Thèse soutenue

Optimisation boîte noire sous contraintes et en variables mixtes avec des applications dans l'industrie automobile

FR  |  
EN
Auteur / Autrice : Marie-Ange Dahito
Direction : José Neto
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 27/10/2022
Etablissement(s) : Institut polytechnique de Paris
Ecole(s) doctorale(s) : École doctorale de l'Institut polytechnique de Paris
Partenaire(s) de recherche : Laboratoire : Télécom SudParis (Evry ; 2012-....) - Institut Polytechnique de Paris / IP Paris - Département Réseaux et Services Multimédia Mobiles / RS2M - Statistiques, Optimisation, Probabilités / SOP - SAMOVAR
Etablissement opérateur d'inscription : Télécom SudParis (France)
Jury : Président / Présidente : Pierre-Alain Boucard
Examinateurs / Examinatrices : Alain Faye, Sébastien Le Digabel, Francesco Rinaldi, Laurent Genest
Rapporteurs / Rapporteuses : Alain Faye, Sébastien Le Digabel

Résumé

FR  |  
EN

Bon nombre de problèmes d'optimisation rencontrés dans l'industrie font appel à des systèmes complexes et n'ont pas de formulation analytique explicite : ce sont des problèmes d'optimisation de type boîte noire (ou blackbox en anglais). Ils peuvent être dits “mixtes”, auquel cas ils impliquent des variables de différentes natures (continues et discrètes), et avoir de nombreuses contraintes à satisfaire. De plus, les évaluations de l'objectif et des contraintes peuvent être numériquement coûteuses.Dans cette thèse, nous étudions des méthodes de résolution de tels problèmes complexes, à savoir des problèmes d'optimisation boîte noire avec contraintes et variables mixtes, pour lesquels les évaluations des fonctions sont très coûteuses en temps de calcul.Puisque l'utilisation de dérivées n'est pas envisageable, ce type de problèmes est généralement abordé par des approches sans dérivées comme les algorithmes évolutionnaires, les méthodes de recherche directe et les approches basées sur des métamodèles.Nous étudions les performances de telles méthodes déterministes et stochastiques dans le cadre de l'optimisation boîte noire, y compris sur un cas test en éléments finis que nous avons conçu. En particulier, nous évaluons les performances de la variante ORTHOMADS de l'algorithme de recherche directe MADS sur des problèmes d'optimisation continus et à variables mixtes issus de la littérature.Nous proposons également une nouvelle méthode d'optimisation boîte noire, nommée BOA, basée sur des approximations par métamodèles. Elle comporte deux phases dont la première vise à trouver un point réalisable tandis que la seconde améliore itérativement la valeur de l'objectif de la meilleure solution réalisable trouvée. Nous décrivons des expériences utilisant des instances de la littérature et des applications de l'industrie automobile. Elles incluent des tests de notre algorithme avec différents types de métamodèles, ainsi que des comparaisons avec ORTHOMADS.