Thèse soutenue

Tranchage courbe pour la fabrication additive

FR  |  
EN
Auteur / Autrice : Jimmy Etienne
Direction : Sylvain LefebvreCédric Zanni
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 01/12/2022
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine
Partenaire(s) de recherche : Laboratoire : Laboratoire lorrain de recherche en informatique et ses applications
Jury : Président / Présidente : Isabelle Debled-Rennesson
Examinateurs / Examinatrices : Sylvain Lefebvre, Cédric Zanni, Stéfanie Hahmann, Marco Attene, Bernd Bickel
Rapporteurs / Rapporteuses : Stéfanie Hahmann, Marco Attene

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La fabrication additive est un sujet de recherche actif dont l'objectif est le prototypage avec l'économie de matières premières et de temps comme axe de recherche essentiel. Généralement appelée impression 3D, elle présente de nombreux défis qui peuvent entraver la fabrication correcte d'un objet. Par exemple, le fait d'évider un objet afin d'économiser de la matière peut entraîner la chute d'une autre partie de l'objet en raison d'un manque de support. De manière générale, l'imprimabilité d'un objet reste un problème difficile a évalué en raison des innombrables possibilités de forme que peut prendre un modèle 3D. Des propriétés telles que la solidité et l'intégrité structurelle peuvent devenir la source de problèmes lorsque l'impression 3D n'est pas optimisée pour la forme. Des structures de support internes et des remplissages épars ont été proposés pour imprimer correctement les surfaces en surplomb et minimiser le matériel utilisé. Néanmoins, réduire la densité du remplissage d'une impression 3D peut entraîner une réduction de la robustesse. Ce problème peut être résolu en optimisant la structure du remplissage sous des contraintes supplémentaires obtenus par exemple d'une optimisation topologique. Le choix des chemins et de leurs orientations est essentiel. Une approche plus générale consisterait à générer de multiples courbes à l'intérieur d'une couche plane qui suivent aussi fidèlement que possible les trajectoires données par un utilisateur ou un quelconque processus d'optimisation. Cependant, une question en suspens concerne le schéma d'impression couche par couche dans la fabrication additive. Cette approche ne peut pas reconstruire une surface avec précision en raison de la quantification de la forme 3D dans son axe de hauteur et de la taille fixe de chaque couche. Au lieu de la méthode couche par couche, une meilleure approche pourrait consister à remplir un volume avec des courbes imprimées en 3D. Celles-ci pourraient servir différents objectifs tels que l'amélioration de la qualité de la surface, l'application de contraintes mécaniques ou la réalisation d'objectifs esthétiques. L'objet de cette thèse est d'étudier comment ces courbes peuvent être imprimées. Nous tentons donc de surmonter certains problèmes intrinsèques à l'impression 3D qui apparaissent lorsque l'on veut améliorer la distribution de la matière et des contraintes à l'intérieur d'une pièce ou améliorer la qualité visuelle des objets imprimés. La première partie décrit les technologies de fabrication additive en général avant de se concentrer principalement sur la déposition de filament fondu (FDM). Nous abordons également les techniques d'impression hors plan, de ses balbutiements aux algorithmes complets. La deuxième partie explore plus en profondeur le remplissage de couches planes et propose deux techniques pour améliorer l'orientation des chemins de dépôt. Pour simplifier le problème, nous ajoutons artificiellement une contrainte sur les couches qui restent planes. Nous introduisons une première méthode pour produire des courbes dont l'espacement et l'orientation peuvent être contrôlés pour créer des motifs de remplissage de densité variable. Et une seconde méthode qui, quant à elle, a pour objectif le remplissage dense avec des courbes uniformément espacées dont on peut contrôler l'orientation. La troisième partie détaille la principale contribution de cette thèse. Il traite de l'impression 3D courbe et fournit l'un des premiers algorithmes de découpage incurvé pour améliorer la qualité de surface des impressions 3D sur des machines standard à 3 axes. Cette technique est basée sur la déformation spatiale contrainte et permet de réduire l'erreur volumique jusqu'à 90% pour des surfaces presque planes. Nous décrivons également comment étendre le remplissage dense à la 3D et ordonner les trajectoires pour garantir l'absence de collision entre le dispositif d'impression et les pièces imprimées.