Thèse soutenue

Pilotage distribué de systèmes multi-énergies en réseau

FR  |  
EN
Auteur / Autrice : Pierre Blaud
Direction : Philippe Chevrel
Type : Thèse de doctorat
Discipline(s) : Automatique, productique et robotique
Date : Soutenance le 21/03/2022
Etablissement(s) : Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire
Ecole(s) doctorale(s) : École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes)
Partenaire(s) de recherche : Laboratoire : Commande, Observation, Diagnostic et Expérimentation - Département Automatique, Productique et Informatique - Laboratoire des Sciences du Numérique de Nantes
Jury : Président / Présidente : Eric Bideaux
Examinateurs / Examinatrices : Philippe Chevrel, Mazen Alamir, Hervé Guéguen, Yacine Gaoua, Pauline Kergus, Fabien Claveau, Pierrick Haurant
Rapporteurs / Rapporteuses : Mazen Alamir, Hervé Guéguen

Résumé

FR  |  
EN

Un système multi-énergie se définit comme un ensemble de convertisseurs énergétiques permettant le couplage de différents vecteurs énergétiques (gaz, électricité, chaud,froid, etc.) pour répondre aux demandes d’unités de production, industrielles ou agricoles, voire d’immeubles abritant les activités humaines (logement, travail, loisirs) par exemple. La littérature actuelle foisonne de cas d’étude démontrant leur potentiel significatif pour des gains de flexibilité et d’efficacité énergétiques, moyennant la valorisation des synergies entre vecteurs et donc une commande optimale. Ce travail contribue à la recherche relative à la problématique de la gestion optimisée des différents vecteurs énergétiques constitutifs des systèmes multi-énergies, au bénéfice de l’entité visée. Il embrasse à la fois la question de la modélisation et du pilotage. La formalisation du modèle s’appuie sur la notion d’energy hub. Son comportement dynamique est décrit par un modèle d’état neuronal. Afin de ne pas dépendre des seules données expérimentales, rarement disponibles en phase de conception, l’approche mise sur la complémentarité entre la modélisation multi-physique et la modélisation neuronale. La première procède par interconnexion de sous-systèmes souvent pré-existants dans les librairies ad hoc (cf. démarche générale de capitalisation de modèles multi-physiques). La seconde procède à partir de données, qui seront, dans le cadre de la méthodologie proposée ici, produite par la simulation du modèle multi-physique du système à l’étude. Notre réflexion ici a porté sur la question du choix d’une structure neuronale adaptée, et sur celle du choix des méta-paramètres d’apprentissage. Les modèles proposés ont ensuite été mis au service du pilotage, utilisés comme modèles internes de la commande dite prédictive ou EMPC (Economic Model Predictive Control). Cette dernière complète bien en effet la méthodologie globale, en ce qu’elle permet de gérer les compromis de pilotage, voire d’optimisation d’un coût économique. Le coût économique peut être relié notamment, au coût relatif des différents supports énergétiques). Le cas d’application considéré in fine est celui du pilotage du système énergétique d’une serre agricole, comprenant comme vecteurs énergétiques de l’électrique, de la chaleur à basse et à haute température, du CO2 et comme source énergétique le gaz naturel. Les résultats obtenus montrent que la méthodologie développée est applicable et que l’utilisation de la commande avancée permet d’optimiser l’utilisation du gaz naturel par l’optimisation de l’utilisation des différents équipements du système énergétique de la serre.