Thèse soutenue

Modélisation et simulations détaillées de décharges nanosecondes répétitives pulsées pour la combustion assistée par plasma

FR  |  
EN
Auteur / Autrice : Nicolas Barleon
Direction : Bénédicte CuenotOlivier Vermorel
Type : Thèse de doctorat
Discipline(s) : Dynamique des fluides
Date : Soutenance le 24/05/2022
Etablissement(s) : Toulouse, INPT
Ecole(s) doctorale(s) : École doctorale Mécanique, énergétique, génie civil et procédés (Toulouse)
Partenaire(s) de recherche : Laboratoire : Centre Européen de Recherche et Formation Avancées en Calcul Scientifique (Toulouse)
Jury : Président / Présidente : Benoît Fiorina
Examinateurs / Examinatrices : Bénédicte Cuenot, Anne Bourdon, Fabien Tholin
Rapporteurs / Rapporteuses : Deanna Lacoste, Arnaud Bultel

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Dans le domaine de la propulsion aéronautique, une tendance actuelle forte est la combustion en régime pauvre, voire très pauvre, afin de limiter les émissions de polluants. Il s’agit cependant d’un défi technologique de taille, puisque la combustion pauvre est peu stable et ne garantit pas les capacités d’allumage et de rallumage en altitude nécessaires à la certification.Une solution émergente, applicable à une large gamme de configurations, pour permettre l’allumage et la stabilisation de la combustion dans des régimes pauvres, est l’utilisation de décharges électriques de faible énergie près de la flamme. Parmi les différents types de décharge existants, les décharges nanosecondes répétitives pulsées (NRP) sont particulièrement intéressantes. Cependant, malgré une efficacité démontrée, les mécanismes fondamentaux de l’interaction entre la combustion et le plasma généré par la décharge ne sont pas bien compris. De plus, il n'existe pas d’outil numérique opérationnel pour évaluer la performance des décharges NRP dans des configurations pratiques. L'objectif de cette thèse, réalisée dans le cadre du projet ANR PASTEC, est double. Il s'agit d'abord de développer un code de plasmas froids capable de modéliser la phase plasma. Cette tâche a vu naitre le code parallèle et non-structuré AVIP qui partage la structure de données du code de combustion AVBP développé au CERFACS. Cette modélisation permettra ensuite d’étudier en détail les mécanismes d’interactions entre la le plasma et une flamme dans des configurations pointe-pointe. Pour cela, une chimie détaillée pour la combustion assistée par plasma a été développée et validée avec des données expérimentales dans des configurations de laboratoire. Cette chimie étant trop couteuse pour un calcul multi-dimensionnel, un travail de réduction a été réalisé et un modèle phénoménologique a été proposé. Le mécanisme cinétique réduit est finalement utilisé dans des simulations multi-dimensionnelles couplant les codes AVBP et AVIP afin d'étudier les effets des décharges NRP dans l'air et pour l'allumage d'un mélange methane-air.