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Marie Babel, Professeur, INSA Rennes

Examinateurs : Pedro Rodriguez-Ayerbe, Professeur, Centrale Supelec 
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Summary in French

En 1940, Asimov a publié son premier roman dédié aux robots : Robbie. Dans cette histoire, Asimov
imagine un robot (Robbie) conçu pour jouer avec une petite fille. Le robot, nous dit Asimov, ne représente
aucun danger pour la petite fille, et cette dernière établit un lien fort avec lui. À tel point que la mère
s’inquiète de la sécurité et des capacités sociales de sa fille :

"Je ne laisserai pas ma fille être confiée à une machine, et je me fiche de savoir de son
intelligence. Elle n’a pas d’âme, et personne ne sait ce qu’elle peut penser. Un enfant n’est
pas fait pour être gardé par une chose de métal. [...] quelque chose pourrait mal tourner. Un
petit levier va se détacher et l’horrible chose va devenir folle et... et... [...] Il y a des dizaines
de petits garçons et de petites filles avec lesquels elle devrait se faire des amis, mais elle ne
le fera pas. Elle ne s’approchera pas d’eux à moins que je ne l’y oblige. Ce n’est pas une
façon de grandir pour une petite fille. Tu veux qu’elle soit normale, n’est-ce pas ? Tu veux
qu’elle soit capable de prendre sa place dans la société."

Les robots sont considérés comme des agents dangereux mais inconscients. Capables de blesser mais
sans conscience et contraints à l’obéissance aux humains. Cette vision est condensée, deux ans plus tard,
dans un autre roman (Runaround, 1942) où Asimov propose les fameuses trois lois de la robotique :

1. Un robot ne doit pas blesser un être humain ou, par son inaction, permettre qu’un être humain soit
blessé.

2. Un robot doit obéir aux ordres que lui donnent les êtres humains, sauf si ces ordres entrent en
conflit avec la loi 1.

3. Un robot doit protéger sa propre existence, pour autant que cette protection n’entre pas en conflit
avec les lois 1 ou 2.

Ces lois portent sur la sécurité (première et troisième lois) et sur le rôle que le robot adopte pen-
dant l’interaction (deuxième loi). Ces lois, intégrées dans la structure même du robot, sont incassables
et immuables. Cela supprime toute responsabilité dans le fonctionnement du robot, car si un problème
survient, on peut toujours remonter à l’humain qui commande le robot. Cela rappelle le célèbre apho-
risme : "Plus de 90% de tous les problèmes informatiques peuvent être attribués à l’interface située entre
le clavier et la chaise.".

Dans les fictions postérieures d’Asimov, les robots assument une certaine responsabilité. Pour cette
raison, Asimov a également ajouté une quatrième loi, ou loi zéro, qui précède les autres :

0. Un robot ne peut pas nuire à l’humanité, ou, par son inaction, permettre à l’humanité de se nuire à
elle même.
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Cette dernière loi place la discussion sur la robotique sur un tout autre plan : en effet, au moment
où le robot devra faire passer le bien-être de l’humanité avant celui de l’individu, il ne sera plus un
être purement réactif mais devra utiliser sa capacité à prédire à court ou long terme les influences des
actions actuelles sur l’humanité et choisir les meilleures actions en conséquence. Ce type d’esprit critique
nécessite de peser différentes fonctions de coût, de prévoir et de s’adapter. En outre, cela place le robot
dans une position de responsabilité qu’il ne possédait pas auparavant.

Dans cette thèse, nous traiterons de tous ces aspects qui préoccupent Asimov dans sa littérature mais
avec un œil sur les problèmes actuels rencontrés par les robots collaboratifs : l’interaction homme-robot,
l’attribution des rôles, la prédiction des actions, l’adaptation, la collaboration et la sécurité. Pour ce
faire, et pour apprécier pleinement le résultat final, remontons à la naissance et au développement de la
robotique et de l’automatisation.

Nous pouvons commencer ce parcours dans les années 1750. Au cours de ces années, la première
révolution industrielle a converti les méthodes de production manuelles en machines actionnées par
l’énergie hydraulique et la vapeur [159]. Cet événement a marqué un tournant majeur dans l’histoire: la
productivité a fortement augmenté, favorisant l’augmentation de la population et du taux de croissance
démographique.

Un siècle plus tard (les années 1870), ces technologies ont fait un pas en avant pendant ce qu’on
appelle la deuxième révolution industrielle. Cette fois, les rôles principaux étaient les systèmes d’ élec-
trification et la division du travail de Taylor avec la production de masse et l’utilisation de convoyeurs à
bande. De plus, de nombreuses industries ont commencé à rationaliser le travail afin d’augmenter leur
efficacité opérationnelle. Connue également sous le nom de révolution technologique, cette phase a été
marquée par des découvertes scientifiques, la normalisation, la production de masse et l’industrialisation.
Ces progrès ont permis l’adoption généralisée de systèmes technologiques tels que les réseaux télé-
graphiques et ferroviaires, l’approvisionnement en gaz et en eau. De plus, les technologies d’automatisation
se sont diffusées dans les entreprises avec l’intention de réduire l’intervention humaine dans les proces-
sus. Pour exécuter les commandes désirées, un nouveau domaine de connaissances appelé théorie du
contrôle est né.

La théorie du contrôle est la base du contrôle des processus, qui est largement utilisée dans l’ au-
tomatisation et pour le contrôle des navires et des avions, qui faisaient leur première apparition dans ces
années-là. Maxwell a lui-même, en 1868, publié le premier traité scientifique de la théorie du contrôle.

La naissance de la robotique moderne remonte aux années 1950. Ce qu’on appelle la première
génération de robots [79, 256] date des années 1950 à 1967. Les robots de cette génération étaient
essentiellement des machines programmables contrôlées par des actionneurs pneumatiques. Ils n’avaient
pas la capacité de contrôler réellement la modalité d’exécution de la tâche, et ils étaient utilisés pour une
seule tâche, car il était très compliqué de les reprogrammer. De plus, ils n’avaient aucune communication
avec l’environnement extérieur. Une caractéristique particulière de ces robots est le fort bruit qu’ils
produisaient lorsque leurs bras entraient en collision avec les butées mécaniques construites pour limiter
le mouvement des axes.

Le tournant de la robotique industrielle a eu lieu en 1961 avec la naissance d’Unimate par Uni-
mation, qui est considéré comme le premier robot industriel de l’histoire. Unimate, qui était actionné
hydrauliquement, a été immédiatement installé dans une entreprise automobile, plus précisément dans
l’usine de General Motors (New Jersey, USA). Dans les mêmes années, plusieurs entreprises de fab-
rication de robots sont nées, notamment dans le secteur automobile. Des entreprises comme Ford et
General Motors ont commencé à envisager l’automatisation de leurs établissements de production et
avaient besoin de dispositifs tels que les nouveaux robots pour atteindre cet objectif. Il y a donc eu une
augmentation soudaine des commandes de dispositifs robotiques. En 1969, le Japon a commencé à pro-
duire des robots pour le marché asiatique. Cette tendance précoce a permis au Japon de devenir l’un des
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principaux pays dans le domaine de la robotique. La diffusion des robots en Europe a eu lieu plus ou
moins en même temps : 1967 en Suède et 1969 en Norvège. En 1972, FIAT a installé les premiers robots
de soudage en Europe dans ses établissements de Turin (Italie).

La troisième révolution industrielle, dans les années 1970, a de nouveau changé le scénario scien-
tifique et industriel du vingtième siècle. Elle est principalement associée au passage de la technologie
électronique mécanique et analogique à l’électronique numérique. Au cœur de cette révolution se trou-
vent la production de masse et l’utilisation généralisée de la logique numérique et de ses technologies
dérivées, notamment les ordinateurs, les microprocesseurs et Internet. Ces innovations technologiques
ont transformé les techniques traditionnelles de production et de commerce.

Grâce en grande partie à la diffusion de ces nouvelles technologies, une nouvelle série de robots
industriels est arrivée [244]. En fait, la deuxième génération de robots industriels remonte aux années
68 à 77 [79, 256]. Le passage des actionneurs hydrauliques aux actionneurs électriques a eu lieu dans
les années 1970, lorsque les composants électroniques nécessaires au contrôle d’un robot ont atteint
leur pleine maturité technique, modifiant profondément la structure du robot. La situation économique
et géopolitique au niveau international a également poussé la tendance vers les robots à entraînement
électrique. Les entreprises ont ainsi été contraintes de trouver des moyens de production plus efficaces.
Cela a donné un coup de fouet aux installations de robots industriels, qui ont augmenté de plus de 30%
par an dans la seconde moitié des années 1970. Ces robots utilisaient des servocommandes, ce qui leur
permettait d’effectuer aussi bien des mouvements point à point que des trajectoires continues.

Le premier prototype de robot actionné par des moteurs électriques et contrôlé par un micropro-
cesseur PDP-6 était le Stanford Arm (Fig. 1b). Ce robot a été conçu en 1969 par Victor Scheinman,
un étudiant en génie mécanique de l’université de Stanford. Les caractéristiques introduites par Schein-
man dans le Stanford Arm et dans son successeur (Vicarm) ont été si appréciées qu’Unimation a racheté
la société et a exploité son savoir-faire pour concevoir et fabriquer (en 1978) le célèbre robot PUMA
(Programmable Universal Machine for Assembly). Entre-temps, d’autres entreprises ont développé et
fabriqué d’autres types de robots industriels : Famulus de KUKA en 73 (Fig. 1c), IRB-6 de ASEA
(aujourd’hui ABB) en 74, et la même année HI-T-HAND Expert de Hitachi. Ce dernier était équipé
d’un système de retour de force et était capable d’atteindre une grande précision dans les opérations
d’insertion.

L’évolution technique et scientifique a permis de nouvelles avancées dans le domaine de la robo-
tique. La troisième génération de robots s’étend de 1978 à 2000. Les robots industriels de la troisième
génération se caractérisaient par une plus grande interaction avec l’opérateur et l’environnement. Ils dis-
posaient également de certaines capacités d’autoprogrammation et pouvaient se reprogrammer, bien que
dans une faible mesure, afin d’exécuter différentes tâches. Ils pouvaient être programmés en temps réel
ou en différé, en étant connectés à un PC, ce qui permettait d’utiliser un langage de programmation de
haut niveau. La possibilité d’une programmation offline de haut niveau a élargi le potentiel opérationnel
des robots : par exemple, ils pouvaient élaborer des données à partir des relevés de capteurs pour ajuster
les mouvements du robot tout en tenant compte des changements dans l’environnement. En outre, une
sorte d’"intelligence" était présente dans les robots de la troisième génération, avec certaines capacités
d’adaptation (bien que limitées). Par exemple, en utilisant les données provenant des systèmes de vi-
sion ou de perception (par exemple, les caméras, les capteurs de force, les scanners laser), ils pouvaient
localiser les objets et les pièces à manipuler. Le logiciel de commande est devenu plus "intelligent"
en introduisant certaines techniques liées à l’intelligence artificielle. Ces deux aspects ont augmenté la
polyvalence et la flexibilité des robots, qui ont pu être utilisés pour des tâches de plus en plus complexes.

Les robots ont proliféré au début des années 2000 : en 1995, on comptait 1,6 robot industriel installé
pour mille travailleurs ; en 2007, ce nombre était de 4,2 [53]. En conséquence, et suivant les tendances
lancées par les trois révolutions industrielles, une nouvelle idée de l’industrie a progressivement émergé
: l’industrie 4.0. L’industrie 4.0 est un nouveau concept de fabrication et d’automatisation industrielle,
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intégrant de nouvelles technologies de production afin d’améliorer les conditions de travail et d’accroître
la productivité et la qualité. Le nouveau paradigme de l’industrie 4.0 permet la communication entre
les humains et les machines, augmentant ainsi l’interconnectivité et l’automatisation intelligente. Dans
ce contexte, la vision de la robotique (quatrième génération de robots) est également mise à jour en
proposant des robots dotés de capacités "intelligentes" de haut niveau, telles que l’exécution de calculs
avancés, le raisonnement logique, l’apprentissage profond, les stratégies complexes, les comportements
collaboratifs.

Un résultat concret de ces approches est l’émergence de cobots. Les cobots, ou robots collaboratifs,
sont des robots industriels conçus pour pouvoir interagir physiquement avec les humains lors d’activités
communes et dans un espace partagé (Fig. 1e). L’objectif des cobots est d’améliorer les performances
de production en permettant une répartition plus efficace et évolutive des tâches entre les humains et les
machines. L’idée derrière ces technologies est de combiner les grandes capacités mentales des humains
avec des robots qui peuvent prendre en charge les parties fatigantes des tâches. Cet aspect permet aux
robots collaboratifs d’être génériques, tant dans la manière dont ils sont construits que dans celle dont
ils sont programmés. D’une manière générale, nous pouvons définir les capacités suivantes des robots
collaboratifs [70]:

1. La mobilité: La possibilité de déplacer facilement le cobot dans l’usine de production;

2. La capacité d’adaptation: La conscience des ressources, des caractéristiques du poste et de leurs
implications;

3. Connectivité: La capacité de communiquer avec les opérateurs et les autres robots dans l’ environ-
nement de travail, en collectant et en fournissant des informations;

4. Actionnement: La capacité à développer des trajectoires sûres et fluides;

5. Cohérence: La capacité de travailler en continu sans problème, sauf en cas de dysfonctionnement;

6. La sécurité: La capacité de travailler en synergie avec les opérateurs, sans aucun risque pour sa
santé physique et mentale;

Un aspect important à garder à l’esprit lorsqu’on discute du domaine croissant de la robotique
est l’impact sur la société, qu’il s’agisse des opinions, des attitudes, de l’organisation du travail ou
de l’emploi. La littérature dans ce domaine est divisée entre ceux qui disent que l’automatisation
(et donc la robotique) réduit les emplois et ceux qui disent qu’elle aura un impact neutre ou positif
sur l’emploi [248]. Des différences substantielles dans cette tendance ont été mesurées au niveau des
groupes sectoriels [53], des pays [64,236], et des entreprises [62]. Néanmoins, nous pensons qu’il y a un
manque de distinction entre les différentes technologies en particulier, à notre connaissance, il n’existe
pas d’étude sur l’impact des robots collaboratifs sur l’emploi. En effet, ce type de technologie n’est pas
destiné à remplacer les employés humains mais plutôt à travailler à leurs côtés et à améliorer la qualité de
leur travail. Les cobots ont également un impact en termes d’organisation du travail, car ils nécessitent
une collaboration plus approfondie entre les humains et les machines.

Les capacités cognitives humaines peuvent être utilisées pour superviser les capacités physiques des
robots. Cependant, les mouvements soudains et les forces importantes exercées par les robots peuvent
causer des blessures graves à leurs partenaires humains. Pour cette raison, une grande attention est
accordée à la sécurité pendant l’interaction. Les solutions proposées pour la sécurité sont, par exemple,
une division de l’espace ou l’imposition d’une relation asymétrique laissant un faible pouvoir de décision
au robot [100]. Grâce à l’amélioration des capacités de détection et de contrôle, les robots ont gagné en
importance dans les collaborations récentes entre humains et robots. Les robots estiment l’état physique,
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physiologique et cognitif de l’homme afin de collaborer efficacement avec leur partenaire humain. L’état
humain est une donnée essentielle pour le processus de décision du robot. La perception de l’état humain
repose sur des capteurs qui peuvent être placés dans l’environnement, intégrés dans le robot ou portés par
l’humain. En outre, les estimations du comportement humain futur pourraient améliorer la collaboration.

L’importance de connaître l’état et la condition humaine actuelle et future liée à la nécessité de
réduire les troubles musculo-squelettiques, l’un des principaux problèmes de l’industrie d’aujourd’hui
et que l’industrie 4.0 espère remédier avec de nouvelles technologies et des robots collaboratifs. En
effet, les mouvements répétitifs peuvent entraîner des activités professionnelles nocives à long terme.
Le stress physique est souvent corrélé au développement de troubles musculo-squelettiques liés au tra-
vail. Ces derniers figurent parmi les premières causes de maladies professionnelles dans le monde,
représentant un enjeu sanitaire majeur, avec des coûts pour les entreprises et la société [201]. Selon
l’Organisation internationale du travail, le troubles musculo-squelettiques constituent la principale cause
de pertes économiques liées aux maladies [165, 221].

Non seulement les robots partagent le même espace de travail que les opérateurs humains, mais ils
jouent également un rôle plus important dans la collaboration. De nouvelles définitions de la relation
entre l’homme et le cobot ont été nécessaires (par exemple, Coopération et Collaboration [99]). Ces re-
lations peuvent être spécifiées par des rôles spécifiques (leader, suiveur) ou par des formes relationnelles
d’interaction (réciproque, en miroir). A leur tour, ces comportements se traduisent directement en lois
de contrôle pour le robot.

Ce manuscrit présente plusieurs contributions dans le domaine de la collaboration homme-robot
qui sont pertinentes pour les cobots et l’industrie 4.0. Plus en détail, cette thèse a été réalisée dans
le cadre de C-Shift. C-Shift est un projet exploratoire multidisciplinaire de l’Université de Lorraine
qui s’attaque à certains des challenges représentés par l’utilisation de ces nouveaux équipements robo-
tisés dans l’industrie. C-Shift se veut pluridisciplinaire en mobilisant les nombreuses compétences et
ressources fournies par les différents laboratoires de l’université impliqués allant de la psychologie, la
sociologie à l’informatique, la robotique et l’automatique (CRAN, LORIA, DevAH, PErSEUS, UP&S
DITEX, CEREFIGE, AIP-PRIMECA - Pôle S.mart Lorraine, Ergosim). D’autres acteurs extérieurs à
l’université soutiennent la recherche, comme l’INRS, le SDIS 54, et des entreprises comme Eclatec et
Thyssen Krupp. Structuré autour de trois axes (Adaptation, Organisation, et Santé), le projet vise à faire
progresser les connaissances dans l’étude de l’effet des cobots au travail.

L’axe adaptation vise à fournir des outils de modélisation et d’évaluation de l’adaptation des gestes
aux trajectoires, de l’adaptabilité des trajectoires et de la réappropriation des tâches par les humains.
L’axe organisation vise à étudier l’évolution des routines de production, l’évolution des motivations,
et les transitions en termes de compétences en présence de systèmes collaboratifs. Enfin, l’axe santé
s’intéresse plus particulièrement à la modélisation de l’activité humaine en relation avec le cobot sur la
base de paramètres physiologiques et psychologiques afin de pouvoir calculer des indicateurs clés de
performance pour évaluer les risques potentiels (ex : TMS, charges cognitives).

Ces trois axes ont été conçus de manière interdépendante et ont donné lieu à des réflexions interdis-
ciplinaires, soit par l’étude de cas industriels communs, soit par l’expérimentation des résultats sur des
plateformes en se rapprochant le plus possible d’un environnement industriel. Par exemple, l’utilisation
du modèle numérique et la simulation de l’activité permet à des scientifiques de différents domaines tels
que l’organisation de l’entreprise, le contrôle des robots, et la biomécanique de travailler ensemble dans
le but de développer une méthode d’intégration d’un cobot sur une unité de production. Cette méthode
est en partie basée sur la simulation ergonomique permettant de prédire les comportements gestuels et
posturaux et donc les contraintes biomécaniques des opérateurs.

Ce manuscrit illustre le travail effectué dans l’axe "Adaptation" : spécifiquement, nous avons abordé
une situation où un humain et un cobot interagissent physiquement. Nos questions de recherche allaient
de l’estimation et de la prédiction de la posture et de l’ergonomie de l’humain à la modélisation de
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l’adaptation pendant la collaboration. Nous pensons que la combinaison de ces cadres peut apporter une
grande contribution à la collaboration. En effet, un robot capable de déterminer le comportement de
l’humain avec lequel il collabore est en mesure de concevoir des stratégies qui maximisent la qualité de
la collaboration.

L’objectif principal de cette thèse est de fournir des outils pour améliorer la collaboration
homme-robot.

Notre approche est résumée comme suit:

1. Utilisation d’une simulation de modèle humain numérique pour évaluer les indicateurs d’ergonomie
d’un mouvement du corps entier pour l’exécution d’une tâche.

2. Prédire les mouvements humains en présence de restrictions cinématiques imposées par la collab-
oration avec le robot.

3. Évaluer différentes lois de commande du robot afin d’émuler le comportement moteur humain
pour une meilleure collaboration dans la réalisation des tâches.

4. Étudier l’adaptabilité de l’homme aux changements de la stratégie du robot.

Ces approches comprennent à la fois l’évaluation de l’ergonomie de la posture du corps entier et
l’analyse de l’interaction dyadique, à partir de laquelle une application homme-robot peut tirer parti
d’une meilleure interaction physique. Compte tenu de la nature pluridisciplinaire des sujets abordés,
pour la clarté de la présentation, chaque chapitre présente une analyse de l’état de l’art sur les sujets qui
le concernent.

Le chapitre 1 présente une revue de la littérature principale sur l’interaction homme-robot. Nous
faisons le point sur les compétences de coopération dont le robot a besoin pour aider les humains à
atteindre leurs objectifs, et sur la manière dont ces compétences de haut niveau se traduisent dans les
commandes de contrôle de bas niveau du robot. Nous présentons et analysons les réalisations actuelles
d’un point de vue centré sur l’homme, en considérant que les robots interagissant avec les humains
devraient les aider à améliorer leur santé ou leurs conditions de travail. Enfin, nous présentons les
applications de l’interaction physique homme-robot.

Le chapitre 2 passe en revue l’état des technologies de pointe pour l’évaluation ergonomique d’une
situation de collaboration humain-robot et nous présentons un nouvel ensemble d’outils pour l’évaluation
ergonomique. Nos outils permettent d’évaluer et de visualiser en temps réel les efforts et les postures d’un
travailleur, même lorsqu’il interagit physiquement avec un robot. Un modèle humain numérique est util-
isé pour estimer la cinématique et la dynamique humaines et visualiser les positions non ergonomiques
des articulations, sur la base des données en direct acquises à partir d’un dispositif portable de suivi des
mouvements.

Le chapitre 3 passe en revue l’état de l’art des méthodes de prédiction de l’état humain, en particulier
lors de la collaboration avec des robots. De plus, nous proposons une méthode pour prédire, en termes
probabilistes, les postures d’un opérateur humain pour une trajectoire robot donnée exécutée dans un
scénario de collaboration. Nous formalisons le problème comme étant la prédiction de la vitesse des
articulations humaines compte tenu de la posture actuelle et de la vitesse de l’effecteur du robot. Nous
montrons sur un cas simulé et simplifié et sur des données réelles d’interaction homme-robot que notre
méthode est capable d’améliorer la prédiction de la posture humain.
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Dans le chapitre 4, nous nous concentrons sur une tâche de co-manipulation homme-robot où un
objet doit être extrait avec précaution d’un tube et inséré dans un autre, sans faire de contacts. Cette
tâche exige de la précision, et nous attendons à ce que la rigidité de chaque agent soit critique pour
rejeter les perturbations qui peuvent mener à l’échec de la tâche. Dans ce contexte, nous posons les
questions suivantes : est-il plus efficace et plus performant pour la dyade de coopérer ou de collaborer
? En cas de collaboration, le robot doit-il présenter un comportement d’impédance similaire à celui
d’un collaborateur humain ? Parmi les stratégies de collaboration possibles, le robot doit-il imiter le
comportement de rigidité de l’humain ou lui rendre la pareille ? Pour répondre à ces questions, nous
avons étudié les performances et la rigidité du bras de l’humain interagissant avec un robot Franka.

Dans le chapitre 5, nous proposons une étude humaine dans laquelle 18 participants ont exécuté une
tâche de sciage en collaboration entre un robot, où le cobot changeait entre trois stratégies de contrôle
différentes. Cette étude vise à donner un aperçu concret de la façon dont les humains perçoivent et réagis-
sent aux changements de comportement du cobot. Plus précisément, comment les humains s’adaptent
aux changements de rôles et de stratégies de contrôle du robot collaborateur. En fait, les robots collab-
oratifs (cobots) ont le potentiel d’augmenter la productivité et la qualité de vie des opérateurs humains
dans le contexte de l’industrie 4.0 en leur fournissant une assistance physique. Pour cette raison, il est
nécessaire de définir la relation entre l’humain et le cobot et d’étudier comment les deux agents s’adaptent
l’un à l’autre. Les expériences ont été réalisées sur une installation impliquant le bras robotique Kuka
LBR iiwa.
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Introduction

1 A great journey: from steam power to Human-Robot Collaboration

In 1940 Asimov published his first robot novel: Robbie. In the story, Asimov imagines a robot (Robbie)
designed to play with a little girl. The robot, Asimov tells us, poses no danger to the little girl, and the
latter establishes a close bond with him. So much so that the mother worries about her daughter’s safety
and social skills:

"I won’t have my daughter entrusted to a machine, and I don’t care how clever it is. It has
no soul, and no one knows what it may be thinking. A child just isn’t made to be guarded
by a thing of metal. [...] something might go wrong. Some little jigger will come loose and
the awful thing will go berserk and... and... [...] There are dozens of little boys and girls
that she should make friends with, but she won’t. She won’t go near them unless I make her.
That’s no way for a little girl to grow up. You want her to be normal, don’t you? You want
her to be able to take her part in society."

Robots are seen as harmful but unconscious agents. Capable of injury but without conscience and
forced into obedience to humans. This vision is condensed, two years later, in another novel (Runaround,
1942) where Asimov proposes the famous three laws of robotics:

1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.

2. A robot must obey the orders given it by human beings except where such orders would conflict
with 1.

3. A robot must protect its own existence as long as such protection does not conflict with 1 or 2.

These laws focus on safety (first and third laws) and on the role that the robot adopts during the
interaction (second law). These laws, built into the very structure of the robot, are unbreakable and
immutable. This removes any responsibility in the robot’s operation because if any problem arises it is
always traceable to the human who is commanding over the robot. This reminds of the famous aphorism:
"Over 90% of all computer problems can be traced back to the interface located between the keyboard
and the chair".

In later Asimov fiction, robots take some responsibility. For this reason, Asimov also added a fourth,
or zeroth law, to precede the others:

0. A robot may not harm humanity, or, by inaction, allow humanity to come to harm.

This last law puts the discussion of robotics on a whole other plane: in fact, at the moment when
the robot must put the welfare of humanity before that of the individual, it will no longer be a purely

9



Introduction

reactive being but will have to use its ability to predict in the short or long term the influences of current
actions on humanity and choose the best actions accordingly. This kind of critical thinking requires
weighing different cost functions, predicting and adapting. Moreover, this places the robot in a position
of responsibility that it did not possess before.

In this thesis, we will adress all these aspects that worry Asimov in his literature but with an eye
on the current problems faced by collaborative robots: human-robot interaction, role assignment, action
prediction, adaptation, collaboration, and safety. To do so, and to fully appreciate the ultimate result, let
us look back at where robotics and automation were born and developed.

We can begin this narrative in the 1750s. In these years, the First Industrial Revolution converted
manual production methods to machines actuated by water and steam power [159]. This event marked a
major turning point in history: productivity greatly increased, favoring the rise in population and the rate
of population growth.

A century later (the 1870s), these technologies took a step forward during the so-called Second In-
dustrial Revolution. This time the leading roles was the electrification systems and Taylor’s work division
with mass production and the use of band conveyors. Moreover, many industries started to use Rational-
ization of work in order to increase its operating efficiency. Known also as Technological Revolution, it
was a phase of rapid scientific discovery, standardization, mass production, and industrialization. These
advancements enabled the widespread adoption of technological systems such as telegraph and railroad
networks, gas and water supply, and sewage systems. In this scenario, automation technologies spread in
factories with the intent of reducing human intervention in processes. To execute the desired commands,
a new field of knowledge called control theory was born.

Control theory is the basis for process control, which is widely used in automation and for controlling
ships and airplanes, which were making their first appearance in those years. Maxwell himself published
the first scientific treatise of control theory.

The 1950s are traced back to the birth of modern robotics. The so-called first generation of robots [79,
256] is dated between the 1950s and 1967. The robots of this generation were basically programmable
machines controlled by pneumatic actuators. They did not have the ability to really control the modality
of task execution, and they were used for a single task, because it was very complicated to reprogram
them. Moreover, they had no communication with the external environment. A peculiar feature of these
robots is the strong noise they produced when their arms collided with the mechanical stops built to limit
the movement of the axes.

The turning point for industrial robotics was, in 1961, with the birth of Unimate by Unimation, which
is considered the first industrial robot in history (Fig. 1a). Unimate, which was hydraulically actuated,
was immediately installed in an automotive company, preciselly in the General Motors factory (New
Jersey, USA). In the same years, several robot manufacturing companies were born, especially in the
automotive sector. Companies like Ford and General Motors started to consider the automatization of
their production plants and needed devices such as the new robots to achieve this goal. Thus, there was
a sudden increase in the orders of robotic devices. In 1969, Japan started to produce robots for the Asian
market. This early trend allowed Japan to become one of the leading countries in the robotics field. The
diffusion of robots in Europe took place more or less at the same time: 1967 in Sweden and 1969 in
Norway. In 1972, FIAT installed the first welding robots in Europe at their plants in Turin (Italy).

The Third Industrial Revolution, in the 1970s, changed again the scientific and industrial scenario of
the twentieth century. It is mostly associated with the introduction of digital work and the shifting from
mechanical and analogic electronic technology to digital electronics. Central to this revolution is the
mass production and widespread use of digital logic and its derived technologies, including computers,
microprocessors, and Internet. These technological innovations have transformed traditional production
and business techniques. Thanks in large part to the spread of these new technologies, a new wave of
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1. A great journey: from steam power to Human-Robot Collaboration

(a) Unimate by Unimation is considered the first indus-
trial robot in history. This robot, hydraulically actuated,
was installed in the General Motors factory.

(b) Standford Arm: the first prototype of a robot actuated
by electric motors and controlled by a microprocessor.

(c) KUKA Famulus (1973)
(d) PUMA (Programmable Universal Machine for As-
sembly) robot by Unimation (1978)

(e) The LBR iiwa released in 2014 by KUKA. LBR
stands for “Leichtbauroboter” (German for lightweight
robot), iiwa for “intelligent industrial work assistant”. (f) Panda Arm developed by Franka Emika in 2016

Figure 1: Some examples of industrial robots from 1950 until today.
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industrial robots arrived [244].
In fact, the second generation of industrial robots is traced back to the years between 68 and 77 [79,

256]. The shift from hydraulic to electric actuators took place in the 1970s, when the electronic compo-
nents needed to control a robot reached full technical maturity, deeply changing the robot structure. The
economic and geopolitical situation at the international level also pushed the trend toward electrically
driven robots.The companies were thus forced to find more efficient ways of production. This gave a
boost to the installations of industrial robots, which increased by more than 30% per year in the second
half of the 1970s. These robots used servo-controllers, which enabled them to perform both point-to-
point motion and continuous paths as well.

The first prototype of a robot actuated by electric motors and controlled by a PDP-6 microprocessor
was the Stanford Arm (Fig. 1b). The robot was designed in 1969 by Victor Scheinman, a mechanical
engineering student at Stanford University. The features introduced by Scheinman in the Stanford Arm
and in its successor (Vicarm) were so appreciated that Unimation bought the company and exploited its
know-how to design and manufacture (in 1978) the famous PUMA (Programmable Universal Machine
for Assembly) robot. In the meanwhile, other companies developed and manufactured other types of
industrial robots: Famulus by KUKA in 73 (Fig. 1c), IRB-6 by ASEA (now ABB) in 74, and in the same
year HI-T-HAND Expert by Hitachi. This latter was provided with a force feedback system and was able
to reach high precision in insertion operations (clearance of about 10 micrometers).

Technical and scientific evolution brought further advances in robotics. The third generation of robots
is dated from 1978 to 2000. The industrial robots of the third generation were characterized by a larger
extent of interaction with both the operator and the environment. They also had some self-programming
capabilities and could reprogram themselves, although by a little amount, in order to execute different
tasks. They could be programmed either online or offline, being connected to a PC, which allowed to
use high-level language programming. The possibility of high-level offline programming enlarged the
operational potential of the robots: for instance, they could elaborate data from sensor readings to adjust
the robot movements while taking into account changes in the environment. In addition, some sort of
“intelligence” was present in the robots of the third generation, with some (although limited) adaptive
capabilities. For instance, by using the data coming from vision or perception systems (e.g. cameras,
force sensors, laser scanners), they could locate the objects and the work-pieces. The control software
became more “intelligent” by introducing some techniques related to Artificial Intelligence. Both these
aspects increased the versatility and flexibility of the robots, which could be employed in more and more
complex tasks.

Robots proliferated in early 2000s: in 1995, there were 1.6 industrial robots installed per thousand
workers; in 2007, the number was 4.2 [53]. As a result, and following the trends launched by the three
industrial revolutions, a new idea of industry gradually emerged: the so-called Industry 4.0. Industry 4.0
is a new concept of manufacturing and industrial automation, integrating new production technologies
in order to improve work conditions and to increase productivity and quality. The new paradigm of In-
dustry 4.0 allows communication between humans and machines increasing interconnectivity and smart
automation [159]. In this context, the vision of robotics (fourth generation of robots) is also updated by
proposing robots with high-level “intelligent” capabilities, such as performing advanced computations,
logical reasoning, deep learning, complex strategies, collaborative behaviors.

A concrete result of these approaches is the implementation of cobots [175] . Cobots, or collaborative
robots, are industrial robots designed to be able to interact physically with humans during common
activities and in shared space (Fig. 1e). The objective of cobots is to improve production performance
by allowing a more efficient and scalable distribution of tasks between humans and machines. The idea
behind these technologies is to combine the great mental capacities of humans with robots that can take
on the fatiguing parts of jobs. This aspect allows collaborative robots to be generic in both how they
are built and how they are programmed. In general we can define the following Collaborative robots
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1. A great journey: from steam power to Human-Robot Collaboration

Figure 2: Distribution of costs due to work-related injuries and diseases (Image taken from an Interna-
tional Labor Organization report [221]).

capabilities [70]:

1. Mobility: The ability to easily move the cobot in the production plant;

2. Adaptability: The awareness of the resources, the job characteristics and their implications;

3. Connectivity The ability to communicate with operators and other robot in the work environment,
collecting and providing information;

4. Actuation: The ability to develop safe and smooth trajectories;

5. Consistency: The ability to work in continuous without problems, unless malfunctions;

6. Safety: The ability to work in synergy with the operators, without any risk for his physical and
mental health;

An important aspect to keep in mind when discussing the growing field of robotics is the impact on
society, be that opinions, attitudes, organisation at work or employment. The literature in this field is
divided between those who say that automation (and thus robotics) reduces jobs and those who say that
it will have a neutral or positive impact in employment [248]. Substantial differences in this trend have
been measured as sectoral groups [53], countries [64, 236], and firms [62]. Nevertheless, we think there
is a lack of distinction between the different technologies in particular, to the best of our knowledge, a
study of how collaborative robots affect employment is lacking. In fact, this type of technology is not
intended to replace human employees but rather to work alongside them and improve the quality of their
work. Cobots have an impact in terms of work organization too, as they require a deeper collaboration
between humans and machines.

Human cognitive abilities can be used to supervise robotic physical capabilities. However, sudden
movements and large forces exerted by robots may cause severe injuries to their human partners. For this
reason, much attention is devoted to safety during the interaction. Solutions proposed for safety are, for
example, a division of the space or imposing strict asymmetric relationship leaving low decision power
to the robot [100]. Thanks to improved sensing and control abilities, robots gained major awareness in
more recent Human-Robot Collaborations [203]. Cobots estimate the human physical, physiological and
cognitive state in order to collaborate with their human partner effectively. The human state is a critical
input for the robot decision process. The perception of the human state relies on sensors that can be
placed in the environment, embedded in the robot, or worn by the human. Also, estimations of future
human behavior could improve collaboration.
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The importance of knowing the current and future human state and condition related to the need
of reducing Muskular-Skeleton Disorders, one of the major problems in industry nowadays and that
the Industry 4.0 hopes to address with novel technologies and collaborative robots. In fact, repetitive
movements may incur in job activities that are harmful in the long term [201,213,228]. Physical stress is
often correlated to the development of Work-related Musculoskeletal Disorders (WMSDs). WMSDs are
among the first causes of occupational diseases worldwide, representing a major health issue, with costs
for companies and society [201]. The International Labor Organization reported that the biggest single
reason for economic losses regarding diseases are WMSDs [165, 221] as showed in Fig.2.

Cobots not only share the same workspace with human operators but also gain a more relevant role
in the collaboration. New definitions for the relationship between human and cobot were necessary
(e.g.Cooperation and Collaboration [99]). These relationships can be specified through specific roles
(leader, follower) or through relational forms of interaction (reciprocal, mirrored). In turn, these behav-
iors translate directly into control laws for the robot.

This manuscript presents several contributions in the area of human-
robot collaboration that are relevant for cobots and Industry 4.0. More in de-
tail, this thesis originated in the context of C-Shift. C-Shift is an exploratory
multidisciplinary project of University of Lorraine which adresses some of
challenges represented by the use of these new robotized equipments in in-
dustry. C-Shift is intended to be multidisciplinary by mobilizing the many
skills and resources provided by the various laboratories of the university in-
volved ranging from psychology, sociology to informatics, robotics and au-
tomation(CRAN, LORIA, DevAH, PErSEUS, UP&S DITEX, CEREFIGE,
AIP-PRIMECA - S.mart Lorraine cluster, Ergosim). Other actors outside
the university endorse the research, such as INRS, SDIS 54, and compa-
nies such as Eclatec and Thyssen Krupp. Structured around three axes (Adaptation, Organization, and
Health), the project aims to advance knowledge in the study of the effect of cobots at work.

The adaptation axis aims to provide modeling and evaluation tools for the adaptation of gestures to
trajectories, adaptability of trajectories, and re-appropriation of tasks by humans. The organization axis
aims at studying the evolution of production routines, the evolution of motivations, and transitions in
terms of skills in the presence of collaborative systems. Finally, the health axis is more specifically inter-
ested in modeling human activity in relation to the cobot on the basis of physiological and psychological
parameters in order to be able to calculate key performance indicators for assessing potential risks (e.g.
MSD, cognitive loads).

These three axes were conceived in an interdependent way and led to interdisciplinary reflections,
either through the study of common industrial cases or the experimentation of the results on platforms by
getting as close as possible to an industrial environment. For example, the use of the digital model and the
simulation of the activity allows scientists from different fields such as company organization, control of
robots, and biomechanics to work together with the objective of developing a method of integration of a
cobot on a production unit. This method is partly based on ergonomic simulation allowing the prediction
of gestural and postural behaviors and thus the biomechanical constraints of the operators.

This manuscript illustrates the work conducted in the "Adaptation" axis: specifically, we adressed a
situation where a human and a cobot are physically interacting. Our reserch questions ranged from esti-
mating and predicting the human’s posture and ergonomics to modeling adaptation during collaboration.
We believe that the combination of these frameworks can make a great contribution to collaboration.
Indeed, a robot that is able to determine the behavior of the human with whom it collaborates is able to
design strategies that maximize the quality of collaboration.
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2. Contributions and Thesis Organization

2 Contributions and Thesis Organization

The main objective of this thesis is, to provide tools to improve human robot collaboration.. Our
approach is summarized as follows (Fig. 3):

1. Using a Digital Human Model simulation to evaluate ergonomics indicators of a whole-body mo-
tion for a task execution

2. Predict human movements in the presence of kinematic constraints imposed by the collaboration
with the robot

3. Evaluate different robot control laws to emulate the human motor behavior for a better task collab-
oration

4. Study the human adaptability to changes in the robot policy

These approaches include both whole-body posture ergonomics evaluation, and dyadic interaction
analysis, from which a human-robot application can leverage a better physical interaction. In Fig.3 is
described the structure of the thesis dividing the various aspects covered in the HRC field into blocks.
Given the multidisciplinary nature of the topics, for clarity of presentation, each chapter presents a state-

Figure 3: Overview of the thesis divided by sections

of-the-art review of its relevant topics.

Chapter 1 reviews the main literature of human-robot interaction. We report on the cooperation skills
that the robot needs to help humans achieve their goals, and how these high-level skills translate into the
robot’s low-level control commands. We present and analyze the current achievements from a human-
centered point of view, considering that robots interacting with humans should help them to improve
their health or working conditions. Finally, we report applications of human-robot physical interaction.
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Chapter 2 reviews state of the art technologies for ergonomic assessment and we present a novel set
of tools for ergonomics assessment. Our tools provide an online evaluation and visualization of strenuous
efforts and postures of a worker, also when physically interacting with a robot. A digital human model
is used to estimate human kinematics and dynamics and visualize non-ergonomic joint angles, based on
the on-line data acquired from a wearable motion tracking device.

Chapter 3 reviews state of the art methods for human state prediction, in particular during collabora-
tion with robots. Moreover, we propose a method to predict, in probabilistic terms, the human postures
of a human operator for a given robot trajectory executed in a collaborative scenario. We formalize the
problem as the prediction of the human joints velocity given the current posture and robot end-effector
velocity. We show in a simulated toy problem and on real human-robot interaction data that our method
is able to improve model-based inverse kinematics prediction, sample-based prediction, and regression
methods that do not consider geometric constraints.

Chapter 4 we focus on a human-robot co-manipulation task where an object has to be carefully ex-
tracted from a tube and inserted into another one, without making contacts. This task requires precision,
and we expect the stiffness of each agent to be critical to reject disturbances that may lead to task failure.
In this context, we ask the following questions: is it more efficient and task-performing for the dyad to
cooperate or to collaborate? When collaborating, should the robot exhibit an impedance behavior sim-
ilar to the one of a human collaborator? Among the possible collaboration strategies, should the robot
imitate or reciprocate the human’s stiffness behavior? To answer these questions, we investigated the
performance and arm stiffness of the human interacting with a Franka robot.

Chapter 5 we propose a human study in which 18 participants executed a collaborative human-robot
sawing task where the cobot altered between three different control strategies. This study want to give
a concrete insight of how humans perceive and react to changes in the cobot behaviour. Specifically,
how humans adapt to changing roles and control strategies of collaborating robot. In fact, collaborative
robots (cobots) have the potential to augment productivity and the life quality of human operators in the
context of Industry 4.0 by providing them physical assistance. For this reason, it is necessary to define
the relationship between human and the cobot and to study how the two agents adapt to each other. The
experiments were performed on a setup involving Kuka LBR iiwa robotic arm.

3 Publications

This thesis has produced several contributions in the form of academic articles, software, and video
demonstrations, described below. Software that can be found on the GitLab and GitHub accounts.
Datasets collected throughout the thesis can be found in Zenodo.

Accepted / Published Articles

– Survey on Human-Humanoid interaction: it reviews different aspects of human-humanoid in-
teraction, such as social factors, robot interaction control, human perception and human behavior
modelling. Additionally it also reviews relevant applications on the field.

Contribution: Our contribution was related to the state-of-the-art on controlling an humanoid
robot while it is interacting with humans.
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3. Publications

Lorenzo Vianello, Luigi Penco, Waldez Gomes, Yang You, Salvatore Anzalone, Pauline
Maurice, Vincent Thomas, and Serena Ivaldi. Human-humanoid interaction and coopera-
tion: a review. Current Robotics Reports, 2021

– Human Posture Prediction during Physical Human-Robot Interaction

Contribution: We proposed a tool for predicting human movements in a probabilistic way and
considering kinematic constraints imposed by the collaboration with the robot.

Lorenzo Vianello, Jean-Baptiste Mouret, Eloïse Dalin, Alexis Aubry, and Serena Ivaldi.
Human posture prediction during physical human-robot interaction. IEEE Robotics and
Automation Letters, 6(3):6046–6053, 2021

Video is available at: video posture prediction.

– Latent Ergonomics Maps: Real-time visualization of estimated ergonomics of human move-
ments during human-robot co-manipulation task.

Contribution: We participated to the development of the Digital Human Model, and to the data
collection for the experiments, the design of the Latent Ergonomic Map, and the control of the
Franka Robot. We proposed Latent Ergonomics Maps, an important tool for ergonomics visual-
ization.

Lorenzo Vianello, Waldez Gomes, Freek Stulp, Alexis Aubry, Pauline Maurice, and Serena
Ivaldi. Latent ergonomics maps: Real-time visualization of estimated ergonomics of human
movements. Sensors, 22(11):3981, 2022

Video is available at: video Latent Ergonomics Map.

In Preparation

– Cooperation or collaboration? comparison of human-inspired impedance strategy in a human-
robot co-manipulation task. The dyad was analyzed according to their motion, muscle activation
signals and efficiency executing the task.

Contribution: We found important differences on the motor behavior of a human-robot dyad
between different forms of coordination.

Lorenzo Vianello, Waldez Gomes, Pauline Maurice, Alexis Aubry, and Serena Ivaldi. Co-
operation or collaboration? on a human-inspired impedance strategy in a human-robot co-
manipulation task. 2022

Video is available at: video Human-Franka co-manipulation.

– Role transition and adaptation we propose a human study in which participants executed a col-
laborative human-robot sawing task where the cobot altered between different control strategies.

Contribution: We found that, in this kind of task, not only the type the current role of the cobot,
but also the past ones influence the behavior of the human operator.
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Lorenzo Vianello, Serena Ivaldi, Alexis Aubry and Luka Peternel. The effects of role
transitions and adaptation in human-cobot collaboration. 2022

Video is available at: video Human-Kuka adaptation.
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1

Physical Human-Robot Interaction

Robots have the potential to assist humans in several domains, from agriculture to healthcare, from
entertainment to manufactory. To find their place into our daily life, where complex interactions and
collaborations with humans are expected, their physical interaction skills need to be further improved.
Physical interaction with humans requires appropriate modeling and real-time estimation of the human
state and intention. This can help prevent unintentional collisions and limit movements that can cause
musculoskeletal disorders in humans. This information is required both at a high-level (e.g. human role
and interaction behaviour) by the cooperative decision-making policy and at a low-level (e.g. forces
and torques) by the interaction controller that implements the physical interaction. Real-time constraints
induce simplified models that limit the decision capabilities of the robot during cooperation.

In this chapter, we review the current achievements in the context of human-robot interaction. We
report on the cooperation skills that the robot needs to help humans achieve their goals, and how these
high-level skills translate into the robot’s low-level control commands. We present and analyze the
current achievements from a human-centered point of view, considering that robots interacting with
humans should help them to improve their health or working conditions. Finally, we report applications
of human-robots physical interaction. This chapter introduces some of the terminology used in the
following chapters and presents today’s scenario of human-robot physical Interaction.
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Human-Humanoid Interaction and

Cooperation: a Review

Lorenzo Vianello1,2†, Luigi Penco1†, Waldez Gomes1, Yang
You1, Salvatore Maria Anzalone3, Pauline Maurice1, Vincent

Thomas1 and Serena Ivaldi1*
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3Laboratoire CHArt, Université Paris 8 , Paris, F-93200, France.

*Corresponding author(s). E-mail(s): serena.ivaldi@inria.fr;
Contributing authors: lorenzo.vianello@univ-lorraine.fr;

luigi.penco@inria.fr; waldez.azevedo-gomes-junior@inria.fr;
yang.you@inria.fr; sanzalone@univ-paris8.fr;

pauline.maurice@loria.fr; vincent.thomas@loria.fr;
†These authors contributed equally to this work.

Abstract

Purpose of review: Humanoid robots are versatile platforms
with the potential to assist humans in several domains, from edu-
cation to healthcare, from entertainment to the factory of the
future. To find their place into our daily life, where complex
interactions and collaborations with humans are expected, their
social and physical interaction skills need to be further improved.
Recent findings: The hallmark of humanoids is their anthropomorphic
shape, which facilitates the interaction but at the same time increases
the expectations of the human in terms of advanced cooperation capa-
bilities. Cooperation with humans requires an appropriate modeling and
real-time estimation of the human state and intention. This informa-
tion is required both at a high-level by the cooperative decision-making
policy and at a low-level by the interaction controller that implements
the physical interaction. Real-time constraints induce simplified models
that limit the decision capabilities of the robot during cooperation.

1

This chapter is based on the article hal-03413650v1,
which was presenting the state of the art in human-
humanoid interaction. While human-humanoid interac-
tion is also a form of HRI, and many elements are com-
mon to humanoids and robotic manipulators, this chap-
ter is focused on human-manipulator (or robot) interac-
tion. For this reason, we significantly extended the dis-
cussion on some aspects of the physical interaction such
as the type of interaction and compliant control laws.
In particular, we presented in detail the impedance con-
trol we used in the course of this thesis. In addition,
we extended the applications in which human and ma-
nipulator physically interact by presenting examples in
different domains.

Figure 1.2 shows the interconnection between the key building blocks that enable a robot to make
complex decisions and take actions to cooperate with a human: it is designed to guide the reader through
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Chapter 1. Physical Human-Robot Interaction

the different topics and sections. In Section 1.1 we discuss the principal issues in building cognitive
and social skills. In Section 1.2 we formalize the concept of physical human-robot cooperation, while
in Section 1.3 we overview the main interaction control approaches that enable low-level physical inter-
action between the robot and the human. The knowledge of the human “state” is required by both the
high and the low level control to build human-aware control plans: hence we present the main methods
used to model and perceive the humans in Section 1.4. Finally, in Section 1.5, we report on the current
main application of robots interacting and cooperating with humans: personal assistants, co-workers and
avatars.

1.1 High-level interaction: Social and cognitive interaction

Endowing robots with cognitive skills is a pivotal step to safely blend them in our society. Such skills go
beyond the abilities of reasoning, exploration, learning, and are rather oriented towards a mutual interplay
between the robotic “brain”, its physical embodiment and its environment. In this sense, cognitive skills
emerge from a proper and coherent exploitation of internal models of the knowledge the robot has of itself
and of its surrounding. These models mediate past knowledge with new perceptions and are continuously
and incrementally updated according to feedback from new experiences [127]. The models are not only
able to represent temporal information [250], but also spatial concepts [197].

Consistent social interaction is achieved when the robot is perceived by the human partners as “be-
lievable” [172] through its appearance and through the consistency of its actions and its social behav-
iors [245]. Any physical or behavioral inconsistency can be quickly spotted, perceived as “strange”,
making the robot become unacceptable for the human partners.

In this sense, the behavior consistency requested to robots is not limited to a coherent sequence of
actions, but it is extended to the challenge of being “readable”,“legible”and “predictable” by human
partners [222]: in cobots, these requirements led to the development of algorithms to plan legible mo-
tions, which should help humans in understanding how to better cooperate with the robot. This kind of
behaviour allows to increase the trust of the human in the robot, an important aspect in these kind of
relationships [9]. Achieving coherent robot behaviors in response to the human reactions strictly relies
on the production of metrics, models, techniques and algorithms aimed at capturing and describing the
dynamics of the social interplay [242]. The "social skills" required by cobots in industrial environment
may not be advanced as these required by social robots for rehabilitation or entertainment. However,
explicitly taking into account the human presence in their perception-cognition-action loop [32] is a fun-
damental skill for robots that have a higher degree of physical interaction with humans (e.g. cobots and
exoskeletons).

To evaluate how people perceive robots, several questionnaires have been proposed, such as God-
speed [17], and Negative Attitudes Toward Robots Scale (NARS) [218]. Results from such question-
naires, together with human’s behavioral metrics, are extremely useful tools to evaluate the effectiveness
of the social interplay with robots in real-world scenarios [11].

To summarize, the high-level aspects that need to be considered in implementing control strategies
for cobot and human-robot collaboration stations [125] are:

1. Comunication channels between human and robot (e.g. natural language, motion caption, facial
expressions)

2. Readable robot intentions, this can be achieved with strategies which improves the robot trans-
parency (e.g. robot animation to show robot behaviour, predictable motions, familiarization)

3. Interactive/active learning, robot improves its ability is performing the task
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(a) Human-Robot comanipulation in Industry
[210].

(b) Robotic co-worker for industrial abrasive
blasting [44].

(c) Assistive collaborative robot [83] (d) Assistive collaborative robot [178]

(e) Collaborative screwing using MOCA-MAN [111]

(f) Kairos platform helping Im-
proving Standing Balance for hu-
man [193]

(g) Baxter helps olders stay active at
home [74]

(h) Teleoperated Viper with shared con-
trol [81]

Figure 1.1: Examples of human-robot physical Interaction: the first three figures present examples of
industrial applications while the other show scenarios still being investigated.
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Human Model

Low-level decisions & controls

High-level decisions

Wearable Sensors

Robot Model

Human State Estimation Robot State Estimation

Socio-cognitive skills
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Planning Reference Trajectories
Social and Physical Behaviors

Whole-Body Controller

Actuation

Robot Sensors

Sect. 1.4

Sect. 1.3

Sect. 1.2

Sect. 1.1

Sect. 1.1

Sect. 1.3

Figure 1.2: Schematic drawing of the components involved in Human-Robot Interaction and cooperation.

4. Higher robot cognitive ability to learn how to solve complex task by decompose them and find
solutions.

1.2 Middle-level interaction: Cooperation, decision problem and role as-
signement

Social and cognitive skills are critical to make the robot believable and to ensure it can perform in day-
to-day interactions to significant endeavors. These skills are the building blocks that enable a robot to
pro-actively cooperate with humans and help them achieve their goals. Developing these skills requires a
human-centered design of the robot’s intelligence, that at many decision levels should integrate the goals
and costs of the human’s actions to plan suitable high-level assistance actions and translate those deci-
sions into the robot low-level control commands. Figure 1.2 shows the interconnection between these
skills: to cooperate, the robots need to formulate the problem of finding the best sequence of actions that
assist the human in achieving their goals and minimizing their costs, considering the constraints and lim-
its of the robots and the human as individuals first, then as interacting agents. This also requires cognitive
reasoning, in particular taking the human perspective [199]. Solving this problem requires high-level de-
cision making capabilities, which are then translated at a lower level into the modules producing social
and physical interaction behaviors, also translated into lower-level motor commands for the robot.

Several approaches are possible to design this robot high-level decision making system. Among those
approaches, the robot’s policy can be designed based on expert knowledge or directly learnt through
interactions with a human, however, in both cases, this would require to encompass all the possible
encountered situations and the variety of human reactions (needing a complete knowledge of all the
possible situations in the first case or an important amount of data in the second one).

Whereas a planning approach requires a representation of the interaction situation, a detailed knowl-
edge of its dynamics, and an adaptation of the high-level strategy to low-level controls, it still seems
a promising direction: (1) it can leverage generic models and algorithms to automatically compute a
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1.2. Middle-level interaction: Cooperation, decision problem and role assignement

robot’s strategy from the definition of the collaborative task, (2) planning approaches are able to deal
with several sources of uncertainties like sensor noises or uncertainties regarding the human behavior
or mental state, (3) planning approaches are generic and various questions of paramount importance for
collaborative robotics have been represented and can merge in that same framework like intention esti-
mation [185], role attribution and/or inference of user profile [162], and, (4) planning allows to compute
strategies considering the long-term consequences of the robot’s behaviour which could have a huge
impact in the decision process (e.g., when optimizing the user’s fatigue).

More precisely, in a planning context, a collaboration problem can be modeled as a Multi-Agent
sequential decision problem where two agents, the human and the robot, select actions according to their
respective policies in a coordinated way to achieve a common task, where typically cumulative shared
rewards represent the common goal. This problem can typically be addressed in game theory framework,
defining the agents’ strategies and the rewards.

Due to the difficulty in modeling the complex and often unpredictable human behavior, the most
common formulations of human-robot interaction and cooperation resort to single-agent problems: they
only consider the robot’s point of view, while the human is assumed as part of the environment and
modelled as purely reactive agent with a known policy [219]. Solving a single-agent problem consists
in building the long-term robot’s policy and potentially influencing the human reactions in order to com-
plete the collaborative task in the most efficient way [26]. A different approach has been proposed by
Nikoladis et al. [164]: Human-Robot Cross-Training. Human-Robot Cross-Training is a strategy val-
idated for human team training. Cross-training is an interactive planning method in which human and
robot iteratively switch roles to learn a shared plan for a collaborative task. They encode a teaming model
that captures knowledge about the role of the robot and the role of the human team member.

These kind of models are often formalized by a Partially Observable Markov Decision Process
(POMDP), a general framework well suited to model different collaboration situations faced by the
robot: it assumes that the robot is acting in an uncertain environment, described by a Markov Decision
Process (MDP) but the robot cannot directly observe its underlying state. The uncertainty of the human
reaction can be represented by considering a stochastic evolution of the system. A POMDP is usually
defined by the tuple [103]:

< S,A,T ,Ω,O, r, b0 > (1.1)

At each time step, the agent is in a state s ∈ S performs an action a ∈ A influencing the evolution of
the state of the system according to a probability distribution T (s, a, s′) = P (s′ | s, a) and receives
an observation o ∈ Ω depending on the new state that has been reached and the observation function
O(o, s) = P (o | s). The agent has no direct access to the state of the system but only to those observa-
tions. Using past observations, the agent infers a belief-state, a distribution of probability over the true
state of the system, and makes their decision based on this estimate.

Several algorithms can be used to build the optimal robot policy (e.g. [209]), which may also include
actions to gather information about the human state and simultaneously estimate the hidden variable
conditioning their actions (e.g., their profile or objective) [163]. As such, POMDPs are ideal to develop
collaborative robot strategies in absence of structured rewards or structured cooperation instructions.

One of the main difficulties in using this approach lies in the modeling of the human behavior: the
critical questions are how to consider the expectation of the human toward the robot and how they will
adapt their policy depending on the robot’s actions. Often, the interaction between human and robot
is structured along “roles”, .e.g, leader/follower, which may determine not only high-level decisions but
also low-level actions (e.g., stiffness in impedance control). For example, in a strictly asymmetric leader-
follower case, the humans’ cognitive abilities can be used to supervise or to lead the robots’ superior
physical capabilities; whereas in an egalitarian roles distribution, where the leadership is not specified,
the robot may need to continuously adjust its own role, and consequently its behavior, according to the
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human’s intention and estimated role [132]. Jarrasse et al. [100] summarise findings on the growing field
of role assignment policies for human-robot motor interaction. Several human-robot relationships could
be identified in the literature: leader-follower, supervisor-subordinate, partner-partner, teacher-learner
and fully autonomous robot.

These relationships vary among the considered task, for instance, for lifting and carrying heavy or
bulky objects, a common approach is the human-leader and robot-follower. For this reason, various
platforms, such as mobile robots with a robotic arm, have been developed [117] [116]. These robots
are equipped with controllers to detect the intentions of the human operator [217], in this way, the robot
could follow the human-leader motions. For example, in [217], the robot follows the human guidance
during a cooperative table lifting task by tracking the movement of his hands holding the table.

Equalitarian roles distribution beyond the leader-follower scheme have been investigated such as
supervisor-subordinate, cooperators, or teacher-learner [97], [171]. For example, Lawitzky et al. [123]
compared three different effort sharing policies during the transportation of a bulky object by a human
and a robot. Results suggest an improvement (minimization of applied force level and tracking error)
through a more proactive robot behavior. Evrad et al. [69] introduced a flexible role distribution enabling
each partner to tune between the two distinct extreme behaviors of leader and follower using an homotopy
(a weighting function that allows a continuous change between two behaviors), giving rise to an implicit
bilateral coupling.

On the same path, Kheddar et al. [106] implemented homotopy as a speculative model for Human-
Robot interaction as a time-variant, continuous interpolation function between the two extremes (leader
L of follower F) behaviors for each individual involved in the interaction, the following homotopy
function can be defined:

u = αL+ (1−α)F

where u are the control actions, L corresponds to a leader behavior while F corresponds to a follower
behavior. Each agent defines his/her role through the parameter α (continuous and time variant). This
formalization was tested in a table lifting task [68]. Mortl et al. [156] showed that, in a human-robot load
transport task, continuous dynamic role assignment policy leads to better performance than a constant
role assignment one. However, it seems that humans preferred the constant role, where robot behavior is
more predictable and thus easier to consider in their motor action. We use two terms to distinguish these
types of interaction [99]: cooperation and collaboration.

Cooperation occurs when different roles are ascribed to the agents prior to the beginning of a task
and this distribution is not questioned until its completion. In contrast, in collaboration, there is no priori
roles distribution but a spontaneous roles distribution depending on the interaction history. Any physical
interaction with negotiations and discussions to accommodate others while considering their perspective
belong to this category. While in collaboration the agents work on an even basis, cooperation has an
uneven distribution of subtasks or roles during the task.

Another difficulty is defining the right rewards, so that the robot policy can truly help the human to
achieve their goal. This is not an easy task since, usually, the utility we would like to optimize is not
reduced to a single dimension and must consider all possible criteria. It might involve the efficiency of
the task achievement but also the human ergonomics and physiological comfort, the cognitive load, as
well as unknown objectives [185]. This is a problem of paramount importance due to reward hacking
problems [10]: the produced policy will optimize the given reward but might have unexpected side
effects that could be counter-productive or dangerous. Building policies able to simultaneously estimate
the hidden variables determining the human reactions and consider long-term consequences of the robot
actions are a key component to build adaptive robots that collaborate with humans in a proficient way.
Jarrasse et al. [99], using neuroscience studies, formalize the humans interaction models as lead by the
desire of minimizing error on task execution (e) and effort (u). This can be modelled as the minimization
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1.3. Low-level interaction: Motion control for physical interaction

Exchange Interaction Subtype Agent 1 Agent 2

Asymmetric Cooperation assistance V1 = γ1ê
2
2 + δ1û

2
2 V2 = α2e

2
2 + β2u

2
2

Follower Leader

Asymmetric Cooperation education V1 = γ1ê
2
2 + β1u

2
1 V2 = α2e

2
2 + β2u

2
2

Teacher Student

Symmetric Collaboration partners V1 = α1e
2
1 + β1u

2
1 + γ1ê

2
2 + δ1û

2
2 V2 = α2e

2
2 + β2u

2
2 + γ2ê

2
1 + δ2û

2
1

Symmetric Collaboration competitors V1 = α2e
2
2 + β2u

2
2 − γ1ê

2
2 − δ1û

2
2 V2 = α2e

2
2 + β2u

2
2 − γ1ê

2
2 − δ1û

2
2

Table 1.1: Definition of main kinds of behaviors (in interactive tasks) as defined in [99]. With respect to
the original formulation, we replaced the terminology master/slave with leader/follower.

of the cost function
V (t) = βee

2(t) + βuu
2(t) with βe, βu > 0

In a similar way, multi-agent interactions could be modeled as a problem of minimizing cost functions
composed by an error on task execution (e) and effort (u) of both the agents. In Tab. 1.1 could be find
the cost functions associated to different interactions behaviors as presented in [99]. For instance, a
good teacher (education relationship) will try to maximize the student’s independence by minimizing his
own effort in order to challenge the student, let him perform according to his capabilities and eventually
increase them. Following the previous paper, Li et al. [130] presented an interactive robot controller able
to understand human’s control strategy and react optimally to its movement. The cost function to be
minimized is designed dependent by an error on position and by joint torques.

In the next chapters, particularly in Chapters, 4, 5 we will go into more detail about some aspects
of mid-level interaction. In addition, in these chapters we present studies conducted with the intention
of observing how a human subject interacts with a robot as the robot’s role changes. We will present
different roles associated with the robot (Robot leader, follower, reciprocal, and mirrored) and analyze
which of these the human prefers. We also focused on studying how subjects adapt to different profiles
of the robot. All the factors presented in the previous sections (cooperation/collaboration, human state
estimation, and role assignement) directlty translate in low level robot controlling. In the next section
we present how the robot has to be controlled adequately to enable physical interactions (considering
external force and stability of the system).

1.3 Low-level interaction: Motion control for physical interaction

The previous section discussed how the robot can plan for cooperative actions at a high level, taking into
account the human’s goals and states. High-level decisions must be translated into low level commands,
typically by means of desired behaviors, implemented as desired trajectories, which need to be translated
into motor commands, as represented in Figure 1.2. The critical aspect that distinguishes a robot motion
controller for cooperation with humans from a generic one for the robot alone in the environment is to
consider the human in the design of the motion control, i.e., to design a “human-aware” controller [191].
This means to consider the human state, their dynamics [167], their intended movement [56], and use the
predictions of their future states to plan suitable robot motions and physical interactions. These interac-
tions often result in complex behaviors, where the robot needs to simultaneously control various aspects
of its internal and external motion like posture, manipulation and contact stability. All these aspects
are usually considered as different objectives in a multitask optimization problem. This is classically
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formulated as a Quadratic Program (QP):

arg min
u

∑
k

wk(∥Aku− bk∥2) + ϵ∥u∥2,

s.t. dmin ≤ Du ≤ dmax,
umin ≤ u ≤ umax,

(1.2)

where the index k identifies a given task; u is the control input vector (torques, joint positions or ve-
locities); Ak is the equivalent Jacobian matrix of the task k; bk is the reference value for the task, ϵ
is a regularization factor used to handle singularities. umin and umax are the control input limits, and
dmin ≤ Du ≤ dmax are other equality and inequality constraints, such as collision avoidance or con-
tact related constraints. High priority tasks can be regarded as equality constraints while, lower priority
tasks can be considered in the cost function with relative weight wk.

The QP formulation provides extreme flexibility in the choice of the type of control, allowing one
to solve inverse kinematics [173], inverse dynamics [226] problems for both position-controlled and
torque-controlled robots.

In dynamic environments and in the presence of humans, torque-controlled robots are generally the
preferred choice. These approaches can ensure safety and contact stability under unexpected physical
interactions [80], so they are appropriate to handle possible collisions between the robot and the humans
during the robot’s trajectory execution. In other situations, the robot has to adapt its motion to that of
the human, considering some variability in the execution of the various task references and considering
perceived external forces. In this case, to achieve a stable robot behavior while maintaining contact with
the human, compliant control approaches such as impedance control [34], and admittance control [187]
have been applied.

In fact, whenever the robot interacts with an environment, this latter introduces disturbances in the
task execution. For this reason, it is important to modulate disturbance response in order to permit control
of dynamic interactions (the so-called feedback control) [94]. The general structure of an impedance con-
trol system is composed of a high-level supervisory system in an open loop and a lower level controller
which controls the manipulator in real time. Let the robot equation of motion be:

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ − J⊤Fext (1.3)

with M ∈ Rn×n the inertia matrix, C ∈ Rn×n the matrix of Coriolis and centrifugal effects, g(q) ∈ Rn

the vector of gravity forces, J ∈ R6×n the end-effector Jacobian, τ ∈ Rn the joint torque vector, and
Fext ∈ R6 the interaction wrench at the end-effector. The impedance control law controls directly the
pose (or the robot posture) and indirectly the external forces. To do that the general formulation control
the interaction forces with the enviromnent as a mass-spring-damper system:

M(q)(ẍ− ¨̂x) +D(ẋ− ˙̂x) +K(x− x̂) = Fext (1.4)

where K ∈ R6×6 , D ∈ R6×6 and M ∈ R6×6 are the respectively stiffness, damping and inertia
matrices in Cartesian space, and x and xd are respectively the actual and desired end-effector poses. In
our works to mantain a simpler formulation we decided to consider a simplified version (spring-damper).
In spring-damper cartesian impedance control the inertia component is removed. The resulting control
command is calculated as:

τ = JT (q)[−K(x− x̂)−D(ẋ− ˙̂x)] + g(q) (1.5)

This kind of formulation is well suited for slow movements and with low accelleration (ẍ ≃ 0). The
behavior of the controller is entirely described by the choice of control parameters (stiffness K and
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damping D matrices) and the desired trajectory. Stiffness matrix defines how much the controller wants
to follow the reference, similarly damping instructs how much the controller is forced to execute a refer-
ence at speed. High stiffness and damping result in a controller that is very stiff in executing its trajectory
conversely low values define a more compliant controller.

Impedance control is well suited to unfamiliar environments, such as human-robot physical interac-
tion. For these situations the coefficient of the of control law (K,D) could be learned [35, 105, 109], in
other situations could be better to learn xd expressed as reference trajectory [37] or attractor points [77].
For instance, Li et al. [130] presented a cartesian impedance control able to adapt to the control strategy
of the human user during several interaction scenarios (namely cooperation, co-activity, competition) and
able to react optimally. The controller combines and observer for the end-effector state and differential
game theory to successfully perform the task with the minimum effort. In general, it is good practice to
make either the reference or the controller parameters variable so as not to run into unstable situations.

Indeed, one aspect that all these solutions must satisfy is system stability. In impedance control,
stability is a constraint is often associated with the passivity of the system, that is, its property of never
ejecting energy. One way to verify this property is through Lyapunov-based tools. Unfortunatelly these
tools become hard to use when the dynamics of the environment are unknown or when the robot is
interacting with the human [2]. For this reason several solutions have been proposed: energy tank [72],
fractal attractor [15], stiffness bounds [153]. These approaches limit the energy the system can exert by
changing the robot’s behavior if the system’s energy reaches a limit. In the chapters 4, ch:chapter5 we
present our implementations of impedance control. These latter follow the works cited above that allow
us to consider the role the robot must perform during the interaction. Our contribution in this field is not
to try to implement new impedance solutions but rather to observe how these solutions are perceived by
a human collaborator.

During the interaction, one key-point for the robot is the computation of the reference task: it usually
defines the robot motions, but it may also be used to influence the human motion through physical
contact. An optimized choice of the interaction trajectory (for instance, at the end-effector) could be
used to reduce the human effort [41] and make the cooperation more comfortable and safe [139]. This
computation is highly dependent on the estimated human intention. Following the terminology of [41],
we could divide the robot strategies into reactive and proactive.

In reactive strategies, the belief of the human reference task is computed online and the robot re-
acts accordingly. These kinds of approaches are highly dependent by the sensors integrated in the robot,
which will be discussed in Sec.1.4. One good example of reactive strategy is the so-called tele-impedance
control [5]. In tele-impedance, the human mechanical impedance is calculated by combination of antago-
nist muscle groups based on early works [93]. More recent works used tele-impedance to tune online the
parameters of the robot control law [20, 88], a more thorough discussion of tele-impedance is presented
in Chapter 4. In proactive strategies, the robot predicts a long-term belief of human reference task and
plans solutions accordingly [131]. The state of the human can be predicted using neural networks [195]
or Gaussian processes [240]. To the best of our knowledge, no type of proactive tele-impedance has yet
been presented.

Once the robot has access to the human current (reactive) or long-term (proactive) intention, it can
use the information to compute its own reference task. The final task computation depends on the human
intention and the estimated role as cooperative agent [100].

A limitation of most existing controllers for physical human-robot interaction is the representation
of the human state, which is vastly simplified as an external force or end-effector’s pose; this limits
the quality of the solutions proposed by the robot and the extent to which the robot can reason about
the human. Recent work [191] proposed to extend the classical quadratic program formulation in the
case of human-robot physical interaction and to include the human model in the system model. This
allows to reason about the whole-body dynamics of the human, considering their dynamics (e.g., joint
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Measure Sensor Pros Cons Applications

Whole-body kinematics Opto-electronic motion capture accuracy (gold standard) hardly portable, long equipment
time, occlusion, camera field of
view

Bi-Manual human-robot han-
dover [233]

Inertial motion capture wearable, no occlusion, no field
of view issue

drift, requires model calibration Teleoperation [173]

RGB Video camera cheap, less invasive solution image processing (low accu-
racy), field of view, occlusions

Human Pose Estimation with
Deep Learning [260]

Forces Force plates accuracy (gold standard) hardly portable, expensive Estimate Human Dynam-
ics [122]

Sensorized insoles wearable low accuracy, often only pres-
sure component

Estimate Human CoP [137, 212]

Force/Torque sensors Directly measure contact forces,
accuracy

expensive, not portable Estimate human motion inten-
tion [3]

Muscle Activity Surface EMG (sEMG) Non-invasive Requires calibration at each ses-
sion

Estimate Arm Stiffness Modula-
tion [179]

High Density sEMG Non-invasive, precise movement
classifications

Relatively new in the literature,
complex processing

Generate robot input from arm
muscle synergy [98]

Brain Activity Electroencephalography (EEG) Non-invasive Not portable, calibration Command high-level tasks [22,
129]
Predict attitude towards robots
[30]

Cardio Respiratory Activity Electrocardiography (ECG)
monitor

Heart Rate Sensors have a trade-off between
portability and accuracy

Estimate cognitive work-
load during robot assisted
surgery [261]

Photoplethysmography (PPG) Cheap alternative to the ECG
monitor, Heart Rate

may interfere in manipulation
tasks

Investigation of Mental Work-
load [96]

Gaze Eye Tracker Gaze direction, and Eyeblink
Rate

Generally not portable, it may
generate excessive physical
loads

Estimate engagement and proac-
tivity levels during social human
robot interactions [12, 16]

RGB-D Video Camera Gaze, Facial expression Visual Interest Classifica-
tion [189]

Speech Microphone Cheap, Portable Natural language processing is
complex

Enables verbal communication
[43]

Table 1.2: Sensors commonly used in human-robot studies to measure the human’s movement and be-
havior.

torques), their posture, and even ergonomics-related quantities that may be instrumental to ensure a safe
and ergonomically optimized collaborative motion. One key issue is how to model the human kinematic
and dynamic properties. Depending on the extent and objectives of the cooperation, humans could
be represented by a simple linear inverted pendulum [36] or a more complex Digital Human Model
(DHM) [191]. Choosing the correct level of abstraction and simplification in the human model can make
a difference in real-time performance. In the next section, we will discuss how to model human and how
to estimate their state based on multi-modal sensor measurements.

1.4 Human perception and modeling

Cooperative robots need to estimate the human physical, physiological and cognitive state in order to
collaborate with their human partner effectively: as discussed in the previous sections and shown in
Figure 1.2, the human state is a critical input for the high-level decision planning and lower level motion
planning and control. The perception of the human state relies on sensors that can be placed in the
environment, embedded in the robot, or worn by the human. A list of sensors commonly used to perceive
humans is presented in Table 1.2. State-of-the-art motion capture techniques remain widely used to
provide high-fidelity and high-frequency measurements of human kinematics. However, their use is
mostly limited to laboratory experiments while their use in the field is often not possible (e.g. industrial
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environment). If the access to human ergonomics is not possible, the robot needs to estimate the human
posture, an example of that is presented in Chapter 2. While human kinematics can serve to inform about
human’s intent, the on-line estimation of human dynamics is receiving a lot of attention since it enables
the robot to consider aspects such as balancing or human’s internal force distribution [122]. Dynamics
estimation requires a measure of external forces, either via generic force/torque (F/T) sensors that can
be embedded in the robot or via specific sensors such as force plates for human/ground reaction force.
Wearable force sensors such as sensorized insoles are also of interest due to their portability [212].

Measurements of physiological quantities are also common in human-robot cooperation. Physiolog-
ical quantities can be used as such, for instance, electromyography (EMG) signals have been used to
estimate human muscle fatigue [179]. But physiological quantities can also serve to estimate the human
cognitive state: electrocardiography (ECG) and galvanic skin response (GSR) signals have been linked
to stress and anxiety levels [55], while eye gazing was correlated with engagement and proactivity levels
during social human-robot interactions without physical contact [16].

In more recent work, there are indications that individual factors such as personality, can affect the
human posture and motion while interacting with a robot [234] (motor contagion), or even the level of
trust towards the robot [96]. These emotional, and perception factors should also be monitored by the
robot in order to provide mental safety during interactions, when appropriate [104].

Finally, the above-mentioned measurements are often used in combination with a model of the human
body, in order to retrieve further information. Many levels of detail exist to represent the human body
[200], but the most widely used in human-robot cooperation are the rigid body and musculoskeletal
models. In rigid body models, the human body is represented as a kinematic chain of rigid segments
linked together by ideal joints. This is typically done to estimate joint torques via inverse dynamics
[122]. Such robotics-based models are also used to simulate human motion at a low computational cost
[146]. Musculoskeletal models [176] include muscles and possibly tendons, providing a better degree
of realism, obviously at a higher computational cost. In the frameworks presented in the chapters 2, 3,
we used a rigid body model with 66 degrees of freedom to represent the human. The joint configuration
applied to the model is extracted from a motion tracking suite that with respect to camera sensors gives us
an estimate of the posture even in the presence of obstacles in the scene as may occur during interaction
with the robot itself or with other objects common to the industrial environment (tables, panels, objects
of carry).

1.5 Applications of robots interacting and cooperating with humans

Robots are versatile platforms that can interact with and help humans in different contexts, relying on the
cooperative and human-aware decision and control skills discussed in the previous sections. Table 1.3
reports the type of robot and its control strategy used for each application. We divided the applications
into: 1) co-worker robot in the case where it directly interacts with the human in tasks that are common
in the industrial environment (polishing, welding and blasting); 2) companion robot if the robot is used to
assist the human in recreational or home environments; 3) avatar robot for those situations where human
and robot do not interact directly but the robot is teleoperated by the human. The table also presents
the roles the robot assumes during the interaction. We can see a predominance of follower robots in the
applications.

Collaborative robots have received a lot of attention lately due to their potential to act as co-workers
that can possibly improve working conditions. While initially focused on fixed-base robotic arms, re-
search in this domain is now moving towards robotic manipulators mounted on wheeled mobile bases
[111]. The ultimate goal is to make them proactively work side by side with humans without the need for
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Tasks/Applications Robot role Control Strategy (Robot) [Ref.]
Dancing in couple Follower Coupled Linear Inverted Pendulum-based compliant controller (Dance Robot) [246]
(companion robot) QP controller with skin-like sensors (REEM-C) [113]

Leader Coupled Linear Inverted Pendulum-based compliant controller (Dance Robot) [89]
Assistance in standing up Mutual Adaptation Child-Robot [97]
(companion robot) Non-specified QP controller in combination with finite state machine (HRP-4) [136]

Momentum based whole-body controller (iCub) [191]
Health-Care physical assistance Non-specified QP controller in combination with finite state machine (Pepper) [28]
(companion robot) QP controller in combination with finite state machine (HRP-4) [136]

QP controller in combination with finite state machine (RIBA) [157]
shared control algorithm for smart wheelchairs [58]

[155]
Lifting and carrying objects, guided
walking

Follower Upper body impedance controller (Cosero) [217]

(co-worker robot) Hybrid force-position controller (COMAN) [120]
Hybrid force-position controller (ARMAR-6) [14]
Whole-body controller: Model Predictive Control at velocity level (iCub) [29]
Stack of Tasks (HRP-2) [214]

Variable Role Compliant controller and state space learning (HRP-2) [68]
Non-specified Multi-robot QP controller at velocity level (HRP-4) [167]

Jerk control (iCub) [80]
[3]
[257]

Kinestetic teaching of new tasks Follower Learning by demonstration and optimal control (HOAP-2) [42]
(co-worker robot) Impedance upper body, zero torque control (iCub) [12]

Impedance control (Justin) [124]
Division controls: upper body active compliance with lower body Reaction
Null Space method (HOAP-2)

[115]

Welding Follower Impedance Control (KUKA) [67]
(co-worker robot)
Polishing Follower Impedance Control (KUKA) [180]

[177]
[176]

(co-worker robot)
Sawing Follower Impedance Control (KUKA) [180]

[177]
[176]

(co-worker robot)
Drilling Follower Impedance Control (KUKA) [180]

[177]
[176]

(co-worker robot)
Blasting Follower Impedance Control (KUKA) [227]

[44]
(co-worker robot)
IED response Follower Momentum based whole-body QP controller (Valkyrie)) [102]
(avatar robot)
Telexistence Follower IK based controller (TELESAR VI)) [220]
(avatar robot)
Search and rescue Follower Momentum based whole-body QP controller (Atlas)) [101]
(avatar robot)
Spacecraft maintenance Follower Not specified (G1) [1]
(avatar robot)
Dance show Follower ID based QP controller (HRP-2) [186]
(avatar robot)
Agriculture Robot: autonomous pes-
ticide giver

Follower Not specified [235]
[23]

(avatar robot)

Table 1.3: Examples of human-robot interactions classified by task/application: role assigned to the robot
w.r.t. to the human partner, robot type and its control strategy.
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1.6. Conclusion

protective cages [3]. To this end, they should also exhibit advanced interpersonal communication skills
and be able to learn new operations and new tasks through social interaction [255].

Human-robot collaboration studies focused on tasks necessary for the introduction of robots into in-
dustry [119]. Similarly to [110], Rapetti et al. proposes to improve human ergonomics by extending
their controller to try to minimize the estimated torque and joint velocities from a human partner [225].
Palunko et al. [168] proposed a HR co-manipulation scenario in which they modeled the physical prop-
erties of the suspended object. The collaborative robot KUKA lightweight robot arm has been used in
Erden et al. [67] for welding. Peternel et al.proposed robotic solutions for polishing, object handover,
sawing and drilling [176, 177, 180]. The authors proposed a method where the robot uses the learned
skills to substitute the human in the physically demanding task, letting the human recover. Human-
Robot cooperative blasting operation [44, 227]. Kim et al. [112] presented a HRC framework that aims
to improve human ergonomics and the reconfigurability of the production/assembly processes in indus-
trial environments. The proposed framework enabled a cobot to simultaneously adapt to user states (pose,
overloading torques, variations in the workspace, and task condition) by detecting the tools and parts in
the workspace.

Collaborative robots find their place also outside laboratories and Industries. In agriculture, hu-
man and robots work together for fruit harvesting [194]. Robotic solutions have also been proposed for
assistive walking and for improving standing balance [193]. Wearable robots [54, 108] and exoskele-
tons [7, 33] should also be mentioned among the assistive technologies. In particular, the latter are
finding wide use in assistance in both industrial and hospital settings. In fact, they can be used both to
assist workers during tasks that require great strength as well as for the elderly and weak to increase their
capabilities. For instance, Zhang et al. [259] developed a method for identifying the exoskeleton assis-
tance that minimizes human energy costs during walking. Optimized torque patterns from an exoskeleton
worn on one ankle reduced metabolic energy consumption compared to no torque. The approach was
effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during
running, and when optimizing muscle activity. Poggensee et al. [181] studied the importance of training
and adaptation for human wearing exoskeletons. Song et al. [211] used human-in-the-loop optimiza-
tion for identifying exoskeleton characteristics that maximize the benefits of assistance, which has been
critical to achieving large improvements in energy economy.

Humanoid robots can also be used as co-workers [14]. They are perceived differently than robotic
manipulators [234], which could have a beneficial impact depending on the application. In a recent work,
Bolotnikova et al. presented a human-friendly humanoid that is able to approach a person in need and
establish multimodal interactions for human assistance, including initiating physical contact [27]. Even
though there was no shared task in [27] it gives a prime example of how leveraging the human perception
could be used for assistance in the future.

1.6 Conclusion

To guarantee proficient and adequate cooperative behaviors, robots need to advance their cognitive, so-
cial and physical interaction skills. This chapter reported on the current work in these areas of research,
acknowledging the main limitations due to the real-time nature of the interaction and the complexity of
modeling and identifying the human state. We started with the high-level aspects that the robot has to
fulfil, namely the socialy aspects. After that, we showed how these aspects are reduced at an interme-
diate level to the definition of cost functions and the type of interaction that the human and the robot
accommodate. Finally, we presented how this intermediate level is implemented at a low level in the
robot by using control laws that consider the forces acting on the robot. Human-aware robot collabora-
tors capable of long-term interactions in real situations are the next grand challenge. This is why a key
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Chapter 1. Physical Human-Robot Interaction

aspect of collaboration is the real-time estimation of the human state. In this chapter (Sec.1.4) we have
presented which tools are generally used to estimate it. In the next chapter (chapter 2) we present two
methods using a motion caption suit to estimate the quality of human motion online and display it via
two easy-to-use frameworks. The proposed tools were created to be used during human-robot physical
interaction.
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2

Ergonomic assessment during pHRI

Improving the ergonomy of working environments is essential to reducing work-related musculo-skeletal
disorders. We consider real-time ergonomic feedback a key technology for achieving such improve-
ments. To this end, in this chapter, we review state of the art technologies for ergonomic assessment and
we present novel tools for online ergonomics assessment and visualization. As we showed in the previ-
ous chapter, a key aspect of human-robot collaboration is real-time estimation of human state. Preciselly,
we design modules that return an online evaluation and visualization of strenuous efforts and postures of
a worker, specifically when physically interacting with a robot. A digital human model(DHM) is used to
estimate human kinematics and dynamics and visualize non-ergonomic joint angles, based on the on-line
data acquired from a wearable motion tracking device.
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Abstract: Improving the ergonomy of working environments is essential to reducing work-related
musculo-skeletal disorders. We consider real-time ergonomic feedback a key technology for achieving
such improvements. To this end, we present supportive tools for online evaluation and visualization
of strenuous efforts and postures of a worker, also when physically interacting with a robot. A digital
human model is used to estimate human kinematics and dynamics and visualize non-ergonomic
joint angles, based on the on-line data acquired from a wearable motion tracking device.

Keywords: ergonomics tools; digital human model; wearable sensors

1. Introduction

Poor ergonomics conditions in work environments may lead to serious work-related
musculoskeletal disorders (WMSDs), including severe disabilities [1]. The development
of WMSDs is an issue not only for the workers’ health and well-being but also repre-
sents an important cost for companies and society [2,3]. In recent years, there has been
a surge in robotic solutions for ergonomics interventions, notably using industrial ma-
nipulators conceived for collaboration with humans (i.e., cobots) and exoskeletons [4,5].
These robotics solutions require ergonomics specialists to identify dangerous conditions and
develop adequate interventions, whilst maintaining operational safety and productivity.

Classic kinematics ergonomics evaluation tools such as RULA, REBA and OWAS [6–8]
use human joint positions to produce an ergonomics score for a given body posture.
Kinematics-based scores are fast to compute, but dynamics aspects of the task may not
be negligible [9]. Dynamics estimation may be an important complementary evaluation
to the classic tools throughout an entire task execution, as they are more suitable for
evaluating more accurately varied body morphologies, and external wrenches applied
to the human body. Many recent works evaluate dynamic aspects of the task execution,
such as internal and external human wrenches [10–13].

Recently, there has been much attention on improving the intuitiveness of ergonomics
evaluation tools, as industrial operators should not be expected to have a background in er-
gonomics. Previous works have used digital human models (DHMs) alongside different
types of visual cues for ergonomics evaluation: visualization of the human DHM with
colored joints [14] or displaying relevant information such as COP [15], overloaded joint
torque [11], level of fatigue [16].

The data relevant to assessing ergonomics is high-dimensional, including kinematic
and dynamic state variables related to posture and efforts. This high-dimensional data

Sensors 2022, 22, 3981. https://doi.org/10.3390/s22113981 https://www.mdpi.com/journal/sensors

In addition to the article hal-03684130v1, we extended the
state of the art in ergonomic assessment including some ex-
amples in different domains (like agriculture), we amplified
the part in how to evaluate the human posture. The chap-
ter presents two main contributions already presented in the
paper: internal torque estimation and latent ergonomic map.
For both the contributions we extended the formalization bet-
ter declaring the parameters used and clarifing steps that we
had covered in the paper quickly due to space constraints.
The robotic part has been better clarified to give a better view
of how we assessed to the human internal torque.

Video is available at: video Latent Ergonomics Map.

2.1 Ergonomics Evaluation

Poor ergonomics conditions in work environments may lead to serious work-related musculoskeletal
disorders (WMSDs), including severe disabilities [243]. The development of WMSDs is an issue not
only for the workers’ health and well-being but also represents an important cost for companies and
society [182, 201]. Poor ergonomics conditions are also present in agriculture, where operators are
subject to awkward postures while performing tasks of harvesting, load carrying, pruning, planting, and
other ordinary manual operations [24]. Not only manual operations but also highly mechanised jobs
subject workers to physical stress [25].
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Chapter 2. Ergonomic assessment during pHRI

In recent years, there has been a surge in robotic solutions for ergonomics interventions, notably us-
ing industrial manipulators conceived for collaboration with humans (i.e., cobots) and exoskeletons [205,
229]. To plan appropriate collaborative actions, collaborative robots need to have an estimation of the cur-
rent human posture [143, 152]. They must be able to calculate the physical, physiological, and/or cogni-
tive state of the human to act accordingly. The perception of the human state relies on sensors that can be
placed in the environment, embedded in the robot, or worn by the human. State-of-the-art motion capture
techniques based on infrared cameras and reflective markers, or more recently on inertial technology, re-
main widely used to provide high-fidelity and high-frequency measurements of human kinematics [145].
The captured data are fitted to a DHM designed to have similar properties to the human operator (height,
weight, and structure). Ergonomics scores typically rely on kinematics and dynamics information about
the human’s movement, which are extracted from the DHM. As explained in Chapter 1 there are two main
types of DHMs: musculoskeletal models, they have many degrees of freedom, and allow the analysis of
the human movement by simulating the muscular efforts [18]; rigid-body models, which are simplified
models with fewer degrees of freedom, where the human is represented as made of rigid body links [148].
While musculoskeletal models can be very accurate on a biomechanical standpoint, less accurate rigid-
body models are much faster to simulate. As such, they are better suited for real-time applications such
as model-based prediction, control, and ergonomics assessment [148].

The need to reduce musculoskeletal disorders in the industry leads to extensive research into mea-
sures of ergonomics. Many ergonomics assessment tools use the kinematic of a given worker to evaluate,
and score a given task execution [114]. For instance, RULA [150] and REBA [92] evaluate the upper-
body and full-body posture by scoring how far the worker’s current joint angle positions are from a neu-
tral and safe position. The Rapid Upper Limb Assessment (RULA) tool [150] is often used by er-
gonomists to evaluate work activities involving upper-body motion. It consists of a score ranging from 1
to 7, calculated based on the joint positions (posture), the known force/load applied to the worker’s arm,
and how many times the activity is repeated. The time evolution of RULA during a work activity is likely
to have discontinuities and plateaus that make it inconvenient to use for motion optimization or continu-
ous postural assessment. To alleviate this problem, we define a continuous version of RULA: RULA-C
(εrc ∈ R+). To compute RULA-C, we fit a second-degree polynomial function to calculate intermediate
scores for the RULA joints. The joint scores for each limb are combined with weighted sums, where
the weights are computed from linear regressions of the standard RULA tables. Some works have also
used assessments typically used in robotics, such as manipulability measures that can be associated with
the user’s operational comfort at executing the task [65, 223].

Postural-based approaches, however, do not consider the dynamics properties of the human model
nor any dynamics interactions with the environment. In many ergonomics scoring sheets, external forces
and loads can be considered (e.g., in EAWS it is possible to account for manipulated weights), but
a more general approach considering efforts due to physical interaction with loads and robots is required
to inform the human. For this reason, many works in human-robot collaboration use DHMs to estimate
the status of human dynamics. Latella et al. [121, 122] estimate the balance, and the internal force dis-
tribution of the human during a human-robot collaboration using F/T sensors at the robot’s end-effector,
force plates at the feet, and/or sensorized insoles. Peternel et al. [177] estimate the human joint overload-
ing torque, a quantification of the effect an external load has on a given body joint. Maurice et al. [147]
estimate the human body joint torques by solving an optimization problem where the objective function
encodes the human posture and the optimization variables include torques and wrenches of the human
model.

The data relevant for assessing ergonomics is tipically high-dimensional, including kinematic and
dynamic state variables related to posture and efforts. This high-dimensional data is difficult to interpret,
even for experts. Physiological sensors such as surface EMG or EKG often measure critical information
for ergonomics assessment, but they require considerable post-processing and are difficult to interpret
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2.2. Dimensionality Reduction for Human State Representation

Figure 2.1: In [154] the authors evaluate the risk of musculoskeletal injuries in a banana processing task.

promptly. They are mostly used for post-experimental analysis [149], while few applications of on-
line use in human-robot collaboration exist [180]. Also, the dimensionality of the data may become
a bottleneck real-time computation and interpretation. For this reason, many works proposed to reduce
the dimensionality of a data set, reducing it to a set of representative principal features [142]. The reduced
human representation has been used to execute for instance activity recognition and prediction [48] or
ergonomic optimization [143].

2.2 Dimensionality Reduction for Human State Representation

DHMs typically have many degrees of freedom. A depiction of the human status, therefore, requires
high-dimensional vectors, which in turn increase the computational cost of the ergonomics status eval-
uation [141]. To reduce the dimensionality of a data set, a solution is to extract a reduced set of repre-
sentative principal features from the original data set [82]. This procedure is usually applied to reduce
the amount of data necessary to train a model and to reduce the risk of overfitting during the training [61].
Recent works have applied this concept to compactly represent human motion. For instance, Mandery
et al. [142] were able to reach high accuracy in a human motion classification task using only four fea-
tures. Human models with a high number of degrees of freedom impact the time performance of motion
analysis. To improve speed in the motion processing of the DHM data, recent works have used a rep-
resentation of the human motion in a latent space [56, 143]. A latent space is an embedding of a set
of items in which items which resemble each other more closely are positioned closer to one another.
In other words, neighboring objects in the latent space are similar while distant objects are different. In
this case the similarity meter is highly dependent on the features chosen to construct the latent space.
In most cases, the dimensionality of the latent space is chosen to be lower than the dimensionality of
the feature space from which the data points are drawn, making the construction of a latent space an
example of dimensionality reduction, which can also be viewed as a form of data compression. Marin
et al. [143] showed that the use of a latent space human representation improved the performance of their
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Chapter 2. Ergonomic assessment during pHRI

application. Ikemoto et al. [97] use principal components analysis (PCA) to reduce the dimensionality
of the postures of a humanoid robot, which has a similar description to the DHM.

Dimensionality reduction techniques applied to human poses are also used in movement planning
or prediction [135]. This type of approach uses latent space representations for selecting points that
complete a given path (movement prediction) or for joining two extremes (movement planning). By
inverting the relationship which maps the high-order dimensional to the latent space, it is possible to re-
cover the poses having the latent space representations. For instance, variational autoencoders have been
used to predict the next pose given the current one [128, 133].

Among dimensionality reduction techniques, autoencoders (AEs) and variational-AEs (VAEs) have
high reconstruction ability and produce compact latent spaces. For this reason, they have been widely
used for reducing the dimensionality of the human state and for movement generation [48]. Dermy et al.
[56] address the problem of predicting future human whole-body movements given prior observations.
They map high-dimensionality trajectories into a reduced latent space using AE. Then the prediction
is based on a probabilistic description of the movement primitives in the latent space, which reduces
the computational time for the prediction to occur.

To the best of our knowledge, the state of the art lacks a unified simple and intuitive visualization
tool built specifically for industrial and human-robot collaboration tasks. In this chapter we present a
framework for online visualization of human posture quality consisting of a simulation of the human
and a two-dimensional mapping method of this posture. Our framework was built using demonstrations
taken from industrial and robot collaboration tasks.

2.3 A supportive tool for Human-Robot Collaboration

In this chapter, we present intuitive visualization tools to provide online ergonomic feedback to industrial
operators. Our contribution is twofold:

– Online visualization of joint angles and torques for ergonomic feedback. Given a human posture,
the framework calculates the ergonomic assessment and an estimation of the human effort. This
latter estimation is derived from inversion of the Lagrangian model using variables (e.g., Intertia,
Coriolis) extracted from a simulated DHM. This enables to quickly verify a body posture, cap-
tured online using a motion capture suit. This visualization consists of a DHM with color-coded
visual cues that express specific locations and joints of the body postures that are particularly
non-ergonomic, further facilitating the ergonomics assessment.

– Latent Ergonomic Maps (LEMs) for immediate overall 2D visual feedback on RULA and RULA-
based (RULA-continuous) scores. The algorithm uses a state-of-the-art method for dimensionality
reduction and generative network, namely Variational Auto-Encoders (VAE). VAE allows us to en-
code high dimension postures and to sample and decode variations of the same postures. The latter
allows creating a LEM by sampling the latent space, decoding the posture, and applying ergonomic
assessment to the posture.

The system is designed to be applicable to diverse industrial scenarios in which a human operator
may execute non-ergonomic movements, either working alone, or in interaction with a robot. The intu-
itive visualization tools enable the human to easily visualize the risks of their posture even if they are
not ergonomic experts. The human operator could visualize the latent maps and the DHM along with
ergonomics suggestions on a display during a training session, where time can be dedicated to analyz-
ing and improving the gestures and the postures associated with a workstation. Looking at the display
is hardly possible during the regular work because the display could divert the attention of the worker,
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2.3. A supportive tool for Human-Robot Collaboration

cause distractions and increase the risk of accidents; however, the display can be used for post-hoc anal-
ysis immediately after a gesture if the production time allows for it. The visual feedback could be also
displayed to the worker using augmented reality glasses [160]. Interestingly, the visual feedback can
be used directly by the human workers, as well as by colleagues and ergonomics experts that evaluate
the worker’s activity at a workstation. The only requirement of our system is that it requires a real-time
human motion tracking system like wearable or environmental sensors. In this work, the human posture
is tracked using an Xsens MVN motion tracking suit, but in a real application scenario it could be tracked
by another lighter sensing device or extracted from video.

Digital Human Model

Our DHM is a rigid multi-body system, similar to a humanoid robot, with anthropometrics properties
of the human (height, weight) to mimic their kinematic and dynamics. It has 66 segments and is based
on the Xsens MVN model (Figure 2.2). Using such a model, it is possible to reproduce the human move-
ment as recorded by the Xsens MVN motion tracking system, a wearable set of 17 sensors distributed
along the human body.
We modeled the human spherical joints collected by the motion capture suit as a series of 3 one-
dimensional revolute joints, where each DoF is controlled by a single actuator. The resulting DHM
posture is represented by the 66 joints: the links are modeled with geometric shapes (parallelepiped,
cylinder, sphere) scaled with the human height. The dynamic properties (e.g., mass) are computed
from anthropometric data available in the literature [148], assuming a homogeneous density of the links
and scaling with the human body mass.

Figure 2.2: Digital Human Model (DHM) with 66 degrees of freedom. For each DHM’s link, its origin
axis (x in red, y in blue, and z in green) is displayed.

The posture of the DHM is calculated using a one-to-one mapping from the original human poses,
which are measured in our case by a human skeleton or motion tracking system. The position of the float-
ing base of the DHM is calculated using the position of the pelvis, which is provided by the motion

37



Chapter 2. Ergonomic assessment during pHRI

tracking system.
The DHM enables the estimation of the human internal torques, as described in previous works [147].

However, here we do not use force plates to retrieve feet wrenches: instead, we approximate the wrench
acting on the human feet with the weight force generated by the body. This approximation introduces
an error in the joint torque estimation, but it is tolerable for our visualization purposes as long as the joint
torques are not used in a control loop. This allows transporting easily the framework while having
an issue with the movement quality, especially for upper-body movements.

The internal torques are calculated starting from the classical Lagrangian formulation:

M(q̄)¨̄q +C(q̄, ˙̄q) ˙̄q +G(q̄) = S⊤τ +

nk∑
i=1

Jpi(q̄)
Tfi (2.1)

where q̄ = (xF , q) is the DHM extended posture composed by the floating base pose (xF ∈ R6) and
the joints angles (q ∈ R66), M ,C,G are respectively the inertia, the Coriolis and the gravity matrices,
S is the actuation selection matrix due to the free-floating base and τ is the vector of the DHM joint
torques. Concerning the computation of the external wrenches acting on the i-th link (fi), we consider
the force sensed by the robot through the torque sensors (fRH = JF (q)τF,ext, where JF is the robot
Franka’s Jacobian matrix and τF,ext are the robot external torques) and the gravitational forces acting
on the feet. The external wrenches acting on the ith link are multiplied by the Jacobian matrix from
the world frame to the i-th link frame (Jpi). The choice of using only the gravitational forces acting
on the feet helps to improve the speed of the algorithm and facilitates the deployment of our tools for
ergonomics feedback to situations where only the human skeleton information is accessible. We solve
the Eq.2.1 for τ .

Display Ergonomics Scores on the DHM

The DHM is used to display in real-time the ergonomics information associated with human movement.
The real-time information about the human posture is used to update the DHM pose and compute the lo-
cal ergonomics score, where “local” indicates the specific body location. We use scores based on kine-
matics information (RULA, RULA-C, manipulability) and dynamics information (joint torques). To
account for the comfort of movement, especially in presence of physical interaction, we consider the arm
manipulability: it provides information about the velocity and force production capacity of the limb end-
point in different configurations [177]. It provides a piece of complementary information about the hu-
man posture to RULA and RULA-C about the capacity of the human to produce forces. Each score is
calculated using the partial scores presented in the RULA table. In the case of RULA-C, these have con-
tinuous values because they are the result of polynomials that approximate the RULA values. The local
ergonomic scores are then visualized on the DHM to provide intuitive feedback about the current posture.
Specifically, we color some spheres placed at relevant joints (knees, ankles, back, torso, shoulders, and
elbows) with colors that are proportional to the ergonomic score. The latter is normalized in the range
[0, 1] → [GREEN, RED], using the maximum score value that is set after the maximum score registered
for that body part on the dataset used for training the LEM in the offline phase. The reason for the latter
normalization is to better spot the difference in ergonomic scores between similar movements. Normal-
izing the values enables to highlight for a specific task the differences in the ergonomics while executing
the same movement in different ways. We are aware that this normalization has some limitations (e.g.,
encountering new movements that are particularly risky). For this reason, at the time of the writing of this
manuscript, we are trying to overcome these limitations and integrate activity recognition [140] into our
framework, to change normalization values according to the current activity and movement. In our setup,
it is possible to select the ergonomic score to visualize on the DHM by interacting with an easy-to-use
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RULA Local scores
Torso +1 if q = 0◦, + 2 if 0◦ < q < 20◦, + 3 if 20◦ < q < 60◦, + 4 if q > 60◦

+1 if twited,
+1 if side bending

Neck +1 if 0◦ < q < 10◦, + 2 if 10◦ < q < 20◦, + 3 if 20◦ < q, + 4 if q < 0◦

+1 if twited,
+1 if side bending

Shoulder +1 if −20◦ < q < 20◦, +2 if q < −20◦ or 20◦ < q < 45◦,
+3 if 45◦ < q < 90◦, +4 if q > 90◦

+1 if shoulder raised,
+1 if shoulder abducted

Elbow +1 if 60◦ < q < 100◦, +2 if 0◦ < q < 60◦ or 100◦ < q,

Wrist +1 if q = 0◦,+2 if − 15◦ < q < 15◦,+3 if 15◦ < q or − 15◦ > q

Table 2.1: Local scores associated to the RULA score. Each score is normalized by the maximum score
registered for the given task.

GUI (some examples in the video attachment). Figure 2.9 shows the DHM displayed during a manipula-
tion task, together with the RULA LEM: while the LEM provides a synthetic visualization of the overall
ergonomics score, the spheres on the DHM enable to visualize the individual scores on the different body
parts. This is convenient to identify the body parts that are more at risk, from the ergonomics standpoint,
which are colored in red; those that are not at risk are colored in green, and the intermediate values in yel-
low. Figure 2.12 shows more examples of the DHM during a pick and place movement where the human
takes on different body postures: back joints are red when the human is bent forward, the knees are red
during squats, while shoulders are red during over-head work.

Latent Ergonomics Maps (LEMs)

Latent Ergonomics Maps (LEMs) project an ergonomics score on a 2-dimensional latent space that is
trained to represent the human posture (note that this means that each ergonomics score listed in Sec-
tion 2.3 leads to a different map). In this Chapter, we propose a synthetic representation of the human
postures using a 2D latent space created by a Variational Auto-Encoder, and then we project ergonomics
scores of sampled human postures on the latent space, in the form of a map. The resulting map is the La-
tent Ergonomics Map. This representation allows us to visualize in an immediate way when a person is
in a non-ergonomic (associated with red color) or ergonomic (associated with green color) posture.

The LEM is created in an offline phase, requiring a dataset of human movements and the definition
of the ergonomics score. Training LEM proceeds in two steps. The first step is to create and train a
Variational Auto-Encoder (VAE) to represent human postures. A schematic of the training procedure is
shown Fig.2.3. A VAE is an auto-encoder based on variational inference [95]. Let [xk]

K
k=1 be a data-

set of K independent and identically distributed samples of some continuous observation variable x of
unknown distribution. It is assumed that x is generated by some process involving the latent variable z
and the parametric functions of distribution pθ∗(x|z) and pθ∗(z): x ∼

∫
z pθ∗(x|z)pθ∗(z)dz where θ∗

is a set of parameters. In a VAE, the so-called decoder neural network tries to fit the function which maps
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z to x, and so learns from data the values of the weights θ. The distribution is assumed to be Gaussian:
pθ(z) = N (0, I) and pθ(x|z) = N (µx,σ

2
x). However, the transition function pθ(z|x) is not known.

A recognition model qϕ(z|x) is used to approximate true posterior pθ(z|x). In our case, the distribution
is also assumed to be Gaussian for simplicity, but without loss of generality: qϕ(z|x) = N (µz,σ

2
z),

where ϕ is represented by weights and biases of a neural network (encoder). Training the VAE aims at
recovering values of the parameters (θ,ϕ) in such a way to approximate as much as possible the optimal
parameters (θ∗,ϕ∗).

We choose a relational VAE to define a loss function which represents both the reconstruction loss
and a loss on the relation reconstruction [151]:

L = (1− α)Dkl(qϕ(z|x)||pθ(x|z)) + αDkl(qϕ(z|ε(x))||pθ(ε(x)|z)) (2.2)

where Dkl(.) is the Kullback-Leibler divergence, ε(.) is the relation function (in our work corresponding
to the ergonomic loss function RULA-C) and, finally, the parameter α is a scale parameter to control the
weights of the data reconstruction loss and the relationship reconstruction loss. This enables us to obtain
a latent space that not only represents the postures but also tries to encode the space to minimize the error
in reconstructing the correct ergonomics score for the compressed posture.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.3: Training the VAE of the LEM requires a dataset of human postures. For each posture an er-
gonomics score exists. In our experiments, as a dataset, we used: (1) the AnDy dataset [145] and (2)
a task-specific dataset acquired for each experiment. The training is done to find the VAE weights which
simultaneously minimize the reconstruction error of the postures and the associated ergonomics score.

Training the VAE requires a dataset of human movements. For example, the AnDy dataset [145]
contains many examples of human activities, recorded with the Xsens motion tracking suit, which can
provide both wearable sensing data and estimated postural data. To simplify, let us assume that we
input human postures fitted to the DHM (R66). We train the VAE with batches of human postures
from the training dataset to find the parameters of the encoder-decoder networks, to minimize the loss
function Equation (2.2) via back-propagation. The VAE architecture consists of 5 layers with 66 inputs,
200 hidden neurons, 2-dimensional latent space, and 66 outputs, where rectifier, tanh and identity acti-
vations are used for the hidden layers and the output layer. The hyperparameters of the VAE are chosen
based on the reconstruction error and the training time by grid search. To train the latent space, we
perform first a pre-training with a large human motion dataset (AndyData-lab-onePerson dataset [145],
containing more than 5 h of recorded data), then a fine-tuning with smaller task-specific datasets ac-
quired for each experiment (see below). This latter step is optional. The first training with a large dataset
is sufficient to generate a LEM, in particular, it enables to obtain a generic LEM that is task-independent
and that captures a variety of different postures. In our experiments, however, the fine-tuning enables us
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to obtain a task-specific LEM that is more specialized to represent the postures of a specific task, while
maintaining the generalization capabilities. All the datasets were normalized between zero and one and
augmented using intermediate and mirrored poses before training. During training, we optimized both
the weight of the encoder and the decoder. The weight optimization was done on an Intel CoreTM i7-
8850H with 6 cores at 2.6GHz, requiring about 20 min. The trained encoder can be used to visualize
example movements in the latent space. This can be useful for preliminary insights into the postures
for different activities. For example, Figure 2.10 shows the sequence of postures, projected in the 2D
latent space, associated with the movements from the dataset of [140], which contains activities such
as bending, kicking, lifting objects, and walking. Some postures are also displayed to clarify that each
2D point is representing a different posture. Some 2D points belong to different activities, and this is
normal since the same body posture can be observed in different activities. It is also possible to display
ergonomics information in this activities representation: as shown in Figure 2.5, it is possible to color-
code the points associated with a movement according to the ergonomics scores. In this case, the activity
information is lost, but it is possible to inspect one or more movements.

Once the VAE is trained, the second step consists in creating the ergonomics landscape projected
on the latent map. The procedure is illustrated in Fig.2.4. We uniformly sample in the latent space
a set of 2D vectors (zi,j = [zi, zj ] ∈ R2). We reconstruct the samples using the decoder. Then, for
each reconstructed human posture (q̂i,j ∈ R66) we calculate the ergonomic score ε(q̂i,j) (e.g., RULA or
RULA-C) from the estimated human joint angles, following the method presented in Section 2.1. Note
that one map is created for each ergonomics score (for instance, one map for the standard RULA score,
and another map for the RULA-C score). If the data used for the training are subject to a normal-
ization function (fn(.)), it is necessary to invert the normalization (ε(f−1

n (q̂i,j))) before calculating the
ergonomic scores. The result is a height-map composed by the 2D coordinated in the latent space and
the ergonomic score ([zi, zj , ε(q̂i,j)] ∈ R3). In Figure 2.11, we show the LEMs for RULA and RULA-C.
The triadic color code (green, yellow, red) is applied to the postures classified according to the RULA
recommendations, while a continuous color coding based on the triad is used for RULA-C. The LEM cre-
ated using the RULA-C score creates, by definition, a latent space that is similar to that of the RULA but
continuous. While there is no immediate advantage in using one of the two LEMs for ergonomics visual
feedback, the continuous LEM can be used in future work as a reduced model for planning ergonomics
movements using gradient-based methods [86].

The LEM can be used online to display the movement that the human operator is executing, which
appears as a trace on the landscape: since every point is a posture, the height of each point indicates
the ergonomics evaluation associated with the corresponding human posture. The human posture is
recorded with wearable sensors (e.g., in our case the Xsens MVN motion tracking suit) and retargeted
into the DHM (qc ∈ R66). The encoder neural network reduces the input to its 2D representation
(zi,j), the ergonomics score is then retrieved. We adopt a triadic color code to make the height map more
intuitive to read: we associate low ergonomic scores (e.g., ergonomic postures, with low risk) with green;
high ergonomic scores (e.g., non-ergonomic postures, with high risk) are associated with red; middle
scores are associated with yellow. This kind of representation allows to visualize in an immediate way
when a person is in a non-ergonomic (and therefore associated with red color) or ergonomic (associated
with green color) posture space. Similarly, different variations of the same movement (and therefore
different postures) can be mapped in the latent space, as it was done in Figure 2.5, to visualize which
trajectory is better from an ergonomic point of view.

2.4 Experiments

In this section, we elaborate on the structure of the VAE and the specific training procedure for the ex-
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Figure 2.4: Creation of the LEM: the 2D latent space of the VAE is sampled. The decoder recon-
structs sampled latent points. The reconstructed postures are used to compute the ergonomics scores.
The ergonomics score is therefore associated with the original 2D points, thus creating a heightmap.

periments. We then describe the use of the trained LEM to provide online ergonomics feedback in two
different experiments, where a human executes pick and place activities with and without robot assis-
tance.

2.4.1 Setup and Scenarios: Experiment 1

We demonstrate our ergonomics visualization tools to evaluate human movements executed in two ex-
periments, with two work-related scenarios. In the first experiment, the human performs a pick and place
task. The task is inspired by packaging tasks on assembly lines in the manufacturing industry and consists
of picking, carrying, and placing a 6 kg bar. One male participant performed 8 sequences of the task, with
each sequence consisting of 6 to 8 pick-and-place actions. Each sequence started and ended in the same
neutral pose. The bar was initially placed at a height of 45 cm on a 100 × 50 cm flat support. The partic-
ipant was instructed to take the bar with both hands, carry it to the other side of the support, place the bar
there and return to the initial position to perform the next iteration. Each sequence lasted around one
minute. To add variability to the data, the participant was instructed to change the position of his hands
on the bar and to follow two different paths when going to and coming from the bar’s final position.

2.4.2 Setup and Scenarios: Experiment 2

In the second experiment, the human carries loads in collaboration with a robot.
They move a box together from a point A to a point B and then backward, along a trajectory that
lasts about one minute. The box is initially placed at a height of 85 cm on a table. The box is fixed
to the robot end-effector which carries the majority of its weight; the human grasps the object through
a handle as shown in Figure 2.6. Each sequence lasts around one minute. At the beginning of the ac-
tivity, the robot and the human grasp the object, and each sequence starts and ends in the same neutral
pose. The robot control is based on a Cartesian impedance controller:

τ = J(q)⊤(D(ẋd − ẋ) +K(xd − x)) + g(q) (2.3)
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Figure 2.5: Latent space representation: in this plot, some examples of movements from the dataset
of [140] colored according to the ergonomic evaluation. The postures associated with some 2D points
in the latent space are shown. On the right, the scale of the colors corresponds to the ergonomic scores
where: 1 (green) corresponds to the safer postures while 7 (red) represents the postures less safe.

where K ∈ R6×6 and D ∈ R6×6 are respectively the stiffness and the damping matrices and g(.) is
the gravity compensation term. Cartesian impedance control generates a torque proportional to the error
between the end-effector pose and the desired end-effector pose (x,xd ∈ R6) and their derivatives
(ẋd, ẋ ∈ R6).

Figure 2.6: Experiment 2: collaborative object transportation. The human is physically interacting with
the Franka robot. On the right of each photo, the Latent Ergonomic Map. The current human posture is
a point on the map while the line that is attached to it represents the previous human posture.

We implemented two Cartesian impedance behaviors changing the values of the stiffness matrix:
in the first, the robot was more compliant (K = 500 N/m) and in the second the robot was stiff
(K = 1000 N/m). The desired Cartesian damping D was calculated proportional to K using fac-
torization design as in [8]. The robot’s trajectory is predefined by the robot planner, the latter selects
a trajectory of Cartesian points using a parabolic curve passing through the initial and final points while
the orientation is maintained constant. A participant repeated the movements 15 times, with 3 different
robot trajectories (5 times for each trajectory) to add variability to the movement; in particular, we de-
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signed different robot trajectories in such a way to induce a variety of human postures and ergonomics.
Some movement examples are shown in the video attachment. The robot used is the Panda (Franka
Emika) robot controlled using libfranka and FrankaROS libraries.

In both experiments, the human is equipped with an Xsens MVN motion tracking suit, which pro-
vides real-time (240Hz) information about the current human pose: joint angles and link’s positions,
orientations, velocities, and accelerations. Both the human’s and the robot’s sensors measurements are
streamed online to the module, to visualize and simulate their movements in the simulation (Dart [126])
as shown in Figure 2.7.

An overview of the main modules used in the two scenarios is shown in Figure 2.8, which details
as well the flow of information from the Xsens sensors and the Franka robot. The simulation receives
the sensed information from both humans and robots, and their corresponding models are updated. All
the items in the scene are modeled (i.e., a Unified Robotic Description Format (URDF) is available for all
the elements: robot, experimental setup—table, object, etc.—as well as human) and simulated. Precisely,
the robot communicates the following information to the simulation: (1) Robot joint configuration, (2)
Robot end-effector pose, (3) External measured torques, and (4) Internal torques. The robot pose (joint
angles, end-effector pose, and torque) are used to update the simulated robot. Meanwhile, the measured
external torques are used to calculate the wrenches that the human is applying to the robot and then used
to calculate the effort estimation Equation (2.1) Similarly, the motion tracking suit communicates: (1)
the human posture expressed as the joint angles, and (2) the positions of the human links. The human
joint angles are used to generate the LEM and to simulate the DHM; the links’ poses are used to locate
the DHM in the reference frame of the simulation.

Figure 2.7: Experiment 2: collaborative object transportation. The DHM with the colored spheres indi-
cating non-ergonomic joint values.

The main interest of the second scenario is to use a DHM with visual clues of the joint torques and
efforts, to account for the physical interaction between the human and the robot. The contact wrenches
are input in the DHM in real-time, using the Franka robot’s sensor measurements, which enables a better
representation of the ergonomics status of the human from the point of view of efforts.

In the online phase, the LEM is used to visualize the overall ergonomics score of a posture. Figure 2.9
shows the RULA LEM (center) corresponding to the human motion (left) tracked in real-time (240 Hz)
by the Xsens MVN suit. During the execution of the movement, the current human posture is projected
into the ergonomic map, after being encoded by the encoder into a 2D point in the latent space. The
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Figure 2.8: Overview of the system in a human-robot collaboration setting. In the left box: the robot
modules that enable to control the robot and retrieve information about the contact forces exchanged
with the human. The human-robot interaction force is measured on-line thanks to the joint torque sen-
sors embedded in the robot. Each of the 7 axis is equipped with a torque sensor, and based on these
torques measurements, the Franka API provides an estimation of the interaction force at the end-effector.
In the right box: modules for online estimation of the human kinematics, dynamics, ergonomics scores,
and visualization tools. Green boxes: the framework includes visualization tools to plot the online er-
gonomics scores and other relevant quantities, as well as visualizing the human and the robot interacting
in a digital twin based on Dart physics engine.

result is a trace, i.e., a sequence of 2D points moving in the ergonomic map, representing the human
motion and its ergonomics evaluation. Another example of the trace onto a LEM is shown in Figure 2.6.

2.5 Discussions and Conclusions

In this chapter, we presented a set of tools for providing online ergonomics feedback to human workers
during their activities, also when they physically interact with robots. A Digital Human Model is used
to visualize, with color-coded spheres, the body areas and joints that are subject to efforts and non-
ergonomic postures according to state-of-the-art ergonomics scores, such as RULA.

Our contribution, Latent Ergonomics Maps, are synthetic representations of the overall ergonomics
scores projected onto a bidimensional latent space that maps human postures. The result is an intuitive
color-coded map where the human posture is a point, a movement is a line, and their associated color is
an estimation of the ergonomics score of choice. LEMs can be used for bio-feedback or self-correction,
as a visual tool for teaching, or simply to inform the human. Their potential goes beyond the online
feedback for the human, as they can be used to inform the robot as well, which can find applications
in planning ergonomically optimal collaborative motions. A limitation of projecting the map on a 2D la-
tent space, which is necessary for visualization purposes, is the information loss that may result from such
a strong dimensionality reduction. However, the error is tolerable for ergonomics scores based on pos-
tural information, and otherwise acceptable if coupled with the visualization of efforts on the Digital
Human Model.

Another limitation of our method is the use of an inertial tracking method. This type of technology
is difficult to integrate into all-day industrial activity compared to more common video-type sensors.
Nevertheless, it has many advantages, one of which is its robustness in the case of obstructions (such
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Figure 2.9: The ergonomics visual feedback tools used to measure the executed motion in real-time.
Left: the human movement is tracked with the Xsens MVN motion tracking suit. At the same time, the
RULA Latent Ergonomics Map is calculated with the visualization of the current human movement (the
magenta-colored line). Right: the DHM with colored spheres showing the RULA scores at relevant body
locations.

as robots). In addition, we think that it can be used for occasional checks of the quality of work. In
any case, our method is independent of the type of technology used so for greater integration into future
industry we propose to test the methods presented using video sensors in future work.

In future works we would like to combine the prediction of intended movement [56] with LEMs,
therefore predicting future ergonomics scores for the intended movement. This, we think, will enable us
to alert the human of possible risks associated with ergonomics in particular during human-robot collab-
oration. The idea is to inform the robot about the ergonomics risk associated with planned collaborative
robot trajectories. In fact, we think that an estimation of future movements can give crucial information
to the robot, which can then avoid harmful movements before they occur. For this reason, in the next
chapter (Chapter 3) we present a tool for human state prediction while physically interacting with a robot.
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Figure 2.10: Latent space representation of the human movement during some activities from the dataset
of [140]. The movements presented in this latent space are: bent forward (strongly), kicking, lifting
a box, standing, walking, open a window. A movement is a sequence of points in the latent space. A
color code enables to distinguish the 2D path associated with each sequence. The postures associated
with some 2D points in the latent space are shown.
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Latent Ergonomic Map RULA-C Latent Ergonomic Map RULA

Figure 2.11: Latent Ergonomics Maps (LEMs): one for RULA, one for RULA-C. The figure visualizes
the ergonomic data generated by the decoder network of a variational autoencoder. Here, we’ve sampled
a grid of values around the origin with a radius of size 1 from a two-dimensional Gaussian and dis-
played the output of our decoder network. The distinct ergonomic scores which exist in different regions
of the latent space smoothly transform from one to another.

Figure 2.12: Experiment 1: pick and place. Across the pick and place task, the human takes on different
postures. In particular, some are usually classified as non-ergonomic (e.g., hands over shoulders, bent
back, squat). The color-coded spheres on the DHM show the body parts that have a high risk (ergonomics
score: RULA) during these postures.
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Human state prediction during pHRI

When a human is interacting physically with a robot to accomplish a task, his/her posture is inevitably
influenced by the robot movement. Since the human is not controllable, an active robot imposing a
collaborative trajectory should predict the most likely human posture corresponding to a trajectory im-
posed by the robot. This prediction should possibly consider individual differences and preferences of
movement execution, as it is necessary to evaluate the impact of the robot’s action from an ergonomics
point of view. In this chapter, we review state of the art methods for human state prediction, in particular
during collaboration with collaborative robots. Moreover, we propose a method to predict, in probabilis-
tic terms, the human postures of an individual for a given robot trajectory executed in a collaborative
scenario. We formalize the problem as the prediction of the human joints velocity given the current
posture and robot end-effector velocity. Previous approaches to solve this problem relied on the inverse
kinematics but did not consider the human body redundancy nor the kinematic constraints imposed by
the physical collaboration, nor any prior observations of the human movement execution. We propose a
data-driven approach that addresses these limits. The key idea of our approach is to learn the distribution
of the null space of the Jacobian and the weights of the weighted pseudo-inverse from demonstrated hu-
man movements: both carry information about human postural preferences, to leverage redundancy and
ensure that the predicted posture will be coherent with the end-effector position. We show in a simulated
toy problem and on real human-robot interaction data that our method is able to improve model-based
inverse kinematics prediction, sample-based prediction, and regression methods that do not consider ge-
ometric constraints. We validate our approach in a simulated toy problem and on two real human-robot
interaction experiments where a human is physically interacting with a Franka robot.

Human Posture Prediction during Physical Human-Robot Interaction

Lorenzo Vianello1,2, Jean-Baptiste Mouret1, Eloise Dalin1, Alexis Aubry2, Serena Ivaldi1

Abstract— When a human is interacting physically with
a robot to accomplish a task, his/her posture is inevitably
influenced by the robot movement. Since the human is not
controllable, an active robot imposing a collaborative trajectory
should predict the most likely human posture. This predic-
tion should consider individual differences and preferences of
movement execution, and it is necessary to evaluate the impact
of the robot’s action from an ergonomics standpoint. Here,
we propose a method to predict, in probabilistic terms, the
human postures of an individual for a given robot trajectory
executed in a collaborative scenario. We formalize the problem
as the prediction of the human joints velocity given the current
posture and robot end-effector velocity. The key idea of our
approach is to learn the distribution of the null space of the
Jacobian and the weights of the weighted pseudo-inverse from
demonstrated human movements: both carry information about
human postural preferences, to leverage redundancy and ensure
that the predicted posture will be coherent with the end-effector
position. We validate our approach in a simulated toy problem
and on two real human-robot interaction experiments where a
human is physically interacting with a Franka robot.
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I. INTRODUCTION
Cobots (i.e., industrial manipulators for collaboration) and

exoskeletons are designed to physically interact with humans
and to assist their movement in accomplishing one or more
tasks [1]. The general objective is to reduce the human
physical effort and improve his/her ergonomics, which re-
quires the evaluation of several ergonomics criteria, most
often determined by the human posture [2]. The way this
assistance is provided depends on the platform and on the
type of the collaboration, which often translates to defining
contact points, collaboration control laws with structured
roles (e.g., leader-follower) and the amount of provided
assistance [3]. Recent works in collaborative robotics suggest
that the robot’s knowledge of the task to be executed could be
used to plan movements that are less physical demanding [4]
and more ergonomic [5]. This is particularly relevant in
industrial scenarios because it has the potential to reduce
work-related musculoskeletal disorders, which are currently
the second largest cause of disabilities worldwide [6].
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KNOWN:

HUMAN INITIAL JOINT STATE
ROBOT END-EFFECTOR VELOCITY
HUMAN DIGITAL MODEL
HUMAN DEMONSTRATIONS

DESIRED:

KINEMATICALLY AWARE HUMAN
POSTURE PREDICTION 
MANAGING REDUNDANCY

LEADER

FOLLOWER

Fig. 1. The human posture is influenced by the robot’s trajectory during
physical interaction, but the human may adopt different postures during each
task execution. In this paper we want the robot to predict the human posture
given a known Cartesian trajectory of its end-effector and prior observations
of the task executed by the human. The human posture is measured online
by a wearable Xsens MVN suit.

An open problem, when a robot wants to assist the human,
is that humans are not entirely “controllable”: humans are
highly redundant systems that are over-actuated for many
manipulation tasks. For instance, lifting a box from the floor
might be performed by bending the back, but also by bending
the knees. Individual preferences of movement and musculo-
skeletal problems might add to the intrinsic variability of
the human movement, thus increasing the variance of all
possible postures in response to a robot action. For these
reasons, when the human is physically coupled with the robot
to accomplish a task, it is not possible to know with certainty
how a human will move when the robot imposes a trajectory,
which makes it challenging to select the best trajectories for
the robot in collaborative tasks. In this context, data-driven
probabilistic models of human movements, learned from
demonstrations, can provide interesting insights into human
preferences while capturing the variance of demonstrated
movements. A limit of this kind of solutions is that a small
error in the joint estimation can cause a large error in the
estimation of the end-effector position (i.e., the human hand),
which makes the prediction kinematically inconsistent. This
error poses a nontrivial problem, especially when the human
is physically coupled to the robot because it can compromise
the quality of the collaboration.

In this paper, we consider a leader robot that is physically
coupled with the human follower at the level of the end-
effector / hand (see Fig. 1). This asymmetric role assignment
represents the case where a collaborative robots leads the
human towards more ergonomic trajectories. It applies to
both cobots (i.e., manipulators physically coupled to the hu-
man at their hands) and upper-body exoskeletons (physically

This chapter is based on the article hal-03115242v2. In addi-
tion to the contributions of the article, in this chapter we pre-
sented more results to better validate our method: the math-
ematical formulation of the method has been better clarified;
we display the differences in predicting the null space of di-
rectly the joint space of a simulated 5R; we showed the re-
sults we obtained for each experiment done with two differ-
ent tasks and two different participants; finally, we displayed
the data diversity for both training set and test set. Moreover,
we extended the state of the art better clarifing what are the
contributions of our work in the litterature.

Video is available at: video posture prediction.
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KNOWN:

HUMAN INITIAL JOINT STATE
ROBOT END-EFFECTOR VELOCITY
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KINEMATICALLY AWARE HUMAN
POSTURE PREDICTION 
MANAGING REDUNDANCY
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Figure 3.1: The human posture is influenced by the robot’s trajectory during physical interaction, but
the human may adopt different postures during each task execution. In this paper we want the robot to
predict the human posture given a known Cartesian trajectory of its end-effector and prior observations
of the task executed by the human. The human posture is measured online by a wearable Xsens MVN
suit.

3.1 Human Posture Prediction as an Inverse Kinematics Problem

Collaborative robots need to estimate of the current human posture and its future intended evolution to
plan appropriate collaborative actions. The human posture can be retrieved in real-time essentially using
cameras or wearable motion tracking sensors [145]. However, robots often do not have access to the
human posture measurement in real-time, and the only information they have is the fact that human is
physically attached to their end-effector in some tasks. In such cases, Inverse Kinematics (IK) is used
to predict the human pose starting from the end-effector position using simplified human models as
in [206].
The problem is that the human posture is not uniquely defined by its end-effector position because of
the intrinsic human body redundancy but also task preferences and other individual factors, many HRC
scenarios can be seen as a redundant setup where the human can potentially perform the task without the
assistence of the robot [108]. Thus, it is hard to predict the human posture given only the task description.
Indeed, IK alone cannot solve this problem given the overactuated nature of the human.
To address this kind of problem, a common approach is to sample in the space of the possible solu-
tions and to evaluate them accordingly to the kinematic properties [254] and to task-specific loss func-
tions [184]. We refer to these kinds of methods as sampling based approaches. These kinds of methods
are computationally expensive and highly dependent on the choice of parameters. Moreover, they are not
well designed to integrate human demonstrations that capture human preferences of movement.

The problem becomes even more difficult if we wish to estimate future poses. In fact, predicting
the human intention, i.e., the future intended movement [57] is an active field of research, where, tradi-
tionally, movements are represented by trajectories or movement primitives issued with a probabilistic
description. The prediction with motion primitives is most often done in the task space, e.g., the Carte-
sian space, and IK is used to find the most appropriate corresponding joint trajectories to fulfill the robot
task. Motion primitives can also be learned in the joint space. However, each joint primitive cannot be
learned independently as all the primitives must be kinematically consistent, and conditioning may not
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(a) Subject leans backward to create an upward mo-
tion at the end-effector of the prosthetic arm.

(b) Subject eans forward to create forward motion
at the end-effector of the supernumerary arm.

Figure 3.2: In [108] the authors exploit human kinematic redundancies for minimizing posture-related
cost functions.

be sufficient to properly ensure this property [169]. In [170], this problem was solved using Probabilistic
Motion Primitives (ProMPs), by conditioning the motion primitive in the joint-space with the one in
the operational space. A limit of this approach is that it requires the knowledge of the ProMP for each
possible movement, which only makes sense for specific applications and gestures.

Recurrent neural networks have also been proposed for predicting future human postures [118,258].
One of the main challenges of these methods is to encode the multi-value behaviour of the human,
coming by its redundant structure, and to evaluate the different solutions [51]. Data-driven methods are,
in general, time efficient and they do not require hard coded evaluation functions because they learn
directly from demonstrations. The main limit of these algorithms is the loss of the kinematic consistency
in the prediction: it was demonstrated that applying regression for mapping from task space to joint
space using standard regression can lead to inconsistent predictions [224]. In [231] the human pose is
predicted using learned models (e.g. nearest neighbour); but, then, an IK correction is required to fix
the hand positions to match the kinematic constraints imposed by the collaborative robot. Also, authors
reported it was too computationally expensive to be used for online planning.

The estimation of the operator’s future posture is crucial information for ergonomic optimisation
[231]. Ergonomics scores typically rely on kinematics and dynamics information about the human’s
movement, which are often extracted from simulations of Digital Human Models. We refer the reader to
Chapter 2 for a more in-depth discussion of these topics.

3.2 Problem formulation

Notation: In our study, the human is represented by a DHM, a rigid body model with n degrees of
freedom. The notation presented in Table 3.2 is used for the DHM. The robot state is determined by
xR, ẋR, i.e., the Cartesian position and velocity of its end-effector (EE).

We consider a cooperating human-robot interaction scenario, where a human and a robot manipulator
interact to perform a joint task. The robot’s task trajectory at the EE is known at each time step, in the
following, we drop the time dependence t in the equations, unless necessary, to improve the readability
of the equations: {ẋR(t)}T−1

t=0 . The two agents are physically coupled at their EEs; the robot is leading
(leader role), while the human (follower role) is guided by the robot; hence, we assume ẋ = ẋR.
We assume a rigid, constant roto-translation between the two frames. Given the current human joint
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q ∈ Rn vector of joints values
x ∈ Rm hand Cartesian pose

k = n−m > 0 degrees of redundancy
f(.) : Rn → Rm forward kinematics function

q̇ and ẋ joint and Cartesian velocities
J(q) ∈ Rm×n Jacobian Matrix

y ∈ Rk null space of the Jacobian J(q)

D = {(qi, ẋi), q̇i}ND
i=1 Dataset of ND demonstrations

Table 3.1: Notation

configuration q (known, we suppose its measure is accessible to the robot) and the robot EE velocity
ẋR, we want to predict the human joint velocity q̇. Since the human is over-actuated, we want to predict
a distribution of solutions that capture the “preference” of human movement (i.e., analogously to the
concept of most likely solutions [184]); such solutions must be kinematically feasible, i.e., they must
verify that ẋ = J(q)q̇. The problem can be formalized as computing the conditional probability:

p(q̇|q, ẋ) s.t. ẋ = J(q)q̇ , (3.1)

where the second term is the kinematic constraint which determines the set of possible solutions.

(1)
(2)

(3)

(4)(5)

Figure 3.3: Flowchart of the offline training: (1) We collect human movements using a motion capture
suit. The joint states are passed to a digital human model and they are used to calculate the Jacobian at
each joint configuration. From the digital human model we also record the dataset D. (2) We project the
joint velocities q̇ on the null space of the Jacobian; at the first iteration of the algorithm, the matrix W
used for the pseudo-inverse is an identity matrix. (3) The projected dataset is used to train k independent
GP. (4) We invert the projection to obtain a distribution over q̇ and we calculate the likelihood; (5) We
optimize the W matrix accordingly to the likelihood using a gradient-free optimizer and we repeat from
point (2).

3.3 Background

3.3.1 Kinematics for redundant DHMs

A redundant DHM is a DHM that has more degrees of freedom than the number nominally required
to perform a given set of tasks (n > m). The reader may notice that “redundant DHM” is equivalent
to “redundant robot”, since the DHM is modeled essentially as a robot with rigid bodies. Redundancy
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hh

rh

Figure 3.4: Flowchart of the online prediction: Given an EE trajectory imposed by the robot and the
knowledge of the initial human state we can predict a distribution over the future human states. To do
that, we sample on the human joint velocity q̇ calculated with our method (MI-NsGP) then we integrate
the current human state, in this way, we could propagate the uncertainty to the next human state. We
repeat this procedure throughout the EE trajectory, in this way, we create a probabilistic estimation of
the human joint trajectory (Monte Carlo rollout).

yields increased dexterity and versatility for performing a task due to the infinite number (∞n−m) of
joint motions which produce the same EE motion. Given an EE pose x ∈ Rm, the space which contains
all the solutions of the IK equation {q : x = f(q)} is defined as the inverse kinematics’s manifold
Mx. It is considered a union of more simple and continuous manifolds, called “self-motion manifold”
(Ms) [39]. Any change of joint configuration (q̇s) along a self-motion manifold is called “self-motions”
and it does not change the position of the EE (J(q)q̇s = 0). The space containing these joint velocities
is the null-space of the Jacobian matrix evaluated in q, which is the set of vectors q̇s which satisfy
J(q)q̇s = 0 and with q̇s ̸= 0. A basis for the null space of J(q) is composed of the columns of the
matrix VN = [µ1, ..., µn−m]; this matrix can be obtained by singular value decomposition:

J = USV ⊤ = U(SR 0)

(
V ⊤
R

V ⊤
N

)
(3.2)

where VR and VN are the range and the null-space components, respectively [224]. Thus, each self-
motion velocity could be represented by a linear combination of the columns of VN :

q̇s = VN (q)y, (3.3)

where y ∈ Rk is the vector of the coefficients of the linear combination. This consideration is particularly
useful for interpreting local redundancy resolution technique: each movement in the joint state can be
seen as the sum of the minimal velocity needed to match ẋ plus a movement in the joint space which has
no effect in the workspace. In the literature, this approach is usually referred to as the dual projection
method: the joint velocity is computed as

q̇ = J†
W (q)ẋ+ [I − J†

W (q)J(q)] z(q) (3.4)

J†
W (q) = WJ⊤(q)[J(q)WJ⊤(q)]−1 (3.5)

that instantaneously minimizes the symmetric weighted quadratic form q̇⊤W−1q̇, and z(q) ∈ Rn is a
joint velocity projected onto the null space of the manipulator Jacobian and thus on the tangent space of
the self-motion manifold. Typically, z(q) is designed as a potential function that minimizes a desired
cost function C(.) [59] [208].
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3.3.2 Gaussian Processes

A Gaussian Process (GP) [188] is a collection of random variables such that any finite collection has
a joint Gaussian distribution. In regression the random variables represent the value of the function
f(x) ∈ Y for the given input x ∈ X .

A GP, denoted by f(x) ∼ GP(m(x), k(x, x′)), is entirely characterized by the mean m(x) =
E[f(x)] and covariance k(x, x′) = E[(f(x)−m(x))(f(x)−m(x))]⊤, which is symmetric and positive
semi-definite.

Let D = {(xi, yi)|xi ∈ X , yi ∈ Y} be a training set and (x∗, y∗) a point we did not observe in D.
The GP predictive distribution for the output y∗ at the test input x∗, given in vector form, is

p(y∗|D, x∗) = N (µ∗,Σ∗),

µ∗ = k⊤∗ (k +Kerr)
−1y,

Σ∗ = k∗∗ − k⊤∗ (k +Kerr)
−1k∗

where, given a kernel function k(., .) : R×R → R we use the notation k = k(x, x), k∗ = k(x, x∗), k∗∗ =
k(x∗, x∗) and Kerr is the measurement error variance. In this work, we use the radial basis function
(RBF) kernel: kσ2,λ(x, y) = σ2exp(− ||x−y||2

2λ ), λ > 0, where, the parameters (σ2, λ) are chosen by
maximizing the marginal likelihood P (y|(σ2, λ)).

3.4 Proposed Method

We consider a DHM with n degrees of freedom. We assume that the human/DHM follows this classic
control law from robotics (section 3.3.1, [59, 208]):

q̇ = J†
W (q)ẋ+ (I − J†

W (q)J(q))z(q) (3.6)

where z(q) is an unknown vector of null-space velocities, often, it is calculated as the gradient of a cost
function C(.). The weights W of the weighted pseudo-inverse J†

W are also unknown. The EE velocity
ẋ is known. Our objective is to learn z(q) and W from data. In this way, the solutions we find must
always satisfy the kinematic constraint: ẋ = J(q)q̇.

3.4.1 Learning the null-space velocity with Gaussian processes

Let us consider a dataset D of DHM motions, composed of ND pairs: a tuple with the current joint state
q ∈ Rn and the EE velocity ẋ ∈ Rm, and the joint velocity q̇ ∈ Rn: D = {(qi, ẋi), q̇i}ND

i=1. Such a
dataset can be generally acquired via human motion tracking (see (1) in Fig. 3.3).

At this stage, we consider the values of the weight matrix W of Eq. 3.6 to be known, for example
W = I , where I is the identity matrix (see section 3.4.2 for learning W ).

Instead of directly learning the value of z(q), we notice that we can write [232]:

VN (q)y = (I − J†
W (q)J(q))z(q) (3.7)

where VN (q) is the basis of the null space of the Jacobian J(q), which is computed using Singular Value
Decomposition (SVD), and y ∈ Rk represents the coordinates of the self-motion joint velocity in the
null space.

We learn y instead of z(q) because it is the minimal size representation for a self-motion joint
velocity (see (2) in Fig. 3.3). Therefore, we project every joint velocity q̇ of our dataset to the null space
of the Jacobian J(q) evaluated in the current joint configuration q by applying:
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y(q, ẋ) = V †
N (q)

(
q̇ − J†

W (q)ẋ
)

(3.8)

Thus, given the dataset D = {(qi, ẋi), q̇i}ND
i=1, we apply Eq. 3.8 to obtain DNW = {(qi, ẋi),yi}ND

i=1.
We learn y(q, ẋ) using GPs (section 3.3.2) that map the current joint state and the EE velocity to the

joint velocity:

y|(q, ẋ) ∼ GP
(
m(q, ẋ), k((q, ẋ)i, (q, ẋ)j)

)
(3.9)

After experimental testing and, following [46], we train k independent GP, one for each dimension
of y. We choose this approach to keep the method simple, but we expect that the performance of our
method could be improved with the right choice of multidimensional GP, and we will investigate this
improvement in future work. Since Eq. 3.8 is linear, given the Gaussian distribution p(y) ∼ N (µy,Σy),
we can get the Gaussian distribution of p(q̇) ∼ N (µq̇,Σq̇) by inverting it:

µq̇(q, ẋ) = J†
W (q)ẋ+ VN (q)µy (3.10)

Σq̇(q, ẋ) = J†
WΣẋ(J

†
W )⊤ + VN (q)ΣyVN (q)⊤ (3.11)

where Σẋ is the covariance matrix of the noise of ẋ learnedfrom the data (see (4) in Fig. 3.3).

3.4.2 Learning the parameters W

We want to find the values of W that maximizes the likelihood of the q̇ of the training set (see (5) in
Fig. 3.3). To do so, we introduce a score function S(W ) that is maximized with a non-linear optimizer:

S(W ) =
1

ND

ND∑
i=1

L(q̇i|W ), (3.12)

where L(q̇i|W ) is the likelihood of q̇i given a particular value of W and ND is the size of the training
set. For a given W and q̇, L(q̇|W ) can be computed using µq̇ and Σq̇ from Eq. 3.11 (since µq̇ and Σq̇

define a multivariate Gaussian distribution and we know ẋ and q from the training set):

L(W |q̇) = 1√
(2π)k|Σq̇|

exp

(
−1

2
(q̇ − µq̇)

⊤Σ−1
q̇ (q̇ − µq̇)

)
where |Σq̇| denotes the determinant of Σq̇, µq̇ = µq̇(q, ẋ), and Σq̇ = Σq̇(q, ẋ).

Any non-linear optimizer can be used to maximize S(W ). For simplicity and robustness, we used
BIPOP-CMA-ES [91], which is a gradient-free stochastic optimizer available in the “pycma” Python
library.In each iteration of the algorithm new candidate solutions of W are generated by variation. Then,
some solutions are selected to become the parents in the next generation based on the score function
S(W ) evaluated after learning y(q, ẋ) using GPs as explained in the previous section.

3.4.3 Prediction Phase

Once the model is trained, it can be used to predict the human joints’ trajectories given the current
configuration qt and the expected EE trajectory executed by the robot {xd

1, . . . ,x
d
T }. At each time step

we can sample the EE velocity as: ẋt ∼ 1
∆ t

(
xd
t+1 − f(qt) +N (0,Σẋ)

)
, where ∆t is the distance

between two time-steps, Σẋ is the robot repeatability when executing a trajectory (which we estimated
empirically by executing a desired trajectory 10 times).

55



Chapter 3. Human state prediction during pHRI

At each time-step, given the current configuration qt, we can get µq̇(qt, ẋt) and Σq̇(qt, ẋt) by query-
ing the model (Eq. 3.11). From this multivariate Gaussian distribution, we can sample q̇t, which allows
us to compute the value of qt+1 ∼ qt + ∆t N (µq̇(qt, ẋt),σq̇(qt, ẋt)). To sample a whole trajectory,
we repeat this procedure by propagating the sampling over time from t = 0 to T − 1. If we repeat this
sampling procedure many times for a given trajectory, we get a Monte-Carlo estimation of the distribu-
tion over the human joint trajectories according to our model [47]. A schema of the prediction phase is
depicted in Fig. 3.4.

3.5 Experiments

To evaluate our method (denoted as MI-NsGP), we compare it experimentally to alternative approaches
that use only subsets of our elements (i.e., we make several ablation experiments):

1. MI-NsGP: Null-Space Gaussian Process with weight identification: our method, which learns
both W and y(q, ẋ) (section 3.4): q̇|(q, ẋ) ∼ J†

W (q)ẋ+ VN (q)GP(q, ẋ)

2. GP: learning directly from data: q̇|(q, ẋ) ∼ GP(q, ẋ).

3. W-IK: learning W but not y(q, ẋ) (i.e., y(q, ẋ) = 0)

q̇ = J†
W (q)ẋ

4. NsGP: learning y(q, ẋ) but not W (i.e., W = I)

q̇|(q, ẋ) ∼ J†
I (q)ẋ+ VN (q)GP(q, ẋ)

5. Sb-M: fitting a normal distribution N (µy,Σy) on the training set for y(q, ẋ) and not learning W :

q̇|(q, ẋ) ∼ J†
I (q)ẋ+ VN (q)N (µy,Σy)

where GP(q, ẋ) denotes the distribution that corresponds to the GP model learned from data. The same
training set and test set were used for all the methods.
Moreover, we compared our method with a state-of-the-art method for predicting joint trajectory while
satisfying a task space motion primitive:

6. ProMP [170]: We fit both the joint space and operational space using probabilistic movement
primitive. And then we use Bayesian task prioritization to condition the joint space using the
operational space.

All methods were evaluated in three experiments. The first (5R) consists of predicting the joint state
of a simulated 5R planar robot controlled by a biased IK function. The second (EXP1) and third (EXP2)
consist in predicting the human posture (i.e., joints) during a co-manipulation trajectory, where a human
is physically attached to the Franka robot to do a task.

3.5.1 Toy problem: 5R Manipulator

We simulate an overactuated planar robot with 5 degrees of freedom. Like a human, this 5R planar robot
is overactuated for the two-dimensional position of its EE.

The robot controller is conceptually similar to the (unknown) human controller (Eq. 3.6), except that
the ground truth is known (W , z(q)). The 5R robot is controlled using the control law from Eq. 3.6,
with:

z(q) =
∇C(q)
∇q

+N (0,σz) (3.13)
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Figure 3.5: Comparison of methods for joint velocity prediction: (a) Mean-Log-Likelihood of the pre-
dicted joint velocity (b) R-MSE between the mean of the predicted joint velocity and real value (c)
Mean-LogLikelihood of the EE velocity (d) R-MSE over the EE velocity. The methods were evaluated
in three experiments: (red) simulated 5R planar robot controlled by a biased IK function; (blue) human
posture prediction during a human-robot collaboration task; (green) human posture prediction during a
human-robot collaboration task using different tasks in the training-set and in the test-set).

To define z(q) similar to the human model, we hypothesized, as in [184], that the joint velocity minimizes
an ergonomic cost function C(q) that depends on the joint configuration. We designed a cost function
similar to the RULA continuous ergonomic score [40]. It is composed of the sum of a second order
polynomial: C(q) =

∑n
j=1(p2,jq

2
j + p1,jqj + p3,j) where (p1, p2, p3) have been calculated by fitting a

second degree polynomial within the RULA score.

(p1, p2, p3)j=0 (1.1× 10−03, 0.0, 0.0)
(p1, p2, p3)j=1 (9.8× 10−04, 0.0, 1.0)
(p1, p2, p3)j=2 (1.6× 10−04,−2.5× 10−02, 2.0)
(p1, p2, p3)j=3 (1.2× 10−04, 0.0, 0.0)
(p1, p2, p3)j=4 (2.1× 10−03, 0.0, 1.0)

Table 3.2: Values of the parameters of the cost function C(q) similar to the RULA continuous ergonomic
score.

To define W , we assumed that some joints have more contribution than others (for example, in hu-
mans, the shoulders and elbows are typically more involved than lumbar’s joints, but any musculoskeletal
disorder can change this distribution drastically). To model these situations, we choose a weight matrix
W that has non-uniform values (e.g., a low value for the first joint means that it is not used much).
Specifically, we selected a diagonal and positive definite matrix with values bounded in [0+ ϵ, 2− ϵ]. We
choose to bound the values otherwise we risk falling into a singular configuration in which a joint never
moves or always moves, which appears far from a human-like behavior.
Starting from a configuration q0, we apply ND times the control law specified in Eq. 3.6 and 3.13,
with a random EE velocity ẋi ∈ [−umax, umax]. The successive joint state is then updated as qt =
qt−1 + q̇t−1∆t + ωa∆

2
t , where ωa ∼ N (0,Σa) is a Gaussian noise. If the robot falls in a singular

configuration, the data collection stops and restarts from the q0 configuration. At each time step t, we
collected {(q, ẋ), q̇}t to create the training set D. The dataset, composed of ND = 103 points, was
normalized and divided into a training and a validation set following the proportion 70/30. We trained
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the models using the training set. Each GP was implemented in Python using gpytorch library, with a
constant mean and the RBF kernel. The optimization was done on an Intel CoreTM i7-8850H with 6
cores at 2.6GHz, requiring about 10 hours. We repeated the experiment 10 times, varying the starting
point and the parameters of the control model (W ).
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Figure 3.6: Comparison of methods for joint velocity prediction for 5R manipulator: our method (MI-
NsGP), learning directly from data using Gaussian Process (GP), learning W and apply pseudo-inverse
(W-IK), learning null space (NsGP), motion primitives based method (ProMP), sampling in the null
space (Sb-M). The criteria: (a) Mean-Log-Likelihood of the predicted joint velocity (b) R-MSE between
the mean of the predicted joint velocity and real value (c) Mean-LogLikelihood of the end-effector’s
velocity obtained applying the methods (d) R-MSE of the end-effector’s velocity.

M-LL q̇ R-MSE q̇ M-LL ẋ R-MSE ẋ

GP 4.39 [ 4.23, 4.45 ] (16.98 [ 10.34, 30.90])×10−3 2.43 [ 2.35, 2.45] (6.31 [ 3.54, 11.68])×10−2

W-IK 4.67[4.28, 4.76] (4.33 [ 2.46, 8.13])×10−3 11.65 [11.65, 11.65] (3.57[ 1.47, 4.25])×10−5

Sb-M 8.18[8.00, 8.26] (11.30 [ 8.69, 15.10])×10−3 11.65 [11.65, 11.65] (2.96 [ 1.73, 3.22])×10−5

NsGP 8.72[8.64, 8.77 ] (2.06 [ 1.36, 3.91])×10−3 11.65 [11.65, 11.65] (1.27 [ 0.63, 2.35])×10−5

ProMP 8.34[6.70, 9.27 ] (13.69 [ 8.07, 25.29])×10−3 9.47[ 9.27, 9.55] (3.76 [ 2.84, 4.58])×10−2

MI-NsGP 8.93[ 8.83,8.97 ] (1.69 [ 1.26, 2.80])×10−3 11.65 [11.65, 11.65] (2.41 [ 1.05, 3.81])×10−5

Results: We first analyze the quality of the predicted distribution by computing the mean log-likelihood
over the test set (red box-plots in Fig. 3.5a). Overall, our method (MI-NsGP) leads to significantly
better likelihood values than all the other control approaches. The worst likelihoods are obtained by the
methods that do not use the null space. Among the methods that use the null space, learning W makes a
significant difference. The low likelihood for ProMP is due to the lack of a primitive for the movements,
which results in a large variance for the solution obtained using ProMP. We then focused on the mean
prediction by computing the root mean square error on q̇ (red box-plots in Fig. 3.5b) (we ignored the
variance). As before, the best results are obtained with our method, and using the null space makes a
significant difference. However, learning a simple Gaussian model instead of a GP leads to very bad
mean square errors, whereas it corresponds to high likelihood values (red box-plots in Fig. 3.5a). This
means that this method has a very large variance, which makes the test set likely (high likelihood score)
but the predictions very inaccurate. Also in this case, the solutions found using the ProMP are inaccurate.

Last, we computed the mean log-likelihood and the root-MSE for the EE position (red boxplots in
Fig. 3.5c and Fig. 3.5d). As expected, perfect scores are obtained with the methods that exploit the
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Figure 3.7: Example of how regression in the null space guarantees the kinematic constraint while re-
gression in the original space is not able to satisfy the kinematic constraint in the toy problem.

null space (W-IK, Sb-M, NsGP, MI-NsGP), but learning directly a GP that predicts q̇ directly leads to
significant errors in the EE position. The solutions obtained using ProMPs have lower score since the
task space has large variance trying to fit a ProMP to trajectories that are not related to a movement
primitive. These results suggest that if the human’s IK model is similar to the one we used for the 5R
robot, our method is likely to improve the quality of posture prediction, returning only solutions which
satisfy the kinematic constraint.

3.5.2 Human IK prediction

We then evaluated our method in three experiments (EXP1, EXP2, and EXP3), where a human interacts
with the Franka Emika Panda robot. The human is facing the robot, his/her right hand is in physical
contact with the robot’s EE (see Fig. 3.1 and video attachment). The Xsens MVN suit is used to capture
the human posture (and to have the ground truth of the posture prediction). The human poses are fitted
(retargeted) to a DHM of 66 segments (Fig. 3.14a), based on the Xsens MVN model. The segments are
scaled with the human height, while the dynamic properties (e.g., mass) are computed from anthropo-
metric data available in literature [148]. We modeled the human spherical joints collected by the motion
capture suit as a series of 3 one-dimensional revolute joints, where each DoF is controlled by a single
actuator. The resulting DHM posture is represented by the 66 joints. A URDF (Universal Robot De-
scription Format) model is then created to represent the kinematics and dynamics of the DHM, and used
by the Pinocchio library [45] to calculate the Jacobian going from the human pelvis to the right hand for
a given human joint configuration.

In this paper, we predicted only the joints that belong to the active kinematic chain, i.e., joints that
connect segments from the pelvis to the right hand. The reason is twofold: first, a simpler model speeds
up the computation; second, it is the set of joints that are used to compute ergonomics score (e.g., RULA,
back angle), which is our final objective. The human posture is thus characterized by 24 revolute joints
and the resulting dataset D = {(qi, ẋi), q̇i}ND

i=0 contains q ∈ R24, i.e., the joints which link the human
pelvis to the right hand, and x ∈ R6, i.e., the EE position and orientation. We evaluated our method in
three experiments:

In EXP1 the training set used to train the algorithm consists of human postures recorded during the
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Chapter 3. Human state prediction during pHRI

repeated execution of similar co-manipulations (for which we can compute a movement primitive).The
robot executes four “pick and place” trajectories spanning 50cm, and its orientation is maintained con-
stant. Each trajectory is repeated 10 times: during the first experiment (EXP1) the first five trajectories
comprise the training set, and the five remaining ones, the test set. Fig. 3.15a shows the intrinsic vari-
ability of the human repetitions (for the same EE movement, the joint trajectories change).
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Figure 3.8: End-effector’s trajectories used in the first human-robot interaction scenario (EXP1): in this
case, the training set and the test set belong to the same movement primitive.
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Figure 3.9: Comparison of methods for joint velocity prediction in Human Joint Velocity Prediction: (a)
Mean-Log-Likelihood of the predicted joint velocity (b) R-MSE between the mean of the predicted joint
velocity and real value (c) Mean-LogLikelihood of the EE velocity (d) R-MSE on the EE velocity.

In EXP2 the training set consists of pseudo-random trajectories that do not necessarily refer to mo-
tion primitives. With this second experiment, we tested the ability of our method to generalize to new
movement primitives. To do that, we collected a not pre-defined training set of “pick and place” move-
ments controlling the robot using a Joystick. We trained our algorithm on this dataset and we tested on
the same test-set as EXP1.

In EXP3 we record ten trajectories during a human-robot collaboration scenario (Fig. 3.12): we
chose another human operator to test if the algorithm could be used for a different person with different
body shape (in the first experiment, the operator is a male subject of height 1.84m and weight 90kg, in
the second experiment the operator is a female subject of height 1.68m and weight 64kg). We record ten
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Figure 3.10: Set-up for EXP2: the robot executes pseudo-random movements while it is controlled by a
second operator using a joystick.
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Figure 3.11: End-effector’s trajectories used in EXP2: in this case, the training set and the test set belong
to different movement primitives.
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trajectories while the human is collaborating with the robot in a seated position; each trajectory consists
of a combination of three pick and place gestures over a table.

Figure 3.12: Set-up for EXP3: Human and robot are coupled, the robot executes the same trajectory ten
times while the human follows its movements.
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Figure 3.13: End-effector’s trajectories in EXP3: in this case, the training set and the test set belong to
the same movement primitive, a different human operator executes the movements with respect to the
other scenarios.

In the prediction phase we sampled 10 trajectories using the Monte-Carlo approach and for each of
them we calculated four different ergonomics scores from the state of the art in human ergonomics [148]:
RULA, REBA, RULA continuous and cumulative back angle (Fig. 3.14b). The purpose is to show that
the probabilistic IK also impacts the prediction of ergonomics scores, which is critical information for a
collaborative robot.
Results: We evaluate the performance of our method in predicting the human posture when both, the
training set and the test set, are considered the same movement primitive (EXP1). We analyze the
quality of the predicted distribution by computing the mean log-likelihood over the test set (blue in
Fig. 3.5a). Overall, our method (MI-NsGP) leads to significantly better likelihood values than all the
control approaches. Moreover, its performance is comparable with the state-of-the-art method for human
posture prediction (ProMP). In fact MI-NsGP performs better in the median and max value of the 95th

percentile (MI-NsGP: 9.32[8.81, 9.59], ProMP: 9.02[8.20, 9.46]). Regarding the the root-mean-square
error on q̇ (Fig. 3.5b), our method is comparable with the SoA method (MI-NsGP: (2.19[1.24, 3.38]) ×
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10−3, ProMP: (2.30[1.37, 3.83]) × 10−3) and presents better results with respect to the other model-
based methods (W-IK, Sb-M, NsGP) and with respect to using the GP in the original space (Fig. 3.5b).
Regarding the ability to satisfy the kinematic constraint, we observed a behavior similar to the toy-
problem. In fact, model based methods (W-IK, Sb-M, NsGP, MI-NsGP) always have bigger likelihood
and smaller root-mean-square error with respect to GP regression. ProMP results are also accurate in this
case because the training set and the test set belong to the same movement primitive. The superiority of
model based methods is even more evident at trajectory level: if we use the GP alone to predict the DHM
postures while the prediction horizon is growing, the R-MSE between the EE of the DHM and the robot’s
EE (the red progression in Fig. 3.15b) grows too fast to be used in a safe human-robot collaboration
scenario while if we use MI-NsGP (the green progression in Fig. 3.15b) the error is acceptable. In the
case of the human, W is unknown; thus, it is not straightforward to evaluate the resulting values from
model identification. Nonetheless some considerations are possible: even considering different training-
sets, the optimization converges to the same values of W ; these values agree with our expectations
regarding the distribution of the joint velocity. In fact, the joints which move less (e.g. lumbar joints)
have a smaller value with respect to those which are more involved in the execution of the movement
(e.g. shoulder and elbow).

In EXP2 we evaluate the ability of our method to generalize the information learned for one trajectory
to another. The results show that our method outperforms the others both the likelihood (MI-NsGP:
8.72[8.52, 8.81], ProMP: 8.0[7.44, 8.34]) and the root-mean-square error (MI-NsGP: (4.34[3.93, 6.22])×
10−3, ProMP: (11.04[8.70, 15.25]) × 10−3) while continuing to satisfy the kinematic constraint (green
in Fig. 3.5). The results suggest that our method could be used to have a probabilistic estimation of the
human posture also for trajectories which do not share the same movement primitive.

(a)

(b)

Figure 3.14: (a) The DHM in Simulation, showing the variance of the solutions calculated via Monte-
Carlo integration. (b) Ergonomic scores computed on different sampled trajectories: RULA, REBA,
RULA continuous, cumulative back angle.
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(a)

(b)

Figure 3.15: (a) Human joint trajectories (shoulder roll and pitch) in response to the same EE movements.
(b) MSE in offline prediction with GP and MI-NsGP.

3.6 Conclusions

In this chapter we presented a method for predicting human posture in a Human-Robot Collaboration
scenario where the human hand motion is constrained by the robot’s end-effector. We propose a two-
phase method: in the first phase, we leverage a dataset of human demonstrations to learn a distribution
over the null-space of the human Jacobian using a Gaussian Process; in the second phase, we optimize the
weights of the weighted pseudo-inverse of the Jacobian. Our method computes a probabilistic estimation
of the future postures that satisfy the kinematic constraints imposed by the physical link between the
human and the robot and, at the same time, it is coherent with the human preferences of movement.

In the future, we want to consider the full human model in posture prediction and integrate the
algorithm into our framework for ergonomics control, which aims to optimize a collaborative robot’s
motions to maximize the comfort and the ergonomics of the human collaborator. A byproduct of our
method is the probabilistic computation of ergonomics scores for a given robot’s EE trajectory, which is
a critical element for planning the robot’s trajectories. Further, we want to remove the leader/follower
hypothesis and address the case where the leadership role may vary over time. In fact, we wonder how
human behavior may vary depending on the control law implemented in the robot. To try to give an
initial answer to this question in the next chapter (Chapter 4) we propose a study in which we analyze
the motor behavior of subjects performing a co-manipulation task with a robot.
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4

Design of Cooperative and Collaborative
strategies using Impedance control

In previous chapters, particularly Chapter 1, we already pointed out that robotics solutions have the
potential to improve the working conditions of human operators in industry [66]. In particular providing
physical assistance to reduce the human physical workload [6] and intelligently adapting its assistance
to each user and task. However, it has been pointed out that the acceptance of collaborative manipulators
may not be straightforward for human workers [19, 144]: in particular, it could be easier to interact with
a robot that has a fixed role in the interaction rather than with a robot with more complex behavior. This
preference may not necessarily relate to better performance in task execution. This observation led to the
current investigation of whether it is more convenient or efficient for a human to cooperate or collaborate
with a robot to execute a co-manipulation task and whether this behavior has any relation with the way
two humans cooperate or collaborate to solve the same task.

In this chapter, we address this problem by focusing on a human-robot co-manipulation task where
an object has to be carefully extracted from a tube and inserted into another one, without touching the
environment. This task requires precision, and we expect the stiffness of each agent to be critical to
reject disturbances that may lead to task failure. In this context, we ask the following questions: is it
more efficient and task-performing for the dyad to cooperate or to collaborate? When collaborating,
should the robot behave as a human collaborator? Among the possible collaboration strategies, should
the robot imitate or reciprocate the human’s stiffness behavior?

To answer these questions, we conducted two co-manipulation experiments in the same setup/scenario:
the first with a human-human dyad, the second with a human-robot dyad. In the first phase, we inves-
tigated the performance and the arm stiffness of human-human dyads when they were cooperating and
collaborating [84]. Dyads were more accurate (i.e., fewer task errors) when there was no clear role allo-
cation (i.e., when they were collaborating) at the expense of a higher effort. Indeed, during collaboration,
both agents had similarly high levels of arm muscle co-contraction, therefore, higher levels of arm stiff-
ness, as if they were both leaders. This study showed that collaborating humans mirror their stiffness:
could this be a legitimate collaborative strategy also for a robotic collaborator?

In the second phase, we investigated the performance and arm stiffness of the human interacting with
a robot (Franka) when the dyad is cooperating and collaborating, across four conditions. In cooperative
conditions, the robot is either leader or follower, and vice-versa for the human. In the collaborative
conditions, we implemented two possible collaborative impedance strategies: the first, inspired by the
previous study, mirrors the human stiffness, while the second, inspired by [178], reciprocates the human
stiffness.

Our human-robot study confirmed that in co-manipulation it is more convenient to collaborate be-
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cause collaboration leads to fewer task errors. Both collaborative impedance strategies give similar re-
sults in terms of human effort (i.e., arm muscle co-contraction), however subjective evaluations indicate
a clear preference of the human participants for the reciprocal impedance strategy.

In the following, we briefly overview the first study and report on the methodology and results of the
second study, discussing the implications of the results for future collaborative robotics technologies.

Cooperation or collaboration? On a human-inspired impedance strategy in a
human-robot co-manipulation task

Lorenzo Vianello1,2, Waldez Gomes1,3, Pauline Maurice1, Alexis Aubry2, Serena Ivaldi1

Abstract— We investigate whether a robot should behave as
a collaborator or as a cooperator of a human partner in a co-
manipulation task. In a previous study, we addressed the same
question for a human-human dyad and found that collaboration
is preferable to make fewer errors at the expense of increased
arm stiffness for the humans, who behave as if they were both
leaders. In this study, the human is coupled with a Franka robot
and they jointly engage in the same co-manipulation task in
different conditions. In the cooperation conditions, the robot is
either a leader or a follower, exhibiting fixed impedance strate-
gies. In the collaborative conditions, the robot exhibits either
reciprocal or mirrored adaptive impedance strategies that vary
according to an EMG-based online estimation of the human
arm stiffness. Our results show that, for the co-manipulation
task, a robot collaborator seems more preferable than a robot
cooperator, leader or follower, and that the reciprocal strategy
for impedance seems to be the most indicated.

I. INTRODUCTION

Robotics solutions have the potential to improve the work-
ing conditions of human operators in industry [1]. Thanks
to improved sensing and control, robotic manipulators can
physically interact with human operators, not only sharing
the same workspace but also providing physical assistance
to reduce the human physical workload [2]. However, it
has been pointed out that the acceptance of collaborative
manipulators may not be straightforward for human workers
[3], [4]: in particular, it could be easier to interact with a
robot that has a fixed role in the interaction, rather than with
a robot with more complex behavior. This preference may
not necessarily relate to better performance in task execution.
This observation led to the current investigation of whether
it is more convenient or efficient for a human to cooperate or
collaborate with a robot to execute a co-manipulation task,
and whether this behavior has any relation with the way two
humans cooperate or collaborate to solve the same task.

We adopt the distinction between cooperation and collab-
oration as defined by Jarrassé et al. [5]. If before the co-
manipulation, the agents have been assigned, or have agreed
upon, different roles (asymmetric responsibilities) to execute
the task, then the interaction is classified as a cooperation.
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In contrast, during a collaboration, both agents form a
“spontaneous” coalition to accomplish the task [6]: their
“activity is synchronized and coordinated in order to build
and maintain a shared conception of a problem” [7]. That is,
in collaboration, the agents may deliberate and negotiate their
roles in executing the task to accomplish the dyad’s common
goal. A typical example of cooperation happens when the
agents have leader-follower roles. In co-manipulation, this
is usually characterized by high stiffness profiles for the
leader’s arm endpoint, and low stiffness for the follower’s
[8]. It is frequent to find this configuration in rehabilitation
robotics, for example, when robotic arms (leaders) guide
the patients’ arms (followers) along desired trajectories [9].
Between the two extreme roles and corresponding stiffness
values, there is a continuous range of stiffness values that can
be exploited to obtain more stiff or more compliant behav-
iors: for this reason, previous work investigated how to adapt
the arm stiffness (and the corresponding impedance) in this
range to implement adaptive compliant behaviors in robotic
arms [10]. Other research on tele-impedance [11], shared
control [12] and co-manipulation [13], [14] confirms that an
adaptive stiffness behavior determines the performance of a
human-robot collaboration.

In this paper, we focus on a human-robot co-manipulation
task where an object has to be carefully extracted from a
tube and inserted into another one, without making contacts.
This task requires precision, and we expect the stiffness of
each agent to be critical to reject disturbances that may
lead to task failure. In this context, we ask the following
questions: is it more efficient and task-performing for the
dyad to cooperate or to collaborate? When collaborating,
should the robot behave as a human collaborator? Among
the possible collaboration strategies, should the robot imitate
or reciprocate the human’s stiffness behavior?

To answer these questions, we conducted a human-
robot co-manipulation study in the same experimental
setup/scenario of a prior analog study [15] where we investi-
gated the performance and the arm stiffness of human-human
dyads when they were cooperating and collaborating. Dyads
were more accurate (i.e., fewer task errors) when there was
no clear role allocation (i.e., when they were collaborating) at
the expense of a higher effort. Indeed, during collaboration,
both human partners had similarly high levels of arm muscle
co-contraction, therefore, higher levels of arm stiffness, as if
they were both leaders. This study showed that collaborating
humans mirror their stiffness: could this be a legitimate
collaborative strategy also for a robotic collaborator?

In the human-robot study, we investigated the performance

This chapter presents the preliminary results of an ex-
perimental study we are conducting(hal-03589692v1).
We tested the experimental conditions on 13 subjects,
and here we present the results obtained with these par-
ticipants. At the time of writing this thesis, 3 more tests
were carried out on other subjects, and we plan to in-
tegrate the results by considering these latest results.
Also, compared to the current writing of the paper, in
this chapter we extended the background on human mo-
tor behaviour and we present the setup and control de-
sign of the robot more in detail. Also the results have
been extended presenting the values of the index of co-
contraction for the different participants.

Video is available at: video Human-Franka co-manipulation.

4.1 Cooperation vs. Collaboration

We adopt the distinction between cooperation and collaboration as defined by Jarrassé et al. [99]. If
before the co-manipulation, the agents have been assigned, or have agreed upon, different roles (asym-
metric responsibilities) to execute the task, then the interaction is classified as a cooperation. In contrast,
during a collaboration, both agents form a “spontaneous” coalition to accomplish the task [60]: their
“activity is synchronized and coordinated in order to build and maintain a shared conception of a prob-
lem” [192]. That is, in collaboration, the agents may deliberate and negotiate their roles in executing the
task to accomplish the dyad’s common goal.

Human-robot cooperation is often formalized by fixed roles determined by coordination between the
agents. Typically, fixed roles such as leader and follower are determined by the endpoint impedance.
The leader-follower role allocation approach in which the human is always the leader of the task is likely
the most traditional coordination strategy in physical Human-Robot Interaction (pHRI) [138]. In co-
manipulation, this is usually characterized by high stiffness profiles for the leader’s arm endpoint, and
low stiffness for the follower’s [215]. In this case, the robot may be controlled to guarantee only certain
aspects of the task execution, such as rejecting disturbances, or sustaining forces and positions in different
axes from the ones controlled by the human [247]. Ficuciello et al. [73] uses a more sophisticated
strategy that explores the null-space of a redundant robot to decouple the apparent inertia at the robot
end-effector, reportedly improving the intuitiveness of the task for the leader. It is frequent to find this
configuration in rehabilitation robotics, for example, when robotic arms (leaders) guide the patients’
arms (followers) along desired trajectories [198]. Even though the leader-follower approach meets great
success in some applications such as robotic surgery [166,183], and telemanipulation, there are instances
in which adaptive or continuous roles could be preferred [100]. Cherubini et al. [52] alternates the leader
and follower roles of a robot in a pHRI application for industry according to visual and haptic cues by
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4.2. Human Motor Control

the human co-worker. Khoramshahi and Billard [107] propose a method to automatically detect when
the human co-worker is physically trying to guide a robot that is executing an autonomous task. After the
intent detection, the robot switches into a follower mode, and only goes back to leader mode when the
human stops correcting the robot. Agravante et al. [3] interpolate between a humanoid robot’s behavior
from a total leader to a total follower (each behavior corresponds to a different walking pattern generator
to the humanoid robot). During the leader behavior, the robot controller minimizes the errors for the
desired trajectory (high-impedance), whereas for the follower behavior it minimizes the forces applied
at the human operator (low-impedance).

Therefore, in the literature, it is often the case that either the roles are fixed (cooperation) or they are
adapted according to a strategy (collaboration). However, to the best of our knowledge, little is known
about the effect of the two approaches on the same joint task, to inform about the best strategy to adopt
for humans. In this work, we compare both approaches in the same co-manipulation task, having in mind
the outcome of a previous study that investigated human cooperative and collaborative behavior in the
same task/scenario. Our rationale is that if collaboration is preferable for a joint task realized by a human
dyad, there is a possibility that it would be preferable also for human-robot interaction in joint tasks. At
the same time, we are aware that a robot cannot fully reproduce complex human behavior. We target the
question of which impedance behavior the robot should exhibit to collaborate proficiently and whether
this behavior should imitate the one of a human partner.

Transferable impedance from human signals to robot behavior is often referred to in the literature
as tele-impedance [71]. Here, we use an index of co-contraction (Sec. 4.4.1) to estimate the modulation
of human stiffness, and consequently, our tele-impedance profiles (Sec. 4.4.2). Peternel et al. [180]
proposed a method for human-robot collaboration where the robot behavior is adapted online to the
human motor fatigue. The same authors presented in [178] two control strategies (robot reciprocal and
robot mirrored) based on the concept of tele-impedance. During Reciprocal tele-impedance the robot
and the human operator execute two behaviors that are reciprocal in terms of phase of operation (e.g.
sawing task). On the other side, during mirrored tele-impedance, both agents produce the same behavior
in a certain phase of the task (e.g. valve turning). Their work led us to question whether this kind
of adaptation could in any way be traced back to the collaboration observed during the human-human
experiment.

4.2 Human Motor Control

A prerogative of control laws for robots to collaborate with humans is transparency. Transparent con-
trollers must be easy to understand even for not expert people [252]. One way to do this is to construct
control laws that refer to human motor control [253]. The human motor control system is light, its
sensorimotor apparatus noisy and delayed. Despite these limitations, it can accomplish very accurately
complex high-level tasks in presence of disturbances and unpredictable changes in the environment. Ac-
curacy, in this case, is not based on high stiffness, but rather on anticipation and capability to adapt to
perturbations, i.e. on a combination of feedback and feedforward control.

Feedforward control consists in applying a sequence of controls without monitoring the state during
this sequence. This kind of control can yield suboptimal and unstable performances in unpredictable
environments. Shadmehr and Mussa-Ivaldi [204] investigated how humans learn this feedforward com-
ponent in different dynamical conditions. In their experiments, the environment in which the human
performs a reaching task is subject to a force field. With practice, hand trajectories in the force field con-
verged to a path very similar to that observed in free space. At this point, the authors suddenly removed
the field. The resulting trajectories were approximately mirror images of those that were observed when
the subjects were initially exposed to the field. This result suggested that humans gradually compose a
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model of the environment and use that model to predict and compensate for external perturbations.
Feedback control becomes necessary to achieve high performance whenever the environment is un-

predictable or unobservable. This explains the trial-to-trial variability of trajectories performed by hu-
mans during repetitive tasks: feedback controller tries to reduce global task errors and makes the con-
trolled trajectory robust to perturbations by varying impedance through co-contraction. Burdet et al. [38]
examined arm movements in an unstable dynamic environment. The results of the experiment proposed
to suggest that humans learn to stabilize unstable dynamics by controlling mechanical impedance (re-
sistance to imposed motion). However, fast and coordinated limb movements cannot be executed under
pure feedback control alone, because biological feedback loops are too slow (≥ 10ms) and have small
gains. The Feedforward loop anticipates the evolution of the system and accounts for a desired predicted
trajectory.

So, the human motor control strength is the combination of the feedforward and feedback signal.
The dominance of one component over another gradually changes from feedback control during the
early stages of skill acquisition, to feedforward control in highly trained individuals [76]. With this in
mind, in Gomez et al. [84] constructed an experiment to observe how human motor control functions in
the presence of cooperation or collaboration between two subjects.

4.3 Previous study: Human-Human Dyad Experiment

Previously [84], the authors proposed an experiment with a task executed by two physically interacting
human agents, i.e. a human-human dyad (Fig. 4.1a). The participants executed the task under two main
conditions:

– Cooperative: Agent 1 is assigned the leadership while Agent 2 is the follower and vice-versa;

– Collaborative: there is no pre-assigned leadership.

During the task execution, they measured the participant’s muscle activation, as well as their accuracy
at executing the task for each trial. The results show that the human-human dyads made fewer errors
without pre-assigned roles than when there was a leader. In addition, they also observed that when there
was no pre-assigned leader, the agents had a muscle co-contraction level as high as when they were
leaders of the task. Since muscle co-contraction is associated with arm stiffness, they hypothesize here
that robots similarly modulating their end-effector stiffness could emulate the aforementioned human
motor behavior.

Participants: the human-human dyad experiment was executed by 10 dyads, therefore 20 partic-
ipants, of which 15 were male, and 5 were female. Their age ranged from 22 to 38 years old (M =
26.6 years, SD = 3.61 years). 17 participants were right-handed, and 3 were left-handed even though all
manipulations were performed with the right hand.

Every participant provided written informed consent for their participation in the experiment. No
participant claimed any chronic motor disease or health condition that could influence in the experiment’s
results. The experiments were approved by INRIA’s ethical committee (COERLE).

Task description: the task consists in manipulating an object (pipe) to bring it from a start to an end
point (Fig. 4.1a). The participants are instructed to avoid moving their backs during the task execution
(they are not strapped). They hold the pipe with their right hand with a power grasp, placing their hand
on one of the designated handles. In the start (Phase 1), the pipe is within Tube 1 (the one closest to
Agent 1), then the pipe has to be taken out of Tube 1 while avoiding contact with Tube 1’s front wall.
After extracting the pipe from the tube (Phase 2, free movement), the pipe has to be moved around a
cylindrical obstacle towards Tube 2 (the one closest to Agent 2). Then, the pipe has to be inserted into
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Tube 2 (Phase 3), while avoiding contact with the front wall. By design, the task is always recorded and
evaluated from Tube 1 to Tube 2, and the return motion is ignored.

In this experiment, a black curtain is placed between the participants to prevent visual eye-contact
during the task execution. In addition, they are instructed not to talk during the task execution.

Experiment Description: in the human-human dyad experiment, two agents share the pipe manipu-
lation. Each agent sits on one side of the table (Agent 1 and Agent 2 in Fig. 4.1a), then the dyad performs
the task under the following conditions:

– No specified roles: Participants are only instructed to manipulate the pipe;

– Agent 1 Leader and Agent 2 Follower: Participants are instructed that Agent 1 must lead the
movement;

– Agent 1 Follower and Agent 2 Leader: Participants are instructed that Agent 2 must lead the
movement.

The order of the 3 conditions is randomized across dyads to counter-balance possible biases.
Before starting the recording for each condition the participants could practice for 2 trials. For each

condition, 5 trials were recorded, resulting in a total of 15 trials. Since there were 10 recorded dyads, a
total of 150 trials were recorded.

4.4 Human-Robot Dyad Experiment

In order to investigate how human-human dyads motor behavior transfers to human-robot dyads, we
conducted an experiment in which human participants performed a co-manipulation task with a robot
under different conditions. Namely, four profiles were defined for the robot end-effector impedance, to
implement cooperation and collaboration conditions. The experiment is detailed hereafter.

4.4.1 Experimental set-up

The task consisted in co-manipulating an object (0.2 kg pipe of diameter 3 cm and length 50 cm) with a
collaborative robot, in order to bring it from a start to an end point (Fig. 4.2). The task was divided into
3 phases. In phase 1 the pipe is within a tube (tube 1, close to the robot) and is extracted from it while
avoiding contact with its front wall (hole diameter: 4.5 cm). In phase 2, the pipe is moved in free space
in a horizontal plane, from tube 1 to tube 2, around a cylindrical obstacle. In phase 3, the pipe is inserted
in a second tube (tube 2, close to the human) while avoiding contact with its front wall. The return
motion (from tube 2 to tube 1) was not part of the task. Performing the task once took between 15 and
25 s on average, though there was no time instruction or limit. Participants were seated on a chair facing
the robot and were instructed to avoid moving their backs during the task. They held the pipe with their
right hand, on the designated handle while the other handle was attached to the robot end-effector with
a dedicated 3D-printed part. The EMG sensors are placed on the subject following guidance rules from
the European project SENIAM [216], as well as location cues from Perroto, 2011 [174]. After locating
a muscle, the subject is asked to contract it to confirm the location of the "muscle belly", that is then
marked with a pen. For each muscle, an EMG sensor is assigned, and annotated in our EMG acquisition
software. Before placing a sensor on a muscle location, the area surrounding the pen mark is prepared
accordingly. The subject’s skin is cleaned with alcohol until it acquires red tones, which indicates good
skin impedance. After the alcohol dryes out, the EMG sensor is placed on the skin at the muscle fibers
direction with the help of a double-sided sticker provided by the sensor manufacturer. Prior to the task
execution, each agent is asked to perform maximum voluntary contractions (MVC) during isometric
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(a) (b)

(c) (d)

Figure 4.1: Human-Human co-manipulation study [84]: (a) Top-down view of the experiment set-up.
The black dashed line approximates the pipe trajectory. The red circles are contact sensors used to detect
any contact between the pipe and the tubes’ front walls. The red dashed line represents a curtain placed
between both agents to prevent visual eye-to-eye communication. (b) Experimental set-up. (c) Root
Mean Square value of the index of co-contraction (ICC) during the extraction and insertion phases for
each condition. (d) Number of contact between the pipe and the tubes’ walls (errors) for each condition.
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exercises for each selected muscle [216] for 3 s. The exercise is performed 3 times, with a 1 minute
interval between them to decrease fatigue biases. After the 3 trials, the maximum EMG signal is then
stored and used for posterior post-processing of the EMG signals during the task execution. The designed
task requires the solo agent, or human dyad, to avoid contact between the pipe and the tube walls. We
then use contact sensors to detect those contacts, and posteriorly use this information as a performance
measure. To detect the contacts between the pipe and the tubes, we wrapped the end of the pipe with
aluminum foil, and metallic rings were placed inside the walls of both tubes. It is important to note,
that those contact sensors are essentially mechanical switches which are known for their bouncy signals,
so to circumvent this issue we debounce the input through software. After we detect a signal onset (a
contact) no other onset is stored as a contact for the next 100 ms window (roughly half of the average
human simple reaction time [251]). The data collection taken from a Windows computer (EMG) and
from a Linux computer (Robot control and contact sensor) is colleted and sincronized using ROSBAG.

Human

START

END

Contact sensors

Tube 1

Tube 2

Obstacle

Pipe

Coupling with 
Robot End-Effector

sEMG 
sensors

(a) Top-down view. The black dashed line approximates the pipe trajectory.

(b) A participant performing the task with the Franka Emika robot.

Figure 4.2: Experimental set-up for the human-robot co-manipulation study.

Twelve healthy adults took part in the experiment (4 females and 8 males, aged 24–55). All partic-
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ipants performed the task with their dominant right hand. Participants were naive to the purpose of the
study, and none reported any chronic motor disease or health condition that could influence the results.
Participants signed an informed consent form prior to starting the experiment. The study was approved by
INRIA’s ethical committee COERLE, and was conducted in accordance with the Declaration of Helsinki.

Each participant performed the task in 4 different conditions, corresponding to different impedance
behaviors of the robot (detailed in section 4.4.2):

– Condition 1 – Robot Follower and Human Leader (RF): Participants are instructed to lead the
movement while the robot is compliant with the human movement;

– Condition 2 – Robot Leader and Human Follower (RL): The robot leads the movement, while
participants are instructed to be compliant.

– Condition 3 – Robot Collaborator with Reciprocal Stiffness (RR): Participants are not given any
fixed role and are instructed to simply collaborate with the robot, which modulates its end-effector
stiffness inversely to the human end-point stiffness.

– Condition 4 – Robot Collaborator with Mirrored Stiffness (RM): Participants are not given any
fixed role, and are instructed to simply collaborate with the robot, which modulates its end-effector
stiffness proportionally to the human end-point stiffness.

According to the definition by Jarrassé et al. [100], conditions 1 and 2 correspond to a cooperation
situation where the role of each agent (leader/follower) is pre-assigned, whereas conditions 3 and 4
correspond to a collaboration situation where agents have symmetric responsibilities.

Each participant performed 15 trials for each condition in a block manner, for a total of 60 trials.
Participants were given a 30 s break between each trial and a 5min break between each condition. Con-
dition 1 (robot follower) was always performed first, as it was used to estimate scaling parameters needed
for the implementation of the robot control in the two collaboration conditions (see Section 4.4.2). The
order of 3 remaining conditions was randomized. Before starting the actual experiment, participants per-
formed a few practice trials in robot follower condition to familiarize themselves with the task and the
robot.

Human end-point stiffness Participants were equipped with 2 Delsys Trigno wireless sEMG sensors
on antagonist muscles of their right forearm (FCU: Flexor Carpi Ulnaris and ECU: Extensor Carpi Ul-
naris) to record muscle activity. EMG signals were recorded at 2 kHz, and filtered on-line using a 100ms
RMS window followed by a low-pass 3rd order Butterworth filter with a 10Hz cutoff frequency. The
filtered signal uk (for muscle k) was then normalized by its maximum voluntary contraction value ukMV C

measured prior to starting the experiment. Finally, a co-contraction index icc was computed based on the
normalized EMG value of both muscles [87,90], which served to estimate the human end-point stiffness:

icc(t) = min

(
uFCU (t)

uFCU
MV C

,
uECU (t)

uECU
MV C

)
. (4.1)

Pipe-tube contact The main objective of the task was to extract/insert the pipe from/into the tubes
without touching their front walls. Those walls were therefore equipped with custom contact sensors
to detect contacts with the pipe. The contacts were recorded at 1 kHz using a Raspberry Pi. Due to
the reaction time of the human, contacts that were separated by less than 0.5 s were counted as a single
contact.
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Task duration Even though there was no time objective or constraint in the experiment, the task dura-
tion (between the start and end points) was monitored to evaluate the efficiency of the interaction.

Questionnaires At the end of each experimental condition, participants were asked to fill a question-
naire including 2 questions: Q1: From 1 to 10, how easy was it to do the task with the robot (1=not at
all easy, 10=very easy)?, Q2: From 1 to 10, how much did the robot prevent you from doing the task
the way you wanted (1=much prevented, 10=not prevented at all)? At the end of the entire experiment,
participants also reported their preferred condition orally.

4.4.2 Robot control and collaborative impedance strategies

The experiment was performed with a Franka Emika robot. The robot was controlled with an end-effector
Cartesian impedance scheme that allowed it to easily implement different compliance behaviors. Let the
robot equation of motion be:

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ − J⊤Fext (4.2)

with M ∈ Rn×n the inertia matrix, C ∈ Rn×n the matrix of Coriolis and centrifugal effects, g(q) ∈ Rn

the vector of gravity forces, J ∈ R6×n the end-effector Jacobian, τ ∈ Rn the joint torque vector, and
Fext ∈ R6 the interaction wrench at the end-effector. Using feedback linearization, τ can be computed
to achieve a desired mechanical impedance at the end-effector, such that:

Fext = K(xee − xd) +D(ẋee − ẋd) (4.3)

where K ∈ R6×6 and D ∈ R6×6 are the desired stiffness and damping matrices in Cartesian space,
and xee and xd are respectively the actual and desired end-effector poses. The four different robot
behaviors described in section 4.4.1 were implemented by changing the values and profiles of the K and
D matrices, as explained hereafter. Only the translational stiffness and damping were modified across
conditions, whereas the rotational part remained identical to 200Nm/Rad. To ensure the stability of the
system we have the maximum force that can be exerted by the robot is limited. If the man-robot system
reaches too high a level of torque/force the robot is forced to decrease its stiffness.

Cooperation conditions

The two cooperation conditions (RF: robot follower, RL: robot leader) were implemented using fixed
values for K and D throughout the entire task execution. The diagonal coefficients of K were set to
a low (resp. high) value in the RF (resp. RL) condition, as listed in Tab. 4.1 (all 6 coefficients have
the same value). The coefficients of D were computed from K and the Cartesian mass matrix using
factorization design [8, 178].

Collaboration conditions

The two collaboration conditions (RR: reciprocal stiffness, RM: mirrored stiffness) were defined and
implemented based on the work by Peternel et al. [178]. In both cases, the robot Cartesian stiffness is
adjusted on-line throughout the task depending on the human co-contraction index icc (Eq. 4.1). First,
the human wrist stiffness trend ch(t) is estimated from the icc using a sigmoid function

ch(t) = b1
1− e−b2icc(t)

1 + e−b2icc(t)
∈ [0, 1] (4.4)
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Table 4.1: Definition of the robot stiffness profile and reference trajectory for the four different condi-
tions.

Robot role Stiffness Profile Kmin(
N.m−1

) Kmax(
N.m−1

) Reference
Trajectory

Follower K = Kmin 100 - No

Leader K = Kmax - 1000 Yes

Reciprocal K(t) ∝ (1− ch) 100 1000 Yes

Mirrored K(t) ∝ ch 100 1000 Yes

where b1, b2 ∈ R define the amplitude and shape of ch, and are determined experimentally to reflect the
actual operational range of the icc of a participant during the task execution.

For the reciprocal stiffness behavior (RR), K is:

K(t) = Kcte + S
((

1− ch(t)
)
(Kmax −Kmin) +Kmin

)
(4.5)

where S is a selection matrix that defines the axes where the stiffness is modulated, Kmin and Kmax

contain the maximum and minimum desired stiffness for those axes, and Kcte contains a constant stiff-
ness for the axes that are not modulated (the numerical values of these matrices’ diagonal coefficients
are summarized in Tab. 4.1). In this experiment, the translational stiffness in the horizontal plane was
modulated, while the vertical translational stiffness was constant. In this condition, the robot behaves as
a leader if the human is compliant, whereas it effectively cedes the autonomy of the task to the human
when the human co-contracts.

For the mirrored stiffness behavior (RM), K is:

K(t) = Kcte + S
(
ch(t)(Kmax −Kmin) +Kmin

)
(4.6)

In this condition, the more the human co-contracts, the higher the robot stiffness.

Robot reference trajectory

The robot reference trajectory xd was predefined offline for the RL, RR, and RM conditions. The desired
end-effector orientation and the vertical position remained fixed for the entire task, while the trajectory
in the horizontal plane was defined from straight lines and a parabolic curve (Fig. 4.2a). In the RF
condition, xd was set equal to the robot Cartesian pose at the previous timestep, which, associated
with a low stiffness, made the robot very compliant. The duration of the reference trajectory was tuned
experimentally and set to 25 seconds, which corresponded to a comfortable pace for users.

4.4.3 Statistical analysis

The dependent measures that were analyzed are: the RMS value over a trial of the human co-contraction
index, the number of contacts between the pipe and the tubes, the duration of the task, and the score
of each item in the questionnaire. The co-contraction index, task duration, and number of contacts
were evaluated for every single trial. In order to get rid of any short-term learning effect that might
happen in the early trials, we calculated linear regressions between the trial number and these dependent
measures to identify when participants reached steady state performance. Regressions were calculated
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for each of the four conditions, iteratively for the last 15, 14, 13 trials, and so forth until the slopes
were not significantly different from zero (i.e. the 95 % intervals did include zero). This occurred when
the regression was computed over the last 13 trials (i.e. excluding the first 2 trials). Hence, the first 2
trials of each condition were excluded from the subsequent analyses. In addition, since only steady-state
performance was considered, each metric was averaged over the last 13 trials to obtain one single data
point for each participant and condition.

Co-contraction index and task duration data were checked for normality with a Shapiro-Wilk test
and then analyzed with a one-way repeated-measures analysis of variance (ANOVA) with condition as
a within-subject factor and participant as a random factor. Pairwise multiple comparison post-hoc tests
with Bonferroni corrections were conducted when a significant effect of condition was detected by the
ANOVA. Questionnaire scores and number of contacts were analyzed with non-parametric Friedman
tests given the nature of the data. Post-hoc tests were conducted when a significant effect of condition
was detected. A significance level of 5 % was adopted for all statistical tests. Analyses were performed
with the R software.

4.5 Results
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Figure 4.3: Performance metrics across the 4 conditions.
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4.5.1 Pipe-tube contacts

Fig. 4.3a displays the distribution of the number of contacts between the pipe and the tubes for all 4
conditions. The Friedman test revealed a significant effect of the condition factor (χ2(3) = 13.22,
p = .004). Post-hoc tests indicated a significant difference only between the RF and RR conditions
(p = .031). The other comparisons did not reach significance, though it was close for RF and RL
(p = .066) and RL and RM (p = .059). The number of contacts (errors) was the largest when the
human lead the task (RF condition) where s/he could not benefit from the robot position accuracy, and
the smallest in the collaboration condition where the robot adopted a reciprocal behavior (RR condition).

4.5.2 Human co-contraction index

Fig. 4.3b displays the distribution of the co-contraction index for all 4 conditions. The ANOVA revealed
a significant effect of the condition factor (F (3, 33) = 28.1, p < .001) on the co-contraction index.
Post-hoc test revealed a significant difference between RF and RL (p < .001), RF and RR (p = .001),
RF and RM (p = .003), as well as between RL and RR (p = .012) and RL and RM (p = .049). Other
comparisons did not reach a significance level. Co-contraction was the largest when the human was
leading the task (RF condition), and the smallest when the human was only following the robot (RL
condition).

4.5.3 Task duration

Fig. 4.3c displays the distribution of the task duration for all 4 conditions. The ANOVA revealed a sig-
nificant effect of the condition factor (F (1.5, 16.7) = 38.0, p < .001) on the task duration. Post-hoc test
revealed a significant difference between RF and the 3 other conditions (p < .001 for all comparisons).
Other comparisons did not reach a significance level. The task execution was the fastest when the human
lead the task (RF condition), where the timing was not constrained by the robot reference trajectory, and
the slowest when the robot was the leader (RL condition).

4.5.4 Questionnaire

Fig. 4.7 displays the distribution of the scores for the questionnaire. The Friedman tests revealed a
significant effect of the condition factor for question Q1 (How easy was it to do the task with the robot?)
(χ2(3) = 15.3, p = .001), but not for Q2 (How much did the robot prevent you from doing the task
the way you want?) (χ2(3) = 2.65, p = .44). For Q1, post-hoc tests indicated a significant difference
between RL and RF (p = .009) and RL and RM (p = .005), while the other comparisons did not
reach significance. Participants felt the task was the easiest to perform when the robot leads the task
(RL condition), followed by the robot reciprocal behavior (RR behavior). This result suggests that the
reciprocal behavior RR was the preferred strategy among the 2 collaboration conditions (RR and RM).
For Q2, trends in Fig. 4.7 suggest that participants had very diverse opinions on how the robot was
hindering them in the 2 cooperation conditions (RF and RL), whereas the opinions where much more
similar across participants in the 2 collaboration conditions (RR and RM).

4.6 Discussion

In this chapter, we focus on a human-robot co-manipulation task. In our previous work, we investigated
the performance and the arm stiffness of human-human dyads when they were cooperating and collabo-
rating [84]. We observed an improved performance using collaborative strategies over cooperative ones.
In this context, we investigated if the same results are observable in the human-robot scenario.
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Figure 4.4: The graphs show how Subject 1 performed the task differently in the different
trials. In particular, the mean of the movement (solid line) and the variance of the movement
(shaded area) along the trials are shown.
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Figure 4.5: The graphs show how Subject 2 performed the task differently in the different
trials. In particular, the mean of the movement (solid line) and the variance of the movement
(shaded area) along the trials are shown.
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Figure 4.6: The graphs show how Subject 3 performed the task differently in the different
trials. In particular, the mean of the movement (solid line) and the variance of the movement
(shaded area) along the trials are shown.
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Figure 4.7: Subjective evaluation: questionnaire results. Q1: 1=not at all easy, 10=very easy. Q2:
1=much prevented, 10=not prevented at all.

4.6.1 Robot leader or Robot collaborator?

Fig. 4.3a reports on the task error, i.e. the number of pipe/tube contacts during the precision task. We
expected the RL condition to be the most accurate in terms of task errors because the robot had a ref-
erence trajectory that could precisely accomplish the task. In this case, if the human complied with the
robot’s actions without adding perturbations, then the risk of task errors would be close to zero. In the
human-human experiment, the collaboration condition delivered less errors (Fig. 4.1d). Meanwhile, in
the human-robot experiment, the two collaboration conditions result in errors comparable to the coop-
eration condition when the robot is the leader (RL), and fewer errors than when the robot was follower
(RF). Further, even though the distributions of RR and RM are not statistically different from the one of
RL, the median of the task errors is lower in the collaboration conditions, similarly to what was observed
in the human-human experiment. Thus collaboration does not worsen the task performance. On the
contrary, when collaborating with the robot, the human seems to benefit from its accuracy.

Fig. 4.3b reports on the distribution of ICC values. The highest ICC values occur when the human
is the leader (RF), as expected, since it is the condition where the human makes the greatest efforts
to execute the task. In addition, even if the robot is following the human in a very compliant mode,
it is, however, not entirely transparent, hence some human effort is also needed to compensate for the
lack of transparency of the robot. In the RL condition, the ICC is at its lowest: this result is coherent
with the subjective feedback from the participants, who reported that they “were just trying to relax
and follow the robot doing a minimal effort. This is also aligned with our observations in the human-
human experiment. However, these low ICC levels and their oral feedback point out a possible risk
of “disengagement” from the task execution: if the human passively follows the robot across several
repetitions of the task, s/he may risk progressively loosing awareness of the task and their surroundings.
Should something unexpected occur, the limited awareness decreases the chance of a prompt reaction,
and at the same time, the high robot stiffness of the RL condition strongly prevents the human to correct
the robot or input changes in the task trajectory. The ICC values of the collaborative conditions (RR and
RM) were in between RF and RL, having the advantage of avoiding disengagement while requiring only
a limited physical effort.

If we consider both the task precision and the effort, the most convenient conditions are RL and RM
(no statistical difference in contact errors and ICC). This result is partly close to the one of the human-
human experiment, where collaboration was more convenient than cooperation, at the expense of larger
ICC values. However, the experimental context is different: the human collaborators are not aware of
the desired trajectory of their partner (which may vary across trials), nor they know if it is efficient or
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accurate for completing the task. Conversely, in the human-robot experiment, the human participants are
aware that the robot has a fixed reference trajectory that enables them to accomplish the task. In that
sense, the comparison is not on equal terms, because the knowledge of the human is different in both
cases. For a fair comparison, the robot should not have a reference trajectory and react to the intended
human motion. This latter can be predicted from initial observations of the collaborative action, as we
did in [56]. Studying the impact of this prediction on the collaborative strategies will be done in future
studies.

We argue that giving some degree of autonomy to human is overall positive. The human can still
benefit from the robot’s assistance, especially if the robot has a reference task trajectory. Furthermore,
in collaborative conditions, the robot compliance can leave the necessary degree of maneuver to the
human to correct the task when needed, maintaining the task engagement without degrading the task
performance (no difference in the task errors). Additionally, the human could exploit the compliance to
accelerate or decelerate the task at their convenience: indeed Fig. 4.3c shows a tendency to accelerate
the task execution in collaborative conditions. In fact, in the RF condition, the task duration was smaller,
because the human could execute the task at their own pace (albeit probably “limited” by the robot). In
our study, the robot reference trajectory and its duration were fixed: they were arbitrarily set to have
a reasonable speed that would not challenge the participants. In future experiments, we will investi-
gate whether the conditions other than RF can execute the task faster and whether the cooperative or
collaborative conditions enable the dyad to be faster without being detrimental to performance or effort.

4.6.2 Preference for collaboration with reciprocal impedance strategy

Subjective evaluations suggest that it is easier to realize the task with a collaborating robot rather than
with a cooperating robot. In Fig. 4.7, subjects indicated that the task was easier to perform in the RR
condition. Regarding the question of whether the robot was interfering with them executing the task in
their way, participants had very variable opinions for cooperative conditions, whereas they judged that
the hindrance was relatively acceptable for the collaborative conditions. This is an important element
in favor of collaborative robot behaviors for industrial applications: if robots must be used by a diverse
population of workers, it is reasonable to expect a more consistent attitude towards collaborative rather
than cooperative robots.

Interestingly, the majority of the participants reported preferring the reciprocal strategy, while the
effort and errors do not show a significant different from the mirror strategy. The preference for the
reciprocal condition contrasts with our expectation from the human-human study, where we found that
collaborators exhibit high arm co-contraction as if they are both trying to lead. In hindsight, it is likely
that humans prefer to interact with a “docile” robot that complies with human behavior, rather than
competing with a robot that stiffens as the human does: lowering the stiffness when the human co-
contracts may enforce the human feeling of being in control (empowerment), which has been frequently
reported in the literature as one of the main drives for accepting and trusting a robot [19, 144, 202].
The reciprocal collaborative strategy also has the advantage of being more conservative concerning the
passivity of the system, with notable safety implications [21].

In summary, for co-manipulation, a robot collaborator seems preferable to a robot cooperator (better
than a robot leader, and definitely better than a robot follower), even if the way the human collaborates
with the robot differs from when collaborating with another human. In addition, within the collaborative
strategies, a reciprocal strategy for impedance seems the most indicated.
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4.6.3 Limits of the study

Our results suggest that in a human-robot co-manipulation task, the robot should behave as a collaborator,
adapting its impedance with a reciprocal stiffness law that relates to the human arm co-contraction. This
control mode is efficient in terms of task accuracy and was also preferred by the participants.

However, our results should be considered carefully. First, the study was conducted with partici-
pants from the University environment, and while few participants were familiar with robots, the results
cannot be generalized to a generic population, especially with industry workers that may have different
attitudes when interacting with a robot [144]. Second, the co-manipulation task was very simple and the
manipulated load was small and light. In this sense, we do not know if our results can be generalized
to other co-manipulation tasks involving the manipulation of large and heavy loads, a situation that is
often found in manufacturing where robots physically assist workers (e.g., manipulating car parts, such
as wheels [145]). Third, the performance of each condition can possibly change with more training and
expertise with the robot and the task. We already accounted for the source of bias due to learning by
not including the initial trials in our analysis (see Section 5.3). However, the RF condition was always
executed as the first (for the reasons explained in Section 4.4.1) and this might partly explain the lower
performance of this condition in terms of task errors. At the same time, the participants reported that it
was not easy to do the task with the robot in this condition, and our intuition is that this is mostly due
to the fact that the robot was not entirely transparent. It is possible that interactions over hundreds of
trials may lead to lower ICC levels and fewer errors. Future studies should investigate whether there is a
significant learning effect for longer interactions and whether this learning process is user-specific: this
knowledge will be critical to recommend suitable training to workers that collaborate with robots on a
particular workstation.

4.7 Conclusion

We investigate whether it is preferable and more performing for a robot to behave as a cooperator (leader
or follower) or collaborator (variable impedance) during a co-manipulation task with a human. Our study
shows that with a robot leader informed of the task trajectory, the human makes less effort, but in terms
of task accuracy and effort, a reciprocal collaborative strategy seems preferable for a human. Our results
are relevant for the design of human-robot collaborative workstations. They also evoke new questions to
further understand human behavior, precisely, the human arm impedance during joint work with humans
and robots.
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Adaptation in pHRI

In the advanced paradigm of Human-Robot collaboration, typical of Shared Autonomy (SA) [203], the
collaborative robot is capable of adapting its level of autonomy based on its own understanding of hu-
man behaviour and of the environment. Several aspects of collaboration have been investigated in the
literature: the communication channel between human and cobot [134], the experience of the operator in
the task to be performed [67] and individual behavior characteristics [190]. Nevertheless, a fundamental
question for this kind of collaboration is how the two agents adapt to each other across the tasks. In fact,
if the robot was able to predict how a subject would adapt to a given policy, it could vary its policy with
the intent of accelerating adaptation (in case the equilibrium condition was good) or conversely guide it
to another equilibrium condition.

Human-machine adaptation is a widely studied field even beyond pHRI [78], implementing adaptive
control schemes which conform to an unknown gain of the human [63]. Adaptation could be integrated
by changing the cobot policy when thresholds of safety have been reached. For instance, Peternel et
al. [180] proposed a method for human-robot collaboration where the robot behavior is adapted online
to the human motor fatigue. In other situations, adaptation can be used to solve problems that in which
neither the human nor the robot is able to solve the problem on their own [207].

Many of these works presented control algorithms that adapt and change the cobot policy during
collaboration with the human. However, to the best of our knowledge, we lack knowledge of how humans
perceive and react to changes in cobot behavior. Specifically, little is known on how humans adapt to
changing roles and control strategies of collaborating robot during pHRI. We think this knowledge is
important because it allows the robot to predict how a subject would perform in the short period (before
adaptation) and in the long period (when the adaptation is reached). Knowing this the robot’s policy can
change to modify situations harmful to the subject

To fill this gap, we propose a human study in which 16 participants executed a collaborative human-
robot sawing task where the cobot altered between three different control strategies(human-leader, human-
follower, and reciprocal). In human-leader mode, the human guides the execution of the collaborative
task, while the cobot follows. Viceversa, in human-follower mode, the cobot leads the execution, while
the cobot follows. Finally, in reciprocal mode, the human and cobot behaviors are reciprocal in terms of
phase of operation. We examined human adaptation when cobot suddenly changed the control strategy
from one strategy to the other, resulting in six experimental conditions. The experiments were performed
on the Kuka LBR iiwa robotic arm.

The aim of our study is to try to answer some of the questions not addressed in the literature. Our
goal is to assess how switching is perceived, with both objective and subjective metrics. We also ask
how collaboration performance is affected in the short and long term. Finally, we think it is interesting
to assess how long subjects need to adjust to a strategy. We addressed the following questions:
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(Th1) How the switching between modes is perceived by the human? Is the task performance
influenced in the first iterations of the task after the switching?

(Th2) Does a past transition influence the collaboration even after a steady state is reached?

(Th3) Do humans prefer some transitions with respect to others?

We also observed the data collected before the mode switching happened and we used it to compare the
three different modes. We addressed the following questions:

(Th4) Does human adapt faster to some modes with respect to others?

(Th5) For the specific task studied in this work, is there a preferred mode of interaction among
Human-Leader, Human-Follower, Reciprocal

We tried to answer all these questions from both a point of view of objective measures and from a point
of view of human perception (subjective scales).
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Abstract

Collaborative robots (cobots) have the potential to augment productiv-
ity and the quality of life of human operators in the context of Industry
4.0 by providing them with physical assistance. For this reason, it is
necessary to define the relationship between humans and cobots and to
study how the two agents adapt to each other. However, to the best of
our knowledge, literature is still missing insight into how humans per-
ceive and react to changes in the cobot behavior. Specifically, a study
of how humans adapt to changing roles and control strategies of col-
laborating robot is missing. To fill this gap, we propose a human study
in which 16 participants executed a collaborative human-robot sawing
task where the cobot altered between three different control strate-
gies. We examined human adaptation when cobot suddenly changed the
control strategy from one to another, resulting in six experimental con-
ditions. The experiments were performed on a setup involving Kuka
LBR iiwa robotic arm. The results suggest that transition influences
movement performance in the early stages and at steady state, subjects
prefer to abandon modes that require more effort and they adapt faster
to energy demanding modes. Finally, for the specific task we studied,
usually, subjects prefer collaborative mode with respect to fixed role ones.

1

This chapter presents the results of the study(hal-
03890322v1) we conducted in collaboration with the
Delft University of Technology, Netherlands. The hu-
man studies have been done in the Department of Cog-
nitive Robotics in Delft. The paper we submitted to
Journal of Intelligent Manufacturing contains less anal-
ysis of the results, in particular in this version of the
manuscript we concentrate more on the adaptation. We
display how the participants converge to the steady state
solution over time giving a deeper analysis of the re-
sults. We describe more in detail the experimental setup
and the control conditions, and elaborate more on the
implications of this study in the human-robot adaptation
literature.

Video is available at: video Human-Kuka adaptation.

5.1 Adaptation in pHRI

A classical Human-Robot Collaboration (HRC) strategy is to design cobot policies that adapts to humans
(one-way adaptation). In [132], robot is able to adjust its own role according to the human’s intention
to lead or follow. Cherubini et al. [52] alternate the leader and follower roles of a robot in a pHRI
application for industrial assembly tasks according to visual and haptic cues by the human co-worker.
Peternel et al. [180] used tele-impedance to set the robot strategy and switch between roles when a given
amount of fatigue is reached by the human. Other work proposes an adaptive control schemes in which
the robot adapts its policy according to estimated forces [63]. Silimic considerations also apply with
regard to exoskeletons. For this reason, Poggensee et al. [181] conducted experiments in which users
learned to walk with ankle exoskeletons.

In more recent work, it was hypothesized that better collaborative approaches can be designed by also
considering how humans change their policy by interacting with the robot [78]. Nikolaidis et al. [162]
introduced a formalization for mutual adaptation between a robot and a human in a collaborative task. In
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a similar way, the study in [207] present a reinforcement learning algorithm able to solve human-robot
task in which neither the human nor the robot is able to solve the problem on their own. Ikemoto et
al. [97] showed the importance of a bilateral learning process that takes place in both partners. Other
works consider the evolution of the human trust in robot [50] and the robot’s persuasive ability [196] to
maximize long-term team performance.

To design the robot action which maximizes the expected reward, it is necessary to model the hu-
man behaviour [249] or, alternatively, the human-robot team behaviour [164]. Nikolaidis et al. [162]
integrated the human ability to adapt to robot actions, defined as adaptability, to predict human actions
in a human-robot collaboration scenario. Saunderson et al. [196] proposed to use Adaptive Persuasive
Systems to acquire user information, update user models and adapt their persuasive approaches to the
human operator. Chen et al. [49] use social projection theory to learn human models from human demon-
strations. In addition, it should be considered that different individuals may have different behaviors. For
this reason, Nemlekar et al. [161] divided into cluster subjects accordingly to their preferences.

All the aforementioned work rely on some human behaviour model that is used to determine the
robot’s policy of adaptation. However, these models lack information about how the human adapts to
changes in the robot’s behaviour. To create more accurate human models, we believe human studies in
pHRI that compare different robot policies and observe how the human adapts to these given policies are
critical [237]. In particular, the impact of changes in robot control policies during the collaboration were
not yet examined. For this reason, we examine how humans adapt when the robot suddenly changes the
collaborative control strategy.

5.2 Methods

We investigate how humans react and adapt to changes in cobot control modes during a collaborative task.
Such changes are often necessary in collaborative robotics applications when different functionalities are
required for the task execution.

To study how humans adapt to changing policy, we conducted an experiment in which human par-
ticipants performed a collaborative sawing task with a cobot under different conditions. Three control
strategies were defined for the cobot end-effector impedance: human-leader (L), human-follower (F) and
reciprocal (R). In human-leader mode, the human guides the execution of the collaborative task, while
the cobot follows. Viceversa, in human-follower mode, the cobot leads the execution, while the cobot
follows. Finally, in reciprocal mode, the human and cobot behaviors are reciprocal in terms of phase of
operation. The human intention is measured online using EMG sensors. The sensors are placed on the
subject following guidance rules from the European project SENIAM [216]. Before placing a sensor on a
muscle location, the area surrounding the pen mark is prepared accordingly. The subject’s skin is cleaned
with alcohol until it acquires red tones, which indicates good skin impedance. After the alcohol dryes
out, the EMG sensor is placed on the skin at the muscle fibers direction with the help of a double-sided
sticker provided by the sensor manufacturer. Prior to the task execution, each agent is asked to perform
maximum voluntary contractions (MVC) during isometric exercises for each selected muscle [216] for
3 s. The exercise is performed 3 times, with a 1 minute interval between them to decrease fatigue biases.
After the 3 trials, the maximum EMG signal is then stored and used for posterior post-processing of the
EMG signals during the task execution. With respect to the previous experiment we used the muscles of
the shoulder because more involved in the movement. The sensors comunicate with the robot controller
via ros messages.

16 healthy adults took part in the experiment (4 females and 12 males, aged 24–30). Participants were
naive to the purpose of the study, and none reported any chronic motor disease or health condition that
could influence the results. Participants signed an informed consent form prior to starting the experiment.
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The study was approved by TU-Delft’s ethical committee and was conducted in accordance with the
Declaration of Helsinki.

Each of the participants received instructions on the task to be performed, a description of the three
modes, as presented in Sec. 5.2.1, and was informed about the presence of switch from one mode to
another during each trial. However, they were not told what the two modes would be and when the
switching would happen. They had to figure out which mode the cobot was executing, and how to adapt
to the new one.

5.2.1 Experimental setup and Protocol

We selected a collaborative human-robot sawing task that requires both complex physical interactions
and good coordination between the agents (Fig. 5.1). The task consists of alternating phases where the
human pushes the saw (while the cobot pulls) and phases where the human pulls the saw(vice versa, the
cobot pushes). The movement must be performed along the entire length of the saw (45 cm). The blade
used in the task has no teeth to simplify the task (less friction) and at the same time to ensure the safety of
participants. Performing one trial takes 2 s on average. A metronome is used to help the human to keep
a constant frequency in the task execution. Constant frequency helps us to standardize the experiment
among subjects, to make data comparable also in the case when human is leader and so no hint on the
frequency comes from the cobot. Participants face the cobot and hold the saw with their dominant hand,
while the other side of the saw is attached to the cobot end-effector. Fig. 5.1 shows the setup.

The cobot is controlled using three different control conditions (F, L, R) which are specifically
adapted to the sawing task. In "Human-follower" (F), the human stabilizes the saw vertically, while the
cobot does all the movement of the saw back and forth in the horizontal direction. In "Human-Leader"
(L), the human moves the saw back and forth, while the cobot only stabilizes the saw at its own side. In
"Reciprocal mode" (R), the robot replicates the standard way humans do the two-person sawing: both
agents are only pulling the saw, and not pushing. The pulling is exchanged in the following manner.
When humans pull the saw to their side, the cobot starts pulling it back to its side, and vice-versa. The
reason not to pull is to not interrupt each other’s activity (for example, in a two-person saw without the
arc, the saw would bend, and the task would be interrupted). To express all the situations in which no
previous mode has been executed (so the cobot is fixed), we used the terminology Nothing condition (N).

Each subject executed 6 trials; in each trial, two of the three cobot modes are executed. The first
mode is executed for around ∼ 2 minutes, then the transition happens and the cobot switches to the
second mode for other ∼ 2 minutes. Between each trial, the human rests and there is an allocated time
to answer the questionnaire (∼ 2 minutes) and time to recover (∼ 3 minutes). The total amount of time
fot the entire experiment is ∼ 1 hour. The acoustic sound of the metronome tells the human when the
trial starts. The metronome frequency does not change for the full time of the task (even during the
transition). The participant does not know which mode is executing nor when the transition happens.
The six experimental conditions are presented in Tab. 5.1 and their order is presented randomly. One
preliminary trial (in human-leader mode) of 1 minut is performed before each experiment to make the
subject familiarize with the setup and the sawing task.

5.2.2 Cobot Controls

The experiment was performed with a KUKA iiwa robot. The robot was controlled with a mixed force-
impedance scheme. Impedance control allows to move the saw and to easily implement different com-
pliance behaviors. Force control allows the robot to maintain contact with the work-piece. Let the robot
equation of motion be:

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ − J⊤Fint (5.1)
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Experimental Condition Cobot Controls Modes Conditions Cobot Control

1 F → L 1b N → F

2 F → R

3 L → R 2b N → L

4 L → F

5 R → F 3b N → R

6 R → L

Table 5.1: Study design and experimented conditions: each subject performs the six experimental con-
ditions, in which the cobot changes the mode from one to another. Three modes were tested: human
follower (F ), human leader (L), and reciprocal (R). To express all the situations in which no previous
mode has been executed (so the cobot is fixed), we used the terminology Nothing condition (N ). The
experimental conditions are tested in random order.

with M ∈ Rn×n the inertia matrix, C ∈ Rn×n the matrix of Coriolis and centrifugal effects, g(q) ∈ Rn

the vector of gravity forces, J ∈ R6×n the end-effector Jacobian, τ ∈ Rn the joint torque vector,
and Fext ∈ R6 the interaction wrench at the end-effector. A hybrid force/impedance controller was
implemented following [180]. The force behavior was defined as

Fint = Ffor + Fimp (5.2)

where the term Ffor is related to the force task (i.e., in sawing is keeping contact with the wood) con-
trolled by a PI controller

Ffor = KF
P eF +KF

I

∫
eFdt, (5.3)

eF = SF (Fa − Fd) (5.4)

where KF
P ,K

F
P are the gain of the PI controller, while Fa, Fd are respectively the actual and the desired

force on the end-effector. The desired mechanical impedance at the end-effector is defined as:

Fimp = K(xee − xd) +D(ẋee − ẋd) (5.5)

where K ∈ R6×6 and D ∈ R6×6 are the desired stiffness and damping matrices in Cartesian space,
and xee and xd are respectively the actual and desired end-effector poses. The three different robot
behaviors described in section 5.2.1 were implemented by changing the values and profiles of the K and
D matrices, as explained in the next section. Only the translational stiffness and damping were modified
across conditions, whereas the rotational part remained identical.

5.2.3 Robot role allocation

The two experiment conditions L and F, were implemented using fixed values for K and D throughout
the entire task execution. The coefficient of K on the direction of the sawing was set to a zero value
when the human leads the movement. When the human follows, the coefficient is set to high value. The
coefficients of D were computed from K and the Cartesian mass matrix using factorization design [8].

The "Reciprocal mode" R was defined and implemented based on the work by Peternel et al. [178].
The robot’s Cartesian stiffness is adjusted on-line throughout the task depending on the human shoulder
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Figure 5.1: The experimental setup: the cobot is semi-rigidly attached to the saw, likewise the subject
grabs the saw from the other end. EMG sensors are attached to the subject to measure muscle contraction
during movement.

stiffness trend ch(t). The human stiffness profile is estimated as in [4] using the scaled mean of the
shoulder muscles:

ch = a

(
A1 +A2

2

)
∈ [0, 1] (5.6)

where a ∈ R defines the amplitude and shape of ch, and is determined experimentally.
For the reciprocal stiffness behavior (R), K is:

K(t) = Kconst + S
((

1− ch(t)
)
(Kmax −Kmin) +Kmin

)
(5.7)

where S is a selection matrix that defines the axes where the stiffness is modulated, Kmin and Kmax

contain the maximum and minimum desired stiffness for those axes, and Kconst contains a constant
stiffness for the axes that are not modulated. In this experiment, the translational stiffness in the direction
of the sawing was modulated, while the other components were constant. In this condition, the robot
behaves as a leader if the human is compliant, whereas it effectively cedes the autonomy of the task to
the human when the human co-contracts.

The robot reference trajectory has been designed in Cartesian space between two points based on the
required saw movement in the experimental setup. When the robot reaches the end-point it comeback.
The orientation of the saw is kept constant throughout the movement. The duration of the reference
trajectory was tuned experimentally and set to 2 seconds, which corresponded to a comfortable pace for
users and was comparable to the previous studies on human-robot collaborative sawing [178].

5.2.4 Performance metrics

To evaluate the performance of the task execution and of the collaboration, we observed the following
objective metrics. These performance metrics were calculated at each iteration of the task, where as
iteration is considered one round trip of the saw.
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(M1) Length of the movement makes it possible to verify that the movement is performed along
the entire length of the blade. The length is calculated as the difference between the maximum and
minimum distance on the axis where the sawing is done.

(M2) Acceleration gives an estimation of the smoothness of the movement and it is calculated
with double derivation from the movement. We considered the mean of the absolute value of the
acceleration.

(M3) Co-Contraction index provides an estimation of the human effort. The value is calculated
as the mean value of all the ICC over one trial.

(M4) Force applied to the robot is also a measure of human effort. It is calculated using the robot
torque sensors (Fext = Jτext). We considered the mean value of the absolute value of the force
only in the direction of the sawing (namely y axis) because we do not notice big forces in the other
directions.

(M5) The error on the reference position gives us an idea of how much the subjects differ in mo-
tion from the trajectory proposed by the robot. The error is calculated as the sum of the differences
between the desired position of the robot and the one actually executed. It is important to note that
in the human leader mode (L) the subject has no clue what the trajectory indicated by the robot
is. This justifies the use of the metronome as a tool to equalize the comparison between different
modes.

(M6) Fourier: To compare the smoothness of each movement, we compute the sum of the fre-
quencies minus the principal frequency using the Fourier transform of the movement [31].

Moreover, to evaluate the human adaptation to a given mode after the transition happens we calculate
the number of transitions necessary to reach a steady state for the human. In the next section (Sec.5.2.5)
will be presented how we consider that steady state is reached.

We also evaluate how the subjects perceived each experimental condition. This subjective metric
is composed of a set of questions. After each trial, the subjects are asked to answer to three questions
related to the transition between modes:

1. Did you recognize the 2 modes? This question was added to stimulate the subject to explore the
experimental condition they are testing and thus engage more in the collaboration.

2. The transition between the two modes was challenging.

3. I felt that the performance in collaboration improved after mode transitioning.

After each experiment, they are additionally asked to fill in a questionnaire related to individual mode,
with the following questions, with answers on a X-items Likert scale.

1. The mode was engaging

2. The mode was demanding

3. The mode required high cognitive effort

4. The mode required high physical effort

5. The mode was boring

Moreover, we included the Van der Laan questionnaire [230], which evaluates perceived usefulness and
satisfaction for an experimental condition.
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5.2.5 Statistical analysis

For each experimental condition, we analyzed two critical times: just after the mode-switching and when
the steady state is reached. We decided to study the first trials after the transitions, because during pilot
experiments we observed that these are the more critical moments for the collaboration.

To identify when participants reached steady state performance, we use linear regression. Regres-
sions were calculated for each of the six experimental conditions (F→L, F→R, L→R, L→F , R→L,
R→F ) and the "nothing-to-something" conditions (N→L,N→R,N→F ), in a iterative way for the last
n trials, where n goes from N (number of trials) to zero. We repeated this procedure until the slopes
were not significantly different from zero (i.e. the 95 % intervals did include zero). Since different per-
formance metrics have different convergence times to steady state, we decided to take the last one to
converge.

The data (both for the first trials and for steady-state conditions) were checked for normality with a
Shapiro-Wilk test and then analyzed with a one-way repeated-measures analysis of variance (ANOVA)
with condition as a within-subject factor and participant as a random factor. Pairwise multiple compari-
son post-hoc tests with Bonferroni corrections were conducted when a significant effect of condition was
detected by the ANOVA.

Questionnaire scores and number of contacts were analyzed with non-parametric Friedman tests,
given the nature of the data. Post-hoc tests were conducted when a significant effect of condition was
detected. A significance level of 5 % was adopted for all statistical tests. Analyses were performed with
python software.

5.3 Results

This section is composed of three main parts. First, we look into transitions between modes. Second, we
examine modes on their own. Finally, we check the results of subjective evaluation of both transitions
and modes using questionnaires.

5.3.1 Transitions Evaluation

Transitions between modes are evaluated in terms of progress and in terms of reaching a steady state.

Progression

We noticed that the progress of the performance metrics varies accordingly to the current mode and
the one experienced in the past. We could observe that the average number of iterations necessary for
the participants to adapt (and so reach steady state) varies across the experimental conditions (R→L :
7, F→L : 10, L→R : 13, F→R : 10, L→F : 14, R→F : 17).

Fig. 5.3 we display the distribution of the metrics on the first iterations of the task after the mode
switching. The ANOVA revealed a significant effect for the length of the movement (p = 0.02), co-
contraction index (p = 0.04) force (p < 0.001), error on the reference position (p < 0.001) and smooth-
ness of the movement (p < 0.001). For these cases, we executed Post-hoc test. For the length of the
movement, we observed differences between F→L and L→F (p = 0.02) and values close to differ-
ences between F→L and L→F (p = 0.06) and F→L and R→F (p = 0.058). For co-contraction
index between R→L and all the last three conditions (p < 0.001 for all the conditions) and a sim-
ilar thing for F→L and all the last three conditions (p = 0.03, p = 0.004, p = 0.01 respectively).
Concerning the force, we found significant differences between R→L and all the last four conditions
(p = 0.02, p = 0.02, p = 0.001, p < 0.001 respectively) and a similar thing for F→L and all the last
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four conditions (p = 0.012, p = 0.021, p = 0.003, p < 0.001 respectively). Moreover there are signifi-
cant differences between R→F and the two conditions ending with R (p = 0.01, p = 0.04 respectively).
Error on reference position reported differences between the conditions having L after the transition and
all the others (p < 0.001); moreover, the experimental condition F→R presents statistical differences
with the experimental modes ending with F (p < 0.001, p = 0.006). The smoothness of the movement
suggest statistical differences between R→L and R→F (p = 0.02), F→L and all the others (p = 0.015
for the first condition and p < 0.001 for the last three conditions) and L→R and R→F (p = 0.01).

In summary, we observe that the transition heavily influences the collaboration.

Steady state

Fig. 5.4 displays the distribution of the metrics on the steady state iterations of the task and after the
mode switching. The ANOVA revealed a significant effect for acceleration (p = 0.02), co-contraction
index (p = 0.008), force (p < 0.001), error on the reference position (p < 0.001) and smoothness
of the movement (p = 0.004). For these cases, we executed Post-hoc test. For the acceleration, we
observed differences between R→L and F→R (p = 0.02), R→L and L→F (p = 0.001). For the
co-contraction index, between R→L and the last four conditions (p = 0.018, p = 0.006, p = 0.004, p =
0.001 respectively), for F→L there is significant differences only to the last three conditions (p =
0.01, p = 0.001, p = 0.04 respectively). Concerning the force, we measured significant differences
between conditions ending with L and the other conditions. Error on reference position reported similar
behavior; moreover, we found statistical differences between F→R and the experimental modes ending
with F (p = 0.01 for both of them). About the smoothness of the movement, we found statistical
differences only between the first two conditions and the last four.

In summary, we can observe that certain transitions influence collaboration even at steady state.

5.3.2 Modes Evaluation

Fig. 5.5 displays the distribution of the metrics described in Sec.5.2.4 for the three control modes after
reaching steady state. The ANOVA revealed a significant effect co-contraction index (p < 0.001), force
(p < 0.001), error on the reference position (p < 0.001), and smoothness (p < 0.001). For these cases,
we executed Post-hoc test. For the co-contraction index, we notice significant differences between L
and R (p = 0.001) and between L and F (p < 0.001). For the force, there are significant differences
between L and R (p < 0.001) and between L and R (p < 0.001). Concerning the error on the reference
position, there are significant differences between L and R (p < 0.001), between L and F (p < 0.001)
and between R and F (p = 0.001). Also the Fourier showed differences between L and R (p < 0.001)
and between L and F (p = 0.002). At steady state, we notice more statistical differences between L and
R than between F and R. This may suggest that participants, at steady state, have a tendency to follow
the movement of the cobot and supervise the movement. The only statistical difference between R and
F is for the error on the reference position.

Regarding the number of iterations necessary for subjects to adapt, we observed that L mode gener-
ally converges faster to steady state (it takes around 12 iterations to converge) while R takes 20 iterations
and F is generally slower (around 25 iterations).

5.3.3 Questionnaire

Fig. 5.7 displays the distribution of the scores for the questionnaire about the transitions. The Friedman
tests revealed a significant effect of the condition factor for question Q1 (Transition between the modes
was challenging) (χ2(3) = 26.6, p < 0.001) and for Q2 (Collaboration improved after the transition)
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Figure 5.2: Progression of chosen scores sorted according to current mode and previous mode: in the
columns are the current modes while the different colors are used to distinguish what the score was
previously (purple when there is not a precedent mode namely in the first two minutes of the experiments,
green for human leader in the previous mode, blue for reciprocal in the previous mode, red for human
follower in the previous mode). In the rows are arranged the different scores.

Table 5.2: Linear regressions between the trial number and these dependent measures to identify when
participants reached steady state performance. Regressions were calculated for each of the six experi-
mental conditions and the modes, iteratively for the last 60, 59, 58 trials and so forth until the slopes
were not significantly different from zero (i.e. the 95 % intervals did include zero, the first appearance of
p > 0.05).

R→HL HF→HL HL→R HF→R HL→HF R→HF HL R HF

7 10 13 10 14 17 12 20 25
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Figure 5.3: Comparison of the experimental conditions at the first 5 iterations after the switching: (M1)
Length of the movement; (M2) Acceleration; (M3) Co-Contraction index of the subject and measured
using EMG sensors; (M4) Force applied to the cobot; (M5) Error on the reference position; (M6) Fourier.
The six experimental conditions are the combinations of the three control modes: Human Leader(HL),
Human Follower(HF ) and Reciprocal(R).
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Figure 5.4: Comparison of the experimental conditions at Steady State: to identify steady state linear
regressions were calculated for each of the six experimental conditions iteratively for the last 60, 59, 58
trials and so forth until the slopes were not significantly different from zero (i.e. the 95 % intervals did
include zero).
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Figure 5.5: Comparison of the control modes at steady state: to compare the control modes fairly and
without them being affected by the transitions, we compared the scores before the transitions occurred.
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Figure 5.6: Results of the Van der Laan questionnaire. This scale assesses system acceptance on two
dimensions: a Usefulness scale and a Satisfying scale.

Figure 5.7: Subjective questions about the transition.

(χ2(3) = 25.7, p < 0.001). For Q1, post-hoc tests indicated a significant difference between F→L and
L→R (p = 0.045), L→R and F→R (p = 0.003), L→R and R→F (p = 0.005), F→R and L→F
(p = 0.03) and a close difference between L→F and R→F (p = 0.052), while the other comparisons
did not reach significance. For Q2, post-hoc tests indicated a significant difference between R→L and
L→R (p = 0.01), F→L and L→R (p = 0.001), F→L and L→F (p = 0.01), L→R and R→F
(p = 0.045), and close to be different between R→L and L→F (p = 0.07), while the other comparisons
did not reach significance.

Fig. 5.8 displays the distribution of the scores for the questionnaire about the three modes. The
Friedman tests revealed a significant effect of the condition factor for question Q1 (The mode was en-
gaging) (χ2(3) = 8.4, p = 0.01), for Q2 (The mode was demanding) (χ2(3) = 28.6, p < 0.001), for
Q3 (The mode required high cognitive effort) (χ2(3) = 13.6, p = 0.001), for Q4 (The mode required
high physical effort) (χ2(3) = 29.1, p < 0.001) and for Q5 (The mode was boring) (χ2(3) = 12.16,
p = 0.002). For Q1, post-hoc tests indicated a significant difference between R and F (p = 0.02).
For Q2, post-hoc tests indicated a significant difference between L and R (p = 0.003) and L and F
(p = 0.001). For Q3, post-hoc tests indicated a significant difference between R and F (p = 0.04) and L
and F (p = 0.02). For Q4, post-hoc tests indicated a significant difference between L and the other two
conditions(p = 0.004, p = 0.001 respectively). For Q5, post-hoc tests indicated a significant difference
between R and L (p = 0.007). All the other comparisons did not reach significance.
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Figure 5.8: Subjective questions about the three modes: Human Leader (L), Human Follower (F ) and
Reciprocal (R).

5.4 Discussion

This section discussed the main results in terms of transitions between modes and modes individually,
both in terms of objective metrics and questionnaires. Finally, we discuss some of the possible limitations
of the existing study.

5.4.1 Transitions

Fig. 5.3 reports on the performances we chose to evaluate (length of the movement, acceleration, co-
contraction index, force, error, and smoothness) at the first iterations after the switching between one
mode to another. We observe statistical differences in movement length only between the second (F→L)
and fifth experimental condition (L→F ). Although there are no statistical differences, we observe a
lower median for both the first (R→L) and fourth transitions (F→R). Similar considerations apply to
the error on the reference position (statistical differences for R→L, F→L and F→R). These results
suggest that for these three experimental modes, the quality of motion is affected by the transition losing
the ability to follow the reference. We think this is because the participants are accustomed to greater
robot autonomy, and when this fails, they do not take over quickly enough to take the leadership.

We also observed an interesting effect regarding co-contraction and applied force. The co-contraction
index of the third experimental condition (L→R) is similar to that of the first two conditions (R→L and
F→L), despite not showing statistical differences from the last three (as the first two do). The applied
force, on the other hand, shows how both the third and fourth conditions (L→R and F→R respectively)
show differences from the last two, and the fourth has a higher median. These results suggest that the
operator applies a different force profile dependent on what the transition was. This type of behavior may
be due to a stiffening of the operator (and thus an increase in ICC without a consequent increase in the
force applied on the cobot) in the transition phase. We think this may be due to either a desire to maintain
stability in the movement or an attempt to better understand the type of interaction being performed with
the cobot.

Fig. 5.7 showed how the subjects perceived the transitions. Subjective questionnaires showed that
the subjects found challenging to pass to F modes (Fig. 5.7a) and, on the contrary, they showed that
the simplest transition is L→R. Collaboration perception is improved in the cases where previously the
human is leader (Fig. 5.7b) while it remains more or less constant in the switching from human leader
to reciprocal, conversely, it is worsened when the human is leader after the transition. Similar behavior
has been observed previously in movement length. This indicator reinforces our hypothesis that subjects
have difficulty taking over abruptly when the cobot’s cooperation fails. Similar unwanted behavior can
also be imagined in the case of two human subjects in which one of the two participants stops making
a contribution to the collaboration. Undoubtedly, such conduct would be misinterpreted by the second
participant. Indeed, it is well known that, in general, people tend to appreciate more those who evolve
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their behavior from negative to positive while they appreciate less those who change from a perceived
positive behavior to a negative one. In the literature, this effect is called the "gain-loss effect" [13], and
it has been shown that it can also be applied to interaction with robots [158].

So, to answer (Th1:How the switching between modes is perceived by the human? Is the performance
influenced in the first iterations of the task after the switching?), we can state that indeed the transition
influences movement performance in the early stages and that the quality of the movement depends on
how it was previously performed. As for (Th3: Do humans prefer some transitions with respect to
others?), however, we can say that subjects prefer to abandon the human leader mode and prefer to either
follow the robot or to collaborate (reciprocal).

Fig. 5.4 reports on the performance metrics after the steady state is reached. We expected that at
steady state, the impact of switching had now been nullified, and instead, some results suggest that op-
erator performance is still affected. Indeed, although we observed no statistical differences in movement
length, there is a lower median for both the fourth transitions. Similar considerations apply to the error
on the reference position (statistical differences for the first two and the fourth). Interestingly, the move-
ment length for the human leader cases is about the same as for the other cases while, the error is very
different. We think this is due to the fact that the human imposes a different trajectory than the cobot
but still functional for task execution. These results refer to (Th2: Does a past transition influence the
collaboration after the steady state is reached?), suggesting that the performance of the collaboration is
also influenced after the steady state is reached.

5.4.2 Modes

Fig. 5.5 reports on the performance metrics for the three control modes observed separately after the
steady state is reached. We can observe that there were no statistical differences in movement length,
so movement performance was therefore not affected by mode choice. On the other hand, if we look
at the distance to the reference trajectory, we notice statistically significant differences that allow us to
say that in the three cases the human-robot pair performed three different trajectories. Looking at the
other graphs (ICC, force, and smoothness), we observe statistical differences only between L and the
other two modes. These results suggest that the R mode does not significantly affect the operator’s effort
and smoothness of the motion while allowing the operator to impose his own trajectory, as observed in
the error from the reference. This happens because of the way R was constructed, in fact, whenever the
subject decides to change the trajectory from that imposed by the cobot the subject increases its stiffness
inducing the cobot to become compliant.

In Fig. 5.8 we could make the following observations: the subjects perceive the R and the F modes
as engaging, the F is not demanding while the L is highly demanding also from a cognitive point of view
and from a physical point of view, the R mode is arranged in the middle of these two extremes, subjects
perceive the R mode as less boring with respect to the other modes. In a similar way, Fig. 5.6 displays
the three modes on the Van der Laan scale assigning both a score of satisfaction and of use-fullness. We
could observe that the mean value of the R and of the F mode are very close to each other, and at the
same time, they are distant from the mean of the L modes. In accordance with this scale, there is small
benefit in the R with respect to using F mode. Thus, answering question Th5 (For this specific task, does
human prefer one mode with respect to another?), we could state that subjects much prefer to collaborate
with a cobot in R and L modes than a cobot in F mode. At the same time, we note a slight preference
toward the R mode. Talking with participants, we got the idea that subjects preferred approaches in
which the cobot was active because they were less strenuous. At the same time, we think R mode was
better perceived by subjects because they felt they had more control over the task. Moreover, we think
R is more convenient because it is less boring, more engaging (with respect to F mode), and require
less effort (with respect to L mode). For this reason, we think it is better suited for tasks in which it is

96



5.5. Conclusion

important to be engaging (for instance, when human and robot executes dangerous movements).
The statistical analyses performed (Sec. 5.2.5), show how the general human subject finds equilib-

rium in its behavior (and thus scores settle) faster in the human leader case. In contrast, human follower
is, in general, slower to converge to an equilibrium solution. The reciprocal mode condition generally
requires intermediate times. Thus, answering question Th4 (Does human adapt faster to some modes
with respect to others? ), we could state that human subjects adapt to the cobot’s control modes at dif-
ferent times and that the greater the participant’s autonomy, the shorter the time. This result is probably
due to the fact that subjects search harder for solutions that limit the amount of fatigue in performing the
movement. Furthermore, it has been shown that humans, in general, has a greater ability to adapt to tasks
than the robot [75], we think that in the L case, the subject has full decision-making power and thus is
not somehow slowed down by the cobot’s reduced capabilities as is the case in the R and F cases.

5.4.3 Limitations

Our results should be considered carefully. First, the study was conducted with participants from the
university environment, and while few participants were familiar with robots, the results cannot be gen-
eralized to a generic population, especially with industry workers that may have different attitudes when
interacting with a cobot [144]. Second, the planar sawing task was simple and common. In this sense,
we do not know if our results can be generalized to other tasks involving large and heavy loads with
movements on the three dimensions, a situation that is often found in manufacturing where robots phys-
ically assist workers (e.g., manipulating car parts, such as wheels [145]). In any case, the results we
obtained allow us to demonstrate how important the type of training the operator must undergo is and
how important it is to manage the robot controller transitions in a consonant manner.

5.5 Conclusion

In this chapter, we studied how humans adapt in a collaborative sawing task when cobot suddenly changes
the control strategy. The results suggest that in this kind of task, not only the type the current role of
the cobot, but also the past ones influence the behavior of the human operator. In our specific task, the
results seem to indicate that: transition influences movement performance in the early stages (Th1) and
at steady state (Th2), subjects prefer to abandon the human leader mode and prefer to adopt modes in
which there is either R or F modes (Th3), they adapts faster to L mode (Th4), subjects prefer R mode
(Th5). In future works, we would like to use the collected data to build a model of how a human adapts
to a robot. We think that such a model can be used to optimize the robot’s impedance profile, especially
when transitioning from one profile to another.
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6

Conclusions

In this closing chapter, we elaborate on the main results presented in the thesis and the perspectives and
possible future research directions on the topics of human-robot collaboration and adaptation.

The work in this thesis stems from a multi-disciplinary approach that results in a set of tools for
improving human-robot collaboration. When human and robot physically interact several aspects must
be considered: the robot’s control, the interaction with the enviromnent, the human kinematic and
dynamic behaviour, the ergonomic of this latter, and how he/she will react to the robot movements.
This human-centered approach is justified to propose methods in which a robot can collaborate with a
human partner in an ergonomic fashion while being able to physically interact effectively with him/her.
To guarantee proficient and adequate cooperative behaviors, robots need to advance their cognitive, so-
cial and physical interaction skills. In Chapter 1 we review the current work in these areas of research,
acknowledging the main limitations due to the complexity of modeling and identifying the human state.
We formalize the concept of human-robot cooperation and collaboration, and we overview the main in-
teraction control approaches that enable low-level physical interaction between the robot and the human.
The knowledge of the human “state” is required by both the high and the low level control to build
human-aware control plans: hence we present the main methods used to model and perceive the humans.
Finally, we report on the current main application of robots interacting and cooperating with humans.

Human-aware robot collaborators capable of long-term interactions in real situations are the next
grand challenge. Many papers attempt to model human behavior from both dynamic and kinematic
perspectives. Nevertheless, we think that his behavior is very complex because it includes aspects that are
variable between subjects. For example, an injured subject will tend to perform a movement differently
than a healthy subject. Similarly subjects with greater confidence and knowledge of the robot will have a
different approach than inexperienced individuals. Moreover, this behavior changes as the subject adapts
to the robot. We think that if human behavior could be modeled (probabilistically), the interaction with
the robot would be improved. A key aspect of this modeling is to find an effective representation of the
person in terms of personalized models.

In Chapter 2 we presented two ways to represent the movements of the human: a digital human
model of 66 joints, and a latent space of two dimensions in which movements are mapped. We used
them for providing online ergonomics feedback to human workers during their activities, also when
they physically interact with robots. A Digital Human Model is used to visualize, with color-coded
spheres, the body areas and joints that are subject to efforts and non-ergonomic postures. We used as
score some state of the art methods like the RULA and the RULA continous score. Moreover we pro-
posed an estimation of the human internal torques using the dynamic model of the dhm and the force
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measured by the robot. All these scores can be visualize on the DHM while the subject it is performing
a movement. Our second contribution is Latent Ergonomics Maps (LEMs). They are synthetic repre-
sentations of the overall ergonomics scores projected onto a bidimensional latent space that maps human
postures. The result is an intuitive color-coded map where the human posture is a point, a movement
is a line, and their associated color is an estimation of the ergonomics score of choice. LEMs can be
used for bio-feedback or self-correction, as a visual tool for teaching, or simply to inform the human.
Their potential goes beyond the online feedback for the human, as they can be used to inform the robot
as well, which can find applications in planning ergonomically optimal collaborative motions. Advan-
tages of LEMs include their ease of interpretation also for non-experts, and the computational efficiency,
enabling online feedback. A limitation of projecting the map on a 2D latent space, which is necessary
for visualization purposes, is the information loss that may result from such a strong dimensionality
reduction. However, the error is tolerable for ergonomics scores based on postural information, and
otherwise acceptable if coupled with the visualization of efforts on the Digital Human Model.

In future works, we want to combine the prediction of intended movement [56] with LEMs, therefore
predicting future ergonomics scores for the intended movement. This, we think, will enable us to alert
the human of possible risks associated with ergonomics in particular during human-robot collaboration.
The idea is to inform the robot about the ergonomics risk associated with planned collaborative robot
trajectories as in [240], and then to optimize these trajectories using ergonomics optimization as in [85,
86]. More generally, we think that an algorithm that predicts human movement can be used proactive
strategies of the robot.

For this reason, in Chapter 3 we reviewed methods for human posture prediction and we presented a
novel approach. Our framework allows us to predict human posture in a Human-Robot Collaboration
scenario where the human hand motion is constrained by the robot’s end-effector. We propose a two-
phase method: in the first phase, we leverage a dataset of human demonstrations to learn a distribution
over the null-space of the human Jacobian using a Gaussian Process; in the second phase, we optimize the
weights of the weighted pseudo-inverse of the Jacobian. Our method computes a probabilistic estimation
of the future postures that satisfy the kinematic constraints imposed by the physical link between the
human and the robot and, at the same time, it is coherent with the human preferences of movement. In
fact, humans are not entirely “controllable”: humans are highly redundant systems that are over-actuated
for many manipulation tasks. In other words, humans can execute the same task in many different ways.
For instance, lifting a box from the floor might be performed by bending the back, but also by bending
the knees. Individual preferences of movement and musculo-skeletal problems might add to the intrinsic
variability of the human movement, thus increasing the variance of all possible postures in response to
a robot action. For these reasons, when the human is physically coupled with the robot to accomplish
a task, it is not possible to know with certainty how a human will move when the robot imposes a
trajectory, which makes it challenging to select the best trajectories for the robot in collaborative tasks.
In this context, data-driven probabilistic models of human movements, learned from demonstrations,
can provide interesting insights into human preferences while capturing the variance of demonstrated
movements. A limit of this kind of solutions is that a small error in the joint estimation can cause
a large error in the estimation of the end-effector position (i.e., the human hand), which makes the
prediction kinematically inconsistent. This error poses a nontrivial problem, especially when the human
is physically coupled to the robot because it can compromise the quality of the collaboration. For these
reasons human posture prediction in HRC should be: probabilistic, based on the kinematic model of the
subject and constricted in the pose of the end-effector.

In the future, we want to extend our human model and integrate the algorithm into our framework for
ergonomics control, which aims to optimize a collaborative robot’s motions to maximize the comfort and
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the ergonomics of the human collaborator. A byproduct of our method is the probabilistic computation
of ergonomics scores for a given robot’s EE trajectory, which is a critical element for planning and
optimizing the robot’s trajectories. One simplification we have made in our work is to place the robot as
the leader and the human as the follower. We would like, in the future to carry out more experiments and
see if we get different kinematic patterns by considering different roles. This fact made us think about
how the subject’s behavior changes depending on what role it plays toward the robot and led us to further
investigation in this direction.

In Chapter 4 we perform a human study in which we compare different paradigms of interaction: the
robot behaves as a cooperator (leader or follower) or collaborator (variable impedance) during a
co-manipulation task with a human. The goal in this experiment is twofold: investigate the human motor
behavior in a task we already evaluated in a human-human dyad; and try to emulate the such behavior
on the robot control side. Given the results from the human-human experiment, whenever the robot is
assigned a leadership, the robot is considered to have full autonomy over the task, while the robot and
the human share that same autonomy during a collaboration. Both behaviors are expressed by changing
the desired Cartesian stiffness of the robot’s end-effector: robot leader at high stiffness, robot follower
at low stiffness. Moreover, in this experiment the autonomy of the task is arbitrated by the human arm
co-contraction, using two different variable impedance control profiles: reciprocal and mirrored.

The reciprocal profile turns the robot behavior from a leader to a follower while the human co-
contracts his/her arm, and consequently, turns from a follower to a leader. Therefore, in this case, the
autonomy is taken from the robot into the hands of the human so to speak. This profile is similar to the
one implemented in Peternel et al. [178] that was arbitrated by the sum of the muscle activation signals
from a pair of antagonist muscles. The mirrored profile considers that the robot and the human should
always share the task in equal parts, there is never a total leader nor a total follower. In this profile, the
robot’s desired Cartesian stiffness is directly proportional to the human arm co-contraction. This is a
similar behavior to the one observed for human-human collaboration behaviors where both agents had
high values of arm co-contraction. Both variable impedance control profiles are tested.

Our study shows that with a robot leader informed of the task trajectory, the human makes less effort,
but in terms of task accuracy and effort, a reciprocal collaborative strategy seems preferable for a human.
Our results are relevant for the design of human-robot collaborative workstations. They also evoke new
questions to further understand human behavior, precisely the human arm impedance, during joint work
with humans and robots. We noticed that giving some degree of autonomy to human is overall positive:
human benefits from the robot’s assistance while the robot compliance can leave the necessary degree
of maneuver to the human to correct the task when needed. Moreover Collaboration helps maintaining
the task engagement and so attentive to the task thus reducing the risk of accidents. In our study, the
robot reference trajectory and its duration were fixed: they were arbitrarily set to have a reasonable
speed that would not challenge the participants. In future would be interesting to investigate whether
time-varying trajectories are more suitable for collaboration. In this study, 15 trials were done for each
experimental condition, and we observed a certain trend of subjects converging to one strategy over
another. We wondered, though, if these strategies would be different after hours of interaction. A key
aspect of collaboration in fact is adaptation.

Adaptation is the process in which an agent changes slightly over time to be able to improve his
performance. In Chapter 5 we did a survey of how adaptation affects human-robot interaction. Moreover,
we studied how humans adapt to cobot’s changes in the control strategy. We propose a human study in
which 18 participants executed a collaborative human-robot sawing task where the robot altered between
three different control strategies. We examined human adaptation when robot suddenly changed the

101



Chapter 6. Conclusions

control strategy from one to another, resulting in six experimental conditions. The experiments were
performed on a setup involving Kuka LBR iiwa robotic arm. The results suggest that in this kind of
task, not only the type the current role of the cobot, but also the past ones influence the behavior of the
human operator. In our specific task, the results seem to indicate that: transition influences movement
performance in the early stages and at steady state, subjects adapts faster to leader mode.

We think this work is an example of how important it is to consider the adaptive process in many
environments where humans and robots interact: industry, home automation, rehabilitation exoskeletons.
In future works, we would like to use the collected data to build a model of how a human adapts to a
robot. We think this model could provide us with an indispensable tool for collaboration. Indeed, if
the robot could predict how a subject adapts to a given policy it could vary its policy with the intent
of accelerating the adaptation (in case the equilibrium condition was good) or on the contrary guide it
to another equilibrium condition. These kinds of strategies are called mutual adaptation [162], and are
already found in the literature, but to the best of our knowledge, there are few cases where they are used
in pHRI. Whereas we think that, for example, a variable impedance control algorithm, lends itself well
to this kind of formulation.

Overall, during the course of this PhD thesis it was possible to develop tools that can serve as
a basis for a physical human-robot interaction considering human ergonomics and adaptation to robot’s
Collaboration strategies. In our approach, the next step beyond this thesis is to put those pieces together in
a single application, where human motion prediction (kinematics and motor behaviour during adaptation)
is used to optimize the reference trajectory for the variable impedance profiles. We think that a type
framework that seeks to optimize at the same time of cost functions on the robot and the human can be
a great step forward in realizing the industra of the future. To do so, we think, the tools provided in
this thesis can be necessary building blocks to a complete and reliable human model. In fact, we have
proposed a visualization tool, a prediction tool, and two studies on what are human behaviors.

Moreover, it will be interesting to study how much knowledge and results from cobots could be
re-used or transfered in a human-exoskeleton interaction. In fact, exoskeletons can be regarded as col-
laborative robots with the difference that, in most cases, they share more touch points with humans than
robots. For this reason, some considerations about the redundancy of the human are lost but nonetheless
what has been observed for the kinematics and motor behavior of the human may remain true. Partic-
ularly for exoskeletons and robotic prostheses, adaptation plays a key role since the human must wear
these tools throughout the day and in many cases the human needs their support to perform the sim-
plest activities (walking for example). For these reasons, subjects find solutions after a long period of
interaction that need to be considered.
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[84] Waldez Gomes, Pauline Maurice, Jan Babič, Jean-Baptiste Mouret, and Serena Ivaldi. In a Col-
laborative Co-manipulation, Humans Have a Motor Behaviour Similar to a Leader. working paper
or preprint, February 2022.

[85] Waldez Gomes, Pauline Maurice, Eloïse Dalin, Jean-Baptiste Mouret, and Serena Ivaldi. Improv-
ing ergonomics at work with personalized multi-objective optimization of human movements. In
12th International Conference on Applied Human Factors and Ergonomics, 2021.

[86] Waldez Gomes, Pauline Maurice, Eloïse Dalin, Jean-Baptiste Mouret, and Serena Ivaldi. Multi-
objective trajectory optimization to improve ergonomics in human motion. IEEE Robotics and
Automation Letters, 7(1):342–349, 2022.

[87] S. Grafakos, F. Dimeas, and N. Aspragathos. Variable admittance control in phri using emg-
based arm muscles co-activation. In 2016 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pages 001900–001905, Oct 2016.

[88] Stavros Grafakos, Fotios Dimeas, and Nikos Aspragathos. Variable admittance control in phri
using emg-based arm muscles co-activation. In 2016 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pages 001900–001905. IEEE, 2016.

[89] Diego Felipe Paez Granados, Breno A Yamamoto, Hiroko Kamide, Jun Kinugawa, and Kazuhiro
Kosuge. Dance teaching by a robot: Combining cognitive and physical human–robot interaction
for supporting the skill learning process. IEEE Robotics and Automation Letters, 2(3):1452–1459,
2017.

[90] Paul L. Gribble et al. Role of cocontraction in arm movement accuracy. Journal of Neurophysiol-
ogy, 2003.

[91] Nikolaus Hansen. Benchmarking a bi-population CMA-ES on the BBOB-2009 function testbed.
In 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference
(GECCO): Late Breaking Papers, pages 2389–2396, 2009.

[92] Sue Hignett and Lynn Mcatamney. Rapid entire body assessment (reba). Applied ergonomics,
31:201–5, 05 2000.

[93] Neville Hogan. Adaptive control of mechanical impedance by coactivation of antagonist muscles.
IEEE Transactions on automatic control, 29(8):681–690, 1984.

[94] Neville Hogan. Impedance control of industrial robots. Robotics and Computer-Integrated Man-
ufacturing, 1(1):97–113, 1984.

[95] Yongjun Hong, Uiwon Hwang, Jaeyoon Yoo, and Sungroh Yoon. How generative adversarial
networks and their variants work: An overview. ACM Computing Surveys (CSUR), 52(1):1–43,
2019.

109



Bibliography

[96] Y. Hu, M. Benallegue, G. Venture, and E. Yoshida. Interact with me: An exploratory study on
interaction factors for active physical human-robot interaction. IEEE Robotics and Automation
Letters, 5(4):6764–6771, 2020.

[97] Shuhei Ikemoto, Heni Ben Amor, Takashi Minato, Hiroshi Ishiguro, and Bernhard Jung. Physi-
cal interaction learning: Behavior adaptation in cooperative human-robot tasks involving physical
contact. In RO-MAN 2009-The 18th IEEE International Symposium on Robot and Human Inter-
active Communication, pages 504–509. IEEE, 2009.

[98] M. Ison, I. Vujaklija, B. Whitsell, D. Farina, and P. Artemiadis. Simultaneous myoelectric control
of a robot arm using muscle synergy-inspired inputs from high-density electrode grids. In 2015
IEEE International Conference on Robotics and Automation (ICRA), pages 6469–6474, 2015.

[99] Nathanaël Jarrassé, Themistoklis Charalambous, and Etienne Burdet. A framework to describe,
analyze and generate interactive motor behaviors. PloS one, 7(11):e49945, 2012.

[100] Nathanael Jarrasse, Vittorio Sanguineti, and Etienne Burdet. Slaves no longer: review on role
assignment for human–robot joint motor action. Adaptive Behavior, 22(1):70–82, 2014.

[101] Matthew Johnson, Brandon Shrewsbury, Sylvain Bertrand, Tingfan Wu, Daniel Duran, Marshall
Floyd, Peter Abeles, Douglas Stephen, Nathan Mertins, Alex Lesman, John Carff, William Rifen-
burgh, Pushyami Kaveti, Wessel Straatman, Jesper Smith, Maarten Griffioen, Brooke Layton,
Tomas De Boer, Twan Koolen, and Jerry Pratt. Team IHMC’s lessons learned from the DARPA
robotics challenge trials. Journal of Field Robotics, 32, 03 2015.

[102] Steven Jens Jorgensen, Michael W. Lanighan, Sylvain S. Bertrand, Andrew Watson, Joseph S.
Altemus, R. Scott Askew, Lyndon Bridgwater, Beau Domingue, Charlie Kendrick, Jason Lee, and
et al. Deploying the nasa valkyrie humanoid for ied response: An initial approach and evaluation
summary. 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), Oct
2019.

[103] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1):99 – 134, 1998.

[104] H. Kamide, Y. Mae, K. Kawabe, S. Shigemi, M. Hirose, and T. Arai. New measurement of
psychological safety for humanoid. In 2012 7th ACM/IEEE International Conference on Human-
Robot Interaction (HRI), pages 49–56, 2012.

[105] Yasuhiro Kato, Pietro Balatti, Juan M Gandarias, Mattia Leonori, Toshiaki Tsuji, and Arash
Ajoudani. A self-tuning impedance-based interaction planner for robotic haptic exploration. arXiv
preprint arXiv:2203.05413, 2022.

[106] Abderrahmane Kheddar. Human-robot haptic joint actions is an equal control-sharing approach
possible? In 2011 4th International Conference on Human System Interactions, HSI 2011, pages
268–273. IEEE, 2011.

[107] Mahdi Khoramshahi and Aude Billard. A dynamical system approach for detection and reaction
to human guidance in physical human–robot interaction. Autonomous Robots, 44(8):1411–1429,
2020.

[108] Mahdi Khoramshahi, Guillaume Morel, and Nathanael Jarrasse. Intent-aware control in kinemat-
ically redundant systems: Towards collaborative wearable robots. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), 2021.

110



[109] Byungchan Kim, Jooyoung Park, Shinsuk Park, and Sungchul Kang. Impedance learning for
robotic contact tasks using natural actor-critic algorithm. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 40(2):433–443, 2009.

[110] W. Kim, M. Lorenzini, P. Balatti, Y. Wu, and A. Ajoudani. Towards ergonomic control of collab-
orative effort in multi-human mobile-robot teams. In 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3005–3011, 2019.

[111] Wansoo Kim, Pietro Balatti, Edoardo Lamon, and Arash Ajoudani. Moca-man: A mobile and
reconfigurable collaborative robot assistant for conjoined human-robot actions. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 10191–10197, 2020.

[112] Wansoo Kim, Marta Lorenzini, Pietro Balatti, Phuong DH Nguyen, Ugo Pattacini, Vadim
Tikhanoff, Luka Peternel, Claudio Fantacci, Lorenzo Natale, Giorgio Metta, et al. Adaptable
workstations for human-robot collaboration: A reconfigurable framework for improving worker
ergonomics and productivity. IEEE Robotics & Automation Magazine, 26(3):14–26, 2019.

[113] Taisuke Kobayashi, Emmanuel Dean-Leon, Julio Rogelio Guadarrama-Olvera, Florian Bergner,
and Gordon Cheng. Multi-contacts force-reactive walking control during physical human-
humanoid interaction. In 2019 IEEE-RAS 19th International Conference on Humanoid Robots
(Humanoids), pages 33–39. IEEE, 2019.

[114] Yong-Ku Kong, Sung-yong Lee, Kyung-Suk Lee, and Dae-Min Kim. Comparisons of ergonomic
evaluation tools (alla, rula, reba and owas) for farm work. International journal of occupational
safety and ergonomics, 24(2):218–223, 2018.

[115] Petar Kormushev, Dragomir N Nenchev, Sylvain Calinon, and Darwin G Caldwell. Upper-body
kinesthetic teaching of a free-standing humanoid robot. In 2011 IEEE International Conference
on Robotics and Automation, pages 3970–3975. IEEE, 2011.

[116] Kazuhiro Kosuge and Yasuhisa Hirata. Human-robot interaction. In 2004 IEEE International
Conference on Robotics and Biomimetics, pages 8–11. IEEE, 2004.

[117] Kazuhiro Kosuge, Hiromu Kakuya, and Yasuhisa Hirata. Control algorithm of dual arms mobile
robot for cooperative works with human. In 2001 IEEE International Conference on Systems, Man
and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat. No. 01CH37236),
volume 5, pages 3223–3228. IEEE, 2001.

[118] Philipp Kratzer, Marc Toussaint, and Jim Mainprice. Prediction of human full-body movements
with motion optimization and recurrent neural networks. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 1792–1798. IEEE, 2020.

[119] Shitij Kumar, Celal Savur, and Ferat Sahin. Survey of human–robot collaboration in industrial
settings: Awareness, intelligence, and compliance. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 51(1):280–297, 2020.

[120] Jessica Lanini, Hamed Razavi, Julen Urain, and Auke Ijspeert. Human intention detection as a
multiclass classification problem: Application in physical human–robot interaction while walking.
IEEE Robotics and Automation Letters, 3(4):4171–4178, 2018.

[121] Claudia Latella, Naveen Kuppuswamy, Francesco Romano, Silvio Traversaro, and Francesco
Nori. Whole-body human inverse dynamics with distributed micro-accelerometers, gyros and
force sensing. Sensors, 16(5):727, 2016.

111



Bibliography

[122] Claudia Latella, Marta Lorenzini, Maria Lazzaroni, Francesco Romano, Silvio Traversaro, M Ali
Akhras, Daniele Pucci, and Francesco Nori. Towards real-time whole-body human dynamics
estimation through probabilistic sensor fusion algorithms. Autonomous Robots, 43(6):1591–1603,
2019.

[123] Martin Lawitzky, Alexander Mörtl, and Sandra Hirche. Load sharing in human-robot cooperative
manipulation. In 19th International Symposium in Robot and Human Interactive Communication,
pages 185–191. IEEE, 2010.

[124] Dongheui Lee, Christian Ott, Yoshihiko Nakamura, and Gerd Hirzinger. Physical human robot
interaction in imitation learning. In 2011 IEEE International Conference on Robotics and Au-
tomation, pages 3439–3440. IEEE, 2011.

[125] Jangwon Lee. A survey of robot learning from demonstrations for human-robot collaboration.
arXiv preprint arXiv:1710.08789, 2017.

[126] Jeongseok Lee, Michael X Grey, Sehoon Ha, Tobias Kunz, Sumit Jain, Yuting Ye, Siddhartha S
Srinivasa, Mike Stilman, and C Karen Liu. Dart: Dynamic animation and robotics toolkit. Journal
of Open Source Software, 3(22):500, 2018.

[127] Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Maltoni, David Filliat, and Na-
talia Díaz-Rodríguez. Continual learning for robotics: Definition, framework, learning strategies,
opportunities and challenges. Information Fusion, 58:52 – 68, 2020.

[128] Jiaman Li, Ruben Villegas, Duygu Ceylan, Jimei Yang, Zhengfei Kuang, Hao Li, and Yajie Zhao.
Task-generic hierarchical human motion prior using vaes. In 2021 International Conference on
3D Vision (3DV), pages 771–781. IEEE, 2021.

[129] W. Li, C. Jaramillo, and Y. Li. Development of mind control system for humanoid robot through a
brain computer interface. In 2012 Second International Conference on Intelligent System Design
and Engineering Application, pages 679–682, 2012.

[130] Yanan Li, Gerolamo Carboni, Franck Gonzalez, Domenico Campolo, and Etienne Burdet. Differ-
ential game theory for versatile physical human–robot interaction. Nature Machine Intelligence,
1(1):36–43, 2019.

[131] Yanan Li and Shuzhi Sam Ge. Human–robot collaboration based on motion intention estimation.
IEEE/ASME Transactions on Mechatronics, 19(3):1007–1014, 2013.

[132] Yanan Li, Keng Peng Tee, Wei Liang Chan, Rui Yan, Yuanwei Chua, and Dilip Kumar Limbu.
Continuous role adaptation for human–robot shared control. IEEE Transactions on Robotics,
31(3):672–681, 2015.

[133] Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel Van De Panne. Character controllers
using motion vaes. ACM Transactions on Graphics (TOG), 39(4):40–1, 2020.

[134] Yiming Liu, Raz Leib, William Dudley, Ali Shafti, A Aldo Faisal, and David W Franklin. The
role of haptic communication in dyadic collaborative object manipulation tasks. arXiv preprint
arXiv:2203.01287, 2022.

[135] Zhenguang Liu, Shuang Wu, Shuyuan Jin, Qi Liu, Shouling Ji, Shijian Lu, and Li Cheng. In-
vestigating pose representations and motion contexts modeling for 3d motion prediction. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

112



[136] Alfonso Montellano López, Joris Vaillant, François Keith, Philippe Fraisse, and Abderrahmane
Kheddar. Compliant control of a humanoid robot helping a person stand up from a seated position.
In 2014 IEEE-RAS International Conference on Humanoid Robots, pages 817–822. IEEE, 2014.

[137] Marta Lorenzini, Wansoo Kim, Elena De Momi, and Arash Ajoudani. A synergistic approach to
the real-time estimation of the feet ground reaction forces and centers of pressure in humans with
application to human–robot collaboration. IEEE Robotics and Automation Letters, 3(4):3654–
3661, 2018.

[138] Dylan P Losey, Craig G McDonald, Edoardo Battaglia, and Marcia K O’Malley. A review of
intent detection, arbitration, and communication aspects of shared control for physical human–
robot interaction. Applied Mechanics Reviews, 70(1), 2018.

[139] Jim Mainprice, E Akin Sisbot, Léonard Jaillet, Juan Cortés, Rachid Alami, and Thierry Siméon.
Planning human-aware motions using a sampling-based costmap planner. In 2011 IEEE Interna-
tional Conference on Robotics and Automation, pages 5012–5017. IEEE, 2011.

[140] Adrien Malaisé, Pauline Maurice, Francis Colas, François Charpillet, and Serena Ivaldi. Activity
recognition with multiple wearable sensors for industrial applications. In ACHI 2018-Eleventh
International Conference on Advances in Computer-Human Interactions, 2018.

[141] A. Malaisé, P. Maurice, F. Colas, and S. Ivaldi. Activity recognition for ergonomics assess-
ment of industrial tasks with automatic feature selection. IEEE Robotics and Automation Letters,
4(2):1132–1139, 2019.

[142] Christian Mandery, Matthias Plappert, Júlia Borras, and Tamim Asfour. Dimensionality reduction
for whole-body human motion recognition. In 2016 19th International Conference on Information
Fusion (FUSION), pages 355–362. IEEE, 2016.

[143] Antonio Gonzales Marin, Mohammad S Shourijeh, Pavel E Galibarov, Michael Damsgaard, Lars
Fritzsch, and Freek Stulp. Optimizing contextual ergonomics models in human-robot interaction.
In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1–9.
IEEE, 2018.

[144] Pauline Maurice, Ludivine Allienne, Adrien Malaisé, and Serena Ivaldi. Ethical and social con-
siderations for the introduction of human-centered technologies at work. In 2018 IEEE Workshop
on Advanced Robotics and its Social Impacts (ARSO), pages 131–138, 2018.

[145] Pauline Maurice, Adrien Malaisé, Clélie Amiot, Nicolas Paris, Guy-Junior Richard, Olivier
Rochel, and Serena Ivaldi. Human movement and ergonomics: An industry-oriented dataset for
collaborative robotics. The International Journal of Robotics Research, 38(14):1529–1537, 2019.

[146] Pauline Maurice, Vincent Padois, Yvan Measson, and Philippe Bidaud. Human-oriented design
of collaborative robots. International Journal of Industrial Ergonomics, 57:88–102, 2017.

[147] Pauline Maurice, Vincent Padois, Yvan Measson, and Philippe Bidaud. Assessing and improving
human movements using sensitivity analysis and digital human simulation. International Journal
of Computer Integrated Manufacturing, 32(6):546–558, 2019.

[148] Pauline Maurice, Vincent Padois, Yvan Measson, and Philippe Bidaud. Digital human modeling
for collaborative robotics. In DHM and Posturography, pages 771–779. Elsevier, 2019.

113



Bibliography
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Résumé

Cette thèse présente plusieurs contributions dans le domaine de l’interaction physique homme-robot. En
premier lieu, elle propose une méthode pour prédire la posture humaine pendant qu’un humain inter-
agit physiquement avec un robot. Deuxièmement, elle décrit des algorithmes et des outils de simulation
pour visualiser le score d’ergonomie humaine associé au mouvement d’un humain, en temps réel, même
lorsque l’humain est physiquement couplé au robot. Troisièmement, la thèse fait progresser les connais-
sances sur la façon de contrôler et d’adapter le comportement du robot pendant la collaboration, grâce à
des études expérimentales impliquant des humains et des robots dans des scénarios de comanipulation.
La première étude examine les meilleures stratégies d’impédance pour que le robot puisse collaborer
avec l’humain lors de la co-manipulation d’un tuyau dans une tâche d’insertion de précision, tandis que
la deuxième étude examine comment les humains s’adaptent aux stratégies d’impédance changeantes
d’un robot lors d’une tâche de sciage collaborative.
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Abstract

The thesis presents several contributions in the area of human-robot physical interaction. First, it
proposes a method to predict human posture while a human interacts physically with a robot. Second, it
describes algorithms and simulation tools to visualize the human ergonomics score associated with the
movement of a human, in real-time, even when the human is physically coupled with the robot. Third,
the thesis advances the knowledge on how to control and adapt the robot behaviour during collabora-
tion, thanks to experimental studies involving humans and robots in comanipulation scenarios. The first
study investigates the best impedance strategies for the robot to collaborate with the human during a
co-manipulation of a pipe in a precision insertion task, while the second study investigates how humans
adapt to changing impedance strategies of a robot during a collaborative sawing task.
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