Thèse soutenue

Traitement hybride pour l'équité algorithmique

FR  |  
EN
Auteur / Autrice : Guilherme Alves da Silva
Direction : Miguel CouceiroAmedeo Napoli
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 20/12/2022
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire lorrain de recherche en informatique et ses applications
Jury : Président / Présidente : Anne Boyer
Examinateurs / Examinatrices : Miguel Couceiro, Amedeo Napoli, Marie-Jeanne Lesot, Katharina Simbeck, Fatiha Saïs
Rapporteurs / Rapporteuses : Marie-Jeanne Lesot, Katharina Simbeck

Résumé

FR  |  
EN

Les décisions algorithmiques sont actuellement utilisées quotidiennement. Ces décisions reposent souvent sur des algorithmes d'apprentissage automatique (machine learning, ML) qui peuvent produire des modèles complexes et opaques. Des études récentes ont soulevé des problèmes d'iniquité en révélant des résultats discriminatoires produits par les modèles ML contre des minorités et des groupes non privilégiés. Comme les modèles ML sont capables d'amplifier la discrimination en raison de résultats injustes, cela révèle la nécessité d'approches qui découvrent et suppriment les biais inattendues. L'évaluation de l'équité et l'atténuation de l'iniquité sont les deux tâches principales qui ont motivé la croissance du domaine de recherche en équité algorithmique (algorithmic fairness). Plusieurs notions utilisées pour évaluer l'équité se concentrent sur les résultats et sont liées à des attributs sensibles (par exemple, l'éthinicité) par des mesures statistiques. Bien que ces notions aient une sémantique distincte, l'utilisation de ces définitions est critiquée pour sa compréhension réductrice de l'équité, dont le but est essentiellement de mettre en œuvre des rapports d'acceptation/non-acceptation, ignorant d'autres perspectives sur l'iniquité et l'impact sociétal. Process fairness (équité des procédures) est au contraire une notion d'équité subjective, centrée sur le processus qui conduit aux résultats. Pour atténuer ou supprimer l'iniquité, les approches appliquent généralement des interventions en matière d'équité selon des étapes spécifiques. Elles modifient généralement soit les données avant l'apprentissage, la fonction d'optimisation ou les sorties des algorithmes afin d'obtenir des résultats plus équitables. Récemment, les recherches ont été consacrées à l'exploration de combinaisons de différentes interventions en matière d'équité, ce qui est désigné dans cette thèse par le traitement hybride de l'équité. Une fois que nous essayons d'atténuer l'iniquité, une tension entre l'équité et la performance apparaît, connue comme le compromis équité/précision. Cette thèse se concentre sur le problème du compromis équité/précision, puisque nous sommes intéressés par la réduction des biais inattendues sans compromettre les performances de classification. Nous proposons donc des méthodes ensemblistes pour trouver un bon compromis entre l'équité et la performance de classification des modèles ML, en particulier les classificateurs binaires. De plus, ces méthodes produisent des classificateurs d'ensemble grâce à une combinaison d'interventions sur l'équité, ce qui caractérise les approches de traitement hybride de l'équité. Nous proposons FixOut (FaIrness through eXplanations and feature dropOut), un framework centré sur l'humain et agnostique vis-à-vis des modèles qui améliore l'équité sans compromettre les performances de classification. Il reçoit en entrée un classificateur pré-entraîné, un ensemble de données, un ensemble de attributs sensibles et une méthode d'explication, et il produit un nouveau classificateur qui dépend moins des attributs sensibles. Pour évaluer la dépendance d'un modèle pré-entraîné aux attributs sensibles, FixOut utilise des explications pour estimer la contribution des attributs aux résultats du modèle. S'il s'avère que les attributs sensibles contribuent globalement aux résultats, alors le modèle est considéré comme injuste. Dans ce cas, il construit un groupe de classificateurs plus justes qui sont ensuite agrégés pour obtenir un modèle d'ensemble. Nous montrons l'adaptabilité de FixOut sur différentes combinaisons de méthodes d'explication et d'approches d'échantillonnage. Nous évaluons également l'efficacité de FixOut par rapport au process fairness mais aussi en utilisant des notions d'équité standard bien connues disponibles dans la littérature. De plus, nous proposons plusieurs améliorations telles que l'automatisation du choix des paramètres et l'extension de FixOut à d'autres types de données.