Thèse soutenue

Modélisation thermomécanique performante de grandes pièces fabriquées par procédés de fabrication additive laser par dépôt de poudre.

FR  |  
EN
Auteur / Autrice : Vaibhav Nain
Direction : Muriel CarinThierry Engel
Type : Thèse de doctorat
Discipline(s) : Sciences pour l'Ingénieur
Date : Soutenance le 15/06/2022
Etablissement(s) : Lorient
Ecole(s) doctorale(s) : Sciences de l'ingénierie et des systèmes (Nantes Université)
Partenaire(s) de recherche : Laboratoire : Institut de Recherche Dupuy de Lôme - Institut de Recherche Dupuy de Lôme / IRDL
Jury : Président / Présidente : Anne-Marie Habraken
Examinateurs / Examinatrices : Patrice Peyre, Iryna Tomashchuk
Rapporteurs / Rapporteuses : Michel Bellet, Pierre Joyot

Résumé

FR  |  
EN

Les procédés de fabrication additive laser par dépôt de poudre offrent une opportunité unique pour la fabrication de grandes pièces à géométrie complexe. Cependant, les déformations mécaniques induites par ces procédés entrainent des défauts pouvant conduire à des pièces rebutées. Au cours de cette thèse, différents modèles ont donc été développés pour mieux comprendre l’apparition de ces déformations en fonction des paramètres opératoires. Un premier modèle thermomécanique prédit le comportement élastoplastique lors de la construction d’un mur en acier inoxydable 316L. L’apport de chaleur est modélisé par une source double ellipsoïdale mobile et la construction des couches se fait à l’aide d’une méthode hybride « Quiet/Active élément ». Un écrouissage isotrope non linéaire est considéré, avec prise en compte de la restauration d’écrouissage à hautes températures. Afin de réduire drastiquement les temps de calcul, une nouvelle source de chaleur est proposée utilisant une source ellipsoïdale allongée qui moyenne l’énergie sur un intervalle d’espace et de temps. Cependant, un intervalle d’espace trop grand diminue la précision du modèle. De nouveaux paramètres sont alors introduits afin d’identifier le meilleur compromis entre temps de calcul et précision. L’ensemble des modèles proposés est confronté avec succès avec des données expérimentales en termes de température et déplacement et ce pour différents paramètres opératoires. Enfin, des modèles multi-échelles basés l’activation par couche ou les méthodes de déformations inhérentes sont étudiés en vue de réduire les temps de calcul.