Thèse soutenue

Chaînes de Markov triplets et segmentation non supervisée d'images

FR  |  
EN
Auteur / Autrice : Clément Fernandes
Direction : Wojciech Pieczynski
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 21/11/2022
Etablissement(s) : Institut polytechnique de Paris
Ecole(s) doctorale(s) : École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Télécom SudParis (Evry ; 2012-....) - Institut Polytechnique de Paris / IP Paris - Communications, Images et Traitement de l'Information / CITI - Statistiques, Optimisation, Probabilités / SOP - SAMOVAR
Etablissement opérateur d'inscription : Télécom SudParis (France)
Jury : Président / Présidente : Cédric Richard
Examinateurs / Examinatrices : François Septier, Jean-Yves Tourneret, Nikolaos Limnios, Florence Tupin
Rapporteur / Rapporteuse : François Septier, Jean-Yves Tourneret

Résumé

FR  |  
EN

Les chaînes de Markov cachées (HMC) sont très utilisées pour la segmentation bayésienne non supervisée de données discrètes. Elles sont particulièrement robustes et, malgré leur simplicité, elles sont suffisamment efficaces dans de nombreuses situations. En particulier pour la segmentation d'image, malgré leur nature unidimensionnelle, elles sont capables, grâce à une transformation des images bidimensionnelles en séquences monodimensionnelles avec le balayage de Peano (PS), de produire des résultats satisfaisants. Cependant, dans certains cas, on peut préférer des modèles plus complexes tels que les champs de Markov cachées (HMF) malgré leur plus grande complexité en temps, pour leurs meilleurs résultats. De plus, les modèles de Markov cachés (les chaînes aussi bien que les champs) ont été étendus aux modèles de Markov couples et triplets, qui peuvent être intéressant dans des cas plus complexes. Par exemple, lorsque le temps de séjour n'est pas géométrique, les chaînes de semi-Markov cachées (HSMC) ont tendance à être plus performantes que les HMC, and on peut dire de même pour les chaînes de Markov évidentielles cachées (HEMC) dans le cas de données non-stationnaires. Dans cette thèse, nous proposons dans un premier lieu une nouvelle chaîne de Markov triplet (TMC), qui étend simultanément les HSMC et les HEMC. Basée sur les chaînes de Markov triplets cachées (HTMC), la nouvelle chaîne de semi-Markov évidentielle cachée (HESMC) peut être utilisée de manière non supervisée, les paramètres étant estimés avec l'algorithme Expectation-Maximization (EM). Nous validons l'intérêt d'un tel modèle grâce à des expériences sur des données synthétiques. Nous nous intéressons ensuite au problème de l'unidimensionnalité des HMC avec PS dans le cadre de la segmentation d'image, en construisant le balayage de Peano contextuel (CPS). Il consiste à associer à chaque indexe dans le HMC obtenu à partir du PS, deux observations sur les pixels qui sont voisins du pixel en question dans l'image considérée, mais qui ne sont pas voisins dans la HMC. On obtient donc trois observations pour chaque point du balayage de Peano, ce qui induit une nouvelle chaîne de Markov conditionnelle (CMC) avec une structure plus complexe, mais dont la loi a posteriori est toujours markovienne. Ainsi, nous pouvons appliquer la méthode classique d'estimation des paramètres : l'algorithme Stochastic Expectation-Maximization (SEM), ainsi qu'étudier la segmentation non supervisée obtenue avec l'estimateur du mode des marginales a posteriori (MPM). Les segmentations supervisées et non supervisées par MPM, basées sur la CMC avec CPS, sont comparés aux HMC avec PS et aux HMF à travers des expériences sur des images synthétiques. Elles améliorent de manière significative les premières, et peuvent même être compétitives avec ces derniers. Finalement, nous étendons les CMC-CPS aux chaînes de Markov couples conditionnelles (CPMC) et à deux chaînes de Markov triplets particulières : les chaînes de Markov évidentielles conditionnelles (CEMC) et les chaînes de semi-Markov conditionnelles (CSMC). Pour chacune de ces extensions, nous montrons qu'elles peuvent améliorer de manière notable leur contrepartie non conditionnelle, ainsi que les CMC-CPS, et peuvent même être compétitives avec les HMF. Par ailleurs, elles permettent de mieux utiliser la généralité du triplet markovien dans le cadre de la segmentation d'image, en contournant les problèmes de temps de calcul considérables qui apparaissent lorsque l'on passe des champs de Markov cachés aux triplets.