model for design of
computer experiments with multiple levels of fidelity. International Journal for Uncertainty Quantification,
4(5).

[Lefebvre et al., 2010] Lefebvre, S., Roblin, A., Varet, S., and Durand, G. (2010). A methodological approach
for statistical evaluation of aircraft infrared signature. Reliability Engineering & System Safety, 95(5):484–
493.

[Lopera, 2019] Lopera, A. F. L. (2019). Gaussian Process Modelling under Inequality Constraints. PhD
thesis, Université de Lyon.

[Maatouk and Bay, 2017] Maatouk, H. and Bay, X. (2017). Gaussian process emulators for computer exper-
iments with inequality constraints. Mathematical Geosciences, 49(5):557–582.

[Makowski et al., 2006] Makowski, D., Naud, C., Jeuffroy, M.-H., Barbottin, A., and Monod, H. (2006).
Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop
model prediction. Reliability Engineering & System Safety, 91(10-11):1142–1147.

[Oakley and O’Hagan, 2004] Oakley, J. E. and O’Hagan, A. (2004). Probabilistic sensitivity analysis of
complex models: a bayesian approach. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 66(3):751–769.

19

[Pelamatti et al., 2021] Pelamatti, J., Brevault, L., Balesdent, M., Talbi, E.-G., and Guerin, Y. (2021).
Bayesian optimization of variable-size design space problems. Optimization and Engineering, 22(1):387–
447.

[Pronzato and Müller, 2012] Pronzato, L. and Müller, W. G. (2012). Design of computer experiments: space
filling and beyond. Statistics and Computing, 22(3):681–701.

[Roustant et al., 2012] Roustant, O., Ginsbourger, D., and Deville, Y. (2012). Dicekriging, diceoptim: Two
r packages for the analysis of computer experiments by kriging-based metamodeling and optimization.

[Sacks et al., 1989] Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and analysis of
computer experiments. Statistical science, pages 409–423.

[Saltelli, 2000] Saltelli, A. (2000). Sensitivity analysis, edited by: Saltelli, a., chan, k., and scott, em.

[Santner et al., 2003] Santner, T. J., Williams, B. J., Notz, W., and Williams, B. J. (2003). The design and
analysis of computer experiments, volume 1. Springer.

[Sobol, 1993] Sobol, I. M. (1993). Sensitivity analysis for non-linear mathematical models. Mathematical
modelling and computational experiment, 1:407–414.

[Valeo,] Valeo. Internal documentation.

[Williams and Rasmussen, 2006] Williams, C. K. and Rasmussen, C. E. (2006). Gaussian processes for
machine learning, volume 2. MIT press Cambridge, MA.

20

Bibliography

[Bachoc et al., 2020] Bachoc, F., Lopera, A. F. L., and Roustant, O. (2020). Sequential
construction and dimension reduction of gaussian processes under inequality constraints.
arXiv preprint arXiv:2009.04188.

[Cheng and Titterington, 1994] Cheng, B. and Titterington, D. M. (1994). Neural networks:
A review from a statistical perspective. Statistical science, pages 2–30.

[Clarke et al., 2005] Clarke, S. M., Griebsch, J. H., and Simpson, T. W. (2005). Analysis of
support vector regression for approximation of complex engineering analyses. Journal of
Mechanical Design.

[Da Veiga et al., 2021] Da Veiga, S., Gamboa, F., Iooss, B., and Prieur, C. (2021). Basics
and Trends in Sensitivity Analysis: Theory and Practice in R. SIAM.

[Da Veiga and Marrel, 2012] Da Veiga, S. and Marrel, A. (2012). Gaussian process modeling
with inequality constraints. In Annales de la Faculté des sciences de Toulouse: Mathéma-
tiques, volume 21, pages 529–555.

[Dupuy et al., 2015] Dupuy, D., Helbert, C., Franco, J., et al. (2015). Dicedesign and dicee-
val: Two r packages for design and analysis of computer experiments. Journal of Statistical
Software, 65(11):1–38.

[Forrester et al., 2008] Forrester, A., Sobester, A., and Keane, A. (2008). Engineering design
via surrogate modelling: a practical guide. John Wiley & Sons.

[Friedman et al., 2001] Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of
statistical learning, volume 1. Springer series in statistics New York.

[Gauthier, 2011] Gauthier, B. (2011). Approche spectrale pour l’interpolation à noyaux et
positivité conditionnelle. PhD thesis, Ecole Nationale Supérieure des Mines de Saint-
Etienne.

[Gauthier and Bay, 2012a] Gauthier, B. and Bay, X. (2012a). Spectral approach for kernel-
based interpolation. In Annales de la Faculté des sciences de Toulouse: Mathématiques,
volume 21, pages 458–460.

[Gauthier and Bay, 2012b] Gauthier, B. and Bay, X. (2012b). Spectral approach for kernel-
based interpolation. In Annales de la Faculté des sciences de Toulouse: Mathématiques,
volume 21, pages 439–479.

[Gonon et al., 2021] Gonon, T., Helbert, C., Blanchet-Scalliet, C., and Demory, B. (2021).
Gaussian process regression on nested spaces. HAL.

[Gourdon, 1994] Gourdon, X. (1994). Les maths en tête. Ellipses-Marketing.

193

[Hebbal et al., 2021] Hebbal, A., Brevault, L., Balesdent, M., Talbi, E.-G., and Melab, N.
(2021). Multi-fidelity modeling with different input domain definitions using deep gaussian
processes. Structural and Multidisciplinary Optimization, pages 1–22.

[Henner et al., 2019] Henner, M., Demory, B., Gonon, T., and Helbert, C. (2019). Sam-
pling strategies for metamodel enrichment and automotive fan optimization. In European
Conference on Turbomachinery Fluid Dynamics and Thermodynamics.

[Iooss and Prieur, 2019] Iooss, B. and Prieur, C. (2019). Shapley effects for sensitivity anal-
ysis with correlated inputs: comparisons with sobol indices, numerical estimation and
applications. International Journal for Uncertainty Quantification, 9(5).

[Jones et al., 1998] Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global
optimization of expensive black-box functions. Journal of Global optimization, 13(4):455–
492.

[Kennedy and O’Hagan, 2000] Kennedy, M. C. and O’Hagan, A. (2000). Predicting the out-
put from a complex computer code when fast approximations are available. Biometrika,
87(1):1–13.

[Le Gratiet, 2013a] Le Gratiet, L. (2013a). Multi-fidelity Gaussian process regression for
computer experiments. PhD thesis, Université Paris-Diderot. page 182.

[Le Gratiet, 2013b] Le Gratiet, L. (2013b). Multi-fidelity Gaussian process regression for
computer experiments. PhD thesis, Université Paris-Diderot.

[Le Gratiet and Garnier, 2014] Le Gratiet, L. and Garnier, J. (2014). Recursive co-kriging
model for design of computer experiments with multiple levels of fidelity. International
Journal for Uncertainty Quantification, 4(5).

[Lopera, 2019] Lopera, A. F. L. (2019). Gaussian Process Modelling under Inequality Con-
straints. PhD thesis, Ecole des Mines de Saint-Etienne.

[López-Lopera et al., 2017] López-Lopera, A. F., Bachoc, F., Durrande, N., and Roustant,
O. (2017). Finite-dimensional gaussian approximation with linear inequality constraints.
arXiv preprint arXiv:1710.07453.

[Maatouk and Bay, 2017] Maatouk, H. and Bay, X. (2017). Gaussian process emulators for
computer experiments with inequality constraints. Mathematical Geosciences, 49(5):557–
582.

[Morris and Mitchell, 1995] Morris, M. D. and Mitchell, T. J. (1995). Exploratory designs for
computational experiments. Journal of statistical planning and inference, 43(3):381–402.

[Oakley and O’Hagan, 2004] Oakley, J. E. and O’Hagan, A. (2004). Probabilistic sensitivity
analysis of complex models: a bayesian approach. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 66(3):751–769.

[Pelamatti et al., 2021] Pelamatti, J., Brevault, L., Balesdent, M., Talbi, E.-G., and Guerin,
Y. (2021). Bayesian optimization of variable-size design space problems. Optimization and
Engineering, 22(1):387–447.

194

[Picheny et al., 2010] Picheny, V., Ginsbourger, D., Roustant, O., Haftka, R. T., and Kim,
N.-H. (2010). Adaptive designs of experiments for accurate approximation of a target
region. Journal of Mechanical Design.

[Pronzato and Müller, 2012] Pronzato, L. and Müller, W. G. (2012). Design of computer
experiments: space filling and beyond. Statistics and Computing, 22(3):681–701.

[Roustant et al., 2012] Roustant, O., Ginsbourger, D., and Deville, Y. (2012). Dicekriging,
diceoptim: Two r packages for the analysis of computer experiments by kriging-based
metamodeling and optimization. Journal of statistical software, 51:1–55.

[Sacks et al., 1989] Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design
and analysis of computer experiments. Statistical science, pages 409–423.

[Saltelli et al., 2008] Saltelli, A., Chan, K., and Scott, E. (2008). Sensitivity Analysis. John
Wiley & Sons.

[Santner et al., 2003a] Santner, T. J., Williams, B. J., Notz, W., and Williams, B. J. (2003a).
The design and analysis of computer experiments, volume 1. Springer.

[Santner et al., 2003b] Santner, T. J., Williams, B. J., Notz, W., and Williams, B. J. (2003b).
The design and analysis of computer experiments, volume 1, pages 145–245. Springer.

[Sobol, 1993] Sobol, I. M. (1993). Sensitivity analysis for non-linear mathematical models.
Mathematical modelling and computational experiment, 1:407–414.

[Valeo,] Valeo. Internal documentation.

[Williams and Rasmussen, 2006] Williams, C. K. and Rasmussen, C. E. (2006). Gaussian
processes for machine learning, volume 2. MIT press Cambridge, MA.

[Zertuche, 2015] Zertuche, F. (2015). Assessment of uncertainty in computer experiments
when working with multifidelity simulators. PhD thesis, Université Grenoble Alpes.

195

196

dernière page de la thèse

AUTORISATION DE SOUTENANCE

VX leV diVpoViWionV de l¶aUUrWp dX 25 mai 2016,

Vu la demande du directeur de thèse

Mesdames C. BLANCHET-SCALLIET et C. HELBERT

et les rapports de

M. L. PRONZATO
Directeur de Recherche CNRS - CNRS Laboratoire I3S - UMR 7271 - Université Côte d'Azur -
Les Algorithmes - Bât. Euclide B - 2000 route des Lucioles - BP 121
06903 Sophia Antipolis cedex

et de

M. B. IOOS
Docteur HDR - Senior Researcher and Project Manager - EDF R&D - 6 quai Watier
78401 Chatou cedex

Monsieur GONON Thierry

est autorisé j VoXWeniU Xne WhqVe poXU l¶obWenWion dX gUade de DOCTEUR

Ecole doctorale Mathématiques et Informatique

Fait à Ecully, le 1er mars 2022

PoXU le diUecWeXU de l¶Ecole cenWrale de Lyon
Le directeur des Formations

Grégory VIAL

	Introduction
	Industrial motivation
	Model
	Problematics and plan of the thesis

	State of the art
	Generalities on the kriging metamodel
	From Gaussian vectors to Gaussian process regression
	Maximum Likelihood estimation and EM (Expectation - Maximization) algorithm
	Multifidelity
	Sobol index
	Design of Experiments

	Kriging under constraints
	Imposing the constraint a posteriori
	Imposing the constraint a priori with a conditional GP

	Probabilistic model
	Model
	General formalism
	Examples
	Metamodel seqGPR (Sequential Gaussian process regression)

	Candidates for the correction processes
	Red (Reduced) process
	Psi process
	P (Preconditioned) process
	Example in 2D

	Qualitative comparison of the processes
	Shapes of the paths
	Influence of 2
	Influence of 1
	Influence of 2
	Influence of

	Estimation of the parameters
	Psi Likelihood
	Red Likelihood
	P Likelihood
	Comparison of the estimations on a 2D example

	Conclusion

	seqGPR methodology
	Estimation and prediction
	Nested designs
	Non-nested designs
	Example in 2D

	Test cases
	Robustness
	Analytic test case in dimension 4
	Analytic test case in dimension 15
	Industrial test case

	Conclusion

	Designs of Experiments
	Nested designs
	Iterative construction procedure
	Numerical implementation
	Example in 2D
	Other illustrations

	Non-nested designs
	Iterative construction procedure
	Numerical implementation
	Examples
	Other illustrations

	Conclusion

	Additional contributions
	Conditioning on multiple subspaces
	Model
	Candidate for the correction processes
	Example in 2D
	Test cases

	Enrichment
	Process of enrichment
	Example in 2D
	Test cases

	Conclusion

	Conclusions and perspectives
	Conclusions
	Perspectives
	Multi-conditioning
	Enrichment
	Categorical variables

	Résumé en Français
	Définition des processus correctifs (Zn)n=2N
	Construction des plans (Xn)n=1N
	Les plans imbriqués
	Les plans non imbriqués

	Estimation des paramètres
	Cas test
	Cas test analytique en dimension 4
	Cas test analytique en dimension 15
	Cas test industriel en dimension 15

	Tentatives d'approfondissement de la méthode
	Conditionnement multiple
	Enrichissement des plans

	Appendix
	Example in 4D
	Illustration of chapter 3
	Illustration of chapter 4
	Illustration of chapter 5
	Illustration of chapter 6

	Proofs state-of-the-art
	Proof of proposition 1
	Proof of proposition 2
	Proof of proposition 3
	Proof of proposition 4 friedman2001elements
	Proof of proposition 5 zertuche2015assessment
	Proof of proposition 6 LoicLeGratietsobolpickfreeze
	Proof of proposition 7
	Proof of proposition 8 gauthier2012spectralfinite

	Proofs of PhD propositions
	Proof of proposition 9 for a Monte-Carlo method
	Proof of proposition 10
	Proof of proposition 13

	Fomulae and algorithms
	Formulae of the EM procedure
	Algorithms of chapter 5

	Papers
	Paper: Sampling strategies for metamodel enrichment and automative fan optimization henner2019sampling
	Paper : Gaussian process regression on nested subspaces gonon2021gaussian

	Bibliography

