
Université de Limoges
ED 653 : SCIENCES ET INGENIERIE - XLIM
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IMT - Université Paul Sabatier Toulouse
Paul ARMAND Professeur, XLIM, Limoges Directeur de thèse
Vincent KERMENE Directeur de recherche, XLIM, Limoges Directeur de thèse
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non seulement développé, mais j’ai également acquis de nombreuses connaissances en traitant
avec lui. Les qualités personnelles de Vincent, telles que l’ouverture et la convivialité, ont
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Chapter 1

Introduction

This work studies algorithms for the dynamic phase control of an array of laser beams [31]. The
main interest from the physical point of view is to obtain a synthetic beam of high brightness
(high power and high beam quality). There exist many physical problems where a beam of
high power is required. The first application comes from the military goal to efficiently hit
potentially dangerous objects such as self-guided missiles or drones over big distances and is
developing in the context of the Tactical Advanced Laser Optical System project (TALOS).
The main requirement is that the propagated light must have a high destructive effect, which
can be transmitted over a long distance without tangible energy losses. Another application
uses a pressure of photons to move light-driven nano-spacecraft in the vacuum of space, which
is equipped with a light sail (Breakthrough Starshot), where the same approach can be applied
to clean the earth’s orbital space from debris (CleanSpace). One more interesting application
raises from the need to accelerate particles using a high power laser (ICAN), where the main
user is Conseil Européen pour la Recherche Nucléaire (CERN). To achieve the defined task the

(a) TALOS (b) Light sail (c) CleanSpace (d) ICAN

Figure 1.1: Possible applications of a beam with a high brightness.

coherent beam combining [6] approach is applied. The physical fact that is extensively used
here is the interference of light waves, which is controlled by their phases. Thus, clearly, if
several parallel waves are in phase, in the far field they overlap and exhibit an intense central
lobe. An example of such a process is depicted on Figure 1.2, where the near field on the left
(an intensity pattern of the four output beams of the laser system) and the far field on the right
(an intensity pattern after propagation) are presented. It can be seen that depending on beams
phases a coherent in phase beams (high peak at the center) or incoherent, without stable phase
relationships (smooth intensity distribution) intensity pattern can be obtained.

This problem can be formulated in terms of a mathematical model. Each j-th beam is a
light wave with its own amplitude and phase. This information can be encoded into a complex
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Figure 1.2: Coherent and Incoherent combining example: left, intensity pattern of 4 beams
(near field), right, intensity pattern of the their far field when beams are coherent (in phase
case) or incoherent (without stable phase relationships)

number xj ∈ C, which has an amplitude-phase representation xj = αj · eiϕj , where αj ≥ 0
equals to a square root of beam intensity, and ϕj ∈ [−π, π[ represents its phase.

Then, the problem of maximization of brightness for an array of n laser beams can be
formulated in terms of the following mathematical model∣∣∣∣ n∑

j=1

αj · eiϕk
∣∣∣∣→ max

{ϕ1,...,ϕn}
.

Clearly, it reaches maximum when ϕ1 = · · · = ϕn, which coincides with physical interpretation.
However, despite the simplicity of the formulation, there are several difficulties, which increase
the complexity of the problem.

The first difficulty is that direct phase measurements ϕ1, . . . , ϕn are not possible, which
means that these values are not observable directly. The only available possibility is phase
modulations by given values δϕ1, . . . , δϕn. One option to receive information about the phases
of an array of laser beams is to measure the intensities of the transmitted laser rays through an
optical diffuser. The transformation returns the phase-less information which can be used for a
vector of phase corrections ϕ ∈ [−π, π[n computation. This idea is a basis for an opto-numerical
algorithm developed in [31]. In practice, the algorithm is applied continuously and never stops.
The reason comes from the fact that the phases of the beam array change continuously at high
frequency up to some kilohertz, which is the case due to the intrinsic noise of the independent
amplifiers and because of the sensitivity of the laser system to environmental perturbations
such as pressure, temperature or acoustics. Thus, the optical part of the algorithm is done by
means of noisy intensity measurements from a photonic system plus phase modulations, and
the numerical part is an algorithm, which computes ϕ ∈ [−π, π[n.

The second difficulty is that we have a need to correct unknown phases ϕ1, . . . , ϕn not just
to a constant value to obtain a co-phased far field pattern, but to an arbitrary vector of targets
ϕt1, . . . , ϕ

t
n. This vector describes the atmospheric perturbations which frequently changes and

must be taken into account to maintain a high power density far away from the laser system.
Thus, it is extremely important for the numerical algorithm to be adaptive and to not require
extra computational operations to change the target.

The third difficulty is a presence of a high level of noise in the experimental process. There
are at least two possible sources which are the noise during measurements and phase corrections.
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Figure 1.3: Phase correction to a zero target (MO: master oscillator, ϕ: phase modulator, A:
fiber amplifier)

Figure 1.4: Phase correction to an atmospheric compensation target.

Thus, it is extremely important that the algorithm, which computes a phase correction vector
δϕ, is highly robust.

The crucial point, which is the main topic of this work, is to select from existing numerical
algorithms or to develop a new one, that can perform a phase reconstruction satisfying the
following criteria:

• Relevancy: the ability of the algorithm to compute a sequence of corrections capable to
hit the target signal with high precision.

• Rapidity: the ability to do it in a short time (less than one millisecond).
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1.1. NOTATION

• Robustness: the algorithm should be as insensitive as possible to a high level of experi-
mental noises.

• Scalability: the algorithm must remain efficient with an increasing number of input
sources.

• Adaptability: dynamic updates of the target signal must be taken into account. The
correction process must be able to quickly adapt to a change in the target signal.

1.1 Notation

All vector inequalities are understood componentwise. Let x be a vector with complex com-
ponents. The j-th component of x is denoted by xj. The vectors |x| and arg(x) are the
vectors those components are the modulus and argument of each component of x. By con-
vention we set arg(0) = 0. When we write |x| + c or arg(x) + c, for c ∈ C, the operation is
understood componentwise, which means |xj| + c and arg(xj) + c for all j. Given two vec-
tors x and y in Cn, their Euclidean scalar product is denoted by 〈x, y〉 = x∗y = x̄>y and
means that 〈x, y〉 =

∑n
j=1 x̄jyj, where x̄j is a complex conjugate. The associated norm is

‖x‖ = 〈x, x〉1/2. Let us consider a matrix A ∈ Cm×n, then aj means the j-th row and a·j
denotes the j-th column. The component by component product of two vectors is denoted by
x� y = (x1y1, . . . , xnyn)> for x, y ∈ Cn. The same sign is used if we multiply vector by matrix
componentwise which means that for A = (a·1, . . . , a·n) ∈ Cm×n and x ∈ Cm we have that
A� x = (a·1 � x, . . . , a·n � x). Let us denote by A(:) the operation of flattening a matrix into
a vector such that A(:) = (a11, . . . , a1n, a21, . . . , a2n, . . . , am1, . . . , amn).

Figure 1.5: Mathematical notations for physical values.

Let us also introduce the notations for physical values that are used in this work frequently.
By x ∈ Cn we denote a set of beams the phases of which we want to correct. The target phases
ϕt = (ϕt1, . . . , ϕ

t
n) are encoded into a complex vector x̂ ∈ Cn such that x̂ = |x| � eiϕt , where t
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1.2. PHASE RETRIEVAL PROBLEM

in superscript means ”target”. By b ∈ Rm
+ we denote a set of intensity measurements of lasers

that were sent through a diffuser. By x̃ ∈ Cn we denote an approximation of x by means of
some numerical algorithm that uses intensities b for this goal.

1.2 Phase retrieval problem

This work studies the phase retrieval algorithms, that can be split into two families:

• The model-based family of algorithms uses a mathematical description of the physical
process of diffusion, scattering, and measurements for an array of laser beams. A mathe-
matical model together with measured intensities is then used for phase recovery.

• The model-less family of algorithms tries to approximate the physical transformation by
means of a neural network (parametric function) from some family, where a finite set of
measurements and phases is required to learn the dependence from scratch.

The conceptual difference between these two families is that the first one uses a model with
inputs to produce an output vector, whereas the second case is about building a model that
approximates the desired mapping and then can be used for phase recovery. Pictorially, the
difference is described on Figure 1.6.

Classical

programming

Machine

learning

Model

Inputs

Inputs

Outputs

Outputs

Model

Figure 1.6: Machine learning paradigm.

These two families are considered in current work as the options for a phase retrieval algo-
rithm block depicted on Figure 1.7 to compare and select the best one.

Let us consider the first family of phase retrieval algorithms. The main idea is to model
a signal scattering by a linear map x → {〈āj, x〉}mj=1, where A = (a1, . . . , am)> ∈ Cm×n is
called a transfer matrix or transmission matrix, n is a number of signals, and m is a number
of detectors, and to model signal measurements by a square of modulus x→ |x|2. Let b2 ∈ Rm

+

be a vector of intensity measurements returned by physical detectors. Then, the problem of
signals reconstruction with a given vector b and known matrix A is called a phase retrieval (see,
e.g., [22, 32]) and writes as

Find x ∈ Cn such that |〈āj, x〉| = bj, for j ∈ {1, . . . ,m}, (1.1)

or equivalently
Find x ∈ Cn such that |Ax| = b. (1.2)
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1.2. PHASE RETRIEVAL PROBLEM

Note, that a multiplication x by an arbitrary complex number with a unit amplitude does not
change the measurements

|〈āj, x · eiθ〉| = |〈āj, x〉| for all θ ∈ [−π, π[,

which means that a signal x can be reconstructed up to a constant shift in phase.
To use this model a transmission matrix A ∈ Cm×n is required. Physically, it depends on

the scattering device which is used in the experimental setup. A simple lens corresponds to a
Fourier transform of the signal which can be described as the matrix A ∈ Cm×n. In this case,
knowing the characteristics of a lens the transmission matrix can be easily built. In contrast, if
a scattering device is represented by a diffuser, as for the opto-numerical algorithm [31], then
each j-th row of matrix is computed by means of a phase retrieval algorithm

Find aj ∈ Cn such that |〈x̄k, aj〉| = bkj for all j ∈ {1, . . . ,m}, k ∈ {1, . . . , N},

or equivalently
Find A ∈ Cm×n such that |XA>| = B,

where sets of signals X ∈ CN×n and measurements B ∈ RN×m
+ obtained experimentally are

required. To build a transmission matrix A the number of measurements m must be specified
in order to have a possibility to solve (1.2). There are results [1, 11], where it is proved that
when m ≥ 4n− 4 then the problem (1.2) always has a unique solution up to a constant phase
for any generic A. Following [2], the term ”generic” can be thought of as the property which
is satisfied with probability 1 by measurement vectors {ai}mi=1 ⊆ Cn drawn from continuous
distributions. In other words, if columns of matrix A were drawn from a continuous probability
distribution then mapping x → |Ax| is injective and thus a solution of (1.2) is unique up to a
constant phase. Despite the fact of uniqueness, it is still a difficult problem to retrieve vector
x ∈ Cn by its measurements b ∈ Rm

+ .
For this aim, a huge variety of numerical algorithms were developed. The main idea is to

reformulate (1.2) in terms of a minimization problem with some useful properties for a specific
algorithm. For instance, the reformulation

min(x,y)∈Cn×Cm
1
2
‖Ax− y‖2

s.t. |y| = b.
(1.3)

can be solved in terms of iterative projections between the range of a transmission matrix
range(A) = {y ∈ Cm : y = Ax,∀x ∈ Cn} and the set Mb = {y ∈ Cm : |y| = b}. This algorithm
is known as alternating minimization or alternating projection algorithm [25, 23]. It is also some-
times referred as the Gerchberg–Saxton algorithm [45], while the original Gerchberg–Saxton
algorithm [14] is when the matrix A corresponds to a discrete Fourier transform.

This formulation can be modified by introducing variables u and θ which replaces y in (1.3)
by u� eiθ and writes as

min(x,u,θ)∈Cn×Rm+×Rm
1
2
‖u− b‖2

s.t. Ax = u� eiθ. (1.4)

This reformulation is used in [20] to solve (1.2) by means of Alternating Directions Method
of Multipliers [28, §4.4] which is also a part of projection algorithms family. In contrast to
the alternating projections algorithm, ADMM requires a way of computing a regularization
parameter ρ, which is an additional difficulty.

9



1.3. PHASE CORRECTION PROBLEM

There is also the reformulation which is useful for the descent direction family of algorithms.

minx∈Cn
1
2
‖|Ax|2 − b2‖2 (1.5)

Using a square of left and right parts of (1.2), the function to minimize in (1.5) is differentiable
in terms of Wirtinger calculus (Section 2.3). This property gives an ability to apply the descent
algorithms like gradient descent [7], Gauss-Newton [13] or other.

There is the family of algorithms that is based on the reformulation of (1.2) in terms of a
relaxed semi-definite programming [8, 45]. One possible formulation

minX∈Cn×n trace(X)
s.t. trace(aja

∗
jX) = b2

X � 0
(1.6)

whereX = xx∗ when exact recovery occurs. Otherwise, it is reasonable to compute a normalized
leading eigenvector of X to obtain a solution of (1.2). This relaxation is called as PhaseLift [8].

Another reformulation from this family writes as

minU∈Cn×n trace(UM)
s.t. diag(U) = 1n

U � 0
(1.7)

where M = diag(b)(I − AA†)diag(b). If rank(U) = 1, then the solution of (1.2) is such that
U = xx∗. Otherwise, the normalized leading eigenvector of U is used as an approximate solution
of (1.2). This approach known as a MaxCut [45]. The number of parameters to optimize in
(1.7) and (1.6) raise with a quadratic rate if n increases. Since an efficiency of a phase retrieval
algorithm is the main criteria in this work, reformulations (1.6) and (1.7) are not considered to
use.

Let us consider the second family of phase retrieval algorithms. In this case, there are no
assumptions on the form of connection between phases of beams and the measurements. The
only information that could be given is a set of N couples D = {(xi, bi)}Ni=1 where xi ∈ Cn and
bi ∈ Rm

+ are input signals and experimentally performed measurements. The goal is to use D as
training data to obtain an artificial neural network (NN) that approximates measurements to
signals mapping. One of the schemes covered in the published literature [17] relies on a phase
recovery by a convolutional neural network, such as in the pioneering work on NN for adaptive
optics [30]. The NN serves to map the intensity of an interference pattern of the beam array
directly into the distribution of phase in the array. The simulations reported in [17] shows
that the accuracy of the CNN-based phase control drops when the array increases from 7 to 19
beams. This is a limitation that was also highlighted in the field of wavefront sensing so that
NNs were often used only as a preliminary step for initialization of an optimization routine
[27]. The numerical experiments in [46] also confirms that a direct phase recovery appears to
be a complicated task.

1.3 Phase correction problem

Schematically, the process of phase control for a set of n beams is described on Figure 1.7.
There, one can see that the input beam array x ∈ Cn, the phases of which are unknown but

10



1.3. PHASE CORRECTION PROBLEM

with known amplitudes, is passed through the phase modulation block where phases can be
changed using a vector ϕ ∈ [−π, π[n. Then, beams are split by a beamsplitter where a reflected
part is sent to the output and a passed part is sent to a diffuser. This device mixes the input
beams which produces an interference pattern which is called speckle. The intensities of this
pattern are measured by means of photodetectors visualized by green dots on the speckle image
and stored in the vector b ∈ Rm

+ , where m > n. These measurements together with the target
signal x̂ are then given to the phase retrieval algorithm, the goal of which is to reconstruct
approximately the measured signals x using b and x̂. The phases of a retrieved approximation
x̃ ∈ Cn are then subtracted from the given phases of the target signal x̂, and sent to the phase
modulation block. The meaning of phase correction vector ϕ = arg(x̂)− arg(x̃) can be clearly

Figure 1.7: Opto-numerical algorithm [31].

seen in the case of one laser (Figure 1.8). The vector ϕ, which is applied to x, moves it closer
to the target x̂. Thus, we have that

arg(x′) = arg(x) + arg(x̂)− arg(x̃)

= arg(x) + ϕ,

from where it is clear that arg(x′) = arg(x̂) if retrieved phases arg(x̃) coincide with arg(x).
However, one correction can be not enough to lock the phases to the prescribed values. That

is why the process of measurements and corrections repeats several times. At this level, it is
important to understand a difference between a phase correction and phase retrieval problems.
As it was revealed above, by phase correction task we consider a problem to set beams’ phases
to the prescribed target values, where the initial beams phases are not observable. A phase
retrieval problem aims to approximate x using its measurements b (see, e.g., [22, 32]). A
particular application of phase retrieval algorithm in a phase correction loop requires target x̂
to be used as an initial point, but originally it is not required.

11



1.3. PHASE CORRECTION PROBLEM

Figure 1.8: One dimensional phase correction visualization.
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Chapter 2

Preliminaries

2.1 Noise and data generation

As it is discussed in Chapter 1, the experimental data contains a high level of noise. Thus,
one of the main requirements for the algorithms that are considered in this work is robustness.
To verify it numerically, the noise must be generated and added during numerical simulations,
which gives the ability to estimate the robustness of the algorithm before using it in experiments.
This section explains how noise is generated during numerical simulations.

In practice, the noise comes from intensity measurements by means of a camera or photode-
tectors. Experimental intensity measurements b ∈ Rm

+ together with input signals x ∈ Cn are
used to find parameters aj ∈ Cn for j ∈ {1, . . . ,m} of the mathematical model (1.2), which
leads to a presence of noise in it. To simulate that numerically it is proposed to use the following
approach

A′ = A+ σε, (2.1)

where σ controls the level of noise, ε ∈ Cm×n be a random matrix where Re{εij}, Im{εij} ∼
N (0, 1), A ∈ Cm×n be the generated transmission matrix in the same way as ε, which is used
to compute a vector of measurements b ∈ Rm

+ , and A′ is a noisy transmission matrix, which
will be given to the algorithm. Thus the algorithm will try to find x ∈ Cn such that |Ax| = b
using A′ and b. The same conditions are for initialization methods.

2.2 Metrics

In this section, we review several metrics than can be used to evaluate the distance between
two signals represented by two vectors x and y in Cn.

The first metric, used in [31]1, is useful to only compare the arguments of two vectors. It is
defined by

q(x, y) =

√
1−

∣∣∣∣ 〈x, y〉〈|x|, |y|〉

∣∣∣∣2. (2.2)

Proposition 1 For all vectors x and y in Cn, with all nonzero components, q(x, y) = 0 if and
only if there exists c ∈ R such that arg(x) = arg(y) + c.

1In [31] the phasing quality is defined as 1− q(x, y)2.
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2.2. METRICS

Proof. Let (x, y) ∈ Cn × Cn such that xk 6= 0 and yk 6= 0 for all k = 1, . . . , n. The assertion
follows from the triangle inequality2. Indeed, we have

|〈x, y〉| =

∣∣∣∣∣
n∑
k=1

|xk||yk|ei(arg(yk)−arg(xk))

∣∣∣∣∣
≤

n∑
k=1

|xk||yk|

= 〈|x|, |y|〉,

with an equality if and only if arg(yk) = arg(xk) + c, with c = arg(y1)− arg(x1). 2

The metric (2.2) is sensitive to changes in |x| and |y| (Example 1) which is redundant for
our applications where just phase changes are interesting to consider.

Example 1 (q(x, y) sensitivity) Let us consider x = (1, α·eiϕ) and y = (1, 1) for some α > 0
and ϕ ∈ [0, 2π]. Then we obtain that

q(x, y) =

√
1−

∣∣∣∣ 〈x, y〉〈|x|, |y|〉

∣∣∣∣2
=

√
1− |1 + α · eiϕ|2

|1 + α|2

=

√
1− (1 + α cosϕ)2 + (−α sinϕ)2

(1 + α)2

=

√
1− 1 + 2α cosϕ+ α2

(1 + α)2

Let us visualize this function with respect to α ∈ (0, 10] and ϕ ∈ [0, 2π]. It can be seen on

Figure 2.1: q(x, y)

Figure 2.1 that for any fixed ϕ ∈ [0, 2π] the value of q(x, y) is not constant when α is modified.

2Let z1, . . . , zn be complex numbers. We have |
∑n

k=1 zk| ≤
∑n

k=1 |zk|. Moreover, if zk 6= 0 for all k, then the
previous inequality is an equality if and only if for all k = 2, . . . , n zk/z1 is a positive real number.

14



2.3. WIRTINGER CALCULUS

It is proposed to use a normalized quality metric

qnorm(x, y) = 1− n−2|〈ei arg(x), ei arg(y)〉|2. (2.3)

Proposition 2 For all vectors x and y in Cn, with all nonzero components, qnorm(x, y) = 0 if
and only if there exists c ∈ R such that arg(x) = arg(y) + c. Moreover, qnorm(x, y) is such that

qnorm(x, y) = q
(
x
|x| ,

y
|y|

)2
.

Proof. The first assertion is shown following the same approach as in Proposition 1 setting
|x| = |y| = 1n. The second assertion is shown by direct formula evaluation for x and y from Cn

q

(
x

|x|
,
y

|y|

)2

= 1−
∣∣∣∣
〈
x
|x| ,

y
|y|

〉〈∣∣ x
|x|

∣∣, ∣∣ y|y| ∣∣〉
∣∣∣∣2

= 1−
∣∣∣∣〈ei arg(x), ei arg(y)〉

〈1n, 1n〉

∣∣∣∣2
= 1− n−2|〈ei arg(x), ei arg(y)〉|2

2

In [7], the distance between two complex vectors is defined as follows. For (x, y) ∈ Cn×Cn

define
dist(x, y) = min

φ∈[0,2π]
‖x− eiφy‖. (2.4)

Proposition 3 For all vectors x and y in Cn, dist(x, y) = ‖x − e−i arg(〈x,y〉)y‖. Moreover,
dist(x, y) = 0 if and only if |x| = |y| and there exists c ∈ R such that arg(x) = arg(y) + c.

Proof. Let (x, y),∈ Cn × Cn and φ ∈ R. We have

‖x− eiφy‖2 = ‖x‖2 + ‖y‖2 − 2 Re(eiφ〈x, y〉).

The result follows from the fact that Re(eiφ〈x, y〉) ≤ |eiφ〈x, y〉| = |〈x, y〉|, with an equality if
and ony if φ = − arg(〈x, y〉). 2

In some cases, it is also useful to use normalized distance defined as

distnorm(x, y) =
dist(x, y)

max{‖x‖, ‖y‖}
. (2.5)

2.3 Wirtinger calculus

In this section, we explain Wirtinger calculus which is a way to compute derivatives of a real-
valued function on a complex-valued domain f : C→ R. The application of Wirtinger calculus
is used in this work to differentiate metrics that are defined in Section 2.2.

It is known from the analysis that complex variable function is differentiable if Cauchy-
Riemann conditions are satisfied i.e. the function is holomorphic. However, the neural network
model and loss can be non-holomorphic functions. In this case, Wirtinger calculus [19] can be
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2.3. WIRTINGER CALCULUS

applied. The idea of Wirtinger was that any differentiable mapping f : R2 → R2 can be cast
in the complex domain by introducing the conjugate coordinates and changing variables such
that (

z
z̄

)
=

(
1 i
1 −i

)(
x
y

)
. (2.6)

It means that any complex- or real-valued function

f(z) = f(x, y) = u(x, y) + iv(x, y),

of several variables can be written in the form f(z, z̄), where f is holomorphic in z = x + iy
for fixed z̄,and holomorphic in z̄ = x − iy for fixed z. This holds as long as a the real-valued
functions u and v are differentiable as functions of the real variables x and y [7]. As an example,
consider

f(z) = (b− |a∗z|2)2 = (b− z̄>aa∗z)2 = f(z, z̄),

with z, a ∈ Cn, b ∈ R. While f(z) is not holomorphic in z, f(z, z̄) is holomorphic in z with
fixed z̄ and vice versa. Then, the Wirtinger derivative can be defined as in Observation 1.

Observation 1 (Wirtinger derivative) Let us consider a real-valued function f(x, y) : R2 →
R. Let f(z, z̄) : C2 → R be the same function defined on a complex domain by changing vari-
ables as it is shown in (2.6) for z ∈ C and its conjugate z̄, and f(x, y) is differentiable with
respect to x and y. Then derivatives on the complex domain can be expressed via derivatives in
the real domain and write

∂f

∂z
:=

∂f(z, z̄)

∂z

∣∣∣∣
z̄=const

=
1

2

(
∂f(x, y)

∂x
− i∂f(x, y)

∂y

)
∂f

∂z̄
:=

∂f(z, z̄)

∂z̄

∣∣∣∣
z=const

=
1

2

(
∂f(x, y)

∂x
+ i

∂f(x, y)

∂y

)
.

Proof. From (2.6), we can explicitly express x and y in terms of z and z̄ as

x =
1

2
(z + z̄), y = − i

2
(z − z̄).

Let us define hx(z, z̄) = 1
2
(z + z̄) and hy(z, z̄) = − i

2
(z − z̄). Then, since

f(z, z̄) = f(x, y) = f
(
hx(z, z̄), hy(z, z̄)

)
,

we obtain that

∂f(z, z̄)

∂z
=
∂f(x, y)

∂hx

∂hx
∂z

+
∂f(x, y)

∂hy

∂hy
∂z

=
1

2

(
∂f(x, y)

∂x
− i∂f(x, y)

∂y

)
.

Derivative with respect to z̄ can be obtained in the same way. 2
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2.3. WIRTINGER CALCULUS

The idea, presented in Observation 1, can be generalized to a multivariate function in order
to compute a Wirtinger gradient (Observation 2). For this aim, let us write the following useful
identities, which are applied to f(z, z̄) for z ∈ C.(

∂f

∂z

)
=
∂f̄

∂z̄
, when f is real

(
∂f

∂z

)
=
∂f

∂z̄
(Conjugation rule)(

∂f

∂z̄

)
=
∂f̄

∂z
, when f is real

(
∂f

∂z̄

)
=
∂f

∂z
(Conjugation rule)

df =
∂f

∂z
dz +

∂f

∂z̄
dz̄ (Differential rule)

∂(h ◦ g)

∂z
=
∂h

∂g

∂g

∂z
+
∂h

∂ḡ

∂ḡ

∂z
(Chain rule)

∂(h ◦ g)

∂z̄
=
∂h

∂g

∂g

∂z̄
+
∂h

∂ḡ

∂ḡ

∂z̄
(Chain rule)

Observation 2 (Wirtinger gradient [16]) Let z = (z1, . . . , zn)> ∈ Cn be an n-dimensional
column vector, where zj = xj + iyj for j ∈ {1, . . . , n}. Let f : Cn → R be a real-valued function
of complex variable z ∈ Cn Then, Wirtinger gradient writes as

∇f(z) = 2

(
∂f

∂z
,
∂f

∂z̄

)∗
,

where ∗ operation means consequent conjugation and transposition, and ∂f
∂z

=
(
∂f
∂z1
, . . . , ∂f

∂zn

)>
,

∂f
∂z̄

=
(
∂f
∂z̄1
, . . . , ∂f

∂z̄n

)>
for ∂f

∂zj
= 1

2

(
∂f
∂xj
− i ∂f

∂yj

)
, ∂f
∂z̄j

= 1
2

(
∂f
∂xj

+ i ∂f
∂yj

)
.

Proof. Let us consider a coordinate transformation (2.6), which we augment to n-dimensional
case as

c =

(
z
z̄

)
=

(
I iI
I −iI

)(
x
y

)
= Mr, (2.7)

where I here is an identity matrix n by n, x, y ∈ Rn. Note here that M−1 = 1
2
M∗. Since the

coordinate transformation is a linear transformation it follows that for f : Cn → R that can be
represented in different coordinates f(z) = f(z, z̄) = f(c) = f(r) = f(x, y) we have that

∂f

∂r
=

(
∂c

∂r

)>
∂f

∂c
= M>∂f

∂c
.

Note, that since f is real-valued then we have that ∂f
∂r

=
(
∂f
∂r

)
= M∗ ∂f

∂c̄
, which will be used to

define gradient in c. Let us define the displacement in r as ∆r = −α∂f
∂r

for some α > 0, which
coincides with a displacement in a gradient descent method. Thus, we are interested in how it
writes in terms of complex coordinates c. Thus we obtain that

∆c = M∆r = −αM ∂f

∂r
= −αMM∗∂f

∂c̄
= −2α

∂f

∂c̄
(2.8)
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2.4. TENSORFLOW LIBRARY EXTENSION

Because c̄ = (z∗, z>)>, (2.8) can be written as

∆c =

(
∆z
∆z̄

)
= −2α


∂f

∂z̄

∂f

∂z

 . (2.9)

The proof follows. 2

Note, that from Observation 2 we have that the gradient of function of n complex variables
is of dimension 2n. Clearly, it is because the augmented system of coordinates (z, z̄) is used.
Thus, a displacement in the variable z only writes as −2α∂f

∂z̄
and then gradient is

∇zf(z) = 2
∂f

∂z̄
. (2.10)

2.4 Tensorflow library extension

Wirtinger calculus can also be applied to compute gradients of complex-valued neural networks.
This possibility is already implemented [3] in Tensorflow library, which is a popular framework
to build, train, and use neural networks. The gradient of a complex-valued function here is
computed as

∇zf(z) =
∂f

∂z
+
∂f̄

∂z
, (2.11)

which coincides with (2.10) if f is a real-valued function. Despite the fact that Tensor-
flow supports complex derivatives, there is no support for complex-valued layers. There ex-
ist several implementations on GitHub, which extend Tensorflow with complex-valued lay-
ers. However, not all of them are maintained by their creators, which produces difficulties
in the version control of dependent libraries. For this goal, we created our own implementa-
tion (https://gitlab.xlim.fr/shpakovych/cvnn) that extensively uses a polymorphic paradigm
in object-oriented programming, which gives an ability to reduce significantly the size of the
library in comparison with other implementations.

2.5 Profiling method

In this section, we formulate the profiling method to be able to compare the performance of
the algorithms, which are considered in this work. The main interest is to measure the required
time to solve a problem by a selected algorithm. To achieve this goal we must specify both the
conditions under which we conclude that the problem is solved and the way to measure time.

Definition 1 (Solved problem) The problem is considered to be solved if the value of a dis-
tance metric between the k-th approximation of a solution and a solution itself is smaller than
a selected tolerance for the last 10% percent of iterations, where the total number of iterations
was fixed before.
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2.5. PROFILING METHOD

Example 2 (Solved problem) Let the total number of iterations is set to 100. Let the tol-
erance value is set to 0.001. Let the distance metric is set to distnorm. Let x(k) ∈ Cn be the k-th
approximation of a solution computed by some algorithm, and let x ∈ Cn be a solution. Then,
the problem is considered to be solved if for all k > 90 we have that distnorm(x(k), x) < 0.001.

Definition 2 (Time measurement) The time of one iteration of an algorithm is measured
by counting the number of performed basic operations and multiplying them by their correspond-
ing time of evaluation.

Definition 3 (Time of basic operations) The list of basic operations and their correspond-
ing time of evaluation, which is CPU dependent and fixed in this work, is presented in Ta-
ble 2.1. These values were obtained by measuring the time of performing the selected operations

Operation Time in seconds

+ 0.1089426 · 10−8

− 0.0834372 · 10−8

× 0.1665280 · 10−8

/ 0.3297135 · 10−8

| · | 0.2500649 · 10−8

√
· 0.1788236 · 10−8

sin(·) 1.4113816 · 10−8

cos(·) 1.1528648 · 10−8

tan(·) 2.5544987 · 10−8

arctan(·) 2.2179606 · 10−8

exp(·) 1.3695341 · 10−8

Table 2.1: Time to perform basic operations.

for random numbers 1 million times and then taking the average. For this goal, a program in
C language was written.

Example 3 (Time of basic operations) Let us count the time of evaluation sin(x) for x ∈
Rn. Following the Table 2.1, we obtain 1.4113816 · 10−8n seconds.

Definition 4 (Profiling method) The idea is to build a statistical curve that reveals which
part of the problems can be solved by a selected time. The same strategy can be applied for the
required number of algorithm iterations to achieve a selected tolerance.

Example 4 (Profiling method) For instance, from Figure 2.2 we can conclude that Alter-
nating projection method with random initialization point can solve approximately 50% of all
problems in 4 ms and requires maximum 200 iterations to solve 55% of all problems.

19



2.6. HEAT MAP METHOD

0 2 4 6 8
Milliseconds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

So
lv

ed
 ta

sk
s

AP [random]

0 100 200 300 400
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

So
lv

ed
 ta

sk
s

AP [random]

Figure 2.2: Profiles example.

2.6 Heat map method

In this section, we introduce the method to explore the capabilities of the selected algorithm.
In this work, we consider two kinds of problems to solve: phase retrieval and phase correction.
The size of these problems is determined by the number of beams n and the number of intensity
measurements m. Also, we consider two kinds of algorithms: optimization methods and neural
network methods.

In the context of optimization methods, it is reasonable to check how many problems can be
solved for different relations of n and m, and how many iterations it requires. Thus, we generate
N problems for different n and m, try to solve them by means of an optimization method with
a defined maximal number of iterations and required stopping tolerance, and count how many
problems were solved, where the meaning of the solved problem is given in Definition 1. Let us
consider that M problems were solved for some fixed n and m. Then, we get the M/N fraction
which characterizes the solved part of all problems. Also, we compute how many iterations we
require on average to solve the problem of size n by m. Then, it is convenient to visualize these
results in terms of heat maps as it is presented on Figure 2.3.

In the context of neural network methods, we are more interested in a potential capability
to solve problems of size defined by n and m. That is why instead of the fraction of solved
problems we plot an average minimum value of the selected metric in a gray scale. The neural
network method does not require iterations to solve a phase retrieval problem. That is why,
instead of an average number of iterations, we plot an average relative time required to train
the model of size defined by n and m (Figure 2.4).
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Figure 2.3: (a) Heat maps of the fraction of solved problems in grey scale and (b) its required
average number of iterations.

(a) (b)

Figure 2.4: (a) Heat maps of the minimal achievable mean qnorm in grey scale and (b) its
required relative training time. The relative time on (b) is computed by dividing a learning
time in seconds for each n and m/n by the minimal time to obtain GPU invariant information.
The minimal time required by the GPU used in for this experiments was 1.3 s.
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Chapter 3

Machine learning framework

Let X be a space of objects, Y be a space of responses, and let y∗ : X → Y be an unknown
function that exactly maps each object to its response. Let the evaluations yi = y∗(xi) are
known on a given subset {x1, . . . , xN} ⊂ X of size N . Let D = {(xi, yi)}Ni=1 be a set of couples
which we call training sample.

The goal is to find w ∈ W(F) such that a(·, w) ≈ y∗(·) for

a : X ×W(F)→ Y, (3.1)

where a is taken from some parametric family of functions a ∈ {a(x,w) : X ×W(F) → Y },
W(F) is a space of weights over a field F (either R or C). Each parametric family defines the
form of a.

The quality of approximation y∗ by a depends on the parametric family from where a was
taken and on the size of training sample N . Since y∗ is unknown, we can measure the quality
just on the training sample or on some subset of it. Usually, people split the training sample
on the train and test disjoint subsets Dtrain = DN1

i=1, Dtest = DN
i=N1

where N1 = N − k to avoid
evaluation of model on the information that was used to find the parameters w∗ ∈ W(F). The
quality approximation on a given subset can be measured by loss or cost function L : Y×Y → R.

If a loss function is a differentiable or at least piecewise differentiable then the task of finding
parameters w∗ ∈ W(F) can be formulated as the unconstrained optimization problem

w∗ ∈ argminw∈W(F)L(a(·, w), Dtrain). (3.2)

There is a big variety of optimization methods that can be used to solve unconstrained
problems. However, this set reduces with an increase of a training sample size and a dimension
of parametric space W(F). For example, if it is not possible to store a training sample in
the memory or the time of computing gradients is too long, then only stochastic methods like
stochastic gradient descent [18] can be applied. These methods have two big advantages that
are extensively used in machine learning. First, they can use a descent directions computed
just on a subset of a training sample to perform an optimization step. Second, the steplength
of a descent direction is computed without linesearch methods which increases an optimization
speed dramatically.

When the parameters w∗ are found, we obtain a∗(·) = a(·, w∗) function that approximates
y∗(·) in sense of loss function on the given training set. The test subset of training sample then
is used to check the generalizing ability of the approximation a.
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Example 5 Let us consider the regression problem. For instance, we need to know the price
y of a flat using the information about a number of rooms x1 and a distance to the transport
line x2. And suppose that we know these characteristics for N flats. It means that we have
training sample of size N in form D = {([x1,i, x2,i], yi)}Ni=1 where X = {[x1,i, x2,i]}Ni=1 is the set
of objects and Y = {yi}Ni=1 is the set of responses.

Let we also have an assumption that there is a linear dependence between x1, x2 and y. It
means that we can choose a : X ×W(F)→ Y from the parametric family of linear functions

a(x,w) = w0 + w1x1 + w2x2,

where x = [x1, x2] ∈ R2, w = [w0, w1, w2] ∈ W(R) = R3. Then we define the loss function for
this task. The obvious choice is the squared l2 norm normalized by the number of objects N

L(ŷ, y) =
1

N

N∑
i=1

(ŷi − yi)2
2,

where ŷi = w0 +w1x1,i +w2x2,i is the predicted i-th price, and yi is the original i-th price from
training sample.

Then, we split training sample on the train and test disjoint subsets Dtrain and Dtest and
define Xtrain, Ytrain to be objects and responses from Dtrain, and Xtest and Ytest to be objects
and responses from Dtest. Then the problem of finding parameters w can be formulated as the
following optimization problem

w∗ ∈ argminw∈W(R)

1

|Dtrain|

|Dtrain|∑
i=1

(
a([Xtrain]i, w)− [Ytrain]i

)2
.

After finding the optimal parameters we can evaluate this model on the test set

score =
1

|Dtest|

|Dtest|∑
i=1

(
a([Xtest]i, w)− [Ytest]i

)2
,

and finish.

In the example 5, the step-by-step process of building and training the simple linear model
with a squared error loss function is presented. The linear parametric family of functions which
is used in 5 is appropriate for this simple problem, however its complexity increases with the
complexity a problem.

Typically, a parametric family is a composition of linear blocks with nonlinear transforma-
tions between them. A common name for the elements that are used for building a parametric
family is layer. There are two types of layers: trainable and non-trainable. By trainable we
mean that it contains parameters to be optimized during learning. In example 5 it was the
vector w = [w0, w1, w2]. In the opposite case, there are no parameters to optimize i.e. some
data transformation like dropout regularization (see Section 3.3).
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3.1. LAYERS

3.1 Layers

In this section, we consider an example of trainable layer which is called fully connected or
dense layer. The fully connected layer is an affine function fc : Fn × Fm×n × Fm → Fm that
writes as

fc(x,W, b) = Wx+ b, (3.3)

where x ∈ Fn is an input data and W ∈ Fm×n, b ∈ Fm are parameters to optimize. Sometimes,
we will skip parameters W and b from the function arguments list and write fc(x) = Wx+ b to
simplify notation. Note, that if m = 1, n = 2 and F = R, fully connected layer coincides with
the function a(x,w) from Example 5 where w0 = b.

The optimization requires gradients with respect to trainable variables. In the case where
F = R we have

∇W fc(x,W, b) = [x, x, . . . , x]> ∈ Rm×n, ∇bfc(x,W, b) = 1Rm , (3.4)

where 1Rm is a vector of ones of dimension m. In the case where F = C we have

∇W fc(x,W, b) = [x, x, . . . , x]∗ ∈ Cm×n, ∇bfc(x,W, b) = 1Cm , (3.5)

where 1Cm is a vector of 1+0i elements of dimension m. The complex differentiation is explained
in Section 2.3.

Let us give a simple example of a binary classification problem that can be solved by one
layer model. The only thing that we add which was not discussed before is a sigmoid activation
function. It scales the output of a fully connected layer into the range from 0 to 1.

Example 6 Let ξ1 ∼ N (−2, I2) and ξ2 ∼ N (2, I2). Here I2 is an identity matrix 2 × 2. Let
us sample ξ1 100 times and collect it into X1. Then we do the same for ξ2 and X2. Thus
X = [X1, X2] ∈ R200×2 is a set of 200 objects where each element x ∈ X was sampled either
from N (−2, I2) or from N (2, I2) distributions. This process creates an artificial data from two
classes. Then, let us prepare the responses. Let Y1 ∈ 0R100 and Y2 ∈ 1R100 which means that

Figure 3.1: Generated objects X.

we give a label 0 for objects x that were sampled from N (−2, 1) and 1 for x that were sampled
from N (2, 1). Thus Y = [Y1, Y2] is the set of responses. At this moment we created the training
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sample D = (X, Y ) of size 200. Let us define the parametric family of functions where we
search the best one. Our model contains one fully connected layer fc : R2 × R2 × R→ R

fc(x,w, b) = w1x1 + w2x2 + b, (3.6)

where x ∈ R2 is the input, w ∈ R2 and b ∈ R are the parameters to optimize. Then, since our
responses are ether 0 or 1 we will scale the output of fc(x,w, b) into the range [0, 1] using a
sigmoid function.

σ(x) =
1

1 + exp(−x)
. (3.7)

Thus the parametric family writes as

a(x,w, b) =
1

1 + exp(−(w1x1 + w2x2 + b))
. (3.8)

Then we need to define the loss function. For a task of binary classification where responses
are either 0 or 1 there is well-known loss function that is called log loss of binary cross-entropy
that came from the information theory and writes as

L(ŷ, y) = − 1

N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi). (3.9)

Now, we split training sample on the train Dtrain and test Dtest disjoint subsets and define
Xtrain, Ytrain are the objects and responses from Dtrain, the same for Xtest and Ytest. Then the
problem of finding parameters (w, b)∗ can be formulated as the following optimization problem

(w, b)∗ ∈ argmin(w,b)∈R3L(a(Xtrain, w, b), Ytrain). (3.10)

However, log loss is difficult to interpret in terms of quality of the approximation. In this case,
we need to compute some additional metrics like accuracy, which is simply a fraction of the
correct predictions to all samples in a set. The learning process is visualized in Figure 3.2
with log loss and accuracy metric on the vertical axis and the number of gradient steps on the
horizontal axis. After finding the optimal parameters we can evaluate this model on the test set

(a) Log loss. (b) Accuracy.

Figure 3.2: Learning process.

score = L(a(Xtest, w, b), Ytest) (3.11)

Also, there is an interpretation of optimal parameters (w, b)∗, equation w∗1x1 + w∗2x2 + b∗ = 0
defines a separation hyperplane between objects of two classes (Figure 3.3).
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3.2. ACTIVATION FUNCTIONS

Figure 3.3: Separation hyperplane.

3.2 Activation functions

There is a wide range of special functions that can be applied for model building. Usually,
they are added between layers that allow learning nonlinear hidden dependencies in data. Even
though the number of activation functions exists, some core functions are commonly used. One
of then is a sigmoid function that was used in Example 6. It scales the input data into the
range from 0 to 1 by the formula

σ(x) =
1

1 + exp(−x)
,

and the plot is depicted on Figure 3.4a. Usually, this layer is applied as a last one and mainly

(a) Sigmoid function. (b) ReLU function.

Figure 3.4: The most common activation functions.

for classification tasks as it was shown in Example 6. Another important function is ReLU
(rectified linear unit). It is usually applied in the multi-layer models and used as a nonlinear
transformation between layers. It writes as

relu(x) = max(0, x),

with the corresponding plot on Figure 3.4b.

26



3.3. REGULARIZATION

There are also some modifications of ReLU that can be useful for better convergence. They
are LeakyReLU and ELU (exponential linear unit).

LeakyRelu(x, α) =

{
αx x < 0

x x ≥ 0
, ELU(x, α) =

{
α ∗ (exp(x)− 1) x < 0

x x ≥ 0

(a) Leaky ReLU function (α = 0.3). (b) ELU function (α = 1.0).

Figure 3.5: ReLU function modifications.

3.3 Regularization

Regularization is a layer for reducing the overfitting (or memorization) phenomenon during
learning. The indicator of overfitting is a different behavior of loss value during the learning
process on a train and test sets. The case when loss decreases on a train set and increases on a
test is called overfitting. The classical regularizers are l1 or l2 norm of the trainable parameters,
which is added as an additional term to a loss function to prevents high variance for model
parameters that leads to its better generalization.

However, for neural networks, there is a more efficient state-of-the-art regularizer which is
called dropout [42]. The idea is randomly set to zero some parts of neurons during training.
This encourages each neuron to be independently useful and does not rely on the output of
other neurons. More precisely, with some predefined probability p ∈ [0, 1] the elements of vector
y (which is for example y = fc(x)) are set to zero. Other elements are scaled up by coefficient

1
1−p so that the expected value is preserved.

3.4 Loss function

The loss function or cost function is a function that maps input values I ⊂ Rn onto a real
number which can be interpreted as a cost.

L : I → R. (3.12)

This kind of functions is used to measure a quality of approximation of an unknown dependence
between inputs and outputs by some model a. Each kind of tasks requires a special loss function.
For instance, mean squared error measure is useful for regression task
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MSE(ŷ, y) = ‖ŷ − y‖2
2, (3.13)

where ŷ ∈ Rn is predicted values by a model, y ∈ Rn is the original values that were taken from
the training sample. However, this function starts being less useful for classification tasks for
m classes where a cross-entropy loss plays an important role and writes as

H(ŷ, y) = − 1

n

n∑
k=1

m∑
i=1

yk,i log(ŷk,i), (3.14)

where y, ŷ ∈ [0, 1]n×m are predicted and true classes where yk ∈ Rm is a one-hot vector (full of
zeros except one entry with 1) and ŷk ∈ Rm is a probability vector (ŷk ≥ 0 for k ∈ {1, . . . ,m}
and

∑m
i=1 ŷk,i = 1).

3.5 Gradients computing

The step of computing gradient is crucial for understanding the learning process. As was
mentioned at the beginning of this chapter, by learning we consider a process of minimization
of a loss function with respect to trainable parameters. In most of the cases, machine learning
uses the first-order derivatives for optimization. The main motivation is a computational speed
which is a crucial part in machine learning. Usually, the model is represented by the composition
of the functions which leads us to the result in analysis about differentiation of a composite
function that is known as a chain rule.

d(f1 ◦ · · · ◦ fn)(x)

dx
=
df1

df2

· · · · · dfn
dx

.

This result is a core for model differentiation in a machine learning world which is used to define
a Back-propagation algorithm, which is just the another name for algorithmic differentiation
[29] method that was developed to track an inner data interaction and efficiently compute
derivatives. We will not give a detailed explanation of this area in current work but just
consider that gradients at given point x0 ∈ Fn for a composite functions can be computed fast
for millions of trainable parameters.

3.6 Supervised learning

When the training sample is collected, the model is built, the loss function is defined we are
ready to train or learn the model. Recall, that by learning, we mean the process of solving an
optimization problem of the form

w∗ ∈ argminw∈W(F)

1

N

N∑
j=1

L(a(xj, w), yj), (3.15)

where W(F) is a space of trainable parameters over field F (R or C), N is the size of training
sample {(xi, yi)}Ni=1, xi and yi for i ∈ {1, . . . , N} are objects and responses, a(x,w) is the
function from some parametric family. Then, learning algorithm 1 can be applied.
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3.7. QUASI-REINFORCEMENT LEARNING

Algorithm 1: Supervised learning algorithm

1. Initialization:

(a) Let w0 ∈ W(F) be the starting value for trainable parameters.

(b) Let a : X ×W(F)→ Y be a model to learn.

(c) Let L : Y × Y → R is a loss function.

(d) Let Xtrain ⊂ X, Ytrain ⊂ Y are train objects and responses.

(e) Let U :W(F)×W(F)→W(F) is a functions that computes parameters update
with respect to a given descent direction ∆w and state w.

Set k = 0.

2. Gradients computing: ∆wk = ∇wL(a(Xtrain, w), Ytrain)|w=wk

3. Gradients applying: wk+1 = U(wk,∆wk)

4. Return loop: Set k = k + 1 and go to 2.

3.7 Quasi-Reinforcement learning

In this section, we consider a special kind of learning, which is called Reinforcement learning
or simply RL. To be more precise, we need discuss a modification of this process that has been
developed in this work. However, to have a full picture in mind, we need to start from the
original algorithm.

High-level definition reveals that the reinforcement learning is devoted to learn an agent
how to do an action at ∈ A at the current state st ∈ S to maximize reward rt ∈ R of the
environment E : A → S × R . Let us give a simple example of the reinforcement learning
problem where all of these parts are presented.

Example 7 Let as consider a stick balancing problem. A stick is attached by an un-actuated
joint to a cart, which moves along a frictionless track. This is our environment E : A →
S × R. The characteristics of the stick at time t are 4 numbers: linear and angular position
and velocity. They are the state and thus st ∈ S = R4. The system is controlled by applying
a force of +1 or −1 to the cart. The ±1 force is the action at ∈ A = {−1, 1}. A reward
rt ∈ R = {+1} is provided for every timestep that the stick remains upright. The goal is to
create agent : R4 → {−1, 1} that keep the stick from falling over and thus maximize the total
reward r =

∑T
t=0 rt where T is a maximal number of steps per simulation.

Reinforcement learning approach proposes to find the agent from the parametric family of neural
network functions. The main difficulty is that we can not formulate it as supervised problem
since we do not know the correct action at at state st and thus the reward is not differentiable
because it computes by environment which is considered as a black box. This fact leads to the
different approaches of learning agent which are all based on the repetitive collection of a huge
number of triplets {(at, st, rt)}Tt=0 that are used to update weights of an agent. However, in
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3.7. QUASI-REINFORCEMENT LEARNING

this section, we are not concentrated on the explanation of the ways of updating weights using
the triplets, but on the problem when correct actions are known and can be returned from the
environment E : A × A → S × A, and, as a consequence, the reward can be calculated in the
same way as a loss. The motivation is that the phase correction problem can be formulated
in this framework. Thus we call it quasi-reinforcement learning to point on the fact that it
is not classical case. The algorithm of quasi-reinforcement learning can be formulated as the
Algorithm 2. Note, that it requires a possibility to easily generate states an correct actions at
step 2 to perform learning. The application of this approach to the phase correction problem
is presented in Chapter 6.

Algorithm 2: QRL algorithm

1. Initialization:

(a) Let w(0) ∈ W(F) be the starting value for trainable parameters.

(b) Let Agent : S ×W(F)→ A be a model to learn.

(c) Let R : A× A→ R is a reward function.

(d) Let E : A× A→ S × A is an environment function.

(e) Let U :W(F)×W(F)→W(F) computes parameters update concerning a given
descent direction ∆w and state w.

(f) T ∈ N\{0} is the maximal number of steps and N ∈ N\{0} is the size of training
sample.

Set k = 0.

2. Training samples generation: To generate initial states and correct actions

S0 = {s(i)
0 }Ni=0, A0 = {a(i)

0 }Ni=0.

3. Environment discovering: Set t = 0, w
(k)
t = w(k).

(a) To predict actions Ât = Agent(St, w
(k)
t ).

(b) To compute gradients ∆w
(k)
t = ∇wR(Ât, At)|w=w

(k)
t

(c) To apply gradients w
(k)
t+1 = U(w

(k)
t ,∆w

(k)
t )

(d) To send actions to the environment St+1, At+1 = E(Ât, At)

(e) Set t = t+ 1. If t < T then w(k) = w
(k)
t and go to (3a).

4. Return loop: Set k = k + 1 and go to 2.
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Chapter 4

Phase retrieval algorithms

In this chapter we present a set of phase retrieval algorithms that can be used as a numerical part
of the opto-numerical algorithm [31]. The first two sections Section 4.2 and Section 4.3 describe
the descent direction optimization algorithms: gradient descent and Gauss-Newton. It is known
that the gradient descent iteration is cheep if a line search strategy selected properly. It makes
this algorithm a good candidate for the application in a phase correction loop. Also, despite
the fact that the Gauss-Newton method requires just the first order derivatives, the calculation
of a Jacobian and solving the system is a computationally expensive part. However, it is known
that this algorithm requires far less iterations to achieve a selected tolerance. This is the reason
to check this algorithm also. Then, Section 4.5 and Section 4.6 describe the optimization
algorithms from the family of the projection methods: the Alternating Projections (AP) and
the Alternating Direction Method of Multipliers (ADMM). It is known that AP and ADMM
require a low number of operations for one update, which also makes them good candidates
for current applications. Another point that is considered in this chapter and discovered in
Section 4.7 is the initialization strategies [13, 21] which aim to find a starting point in the
neighborhood of a solution. It is shown in this work that a good initial point can increase a
speed of the phase correction algorithm significantly. The last section presents the numerical
results which show the capabilities of the considered algorithms.

4.1 Research path

The goal that we tried to achieve in this section is to try different optimization algorithms
to solve a phase retrieval problem and to find the best one with respect to the requirements
defined in the introduction section. As was mentioned before, there are many reformulations
of the original problem which leads to different phase retrieval algorithms. So the goal was also
to find a proper formulation.

The most interesting result we achieved was with the ADMM optimization algorithm. We
started from the publication [20] where the authors implement the ADMM algorithm to solve a
phase retrieval problem. The crucial thing that was observed is that if we decrease ρ we increase
the number of problems that the algorithm can solve. However, there was no possibility to set
ρ = 0 because of the division operation. That is why we tried to adapt update formulas in
order to remove ρ completely. In this way, we discovered the Algorithm 8. Then, we searched
for the minimization problem which corresponds to these update formulas and found (4.21).
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4.2. GRADIENT DESCENT METHOD

The next step was to ensure that the algorithm is robust. Unfortunately, even with a small
level of noise the algorithm does not converge (see Figure 4.8b). This observation can be easily
explained since the system (1.2) is overdetermined, which implies that, almost surely, there
does not exist y ∈ range(A) and z ∈ Mb such that y = z. As a result there is no limit point
for the sequence λ(k+1) = λ(k) + y(k+1) − z(k+1) (see Proposition 8).

To overcome this difficulty we introduced the relaxed minimization problem (4.22), which
aims to replace the strong linear constraint by y − z = ξ. This gives us the optimization
algorithm Algorithm 9. However, then we need to deal with a regularization parameter ρ. The
formulas for the adaptive update of ρ can be found in (4.25) and (4.26). Here, the idea is
simple. When we are far from a solution, ρ must be small to guide the sequences z(k) and y(k)

to the ”perfect solution” even if it does not exist. As soon as the distance between z(k) and y(k)

is small, then we set ρ = 1, which means that we are using the alternating projection algorithm.
At the end of Section 4.6, we found the algorithm that satisfies all the requirements and, at

the same time, converges faster than all other algorithms considered in this chapter.

4.2 Gradient Descent Method

In this section we describe the gradient descent method for solving the optimization problem

minx∈Cn f(x) := 1
2m
‖|Ax|2 − b2‖2. (4.1)

It can be easily seen that the solution of (4.1) coincide with the solution of (1.2). Using the
Wirtinger calculus (2.10) it is possible to compute the gradient, which in a matrix form writes
as

∇xf(x) =
1

m
A∗
[
(|Ax|2 − b2)� Ax

]
,

and can be used in the gradient descent step x(k+1) = x(k) − α∇xf(x(k)) where α ∈ (0, 1] is
a step length to be computed by one of the line search algorithms and x(0) ∈ Cn is an initial
point for the algorithm. Then, the gradient descent method can be formulated as Algorithm 3.

Algorithm 3: Gradient descent algorithm.

Input: Initial point x(0) ∈ Cn

Output: Approximate solution x ∈ Cn of (1.2).
1 Set k = 0;
2 Loop
3 p(k) = −∇xf(x(k));

4 compute a step length α(k) by some line search method;

5 x(k+1) = x(k) + α(k)p(k);
6 if stopping test is satisfied then
7 break

8 k = k + 1;

9 return: x = x(k+1)

The most computationally expensive part is the process of finding the step length α(k). Thus,
it is extremely important to select a line search strategy appropriately in order to maintain
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4.2. GRADIENT DESCENT METHOD

efficiency of the Algorithm 3. One of the simplest line search approach is a backtracking
algorithm [26], which aims to find α that satisfies the following condition

f(x) > f(x− α∇xf(x)) + c1α‖∇xf(x)‖2, (4.2)

where c1 ∈ (0, 1). The idea is simple: starting from α = 1, we decrease it with some rate until
(4.2) is satisfied. This approach is presented in Algorithm 4.

Algorithm 4: Back-tracking line search [26].

Input: Initial step length α(0) ∈ (0, 1), current point x ∈ Cn, gradient ∇xf(x)
evaluated in x, decrease rate ρ ∈ (0, 1), constant c1 ∈ (0, 1)

Output: Step length α that satisfies (4.2).
1 k = 0;

2 while f(x) < f(x− α(k)∇xf(x)) + c1α
(k)‖∇xf(x)‖2 do

3 α(k+1) = ρα(k);
4 k = k + 1;

5 return: α = α(k)

Let us provide numerical simulations to observe how Algorithm 3 can solve phase retrieval
problem (1.2) for n = 8 and m = 4n with Algorithm 4 in step 4. The results of numerical
simulations are presented on Figure 4.1, where the metric distnorm between approximation x(k)

and solution is drawn by gray lines for 100 problems. The main interest is to see the behavior
of the algorithm with and without the presence of noise. The thing to pay attention is how
the value of metric behaves when there is no possibility to improve an approximation due to
the presence of noise in the model. For this goal, different solving tolerance is used: 0.001
for Figure 4.1a and 0.2 for Figure 4.1b. The second value was selected empirically from the
behavior of the algorithm. It can be seen on Figure 4.1b that there is a limit in distnorm for all
of the problems because of the presence of noise in the mathematical model. We observe no
oscillations when the metric value reaches its limit, which indicates a sufficient robustness to
the noise from this point of view. Also, in the case of no noise, Algorithm 3 with Algorithm 4
in step 4 can solve 95% of all problems and with noise σ = 0.1 it can solve 81% of all problems.
Recall, that the problem is considered to be solved with respect to a Definition 1. Thus, there
is difference in 14% of solved problems between noisy model and the model with no noise. Also,
the starting point was selected randomly but the same for each experiment: with and without
noise.

Note that in Algorithm 4 we require evaluation of f at each k-th step in order to check the
stopping condition. It involves matrix multiplication at each step, which is extremely expensive
for the current application. That is why, let us consider a Two-Point Step Size line search by
Jonathan Barzilai and Jonathan Borwein [4]. This approach is based on the usage of secant
equation for hessian approximation of the form αI where I is an identity matrix. According to
[4] the step length α can be computed from the following two optimization problems

min
α∈R
‖s(k) − αy(k)‖2, min

α∈R
‖αs(k) − y(k)‖2, (4.3)

where s(k) = x(k) − x(k+1) and y(k) = ∇xf(x(k)) − ∇xf(x(k−1)). The solutions can be easily
obtained and written as

α =
2〈s(k), s(k)〉

〈s(k), y(k)〉+ 〈y(k), s(k)〉
, (4.4)
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Figure 4.1: (a) Metric distnorm between approximation x(k) computed by Algorithm 3 with line
search Algorithm 4 and a solution for n = 8, m = 32, and σ = 0, and (b) for σ = 0.1.

and

α =
〈s(k), y(k)〉+ 〈y(k), s(k)〉

2〈y(k), y(k)〉
, (4.5)

respectively. However, this step length can be applied just when 〈s(k), y(k)〉 + 〈y(k), s(k)〉 > 0
which is an analogue to the curvature condition generalized for the case of complex variable.
The case of negative curvature is possible since the function to optimize is not convex and if
it is detected then backtracking line search is used. Then, we can formalize gradient descent
method with the secant based line search in the Algorithm 5.

Algorithm 5: Gradient descent algorithm with secant based line search.

Input: Initial point x0 ∈ Cn, decrease rate ρ ∈ (0, 1), constant c1 ∈ (0, 1).
Output: Approximate solution x ∈ Cn of (1.2).

1 k = 0;
2 Loop
3 gk = ∇xf(xk);

4 if k = 0 or 〈s(k), y(k)〉+ 〈y(k), s(k)〉 < 0 then
5 compute αk using Algorithm 4 ; // use Armojo if negative curvature

6 else
7 compute αk using (4.4) or (4.5)

8 x(k+1) = x(k) − α(k)∇xf(x(k));
9 if stopping test is satisfied then

10 break

11 k = k + 1;

12 return: x = x(k+1)
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Let us provide numerical simulations to observe how Algorithm 5 can solve phase retrieval
problem (1.2) for n = 8 and m = 4n The results of numerical simulations are presented on
Figure 4.2, where the meaning of curves are the same as for Figure 4.1. From Figure 4.2 it
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Figure 4.2: (a) Metric distnorm between approximation x(k) computed by Algorithm 5 and a
solution for n = 8, m = 32, and σ = 0, and (b) for σ = 0.1.

is clear that Algorithm 5 performs faster than Algorithm 3 with Algorithm 4 in step 4. The
number of problems that can be solved coincides. Also, we observe no oscillations when it
reaches the limit in improvement. To conclude about required time to solve problems by these
two algorithm let us build time profiles as it is explained in Section 2.5. It can be seen that in
both cases, without noise and with noise, line search based on a secant equation is extremely
faster than standard backtracking line search, which is also revealed on Figure 4.3.
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Figure 4.3: (a) Profile for solved problems by selected time for 100 problems of size n = 8,
m = 32, and σ = 0, and (b) for σ = 0.1.

4.3 Gauss-Newton Method

In this section we describe the Gauss-Newton method for solving the optimization problem

minx∈Cn f(x) := 1
2m
‖|Ax|2 − b2‖2, (4.6)

which is clearly equivalent to (1.2). Following the general scheme of Gauss-Newton method
[26], we denote a residual function r : Cn → Rm

+ as

r(x) = |Ax|2 − b2, (4.7)

and its jacobian matrix in terms of Wirtinger calculus (Observation 2) writes as

∇r(x) =
(
A� Āx̄ Ā� Ax

)
⊂ Cm×2n. (4.8)

Then, the descent direction p ∈ C2n is a solution of the system

∇r(x)∗∇r(x)p = −∇r(x)∗r(x). (4.9)

However, it can be shown (Observation 3) that the matrix ∇r(x)∗∇r(x) is always not a full
rank matrix. Thus, the regularization is required which simply adds δI to ∇r(x)∗∇r(x), where
δ > 0. Typical value of δ depends on the data type that is used to represent numbers. For
instance, if real and imaginary parts of complex numbers in ∇r(x)∗∇r(x) are represented as
float numbers where each takes 32 bits in the memory, then δ must be greater than 10−8 to
provide a regularization effect.

Observation 3 Let m > 2n, then the rank of the jacobian matrix (4.8) is always less than 2n
for any x ∈ Cn.
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Proof. To show that it is enough to find a nonzero vector v ∈ Cn such that ∇r(x)v = 0 for
any x ∈ Cn. Let v = (x>,−x̄>)> then

(
A� Āx̄ Ā� Ax

)( x
−x̄

)
= (A� Āx̄)x− (Ā� Ax)x̄

= Ax� Āx̄− Āx̄� Ax
= |Ax|2 − |Ax|2 = 0.

The proof follows. 2

Then, system (4.9) is replaced by(
∇r(x)∗∇r(x) + δI

)
p = −∇r(x)∗r(x), (4.10)

where δ > 0 and I is an identity matrix of size 2n by 2n.

Algorithm 6: Gauss-Newton algorithm.

Input: Initial point x0 ∈ Cn, regularization parameter δ > 0.
Output: Approximate solution x ∈ Cn of.

1 x = x0;
2 Loop
3 find descent direction p by solving (4.10);
4 compute step length α for descent direction −p using a line search algorithm;
5 x = x+ αp;
6 if stopping test is satisfied then
7 break

8 return: x

Note, that in step 4 of the Algorithm 6 either backtracking or secant line search can be
used. Let us provide numerical simulations to compare these two possibilities and to test the
robustness property. The results are presented on Figure 4.4 and Figure 4.5, where the meaning
of curves are the same as for Figure 4.1. The system (4.10) is solved by means of Cholesky
decomposition. Recall, that the main interest is to see the behavior of the algorithm with and
without the presence of noise. The thing to pay attention is how the value of metric behaves
when there is no possibility to improve an approximation due to the presence of noise in the
model.
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Figure 4.4: (a) Metric distnorm between approximation x(k) computed by Algorithm 6 with line
search Algorithm 4 and a solution for n = 8, m = 32, and σ = 0, and (b) for σ = 0.1.
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Figure 4.5: (a) Metric distnorm between approximation x(k) computed by Algorithm 6 with line
search (4.4) and a solution for n = 8, m = 32, and σ = 0, and (b) for σ = 0.1.

From Figure 4.4 and Figure 4.5 we can conclude that both line search strategies are equiv-
alent since the same behavior and the same number of solved problems (≈ 80%) are observed.
In addition, no oscillations are found when the algorithm reaches a limit of approximation in
the noisy case. Also, from Figure 4.6 we can conclude that both algorithms perform with the
same computational speed.
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Figure 4.6: (a) Profile for solved problems by selected time for 100 problems of size n = 8, m =
32, and σ = 0, and (b) for σ = 0.1. GN b and GN s means Gauss-Newton with backtracking
and secant line search respectively.

4.4 Semidefinite Programming Method

In this section, we consider the convex relaxation of (1.2), which is called PhaseLift and re-
formulates the original system of nonlinear equations as a semidefinite programming problem
(Candes et al. [8]) The reformulation is based on a fact that the intensity measurements in
(1.2) can be written as

|a∗jx|2 = tr(x∗aja
∗
jx) = tr(aja

∗
jxx

∗) = tr(AjX), (4.11)

where Aj is a rank-one matrix aja
∗
j . Let A(X) = {tr(AjX) : j ∈ {1, . . . ,m}}, then the problem

(1.2) can be written as
find X
s.t. A(X) = b

X � 0
rank(X) = 1,

(4.12)

or equivalently
minX∈Cn×n rank(X)
s.t. A(X) = b

X � 0,
(4.13)

which appears to be a rank minimization problem. The problem (4.13) is NP hard, and thus it
was proposed in [8] to use the trace norm as a convex surrogate [5, 24] for the rank functional,
which gives the following SDP problem

minX∈Cn×n tr(X)
s.t. A(X) = b

X � 0.
(4.14)
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To recover an original solution x the leading eigenvector of X can be used. Recall, that one
of the main requirements to the phase retrieval algorithm defined in Chapter 1 is an efficiency.
The number of parameters in reformulation (4.14) is n2, where n is the number of laser beams.
Since in practice, the number of beams can be up to 100, this method will not be considered
further in this work due to obvious inconsistency with the efficiency requirement.

4.5 Alternating Projections Method

In this section, we present the numerical solution of (1.2) by means of the alternating projection
algorithm. Let us first reformulate equation (1.2) under the equivalent form

Ax = y |y| = b, (4.15)

where the unknown is the couple (x, y) ∈ Cn × Cm. Obviously, x is a solution of (1.2) if and
only if (x, b� ei arg(Ax)) is a solution of (4.15).

The system of equations (4.15) can be reformulated as a minimization of a quadratic convex
function subject to a nonconvex set of equality constraints:

min(x,y)∈Cn×Cm
1
2
‖Ax− y‖2

s.t. |y| = b.
(4.16)

We have the following elementary properties.

Proposition 4 Let x be fixed vector in (4.16), then the optimization problem is separable with
respect to yj for j ∈ {1, . . . ,m}.
Proof. Let αj denotes the j-th component of Ax, and bj denotes the j-th component of b.
Then (4.16) writes as

miny∈Cm
1
2

∑m
j=1 |αj − yj|2

s.t. |y| = b.
(4.17)

Using the fact that the constrains are defined for each variable yj separately we can conclude
that the minimization of a sum in (4.17) is equivalent to m minimization problems of the form

minyj∈C |αj − yj|2
s.t. |yj| = bj,

(4.18)

for j ∈ {1, . . . ,m} 2

Proposition 5 x ∈ Cn is a solution of (1.2) if and only if (x, b � ei arg(Ax)) is an optimal
solution of (4.16). In addition, when y ∈ Cm is fixed, (4.16) is a linear least squares problem,
those optimal solution is x = A†y. When x ∈ Cn is fixed, the optimal solution of (4.16) is the
orthogonal projection of Ax on the set of constraints and is given by y = b� ei arg(Ax).

Proof. The first assertion follows from the equivalence between (1.2) and (4.15).
When y is fixed in (4.16), the constraints disappears and thus the problem is reduced to a

linear least squares problem.
When x is fixed in (4.16), following the Proposition 4, the problem is separable and is

reduced to the solution of m one dimensional optimization problems of the form (4.18) From
the triangle inequality, we know that for all θ ∈ R, |αj − bjeiθ| ≥ | |αj| − bj|, with an equality
if and only if θ = arg(αj) or αj = 0 or bj = 0. The optimal y follows. 2
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Proposition 6 For all (x, y) ∈ Cn×Cn, we have ‖|x|− |y|‖ ≤ ‖x− y‖, with an equality if and
only if for all k ∈ {1, . . . , n}, x(k) = 0 or y(k) = 0 or arg(x(k)) = arg(y(k)).

Proof. Let (x, y) ∈ Cn × Cn. Using the fact that ‖x‖ = ‖|x|‖, we have

‖|x| − |y|‖2 = ‖x‖2 − 2〈|x|, |y|〉+ ‖y‖2

and
‖x− y‖2 = ‖x‖2 − 2 Re(〈x, y〉) + ‖y‖2

We have Re(〈x, y〉) =
∑n

k=1 |x(k)||y(k)| cos(arg(y(k))− arg(x(k)))

Re(〈x, y〉) =
n∑
k=1

|x(k)||y(k)| cos(arg(y(k))− arg(x(k)))

≤
n∑
k=1

|x(k)||y(k)|

= 〈|x|, |y|〉,

with an equality if and only if
∑n

k=1 |x(k)||y(k)|(1−cos(arg(y(k))−arg(x(k)))) = 0. Because each
element of the sum is nonnegative, this occurs if and only only one of the modulus or the cosine
is zero for all k. 2

Unfortunately, the problem (4.16) is not convex. To handle this difficulty, a well-known
approach, suggested by Proposition 5, is to alternatively minimize in x and in y. This leads
to Algorithm 7. This algorithm is known as alternating minimization or alternating projection
algorithm (see, e.g., [25, 23]). It is also sometimes referred as the Gerchberg–Saxton algorithm
(see, e.g., [45]), while the original Gerchberg–Saxton algorithm [14] is when the matrix A
corresponds to a discrete Fourier transform (DFT) and the couple of iterates is defined by

means of the recurrence formulas y(k+1) = b� ei arg(Ax(k)) and x(k+1) = a� ei arg(A†y(k+1)), where
a is the known vector of amplitudes in the initial space, see e.g., [32]. Algorithm 7 shares a

Algorithm 7: Alternating projection algorithm.

Input: Initial point x(0) ∈ Cn

Output: Approximate solution x ∈ Cn of (1.2).
1 k = 0;
2 Loop
3 y(k+1) = b� exp(i arg(Ax(k)));

4 x(k+1) = A†y(k+1);
5 k = k + 1;
6 if stopping test is satisfied then
7 break

8 return: x = x(k).

common property with the original Gerchberg–Saxton algorithm, which is the reduction of the
norm of the residual of (1.2) [12]. Unfortunately, the norm of the residual in Proposition 7
is nonincreasing, which means that Algorithm 7 is not guaranteed to converge to a global
minimum of (4.16).
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Proposition 7 At each iteration k ≥ 0 of Algorithm 7, we have

‖Ax(k+1) − y(k+1)‖ ≤ ‖Ax(k) − y(k)‖ and ‖|Ax(k+1)| − b‖ ≤ ‖|Ax(k)| − b‖.

Proof. Let k ∈ N be the iteration number. By using the fact that x(k+1) is a minimum of
problem (4.16) with y = y(k+1) and the fact that y(k+1) is a minimum of problem (4.16) with
x = x(k), we have

‖Ax(k+1) − y(k+1)‖ ≤ ‖Ax(k) − y(k+1)‖ (4.19)

≤ ‖Ax(k) − y(k)‖,

which proves the first inequality. To prove the second inequality, use Proposition 6 and (4.19),
then apply again Proposition 6 and the fact that arg(y(k+1)) = arg(Ax(k)), so that

‖|Ax(k+1)| − b‖ = ‖|Ax(k+1)| − |y(k+1)|‖
≤ ‖Ax(k+1) − y(k+1)‖
≤ ‖Ax(k) − y(k+1)‖
= ‖|Ax(k)| − |y(k+1)|‖
= ‖|Ax(k)| − b‖.

2

Let us provide numerical simulations to test the robustness of the Algorithm 7. Recall, that
the main interest is to see the behavior of the algorithm with and without the presence of noise.
The thing to pay attention is how the value of metric behaves when there is no possibility to
improve an approximation due to the presence of noise in the model. The results are presented
on Figure 4.7, where the meaning of curves are the same as for Figure 4.1. From Figure 4.7 we
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Figure 4.7: (a) Metric distnorm between approximation x(k) computed by Algorithm 7 and a
solution for n = 8, m = 32, and σ = 0, and (b) for σ = 0.1.
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can conclude that no oscillations are found when the algorithm reaches a limit of approximation
in the noisy case. Also, approximately the same number of problems can be solved in both
cases: 78% when there is no noise and 74% with the presence of noise.

4.6 Alternating Directions Method of Multipliers

In this section, we present the numerical solution of (1.2) by means of the Alternating Directions
Method of Multipliers. Let us first reformulate equation (1.2) under the equivalent form

y = z y ∈ range(A), z ∈Mb, (4.20)

whereMb = {z ∈ Cm : |z| = b} and the unknown is the couple (y, z) ∈ Cn×Cm. Obviously, x
is a solution of (1.2) if and only if (Ax,Ax) is a solution of (4.20).

The system of equations (4.20) can be reformulated as an artificial minimization problem
of a zero function subject to set and equality constraints:

min(y,z)∈Cm×Cm 0
s.t. y − z = 0,

y ∈ range(A), z ∈Mb

(4.21)

Let us define the update formulas for the Altenating Directions Method of Multipliers which
is applied to (4.21).

Proposition 8 Let us consider the minimization problem (4.21). Then the Altenating Direc-
tions Method of Multipliers update formulas are

z(k+1) = b� exp
(
i arg(y(k) + λ(k))

)
,

y(k+1) = AA†(z(k+1) − λ(k)),

λ(k+1) = λ(k) + y(k+1) − z(k+1),

where A† = (A∗A)−1A∗ is a pseudo-inverse of matrix A ∈ Cm×n.

Proof. The scaled augmented Lagrangian writes as

Lρ(y, z, λ̂) = Re{λ̂∗(y − z)}+
ρ

2
‖y − z‖2

=
ρ

2
‖y − z + λ‖2 − ρ

2
‖λ‖2,

where λ = λ̂
ρ

is a scaled dual variable. Then, we conclude that

1. The update formula for z with fixed y = y(k) and λ = λ(k) writes as

z(k+1) = argminz∈Mb

ρ

2
‖y(k) − z + λ(k)‖2

= b� exp

(
i · argminθ∈Rm

ρ

2
‖y(k) − b� eiθ + λ(k)‖

)
= b� exp

(
i · arg(y(k) + λ(k))

)
.
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2. The update formula for y with fixed z = z(k+1), λ = λ(k) writes as

y(k+1) = argminy∈range(A)

ρ

2
‖y − z(k+1) + λ(k)‖2

= A

(
argminx∈Cn

ρ

2
‖Ax− z(k+1) + λ(k)‖2

)
= AA†(z(k+1) − λ(k)).

3. The update formula for λ with fixed z = z(k+1) and y = y(k+1) writes as

λ(k+1) = λ(k) + y(k+1) − z(k+1).

2

The Observation 4 is used for simplification the update formula for y(k+1).

Observation 4 Let us consider the update formulas in Proposition 8. If A∗λ(0) = 0 then

A∗λ(k) = 0 for any k ∈ N\{0}.

Proof. Let us prove the result by induction reasoning. By assumption the result is true for
k = 0. Suppose that A∗x(k) = 0 for k ∈ N. We have λ(k+1) = λ(k) +AA†z(k+1) − z(k+1) we have
that A∗λ(k+1) = A∗λ(k) + A∗z(k+1) − A∗z(k+1) and thus A∗λ(k+1) = 0. 2

Algorithm 8: Alternating Directions Method of Multipliers.

Input: Initial point x(0) ∈ Cn and parameter λ(0) ∈ Cm

Output: Approximate solution x ∈ Cn of (1.2).
1 k = 0;

2 y0 = Ax(0);
3 Loop
4 z(k+1) = b� exp(i arg(y(k) + λ(k)));

5 x(k+1) = A†z(k+1);

6 y(k+1) = Ax(k+1);
7 if stopping test is satisfied then
8 break

9 λ(k+1) = λ(k) + y(k+1) − z(k+1);
10 k = k + 1;

11 return: x = x(k).

Proposition 9 Let (y, z, λ) ∈ Cm ×Cm ×Cm be a limit point of a sequence defined by update
formulas in Proposition 8 and A∗λ(0) = 0, then (y, z) is a global solution of (4.21).

Proof. Let (y, z, λ) ∈ Cm×Cm×Cm be a limit point of a sequence defined by update formulas
in Proposition 8 exists and A∗λ(0) = 0. Then, replacing y by AA†z we have that

z = b� exp
(
i · arg(AA†z + λ)

)
, λ = λ+ (AA† − I)z.

We can immediately deduce that z ∈ Mb and (AA† − I)z = 0. The matrix AA† − I is a
projection matrix on the kernel of A∗. The projection is zero only if z ∈ range(A). 2
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Remark 1 By Proposition 9 and Proposition 8 we conclude that if the Alernating Directions
Method of Multipliers converges, then it always returns a global solution of (4.21) and so (1.2).
This is an important property which the alternating projections algorithm does not have [45].

In practice, it is possible that there is no exact solution of (1.2) because of noisy measure-
ments b and inaccurate transmission matrix A. In context of problem (4.21), it means that
range(A) ∩Mb = ∅. Note, that this leads to unpleasant consequence for update formula of
dual multipliers λ in Proposition 8. It is clear that if range(A) ∩Mb = ∅, then there are no
y ∈ range(A) and z ∈Mb such that y − z = 0 and thus no limit point for λ.

Let us provide numerical simulations to demonstrate this fact. On Figure 4.8 it can be
clearly seen that when there is noise in the model with σ = 0.1, then Algorithm 8 does not
converge. However, when no noise is added to the model, then all of 100 problems can be solved
by means of Algorithm 8 despite the fact of extensive oscillations during convergence. This fact
has been never observed for previous methods discussed in this chapter. Since the presence of
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Figure 4.8: (a) Metric distnorm between approximation x(k) computed by Algorithm 8 and a
solution for n = 8, m = 32, and σ = 0, and (b) for σ = 0.1.

noise is true for the applications that are considered in this work, it is necessary to modify the
algorithm in order to work with noisy data.

Let us consider the relaxed version of (4.21) where we introduce a new variable ξ ∈ Cm to
be able able to capture the case when range(A) ∩Mb = ∅.

min(y,z,ξ)∈Cm×Cm×Cm
1
2
‖ξ‖2

s.t. y − z = ξ
y ∈ range(A), z ∈Mb

(4.22)

Let us define the update formulas for the Altenating Directions Method of Multipliers which
is applied to (4.22).
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Proposition 10 Let us consider the minimization problem (4.22). Then the Altenating Direc-
tions Method of Multipliers update formulas are

z(k+1) = b� exp
(
i arg(y(k) − ξ(k) + λ(k))

)
,

y(k+1) = AA†(z(k+1) + ξ(k) − λ(k)),

ξ(k+1) =
ρ

1 + ρ

(
y(k+1) − z(k+1) + λ(k)

)
,

λ(k+1) = λ(k) + y(k+1) − z(k+1) − ξ(k+1),

where A† = (A∗A)−1A∗ is a pseudo-inverse of matrix A ∈ Cm×n.

Proof. The scaled augmented Lagrangian writes as

Lρ(y, z, ξ, λ̂) =
1

2
‖ξ‖2 + Re{λ̂∗(y − z − ξ)}+

ρ

2
‖y − z − ξ‖2

=
1

2
‖ξ‖2 +

ρ

2
‖y − z − ξ + λ‖2 − ρ

2
‖λ‖2,

where λ = λ̂
ρ

is a scaled dual variable. Then, we conclude that

1. The update formula for z with fixed y = y(k), ξ = ξ(k), and λ = λ(k) writes as

z(k+1) = argminz∈Mb

ρ

2
‖y(k) − z − ξ(k) + λ(k)‖2

= b� exp

(
i · argminθ∈Rm

ρ

2
‖y(k) − b� eiθ − ξ(k) + λ(k)‖

)
= b� exp

(
i · arg(y(k) − ξ(k) + λ(k))

)
.

2. The update formula for y with fixed z = z(k+1), ξ = ξ(k), and λ = λ(k) writes as

y(k+1) = argminy∈range(A)

ρ

2
‖y − z(k+1) − ξ(k) + λ(k)‖2

= A

(
argminx∈Cn

ρ

2
‖Ax− z(k+1) − ξ(k) + λ(k)‖2

)
= AA†(z(k+1) + ξ(k) − λ(k)).

3. The update formula for ξ with fixed z = z(k+1), y = y(k+1) and λ = λ(k) is obtained from

∂ξLρ(y, z, ξ, λ) = ξ − ρ(y − z − ξ + λ) = 0,

from where we have

ξ(k+1) =
ρ

1 + ρ

(
y(k+1) − z(k+1) + λ(k)

)
.

4. The update formula for λ with fixed z = z(k+1), y = y(k+1), and ξ = ξ(k+1) writes as

λ(k+1) = λ(k) + y(k+1) − z(k+1) − ξ(k+1).
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2

Observation 5 Let us consider the update formulas in Proposition 10. If λ(0) ∈ ker(A∗) then

λ(k), ξ(k) ∈ ker(A∗) for all k ∈ N\{0}.

Furthermore,
ρλ(k) = ξ(k), for all k ∈ N\{0}.

Proof. First, note that

λ(k+1) = λ(k) + y(k+1) − z(k+1) − ξ(k+1)

= λ(k) + y(k+1) − z(k+1) − ρ

1 + ρ

(
y(k+1) − z(k+1) + λ(k)

)
=

1

1 + ρ

(
y(k+1) − z(k+1) + λ(k)

)
=

1

ρ
ξ(k+1).

Then, λ(k+1) = λ(k) + AA†(z(k+1) + ρλ(k) − λ(k))− z(k+1) − ρλ(k+1) from where

λ(k+1) =
1

1 + ρ

(
λ(k) + AA†

(
z(k+1) + (ρ− 1)λ(k)

)
− z(k+1)

)
=

1

1 + ρ

(
λ(k) + (ρ− 1)AA†λ(k) + (AA† − I)z(k+1)

)
Now, let λ(k) ∈ ker(A∗), from previous equations it is clear that λ(k+1) ∈ ker(A∗) since AA†− I
is a projection matrix on ker(A∗). And thus, from the first equation we obtain that ξ(k+1) ∈
ker(A∗) also. 2

The Observation 5 is used for simplification the update formula for y(k+1) and for elimination
variable ξ.

The main question for Algorithm 9 is how to select ρ properly. Before going further, let
us provide numerical simulations for ρ = 0.5. On Figure 4.9 it can be seen that the problem
with convergence for noisy case is fixed, where the oscillations during the convergence for the
problems without noise in the model still exists but with lower frequency. It is also important
to note that not all problems are solved by Algorithm 9 when ρ = 0.5. It appears that ρ = 0
is useful when an approximation x(k) is far from the solution, but then it must be changed to
some positive value.

Let us provide the following observations which helps to understand what strategy for ρ is
efficient.

Observation 6 If ρ = 1, in Algorithm 9, then it reduces to Algorithm 7 starting from the
second iteration.

Proof. Follows from the second property of Observation 5. 2
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Algorithm 9: Relaxed Alternating Directions Method of Multipliers.

Input: Initial point x(0) ∈ Cn and parameters ρ > 0, λ(0), ξ(0) ∈ Cm.
Output: Approximate solution x ∈ Cn of (1.2).

1 k = 0, y0 = Ax(0);
2 Loop
3 z(k+1) = b� exp

(
i arg(y(k) + (1− ρ)λ(k))

)
;

4 x(k+1) = A†z(k+1);

5 y(k+1) = Ax(k+1);
6 if stopping test is satisfied then
7 break

8 λ(k+1) = 1
1+ρ

(
λ(k) + y(k+1) − z(k+1)

)
;

9 k = k + 1;

10 return: x = x(k).
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Figure 4.9: (a) Metric distnorm between approximation x(k) computed by Algorithm 9 and a
solution for n = 8, m = 32, ρ = 0.5, and σ = 0, and (b) for σ = 0.1.

Observation 7 If ρ = 0, ξ(0) = 0 in Algorithm 9 then it reduces to Algorithm 8.

Proposition 11 Let (y, z, ξ, λ) ∈ Cm × Cm × Cm × Cm be a limit point of a sequence defined
by update formulas in Proposition 10 and λ(0) ∈ ker(A∗), ρ > 0, then

y − z ∈ ker(A∗) ∩ {αz, α ∈ (−ρ,∞)m}.

Proof. Let (y, z, ξ, λ) ∈ Cm×Cm×Cm×Cm be a limit point of a sequence defined by update
formulas in Proposition 10 exists and λ(0) ∈ ker(A∗), ρ > 0. Then, from Observation 5 we
obtain that λ = 1

1+ρ

(
λ + (AA† − I)z

)
, y = AA†z, and ρλ = ξ which gives that y − z = ρλ.
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Also, this can be equivalently written as AA†z − z = ξ. The last equation is used to obtain

z = b� exp
(
i · arg(AA†z − ξ + λ)

)
= b� exp

(
i · arg(AA†z − AA†z + z + λ)

)
= b� exp

(
i · arg(z + λ)

)
,

which gives that λ ∈ {αz, α ∈ (−1,∞)m} and thus y − z ∈ range(A)⊥ ∩ {αz, α ∈ (−ρ,∞)m}.
2

Observation 8 Let us consider a recurrent form x(k+1) = 1
2
(xk+∆) for some starting x(0) ∈ Rn

and fixed ∆ ∈ Rn. Then limk→∞ x
(k) = ∆.

Proof. The proof follows from the explicit form x(k+1) =
1

2k+1

(
x(0) + ∆

)
+ ∆

k∑
i=1

1

2i
. 2

Proposition 12 The Algorithm 9 always converges to a limit point (y, z, ξ, λ) ∈ Cm × Cm ×
Cm × Cm if ρ = 1.

Proof. The result for (y, z) ∈ Cm × Cm follows from Observation 6 and Proposition 7. The
result for (λ, ξ) ∈ Cm×Cm follows from Observation 8 where ∆ = y− z and x(k+1) = λ(k+1). 2

The formulation (4.22) is useful when range(A) ∩Mb = ∅, which indicates the presence of
noise in data. The Observation 6 and Observation 7 give us an idea about the link between a
regularization parameter ρ and the ability of algorithm to converge. However, it is not clear
how to choose ρ properly at each k-th iteration of Algorithm 9. In the following part, we try
to answer this question.

Proposition 13 Let ξ = AA†z − z be such that ξ ∈ {α� z, α ∈ (−ρ,+∞)m} for z ∈ Cm and
ρ > 0. Then ‖ξ − α� z‖ = 0 for

α = |z|−2 � Re{AA†z � z} − 1. (4.23)

Proof. The optimal α can be found from the following optimization problem

minα∈Rm f(α) := 1
2
‖ξ − α� z‖2

The constrains α ∈ (−ρ,+∞)m are not taken into account since it is given that a solution exists
and it is unique due to strict convexity of f . Then, from the first order optimality conditions
we obtain

∇f(α) = ∇
(

1

2
‖ξ‖2 − Re{ξ∗(α� z)}+

1

2
‖α� z‖2

)
= −Re{ξ̄ � z}+ α� |z|2 = 0.

Replacing ξ̄ by AA†z − z the proof follows. 2

From Proposition 13 we can conclude that for any z ∈ Cm the optimal α writes as

α = max{−ρ 1m, |z|−2 � Re{AA†z � z} − 1}. (4.24)
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(a) ρ = 0 (b) ρ = 1
3 (c) ρ = 2

3 (d) ρ = 1

Figure 4.10: Set of possible projections AA†z for the case of dimension 1 depending on ρ.

It can be seen that ρ changes the solution set for z. For example, if ρ is close to zero, then vector
z and its projection on range(A) must be almost colinear to satisfy ‖AA†z − z − α� z‖ = 0.

To have a clear picture in mind, let us visualize the set of possible projections for different
ρ in the case of dimension 1. It can be seen on Figure 4.10 that when ρ = 0 the set of possible
projections reduces to one point where the case for ρ = 1 indicates all possible projections in
the set. The reason why we have such form of the set of possible projections can be seen on
Figure 4.11 where the projection point is denoted by red color for many different linear spaces,
which are visualized by gray dashed lines.

Figure 4.11: Set of possible projections AA†z defined by ρ = 1 for the case of dimension 1.

This visualization brings an inside about how ρ affects the set of possible projections. How-
ever, at the same time, it gives an idea of how ρ can be properly selected during the iterations
of the Algorithm 9. It is clear that at the begining of the iteration process it is reasonable to
set ρ = 0 to guide iterations to the ”perfect” point even if it does not exists. Closer algorithm
converge to it – bigger ρ must be to be sure that the limit point exists. This kind of information
can be obtained from (4.24). It is clear that to remove constrains defined by ρ, we need to
have that −ρ = min{α1, . . . , αm, } for αi = |zi|−2 � Re{(AA†z)i � zi} − 1 for i ∈ {1, . . . ,m}.
Equivalently, we have that ρ = max{−α1, . . . ,−αm, }. The value of ρ tells us how far we are
from solution. Thus, following the logic explained above, we can use it to construct the formula
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for ρ in the following form

ρ = 1−min{1,max{−α1, . . . ,−αm}}. (4.25)

The numerical study in Section 4.8 reveals the efficiency of this choice for ρ with a sufficient
level of noise. However, when the noise dominates, the behavior near solution starts being
unstable. For this goal, the empirical stabilization is proposed in the following form

If distnorm(y, z) < γ then ρ = 1, (4.26)

where γ ∈ [0, 1] depends on the level of noise in the data. Thus, the final form of ADMM is
presented in Algorithm 10 where all useful propositions and observations are applied.

Algorithm 10: Adapted Relaxed Alternating Directions Method of Multipliers.

Input: Initial point x(0) ∈ Cn, γ ∈ [0, 1].
Output: Approximate solution x ∈ Cn of (1.2).

1 k = 0, ρ0 = 0, ξ(0) = λ(0) = 0, y0 = Ax(0);
2 Loop
3 z(k+1) = b� exp(i arg(y(k) + (1− ρ(k))λ(k)));

4 x(k+1) = A†z(k+1);

5 y(k+1) = Ax(k+1);
6 if stopping test is satisfied then
7 break

8 ρ(k+1) = 1−min
{

1, max{|z(k+1)|−2 � Re{y(k+1) � z(k+1)} − 1}
}

;

9 if distnorm(y(k+1), z(k+1)) < γ then
10 ρ(k+1) = 1

11 λ(k+1) = 1
1+ρ(k+1)

(
λ(k) + y(k+1) − z(k+1)

)
;

12 k = k + 1;

13 return: x = x(k).

Let us provide numerical simulations to verify the robustness and capability to solve all
problems for Algorithm 10. On Figure 4.12 it can be observed that all problems almost without
any oscillations can be solved by Algorithm 10 for the case when there is no noise in the model.
However, there are still oscillations for the noisy case, when the algorithm reaches a limit of
improvement of the approximation. That is why it is proposed to use γ parameter to switch
to alternating projections when we are close to the solution. It was observed empirically that
if γ = 2σ, then we can avoid the oscillations (Figure 4.13).
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Figure 4.12: (a) Metric distnorm between approximation x(k) computed by Algorithm 10 and a
solution for n = 8, m = 32, γ = 0, and σ = 0, and (b) for σ = 0.1.
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Figure 4.13: (a) Metric distnorm between approximation x(k) computed by Algorithm 10 and a
solution for n = 8, m = 32, γ = 0.2, and σ = 0, and (b) for σ = 0.1.

4.7 Initialization methods

For nonconvex problems it is highly important to select a proper initial guess to avoid local
minimums during iterations. There are several methods [14, 12, 7, 13, 10, 9] which all are from
the family of spectral algorithms because they are based on the computation of the largest
eigenvalue of a matrix Y = 1

m

∑m
i=1 f(bi)aia

∗
i , where bi ∈ R+ is the i-th measurement and
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ai ∈ Cn is the i-th row of a transmission matrix A ∈ Cm×n such that b = |Ax|, and function
f : R → R differs for each method. The proper choice of f can reduce the required m to
estimate x [13, 10, 9]. Since the goal of this work is to create a fast and robust algorithm to
solve a phase correction problem, in this section we consider just two of initialization strategies
to use in further numerical experiments instead of taking into account all of them. Following
the published results in [7, 13], we decide to select Wirtinger flow (WF) initialization method
[7] as a baseline algorithm, and Gao & Xu (GX) initialization algorithm [13] which is proved
in the original paper to have better properties than WF.

Both WF and GX initialization algorithms requires computation of the leading eigenvector
of matrix Y . The power method can efficiently solve this problem with a selected accuracy.
Despite the fact that it can be easily found in literature, we put it in Algorithm 11 to make
this document self-contained.

Algorithm 11: Power method.

Input: Matrix M ∈ Cn×n, tolerance ε > 0.
Output: The largest eigenvalue λ ∈ C and eigenvector v ∈ Cn.

1 Set v =
1n
n

, λ =
v∗Mv

‖v‖2
.

2 Loop

3 Set v =
Mv

‖Mv‖
.

4 Set λ′ =
v∗Mv

‖v‖2
.

5 if |λ′ − λ| < ε then
6 break

7 Set λ = λ′.

8 Set λ = λ′;
9 return λ, v.

The goal of this section is not only to present the algorithms but also give the idea behind
them. The principle of spectral methods is to use a transmission matrix A ∈ Cm×n and a vector
of measurements b ∈ Rm

+ such that b = |Ax| to approximate x ∈ Cn. The Algorithm 12 is based
on the fact if A is Gaussian then by the law of large numbers we have

1

m

m∑
i=1

b2
i aia

∗
i ≈ ‖x‖2I + xx∗. (4.27)

It can be seen that any leading eigenvector of ‖x‖2I + xx∗ is of the form λx for λ ∈ R. Thus
for sufficiently large m, solution x can be recovered up to a sign and a global phase shift.

Lemma 1 [43, Lemma 20]. Let a = Re[a] + i Im[a] such that Re[a], Im[a] ∼ N
(
0, 1√

2

)
, then

for any fixed vector x ∈ Cn it holds that

E
[
|a∗x|2aa∗

]
= ‖x‖2I + xx∗.
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The normalization coefficient λ approximates ‖x‖ but has no effect for a class of projection
algorithms that is considered in this work. The reason comes from the update formula in
Algorithm 7 that uses arg(Ax) expression, which is clearly invariant to multiplication by a real
positive constant.

Algorithm 12: Wirtinger Flow: Initialization [7, Algorithm 1].

Input: Vector of measurements b ∈ Rm
+ , transmission matrix A ∈ Cm×n, Power

method tolerance ε > 0.

Output: Initial guess x(0) ∈ Cn.

1 Set Y =
1

m

m∑
i=1

b2
i ai·a

∗
i·, where ai· is the i-th row of A.

2 Find the larges eigenvalue v ∈ Cn of Y using Algorithm 11 with tolerance ε.

3 Set λ =

√
n

∑m
i=1 b

2
i∑m

i=1 ‖ai·‖2
.

4 Set x(0) = λv.

The main result about WF initialization is presented in Theorem 8 which claims that
O(n log n) measurements are required to obtain an efficient initialization with high probability.

Theorem 8 [7, Theorem 3.3] Let x ∈ Cn be an arbitrary vector and b = |Ax| ∈ Rm
+ be m

samples with m ≥ c0 · n log n, where c0 is a sufficiently large numerical constant. Then the
computed by Algorithm 12 estimate x(0) normalized to have squared Euclidean norm equal to
m−1

∑m
i=1 b

2
i ,

1 obeys

dist(x(0), x) ≤ 1

8
‖x‖,

with probability at least 1− 10e−γn − 8/n2 (γ is a fixed positive numerical constant).

The idea of Gao & Xu initialization algorithm is similar to WF but with f(x) = 1
2
−exp(x/λ2)

which improves the quality of initial guess estimation. In the same way that we used in Lemma 1
let us show the motivation of such f .

Lemma 2 [13, Lemma 5.2]. Let a = Re[a] + i Im[a] such that Re[a], Im[a] ∼ N
(
0, 1

2

)
, then for

any fixed vector x ∈ Cn it holds that

E
[(

1

2
− exp

(
|a∗x|2/λ2

))
aa∗
]

=
xx∗

4‖x‖2
.

The main result about GX initialization is presented in Theorem 9 which claims that O(n)
measurements are required to obtain an efficient initialization with high probability.

1The same results holds with the intialization from Algorithm 12 because
∑m

i=1 ‖ai‖n ≈ mn with a standard
deviation of about the square root of this quantity.
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Algorithm 13: Gao & Xu initialization [13, Algorithm 1].

Input: Vector of measurements b ∈ Rm
+ , transmission matrix A ∈ Cm×n, Power

method tolerance ε > 0.

Output: Initial guess x(0) ∈ Cn.

1 Set λ2 =

∑m
i=1 bi
m

.

2 Set Y =
1

m

m∑
i=1

(
1

2
− exp

(
bi/λ

2
))
ai·a

∗
i·, where ai· is the i-th row of A.

3 Find the larges eigenvalue v ∈ Cn of Y using Algorithm 11 with tolerance ε.

4 Set x(0) = λv.

Theorem 9 [13, Theorem 2.1] Let x ∈ Cn be an arbitrary vector and b = |Ax| ∈ Rm
+ be m

samples. Then for any θ > 0 there exists constant Cθ such that for m ≥ Cθn the computed by
Algorithm 13 estimate x(0) normalized to have squared Euclidean norm equal to m−1

∑m
i=1 b

2
i ,

obeys
dist(x(0), x) ≤

√
3θ‖x‖,

with probability at least 1− 4e−cθn (cθ is a fixed positive numerical constant).

Let us now provide a few time profiles for the phase retrieval methods that we discussed
above which use different initialization strategies: random (RI), Wirtinger (WI) and Gao &
Xu (GXI) initializers. It appears that they have different impact on the convergence of the
considered phase retrieval algorithms. For example, on Figure 4.14a it can be seen that both
strategies WI and GXI increases the number of solved problems in comparison with a random
starting point. However, both of them have approximately the same effect on the speed of
convergence for the gradient descent algorithm with a secant line search. The secant line search
was selected since it is faster than backtracking line search, which can be seen on Figure 4.3.
This picture is not the same for other methods. For instance, on Figure 4.14b it can be seen
that GXI initialization allows to solve more problems than both WI and RI, where at the same
time for half of the problems WI allows to converge faster. Alternating projections algorithm
reveals that GXI initialization improves both the speed of convergence and the number of
solved problems in comparison with Wirtinger and random initialization strategies. The most
interesting behavior can be observed on Figure 4.14d. It reveals that the strategy which allows
both to obtain the fastest convergence and to solve all problems is a random initialization
strategy. Recall, that WI and GXI requires additional computational time to find starting
point. More precisely, it needs to compute a matrix Y and to find its leading eigenvector by
means of power method. It reveals that this effort is not relevant for ADMM (Algorithm 10)
and it is more efficient from the computational speed point of view to generate randomly an
initial point.

The experiments were done for n = 32, m = 128, without noise σ = 0, where 100 problems
were generated for this aim. The metric distnorm is used to measure distance between a solution
and an approximation. Also, the stopping tolerance ε in Algorithm 11 was set to 0.001 in order
to approximate the leading eigenvector.
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(a) Gradient descent (Algorithm 5)
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(b) Gauss-Newton (Algorithm 6)
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(c) Alternating projections (Algorithm 7)
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(d) ADMM (Algorithm 10)

Figure 4.14: Time profiles for the phase retrieval algorithms with different initialization strate-
gies: [RI] - random, [WI] - Wirtinger, [GXI] - Gao & Xu.

4.8 Numerical results

In this section, we present numerical results for different optimization algorithms to solve a set
of phase retrieval problems in order to find the fastest and the most robust algorithm.

Following the previous research, we exclude Gauss-Newton method from a list of comparison.
The reason can be clearly seen on Figure 4.14, where Gauss-Newton method can be up to 10
times slower than other algorithms. Also, we use different initialization strategies for different
algorithms. On Figure 4.14 it can be clearly seen that the best initialization approach for
gradient descent is Wirtinger flow, alternating projections algorithm performs faster with Gao
& Xu initialization, and ADMM does not require any initialization algorithms and uses a
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random complex vector as a starting point.
We present time and iterations profiles for these three algorithms with corespondent initial-

ization strategies, for different number of beams n ∈ {8, 32, 128} and measurements m = 4n,
for two levels of noise σ = 0 and σ = 0.1. The stopping tolerance of metric distnorm for σ = 0
is 0.001, for σ = 0.1 is 0.2.
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(b) Iteration profile

Figure 4.15: Profiles computed for n = 8, m = 32, σ = 0 and 100 problems in total.
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(b) Iteration profile

Figure 4.16: Profiles computed for n = 32, m = 128, σ = 0 and 100 problems in total.
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(b) Iteration profile

Figure 4.17: Profiles computed for n = 128, m = 512, σ = 0 and 100 problems in total.
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Figure 4.18: Profiles computed for n = 8, m = 32, σ = 0.1 and 100 problems in total.
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Figure 4.19: Profiles computed for n = 32, m = 128, σ = 0.1 and 100 problems in total.
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Figure 4.20: Profiles computed for n = 128, m = 512, σ = 0.1 and 100 problems in total.

These profiles reveals that ADMM (Algorithm 10) in all of the cases performs faster than
alternating projections (Algorithm 7) and gradient descent (Algorithm 5) algorithms. In addi-
tion, with increasing n this difference in speed increases.

Now, let us provide heat maps (explained in Section 2.6) for these algorithms to observe
the solving capabilities for different n and m, with and without noise. It can be clearly seen
(Figure 4.21 - Figure 4.26) that alternating projections and gradient descent algorithms requires
m ≥ 4n measurements to solve a phase retrieval problem for both cases: σ = 0 and σ = 0.1. At
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the same time, ADMM algorithm can solve more that 50% of all problems even when m = 3n,
which can be observed on Figure 4.23 and Figure 4.26.
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Figure 4.21: Profiles computed for gradient descent algorithm (Algorithm 5) with σ = 0, 100
problems, and Wirtinger initialization (Algorithm 12)
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Figure 4.22: Profiles computed for alternating projections algorithm (Algorithm 7) with σ = 0,
100 problems, and Gao & Xu initialization (Algorithm 13)
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Figure 4.23: Profiles computed for ADMM algorithm (Algorithm 10) with σ = 0, 100 problems,
and random initialization.
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Figure 4.24: Profiles computed for gradient descent algorithm (Algorithm 5) with σ = 0.1, 100
problems, and Wirtinger initialization (Algorithm 12)
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Figure 4.25: Profiles computed for alternating projections algorithm (Algorithm 7) with σ =
0.1, 100 problems, and Gao & Xu initialization (Algorithm 13)
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Figure 4.26: Profiles computed for ADMM algorithm (Algorithm 10) with σ = 0.1, 100 prob-
lems, and random initialization.

Thus, we can conclude that ADMM (Algorithm 10) appears to be faster and more robust
(with a properly selected value of γ) than other algorithms considered in this work, which
potentially gives a real improvement of the phase correction algorithm considered in the next
chapter.
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Chapter 5

Phase corrections by means of
optimization methods

In this chapter, we consider a phase correction problem to solve using a set of optimization
algorithms, which aim to find a solution of (1.2). In Section 1.3, we briefly described the
problem and now, let us give a formal definition.

Let us consider a vector x(k) ∈ Cn representing n input lasers whose vector of phases
arg(x(k)) is unknown, but with a known vector of amplitudes |x(k)|. The output is given by
a vector of m intensity measurements b(k) ∈ Rm

+ for m > n. The link between x(k) and b(k)

can be modeled by means of a transmission matrix A ∈ Cm×n such that b(k) = |Ax(k)| where
A represents a scattering device and operation | · | simulates the measurement process. Let
x̂ ∈ Cn be a given target signal. The goal is to apply a phase correction to the vector x(k) to
obtain a new vector x(k+1) such that |x(k+1)| = |x(k)| and |Ax(k+1)| = |Ax̂|. Suppose that x̃(k) is
a solution of the equation

|Ax| = b(k), where b(k) = |Ax(k)|, (5.1)

such that arg(x̃(k)) = arg(x(k)) up to a constant. The current phase values are then modified
by means of the phase modulation to produce a new vector x(k+1) such that

arg(x(k+1)) = arg(x(k))− arg(x̃(k)) + arg(x̂).

Therefore, for some constant c ∈ R, we will have

arg(x(k+1)) = arg(x̂) + c.

The solution of (5.1) can be done by a phase retrieval algorithm (for instance, the alternating
projection). But the computation of a nearly exact solution of this equation is not relevant in
our context. The first reason is that the computational cost can be too large. The second reason
is that the convergence to a global solution is not always guaranteed. The third reason comes
from robustness. Due to noisy data, it is useless to compute a nearly exact solution. It is better
to perform some few iterations of a phase retrieval algorithm to get an approximate solution
of (5.1), to modify the input sources by phase modulation, then to perform new magnitude
measurements and then to loop. This process is formulated in Algorithm 14. In practice, this
loop is continuously applied and never stop because of phase deviations.

It is worth noting that the steps 2 and 4 are not numerical implementations and that
the value of arg(x(k)) is never explicitly known. In Step 2, the vector b(k) follows from physical
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Algorithm 14: Opto-numerical phase correction algorithm [31, Algorithm 1]

1. Initialization: Let x̂ be the known target signal. Let x(0) be the unknown vector of
initial phases, such that |x(0)| = |x̂|. Set k = 0.

2. Magnitude measurement: Let b(k) = |Ax(k)|.

3. Phase retrieval inner algorithm: Compute x̃(k) ∈ Cn as an approximate solution of

|Ax| = b(k). (5.2)

4. Phase modulation: Modify the phases of input signal according to

x(k+1) = x(k) � exp(i(arg(x̂)− arg(x̃(k)))). (5.3)

5. Return loop: Set k = k + 1 and go to 2.

measurements by means of a scattering device with photodetectors. Step 4 corresponds to phase
modulations of the input sources. For a detailed experimental setting and true experiments,
see [31]. However, in our numerical experiments the phases are given by the arguments of a
true vector x(k) and the magnitude measurements are simulated by calculating |Ax(k)|.

5.1 Numerical results

In this section, we present numerical results for different phase retrieval algorithms applied to
the problem of a phase correction.

At first, let us select the best initialization strategy for starting point computation in the
same way, as we did on Figure 4.14. The reason why the results on Figure 4.14 are not used
directly in this section is that now we solve a phase correction problem, but not a phase retrieval,
and the metric to measure distance between a solution and an approximation is qnorm instead
of distnorm. Thus, from Figure 5.1 we conclude that:

1. Gauss-Newton is extremely slower than other methods (Figure 5.1b) and will not be
considered for further comparison.

2. GXI and WI initialization strategies are equivalent for gradient descent algorithm (Fig-
ure 5.1a).

3. The best initialization strategy for alternating projections algorithm is Gao & Xu initial-
ization [13].

4. The best initialization strategy for ADMM is Gao & Xu initialization [13]. Note, that
it is different from what we observe on Figure 4.14d. The reason comes from different
metric. It reveals that GXI is better to use if qnorm is considered as a distance measure,
and RI if distnorm.
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The experiments were done for n = 32, m = 128, without noise σ = 0, where 100 problems
were generated for this aim. The metric qnorm is used to measure distance between a solution
and an approximation.

Then, from Figure 5.2 - Figure 5.7 we conclude that ADMM algorithm, which is used in
step 3 of Algorithm 14 has the highest speed in solving a phase correction problem in both
cases: with noise σ = 0.1 and without it (σ = 0).
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(a) Gradient descent (Algorithm 5)
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(b) Gauss-Newton (Algorithm 6)
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(c) Alternating projections (Algorithm 7)
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(d) ADMM (Algorithm 10)

Figure 5.1: Time profiles for the phase retrieval algorithms to solve phase correction problems
with different initialization strategies: [RI] - random, [WI] - Wirtinger, [GXI] - Gao & Xu.

65



5.1. NUMERICAL RESULTS

0.0 0.1 0.2 0.3 0.4
Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

ed
 ta

sk
s

AP [GXI]
ADMM [GXI]
GD_s [WI]

(a) Time profile

0 5 10 15
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

So
lv

ed
 ta

sk
s

AP [GXI]
ADMM [GXI]
GD_s [WI]

(b) Iteration profile

Figure 5.2: Profiles computed for n = 8, m = 32, σ = 0 and 100 problems in total.
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(b) Iteration profile

Figure 5.3: Profiles computed for n = 32, m = 128, σ = 0 and 100 problems in total.
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(b) Iteration profile

Figure 5.4: Profiles computed for n = 128, m = 512, σ = 0 and 100 problems in total.
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(b) Iteration profile

Figure 5.5: Profiles computed for n = 8, m = 32, σ = 0.1 and 100 problems in total.
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(b) Iteration profile

Figure 5.6: Profiles computed for n = 32, m = 128, σ = 0.1 and 100 problems in total.
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Figure 5.7: Profiles computed for n = 128, m = 512, σ = 0.1 and 100 problems in total.
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Chapter 6

Phase corrections by means of neural
networks

In this chapter, the Algorithm 14 is considered where a neural network model is used in step 3 to
compute an approximation x̃(k). Two kind of results were obtained in this domain. The first is
the way to train a neural network by the quasi-reinforcement learning algorithm (Algorithm 2)
and use it in a phase correction loop where a target x̂ ∈ Cn is fixed. It is shown that this model
is highly scalable and needs extremely low time to compute x̃(k) ∈ Cn. However, the practical
application requires the possibility to dynamically change x̂ which is impossible in this context.
To overcome this difficulty, the second result is presented where it is revealed how to build and
train a target adaptive neural network. The advantages and disadvantages are discussed also.

6.1 Research path

The form of the networks that are considered in this chapter have a simple linear nature, which
may be confusing at the first glance since the problem that they solve is complex and nonlinear.
However, their simplicity arises from an among of numerical and experimental tests of different
network architectures, and several learning approaches.

At the beginning, the idea was to train a deep network with many layers and different
activation functions to solve directly a phase retrieval problem, which would have led to a
phase correction in one step. However, this idea works just for a small number of beams (up
to 6). That is why it was proposed to integrate a network in a phase correction loop in order
to train to perform a set of corrections instead of just one. Because of a high similarity with
the reinforcement learning framework we used its terminology to explain our idea.

Due to the limitation in a phase correction speed, the network must be lightweight and
simultaneously capture nonlinear dependencies. The first idea was to use a neural network
with two layers and ReLU activation function between them to compute phase correction
values. However, the quality of this model was not appropriate for our goals.

In addition, it was noted that instead of predicting phase values, it is better to predict real
and imaginary parts of a complex number and then apply arg(·) function to retrieve phases.
This has a logical reason because instead of predicting fixed values ϕ ∈ [0, 2π], we aim that the
relation of imaginary and real parts be fixed. We can say that this approach has more degree
of freedom in some sense.
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A prediction of real and imaginary parts and a usage of arg(·) function at the output
gives not only an additional degree freedom, it also naturally introduce a nonlinearity to the
network. Note, that even if the model is linear, the usage of arg(·) can be considered as a
nonlinear activation function. It was observed numerically, that there is no need to use a
multilayer neural network with classical activation functions because of the presence of arg(·).
That is why the simple network form (6.1) is proposed.
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6.2. TARGET FIXED NEURAL NETWORK

6.2 Target fixed neural network

In this section we present the neural network based algorithm to solve the phase retrieval
problem in step 3 of the Algorithm 14 approximately for a fixed target x̂.

Let TFNN(x) : Rm → [−π, π]n be a neural network model such that

TFNN(x) = arg(Wx), (6.1)

where W ∈ Cn×m is a complex matrix of trainable parameters. The Algorithm 15 was developed
to find W such that TFNN can compute phase corrections.

Algorithm 15: QRL algorithm for TFNN

1. Initialization: Let N ∈ N be the size of the batch. Let Kmax ∈ N be a number of
corrections. Let Imax ∈ N be a number of iterations. Let x̂ ∈ C1×n be the known target
signal. Let W ∈ Cn×m be a random matrix. Set l = 0.

2. Data generation: Generate a batch of initial phases X(0) ∈ CN×n, such that |x(0)
j | = |x̂|

for j ∈ {1, . . . , N}. Set k = 0
(Step 2 in Algorithm 2 where A0 = X(0) and S0 is computed on the next step)

3. Magnitude measurement: Let B(k) = |X(k)A>|.
(Step 3d in Algorithm 2 where St = B(k))

4. Phase correction computation: Let Φ(k) = arg(B(k)W>)
(Step 3a in Algorithm 2 where Ât = Φ(k))

5. Gradients computation: g = 1
N

∑N
j=1

(
∇Re[W ] qnorm

(
eiΦ

(k)
j , X

(k)
j

)
∇Im[W ] qnorm

(
eiΦ

(k)
j , X

(k)
j

))
(Step 3b in Algorithm 2 where ∆w

(k)
t = g)

6. Parameters update: Update

(
Re[W ]
Im[W ]

)
applying the Adam update rule [18] with

parameters α = 0.001, β1 = 0.9, β2 = 0.999.
(Step 3c in Algorithm 2)

7. Phase modulation: Modify the phases of input signal according to

X(k+1) = X(k) � exp(i(arg(x̂)− Φ(k))). (6.2)

(Step 3d in Algorithm 2 where At+1 = X(k+1))

8. Return correction loop: Set k = k + 1. If k < Kmax then go to 3.

9. Return iteration loop: Set l = l + 1. If l < Imax go to 2.

The idea is to plug the model in the simulated phase correction loop in order to train the
network to converge to target from any starting signal x(0). This idea can be formulated in
terms of the quasi-reinforcement learning algorithm (Algorithm 2) where the agent Agent is
the model (6.1), the action Ât is a phase correction vector ϕ(k) = arg(x̂)− arg(x̃(k)), the state
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6.2. TARGET FIXED NEURAL NETWORK

St is the vector of intensities b(k) and the reward R can be computed by qnorm between x(k)

and x̃(k). The adaptation of the Algorithm 2 is presented in Algorithm 15, where each step in
Algorithm 15 is connected to some step in Algorithm 2.
Let us explain each step of Algorithm 15 in details. To simplify the notations for explanations
of steps 2-7 let us consider that k is fixed and remove it from notations, and consider that
j ∈ {1, . . . , N} where it is not explicitly specified.

In step 1 the initial parameters N , Kmax, Imax, x̂, and W are initialized. Let us give the
information about all of them. The size of batch N affects the speed of convergence of the
learning algorithm. A small value like 16, 32 or 64 can produce low informative vector of the
ascent direction g in step 5. A large value like 104 or 105 gives to much information for g. The
problem is that the function to optimize (in our case it is f(W ) := 1

N

∑N
j=1 qnorm

(
eiΦj , Xj

)
)

is not convex which means that if g is computed with big N then with high probability we
converge to one of local minimums. That is why there is an empirical trade off between little
and highly informative g. It was observed that for N = 4096 this trade off is satisfied (see
Figure 6.1).

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
Batch size N

10 4

10 3

q n
or

m

Figure 6.1: Average qnorm after Kmax = 8 corrections for n = 16, m = 64.

The second parameter to explain is a maximum number of simulated corrections Kmax. The
idea of the Algorithm 15 is to find parameters of (6.1) such that

1

N

N∑
j=1

qnorm

(
eiΦ

(Kmax)
j , X

(Kmax)
j

)
≈ 0. (6.3)

Let Kmax = 1, then the Algorithm 15 learns the model to find a nearly exact solution of a phase
retrieval problem (5.2). However, it was observed empirically that for large n the problem (5.2)
is difficult to solve (see Figure 6.2).

That is why it is proposed to update the parameters of model (6.1) at each of the k-th
correction for Kmax > 1 in order to improve the approximation of a solution for (5.2). The
exact value of Kmax depends on both number of beams n and number of measurements m. The
dependence is such that if n increases, required Kmax increase also. However, if m is increased
for constant n, then Kmax decreases. It was observed numerically that Kmax = 9 is sufficient
for training up to n = 128 and m = 4n. (see Figure 6.3).
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Figure 6.2: Average qnorm after Kmax = 1 corrections for different n.
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Figure 6.3: Average qnorm after different Kmax corrections for n = 16, m = 64.

The number of learning iterations Imax is also an empirical value which is set to Imax = 1000
in the experiments. However, if n is large and it is observed that the value of qnorm still
decreasing, then Imax must be increased. The Algorithm 15 also requires a target x̂ as an input
parameter. This point is crucial for understanding because just considering a fixed target the
learning process converges. The trained model (6.1) can be seen as an approximation of the
inverse of x → |Ax| in the neighborhood of x̂ which is formulated in the Conjecture 1. This
leads to the fact that if the target is changed, then the model (6.1) must be retrained.

Conjecture 1 Let F(x) : Cn → Rm
+ be such that F(x) = |Ax|. Let us consider an abstract

inverse function F−1(x) : Rm
+ → Cn which solves (5.2) exactly. Let NN(x) be a function of the

form (6.1) trained with the Algorithm 15 for a fixed target x̂ ∈ Cn. Let Bε(x̂) ⊂ Cn be a ball
centered at x̂ with radius ε > 0. Then

qnorm
(
x, ei TFNN(b)

)
≈ 0 where b = F(x) for any x ∈ Bε(x̂).
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Remark 2 It was observed numerically that if |x̂| is not a constant then the sufficiently small
values of qnorm can not be reached during training. (see Figure 6.4).
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Figure 6.4: Average qnorm after different Kmax corrections for n = 16, m = 64, where red dashed
line is a required threshold qnorm = 0.04.

The initial parametersW are distributed uniformly on the range [−l, l] where l =
√

6/(m+ n).
This is a standard way to initialize the parameters of a model which is called Glorot uniform
initializer or Xavier uniform initializer [15].

In step 2 the batch of random signals X = {xj}Nj=1 ⊂ CN×n is generated where |xj| = |x̂|
and arg

(
xjk
)
∼ Uniform(−π, π).

In step 3 the vectors of intensity measurements bj ∈ Rm
+ for each xj are computed. This

step can be performed either numerically or experimentally. For numerical measurements,
a model like (1.2) is required. The advantage of this approach is a computational speed.
The disadvantage is that the model must be built. For experimental measurements, a fast
phase modulation physical device is required. The advantage is that we do not need a model.
The disadvantage is that in practice to generate batch of signals X ∈ CN×n a Spatial Light
Modulator (SLM) is used. This devise has low phase modulation speed around 500 milliseconds,
which significantly slows down the learning process.

In step 4 the vectors of phase corrections ϕj ∈ [−π, π]n are computed for each vector of
measurements bj ∈ Rm

+ . There is a link between a vector of phases ϕ obtained in step 4 of the
Algorithm 15 and x̃ in step 3 of the Algorithm 14 is such that ϕ = arg(x̃).

In step 5 the gradients are computed separately with respect to real and imaginary parts of
parameters W ∈ Cm×n. Despite the fact that the matrix is complex and potential application
of Wirtinger calculus (see Section 2.3) to compute a complex-valued gradient is possible, the
real-valued gradient is used instead. The motivation is that it was observed empirically that
the convergence of the learning process is better with a real-valued gradient (see Figure 6.5)

The explicit formula of gradient is not given because it is computed by means of automatic
differentiation algorithm implemented in Tensorflow library.

In step 6 the parameters W are updated using a real-valued gradient and following the
update rule defined in [18, Algorithm 1] with default parameters α = 0.001, β1 = 0.9, β2 =
0.999.
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Figure 6.5: Average qnorm after Kmax = 8 corrections for n = 16, m = 64 during training, where
red dashed line is a required threshold qnorm = 0.04.

In step 7 the phase corrections ϕj are applied for each xj. In (6.2) the subtraction is
considered between arg(x̂) ∈ [−π, π]1×n and rows of Φ

arg(x̂)− Φ =

arg(x̂)− ϕ1·
. . .

arg(x̂)− ϕN ·

 .

In step 8 it is checked if the maximum number of corrections Kmax is reached. If it is true,
then a new batch X ∈ CN×n is generated.

Also, there are several important properties of (6.1) which is necessary to mention. Let
us show that the function (6.1) is invariant to changes of the absolute values of the measured
signal.

Observation 9 Let λ > 0 and x ∈ Rm, then TFNN(λx) = TFNN(x).

Proof. Let W ∈ Cn×m, then by linearity arg(W (λx)) = arg(λWx) = arg(Wx)1.
2

Observation 10 Let λ > 0, A ∈ Cm×n, and x ∈ Cn, then |A(λx)| = λ|Ax|.

Proof. |A(λx)| = |λAx| = |λ||Ax| = λ|Ax|. 2

Proposition 14 Let x ∈ Cn be such that |x| = λ for λ > 0. Let A ∈ Cm×n. Then

TFNN
(
|Ax|

)
= TFNN

(
|Aei arg(x)|

)
.

1Geometrically, it can be considered that the angle of vector does not change if we multiply it by the positive
constant.

75



6.2. TARGET FIXED NEURAL NETWORK

Proof. Using the Observation 10 we have that TFNN
(
|A(λei arg(x))|

)
= TFNN

(
λ|Aei arg(x)|

)
,

and then with the Observation 9 we get TFNN
(
λ|Aei arg(x)|

)
= TFNN

(
|Aei arg(x)|

)
which shows

the invariance to a constant amplitude. 2

For some applications, it is possible that the transmission matrix must be normalized as it
is defined in Definition 5 to remove the bias which comes from the physical system. Thus, it is
important to be normalization invariant for a phase correction model.

Observation 11 Let A ∈ Cm×n be a transmission matrix. Then, |(A � e−i arg(a·1))x| = |Ax|
for any x ∈ Cn.

Proof. Let us consider the j-th row of A and show that |(aje−i arg(aj1))>x| = |a>j x|.

|(aje−i arg(aj1))>x| =
∣∣∣∣ n∑
k=1

ajke
−i arg(aj1)xk

∣∣∣∣
=

∣∣∣∣e−i arg(aj1)

n∑
k=1

ajkxk

∣∣∣∣
=

∣∣∣∣ n∑
k=1

ajkxk

∣∣∣∣
= |a>j x|.

Applying this result to each row we finish the proof. 2

Proposition 15 Let A ∈ Cm×n be a transmission matrix and let Â its normalized form (see

Definition 5 in Appendix A). Then TFNN(|Âx|) = TFNN(|Ax|).

Proof. Applying the Observation 9 and the Observation 11 we obtain

TFNN(|Âx|) = TFNN

(∣∣∣∣ 1

‖A‖∞
(A� e−i arg(a:1))x

∣∣∣∣)
= TFNN

(∣∣∣∣(A� e−i arg(a:1))x

∣∣∣∣)
= TFNN(|Ax|).

2

By the Proposition 15 we conclude that the model (6.1) is invariant to a transmission matrix
normalization.

To obtain a full picture regarding the capabilities of TFNN, several additional information
slices are presented in Figure 6.6.

It was numerically observed that in order to achieve a sufficiently low qnorm, say qnorm < 0.04,
there is a minimal required ratio m/n for different n, which equals m = 4n. When the beam
count varies from 4 to 128, the required m/n ratio increases from 2 to 12. Thus, it is important
to show a minimal required ratio m/n for different n to achieve a sufficiently low qnorm. Different
TFNNs were trained for the various number of beams n ∈ {4, 8, 16, 32, 64, 128} and the different
ratios between the number of measurements and the number of beams m/n ∈ {2, 4, 6, 8, 10, 12}.
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(a) (b)

Figure 6.6: (a) Heat maps of the minimal achievable mean qnorm in grey scale and (b) its
required relative training time. The relative time on (b) is computed by dividing a learning
time in seconds for each n and m/n by the minimal time to obtain GPU invariant information.
The minimal time required by the GPU used in for this experiments was 1.3 s.
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Figure 6.7: Mean qnorm behavior during corrections.

The minimal achievable qnorm was recorded and visualized as a heat map in Figure 6.6a, with
the corresponding relative training time shown in Figure 6.9b. The minimal achievable qnorm is
obtained by solving 1000 phase correction problems with fixed targets for each combination of
n and m/n, and computing average of the qnorm at the last correction. Also, an average qnorm

during corrections is visualized in Figure 6.7, which gives the information about the number of
corrections required to achieve a target.

6.3 Target adaptive neural network

In the previous section it is shown how to train a neural network to use in the phase correction
loop with a fixed target. However, it is impossible to retrain the model (6.1) fast when this
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change appears. In this section, we present the neural network to use in the phase correction
loop where a target changes with a high frequency. The matrix W in (6.1) implicitly depends
on x̂, which means that there exists a mapping TANN : [−π, π]n → Cn×m. Let us construct
this mapping in the following form

TANN(x) = Reshape(Ueix), (6.4)

where U ∈ Cnm×n is a complex matrix of trainable parameters and Reshape : Cmn → Cn×m

is a matrix from vector building operator. The approach to learn (6.4) is presented in the
Algorithm 16.

Algorithm 16: QRL algorithm for TANN

1. Initialization: Let M ∈ N be the size of the batch for signals and N ∈ N for targets. Let
Kmax ∈ N be a number of corrections. Let Imax ∈ N be a number of iterations. Let
U ∈ Cnm×n be some random matrix. Set l = 0.

2. Data generation: Generate a batch of initial targets X̂ ∈ CN×n and initial phases{
X

(0)
j

}N
j=1
∈ CN×M×n, such that |x(0)

jp | = |x̂j| = c for j ∈ {1, . . . , N}, p ∈ {1, . . . ,M},
c > 0. Set k = 0

3. Models retrieval: Wj = TANN(arg(x̂j)) for j ∈ {1, . . . , N} (Wj ∈ Cn×m).

4. Magnitude measurement: Let B
(k)
j = |X(k)

j A>| for j ∈ {1, . . . , N} (B
(k)
j ∈ RM×m).

5. Phase correction: Let Φ
(k)
j = arg(B

(k)
j W>

j ) for j ∈ {1, . . . , N} (Φ
(k)
j ∈ [−π, π]M×n).

6. Gradients computation: g = 1
NM

∑N
j=1

∑M
p=1∇U qnorm

(
eiΦ

(k)
jp , X

(k)
jp

)
7. Parameters update: Update U applying the Adam update rule [18] with parameters
α = β1 = β2 = 0.1.

8. Phase modulation: Modify the phases of input signal according to

X
(k+1)
j = X

(k)
j � exp(i(arg(X̂j)− Φ

(k)
j )), j ∈ {1, . . . , N}. (6.5)

9. Return correction loop: Set k = k + 1. If k < Kmax then go to 3.

10. Return iteration loop: Set l = l + 1. If l < Imax go to 2.

Let us explain each step of the Algorithm 16 in details. To simplify the notations for
explanations of steps 2-8 let us fix k and remove it from the notations, and consider that
j ∈ {1, . . . , N}, p ∈ {1, . . . ,M} where it is not explicitly specified.

In step 1 the parameters M , N , Kmax, Imax and U are initialized. The information about
Kmax and Imax is presented in parts in the explanation of the Algorithm 15. The parameters
N and M represent the size of training batch. In contrast to the Algorithm 15, it is necessary
to generate not only initial signals to correct, but also targets. The parameter N represents
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6.3. TARGET ADAPTIVE NEURAL NETWORK

the number of targets in a generated batch. The parameter M represents the number of initial
signals generated for each of N targets. The exact values that are used in computations are
N = 1024, M = 256. Matrix U ∈ Cmn×n is initialized such that the entries of real and
imaginary parts are distributed by a standard normal law.

In step 2 the sets of target signals X̂ ∈ CN×n and initial signals X ∈ CN×M×n are generated
such that |X̂| = |Xj| = cj for some constant cj > 0, arg(Xjpq), arg(X̂jq) are distributed
uniformly on range [−π, π] for q ∈ {1, · · · , n}.

In step 3 matrices Wj ∈ Cn×m are computed for each target signal x̂j ∈ Cn by means of
model (6.4).

In step 4 the measurements Bj ∈ RM×m for each Xj ∈ CM×n are performed. The same as
in the explanation of Algorithm 15, this step can be performed either numerically or experi-
mentally.

In step 5 the phase corrections Φj ∈ [−π, π]M×n are computed for each Bj ∈ Rm
+ by means

of matrices Uj ∈ Cn×m.
In step 6 the gradients are computed. Note, that Wirtinger calculus is used to get g in

contrast to the Algorithm 15. It was observed numerically that the real-valued gradient with
respect to real and imaginary parts of U is less informative for optimization (see Figure 6.8).

0 100 200 300 400 500
Epochs
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100

q n
or

m Real-valued gradient
Complex-valued gradient

Figure 6.8: Average qnorm after Kmax = 8 corrections for n = 6, m = 64.

In step 7 the matrix W is updated. Note, that the default parameters of Adam update rule
[18] are changed to α = β1 = β2 = 0.1. It was observed empirically that the optimization with
complex-valued gradient is faster with these parameters.

In step 8 phases of each Xj ∈ CM×n are corrected with Φj ∈ [−π, π]M×n.
To obtain a full picture regarding the capabilities of TANN, several additional information

slices are presented in Figure 6.9. It was numerically observed that in order to achieve a
sufficiently low qnorm, say qnorm < 0.04, there is a minimal required ratio m/n for different
n. When the beam count varies from 4 to 20, the required m/n ratio increases from 4 to
12. Thus, it is important to show a minimal required ratio m/n for different n to achieve a
sufficiently low qnorm. Different TANNs were trained for the various number of beams n ∈
{4, 6, 8, 10, 12, 14, 16, 20} and the different ratios between the number of measurements and the
number of beams m/n ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}. The minimal achievable average qnorm
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6.3. TARGET ADAPTIVE NEURAL NETWORK

was recorded and visualized as a heat map in Figure 6.9a, with the corresponding relative
training time shown in Figure 6.9b. The minimal achievable qnorm is obtained by solving 1000
phase correction problems with different targets for each combination of n and m/n.

(a) (b)

Figure 6.9: (a) Heat maps of the minimal achievable mean qnorm in grey scale and (b) its
required relative training time. The red line in (a) approximates the separation line for which
qnorm = 0.04. The relative time on (b) is computed by dividing a learning time in seconds for
each n and m/n by the minimal time to obtain GPU invariant information. The minimal time
required by the GPU used in for this experiments was 13 s.

The red line in Figure 6.9a reveals the dependency between n andm/n to obtain qnorm = 0.04
and is defined as f(n) = n

2
+ 1. This gave us information about the minimal number of

measurements needed to obtain qnorm ≤ 0.04, which was m = n2

2
+ n.

An average qnorm during corrections is visualized in Figure 6.10, which gives the information
about the number of corrections required to achieve a target.
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Figure 6.10: Mean qnorm behavior during corrections.
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Chapter 7

Experimental results

In this chapter we compare the efficiency and robustness of the phase retrieval methods used in
the experimental phase correction loop. In this work, we developed two kinds of such methods:
Adaptive Relaxed Alternating Directions Method of Multipliers (Algorithm 10) to solve a phase
retrieval problem and Target Adaptive Neural Network (6.4) (learned by Algorithm 16) to
solve directly a phase correction problem. Both of them were applied to correct n = 16 laser
beams with 4n measurements for ADMM and 12n measurements for TANN. Both of them were
compared with a baseline alternating projections algorithm (Algorithm 7). The initialization
strategy was not used when ADMM and alternating projections algorithms were compared,
which means that the same random starting point was used instead. The reason is that it
was observed on Figure 5.1 that both algorithm have the same kind of profit from the spectral
initialization.

To compare the algorithms the profiling method (Section 2.5) is used with modifications.
In the initial approach, we generate a set of problems (the set of transmission matrices) that
are solved by selected methods. However, in practice, it is too complicated to perform such
computations since around 10 minutes is required to collect experimental data X ∈ CN×n and
B ∈ RN×m

+ for N = 400 to compute a transmission matrix A. That is why we generate different
initial state of lasers instead and then apply the phase correction loop for a fixed transmission
matrix A ∈ Cm×n.

The transmission matrix was computed by the Algorithm 17 using unbiased data B − β,
where β was computed by the Algorithm 18. The same matrix was used to train TANN in
Algorithm 16.

The experimental profiles are presented on Figure 7.1 and Figure 7.3 reveal that both
algorithms performs faster that the baseline algorithm and both can solve all problems. ADMM
was applied for m = 4n measurements with stopping tolerance 0.01 of qnorm metric and 15
iterations maximum and solve 80% of all problems in 0.5 milliseconds where, at the same
time, the alternating projections with stopping tolerance 0.001 of qnorm metric solves 15%.
The stopping tolerances were selected empirically in order to solve a phase correction problem
as fast as possible. It was observed that these values are different for different algorithms.
The speed of TANN is incomparably greater than for the alternating projections algorithm,
which is obvious since one correction requires a single matrix multiplication. As it was shown
on Figure 6.9a, TANN requires more measurements than optimization algorithms, which is a
disadvantage. However, when this amount is available, than the highest speed of corrections
can be achieved. The experimental setup that was built by PhD student Alexandre Boju and
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postdoctoral researcher Geoffrey Maulion is presented on Figure 7.5. The details about the
experimental setup are described in the thesis of Alexandre Boju.
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Figure 7.1: Profiles computed for n = 16, m = 64, 100 random starting lasers state.
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Figure 7.2: qnorm experimental traces computed for n = 16, m = 64, 100 random starting lasers
state.
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Figure 7.3: Profiles computed for n = 16, m = 192, 100 random starting lasers state.
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Figure 7.4: qnorm experimental traces computed for n = 16, m = 192, 100 random starting
lasers state.
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Conclusion and perspectives

Our main contributions in this work were first to develop the ADMM algorithm (Chapter 5) and
to show that this algorithm can outperform the alternating projections method initially used
to perform phase corrections in the context of physical experiments in the photonics laboratory
(Chapter 7). In particular, we have observed and shown that the choice of the penalty parameter
is sensitive for the efficiency of the algorithm and we have proposed adaptive updating rules
that we believe are relevant. Our second main contribution was the development “from scratch”
of a neural network approach (Chapter 6) for the phases control.

The first algorithm (ADMM) has been developed to solve the phase correction problem, but
it can also be used to solve the phase retrieval problem (Algorithm 10). The updated formulas
of an algorithm and its speed of convergence depends on the reformulation of the original
system of nonlinear equations |Ax| = b. The proper reformulation was found, which allowed us
to achieve a higher speed in solving a phase correction task. It was also shown how to select
a regularization parameter ρ of the augmented Lagrangian to speed up the algorithm and, at
the same time, maintain the ability to converge to a global solution frequently. To summarize,
there are the following advantages and disadvantages of ADMM in comparison with the baseline
Alternating Projections (AP) algorithm. The comparison is valid for a number of beams n up
to 128 and for fixed m = 4n.

Advantages:

1. ADMM requires less time and iterations to solve both a phase retrieval and a phase
correction problems.

2. ADMM converges to a global solution of a phase retrieval problem with higher
probability than AP.

Disadvantages:

1. ADMM requires a proper selection of the parameter γ which is used to switch to the
AP algorithm when it is near a solution of a phase retrieval problem. This must be
used when there is noise in a transmission matrix.

The second algorithm solves a phase correction problem only and is based on the neural
network. The main contribution is not the form of a model but the way of its training :
Algorithm 15 for a fixed target phase and Algorithm 16 for a random target phase. Since a
target phase changes with high frequency in the physical application we will consider model
(6.4) only in this conclusion. Let us reveal the advantages and disadvantages of this approach.
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Advantages:

1. Because of a simple form of the neural network (6.4), the corrections are performed
with high speed. If we compare the profiles for experimental data (Figure 7.3), it will
be clear that TANN is approximately 15 times faster than AP, which is the biggest
advantage of this approach.

2. Figure 7.3 reveals that the neural network model is robust to noise.

Disadvantages:

1. To train TANN model (6.4) we require much more measurements than for the opti-
mization algorithms. It can be clearly seen on Figure 6.9a.

2. TANN model has memory limitations. For example, to train a model for 20 beams,
we require GPU with 6GB. Taking into account that raises is quadratic, this algo-
rithm can not be applied for a huge number of beams.

To conclude, both methods perform faster than the alternating projection algorithm. How-
ever, there are limitations in memory for TANN, which makes this approach not applicable for
n > 20, and additional parameter γ for the ADMM algorithm, which must be selected with
respect to the noise level.

This conclusion leads us to the future perspectives of this work. Let us first specify them
for the ADMM algorithm, and then for TANN.

From a practical point of view, ADMM requires the possibility to select the parameter γ.
This can be easily done if the experimental data of signalsX ∈ CN×n and measurementsB ∈ Rm

+

is available. For this aim, the standard deviation σ of noise must be estimated statistically and
then γ = 2σ (empirical result). However, the very last results from the physicists team give
a possibility to compute a transmission matrix without X. This modification reduces the size
of the laser system, which is important for real applications. That is why an approach for the
computation of γ without X must be developed.

From a theoretical point of view, ADMM requires a convergence result. This must be done
to fully understand the capabilities of this algorithm. However, since the original optimization
problem is nonconvex and complex-valued, there are not a lot of available results in the lit-
erature, which makes this analysis very hard and time expensive. For instance, in [44] there
is a result for the convergence of the alternating projection algorithm. However, the assump-
tions that must be satisfied to achieve the convergence are not possible to meet in the real-life
(millions of measurements), which is also mentioned by the author. That is why it is a really
challenging problem to solve.

Concerning the neural network approach, the biggest problem is a memory limitation. The
quadratic raise of the trainable parameters is a huge disadvantage. In this context, the complex-
valued convolutional layer could be potentially useful. It is already implemented in the Ten-
sorflow extension library, which is used in this work, however, the proper way of its application
was not found. That is why it is reasonable to work in this direction in the future.

The results about the neural network approach were published in [33, 36] and presented
in the following conferences [35, 41, 34, 40, 39, 37, 38], where [41, 34, 40, 38] were invited
conferences.

The Python implementations of all algorithms that are presented in this work can be down-
loaded from the following links:
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• Implementation of the phase retrieval algorithms discovered in Chapter 4.
https://gitlab.xlim.fr/shpakovych/phrt-opt

• Implementation of the Algorithm 14.
https://gitlab.xlim.fr/shpakovych/phcr-opt

• Implementation of the Algorithm 15 and Algorithm 16.
https://gitlab.xlim.fr/shpakovych/phcr-nn

• Implementation of the profiling method explained in Section 2.5.
https://gitlab.xlim.fr/shpakovych/ph-profile

• Implementation of the TensorFlow extension library for complex-valued neural networks
(Section 2.4). https://gitlab.xlim.fr/shpakovych/cvnn
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Appendix A

Transmission matrix computational
details

In this section, we give additional details on how a transmission matrix A ∈ Cm×n can be
computed to build a mathematical model (1.2), which then is used for phase corrections in
Algorithm 14. As it is explained in the Introduction chapter, we obtain matrix A by solving
the following problem

Find A ∈ Cm×n such that |XA>| = B, (A.1)

where the sets of signals X ∈ CN×n and measurements B ∈ RN×m
+ are obtained experimentally.

This problem can be split into m phase retrieval problems that can be solved by one of the
methods presented in this work. In addition, there are no time constraints. For this goal, we
select the alternating projections algorithm since it does not require any additional parame-
ters that sensitive to the level of noise like γ in ADMM. Recall, that even with Gao & Xu
initialization strategy [13] there is no guarantee that the alternating projections algorithm will
find a global solution. Since this part is critical and directly affects the quality of the model,
algorithm with restarts is considered, where the main idea is to change a starting point until a
global solution is found.

However, it is not obvious how to determine the global solution. In practice, there is no A
such that |XA>| = B nearly exactly because of the presence of noise. The difficulty is that
the level of noise is not known in advance and thus the choice of a threshold is not obvious.
That is why, we propose to use the following statistical rule to answer this question. Let Ã
be an approximate solution of |XA>| = B. Then the j-th row ãj of Ã is a global solution of
|Xa| = b·j if

‖|Xãj| − b·j‖
‖b·j‖

< min{0.2, η}, (A.2)

where η = µ̄+ 3s, µ̄ = µ+ zαs/
√
m,

µ =
1

m

m∑
j=1

‖|Xãj| − b·j‖
‖b·j‖

, s =

√√√√ 1

m

m∑
j=1

(
‖|Xãj| − b·j‖
‖b·j‖

− µ
)2

.

Here, µ and s are sample mean and standard deviation of all m relative norms. µ̄ is an
upper bound of a trust region for true value of µ with a critical value zα of the standard normal
distribution for the significance level α. We set α = 0.05 which means that the true value of µ is
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inside the range [µ−zαs/
√
m,µ+zαs/

√
m] with probability P = 0.95, where zα = 1.96. Finally,

assuming that all relative norms are drawn from the normal distribution with parameters µ̄
and σ, we use a rule of 3-sigma which says that the sample ξ from this distribution is such that
ξ ∈ [µ̄− 3σ, µ̄+ 3σ] with probability P = 0.9973.

This computations assumes that most of the approximations ãj are global solution and just
some of them are local. This assumption is reasonable since it was shown numerically that with
Gao & Xu initialization more than 90% of all problems can be solved by means the alternating
projections algorithm. However, to be sure that the threshold is not too high we set a limitation
on the level of 0.2 of relative norm. Then, the algorithm of finding Ã can be formulated in
Algorithm 17.

Algorithm 17: Transmission matrix computation.

Input: Signals X ∈ CN×n and measurements B ∈ RN×m
+ , tolerance ε > 0, maximal

number of restarts Rmax ∈ N\{0}.
Output: An approximation of the transmission matrix Ã ∈ Cm×n.

1 Initialize each row of matrix Ã(0) ∈ Cm×n by solving m phase retrieval problems for X
and B with the starting point defined by Gao & Xu initialization [13];

2 Set k = 0;
3 for k < Rmax do
4 Find set J such that for all j ∈ J condition (A.2) is not satisfied;
5 if J is empty then
6 break

7 Find an approximate solution ãj ∈ Cn of equations |Xa| = b·j for all j ∈ J by
means of Algorithm 7, where the starting points are generated randomly;

8 Build the matrix Ã(k+1) where its rows ã
(k+1)
j are suth that

ã
(k+1)
j =

ã(k)
j if j /∈ J or

‖|Xãj |−b·j‖
‖b·j‖ >

‖|Xã(k)j |−b·j‖
‖b·j‖ ,

ãj otherwise

Set k = k + 1;

9 return Ã = Ã(k).

Note, that this algorithm gives no guarantee that rows ãj of Ã for j ∈ {1, . . . ,m} are global
solutions of respective phase retrieval problems |Xa| = b·j. The are two reasons. First, we fix
the maximal number of restarts Rmax, which is an empirical value and can be wrongly defined
by user. Second, the maximal value of threshold 0.2 is also an empirical value, which means
that we do not assume that the level of noise in measurements is greater than 20%. This can
be not true in practice, however consequently it means that the measurements are too noisy
and the model will have a low quality, which will lead to poor phase corrections. That is why,
there must be warnings that the program can throw to inform user about problems with matrix
computation and suggest possible solutions: either to increase Rmax or to inform about a high
presence of noise.

When the transmission matrix is retrieved we can compute an error ε between experimental

89



and modeled measurements as

ε =
‖|XÃ>| −B‖
‖B‖

, (A.3)

where a typical value is ε ≤ 0.15. Another way of comparison can be done by meas of
2-dimensional plot where the first dimension represents a modeled measurement

(
|XÃ>|

)
jk

and the second dimension represents an experimental measurement Bjk for j ∈ {1, . . . , N},
k ∈ {1, . . . ,m} (Figure A.1a). Despite the fact that the model assumes a linear dependence
between near and far complex fields, on Figure A.1a we observe a bias in data (minimal exper-
imental measurement is not near zero). It is reasonable to remove it in order to obtain a linear
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Figure A.1: Modeled and experimental measurements comparison.

dependence. For this goal, we present the Algorithm 18 which can compute the shift value,
which must be applied to all measurements before transmission matrix computation.

Algorithm 18: Bias computation.

Input: Signals X ∈ CN×n and measurements B ∈ RN×m
+ , tolerance ε > 0.

Output: Bias β ∈ R+.
1 Set β = 0, β(k) = +∞, k = 0, Bunb = B;

2 while β(k) > ε do

3 Compute Ã(k) using Algorithm 17 for X and Bunb;

4 Set B
(k)
mod = |XÃ(k)|;

5 Find parameters α(k) and β(k) of a regression model Bunb(:) = α(k)B
(k)
mod(:) + β(k);

6 Set β = β + β(k);
7 Set Bunb = B − β;
8 Set k = k + 1;

9 return β.
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Then, to obtain an unbiased transmission matrix we first compute β by Algorithm 18, and
then compute Ã by Algorithm 17 for X and B − β input data. Note, that to use this model,
we require subtract β from experimental measurements each time when they are performed.
The result of unbiasing can be observed on Figure A.1b. Also, the value of (A.3) can be
compared. On Figure A.2 it can be clearly seen that unbiasing technique improves the quality
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Figure A.2: Comparison of (A.3) for biased and unbiased models using experimental data X
and B for n = 16, m = 64 and N = 1000.

of a transmission matrix model. Another confirmation of the improvement can be observed on
Figure A.3 which was built on the experimental data. Thus we can conclude that unbiasing
approach improves the quality of phase corrections.
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Figure A.3: Traces of qnorm during experimental phase corrections performed by the alternating
projections algorithm.
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In practice, it is possible that the transmission matrix must be normalized as it is defined
in Definition 5 to remove the bias which comes from the physical system. The way to do that
is presented below.

Definition 5 Let A ∈ Cm×n be a transmission matrix. Then the normalized matrix Â computes
as

Â =
1

‖A(:)‖∞
A� e−i arg(a·1), (A.4)

where ‖A(:)‖∞ = maxi∈{1,...,m},j∈{1,...,n} |aij| and a·1 = (a11, a21, . . . , am1)> is the first column of
A.
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Random scattering and alternating projection optimization for active phase control of a
laser beam array. IEEE Photonics Journal, 11(4):1–9, Aug 2019.

[32] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev. Phase
retrieval with application to optical imaging: A contemporary overview. IEEE Signal
Processing Magazine, 32(3):87–109, May 2015.

[33] Maksym Shpakovych, Geoffrey Maulion, Alexandre Boju, Paul Armand, Alain Barthélémy,
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of laser beam array with quasi-reinforcement learning of a neural network in an error
reduction loop: simulation and experiment. CLEO/Europe 2021, Munich, Allemagne,
20-24 Juin 2021.

[36] Maksym Shpakovych, Geoffrey Maulion, Vincent Kermene, Alexandre Boju, Paul Armand,
Agnès Desfarges-Berthelemot, and Alain Barthélemy. Experimental phase control of a
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