Thèse soutenue

Imprégnation capillaire anisotherme et polymérisation d'une résine thermodurcissable dans un bobinage composite de rotor électrique : Caractérisation expérimentale, modélisation et simulation du couplage multiphysique

FR  |  
EN
Auteur / Autrice : Amélie Moisy
Direction : Sébastien Comas-CardonaNicolas Desilles
Type : Thèse de doctorat
Discipline(s) : Mécanique des solides, des matériaux, des structures et des surfaces
Date : Soutenance le 24/11/2022
Etablissement(s) : Ecole centrale de Nantes
Ecole(s) doctorale(s) : Sciences de l'ingénierie et des systèmes (Nantes Université)
Partenaire(s) de recherche : Laboratoire : Institut de Recherche en Génie Civil et Mécanique (Nantes)
Jury : Président / Présidente : Joël Bréard
Examinateurs / Examinatrices : Sébastien Comas-Cardona, Nicolas Desilles, Joël Bréard, Mylène Deléglise-Lagardère, José Bico, Benoit Rousseau, Pascal Genevée
Rapporteur / Rapporteuse : Mylène Deléglise-Lagardère, José Bico

Résumé

FR  |  
EN

Dans le cadre de l'électrification du parc automobile, Renault assemble ses propres moteurs électriques : le rotor est principalement composé d'un noyau en acier sur lequel sont bobinés des fils de cuivre isolés. Le bobinage est ensuite immergé dans un bain de résine liquide thermodurcissable assurant la performance et la durabilité du moteur. L'imprégnation, faite à température contrôlée pour faciliter l'écoulement et la polymérisation, n'implique pas de pressurisation. Cela suggère que la capillarité et la gravité jouent un rôle significatif. L'objectif global est d'évaluer laqualité de l'imprégnation. Cela requiert de caractériser, modéliser et simuler un procédé multi-matériaux et multi-physiques dans lequel transfert thermique, cinétique de polymérisation et écoulement capillaire sont fortement couplés. Les matériaux sont caractérisés (cinétique de polymérisation, viscosité, propriétés thermiques et de surface) pour modéliser leur comportement temporel et thermique. Ensuite, pour un cas unidirectionnel idéal, un montage expérimental original de suivi de l'imprégnation par prise en masse à température contrôlée est conçu et développé. Des essais de 20°C à 120°C permettent de mieux comprendre les phénomènes et l'influence des paramètres. Un modèle analytique simplifié est optimisé pour correspondre aux expériences. Pour compléter, une simulation anisotherme 2D couplée est réalisée sur un domaine homogénéisé, fournissant les gradients de polymérisation et thermiques et leur impact sur la dynamique d'écoulement. Enfin, l'analyse est montée en échelle sur une bobine de type rotor. Un autre montage original basé sur les diélectriques est développé pour mesurer le flux de résine. La simulation de l’imprégnation de la bobine est présentée.