New developments in the theory of current sheet instabilities in collisionless plasmas - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2022

New developments in the theory of current sheet instabilities in collisionless plasmas

Nouveaux développements sur la théorie des instabilités des feuilles de courant dans les plasmas non-collisionels

Camille Granier
  • Fonction : Auteur
  • PersonId : 1241875
  • IdRef : 26872914X

Résumé

Magnetic reconnection is a change of topology of the magnetic field, responsible for explosive release of magnetic energy in astrophysical plasmas, as in the case of magnetospheric substorms and coronal mass ejections, as well as in laboratory plasmas, which is the case of sawtooth crashes in tokamaks. In collisionless plasmas as, for instance, the magnetosphere and the solar wind, electron inertia becomes particularly relevant to drive reconnection at regions of intense localized current, denoted as current sheets. In these non-collisional environments, the temperature can often be anisotropic and effects at the electron scale on the reconnection process can become non-negligible.In this thesis, the stability of two-dimensional current sheets, with respect to reconnecting perturbations, in collisionless plasmas with a strong guide field is analysed on the basis of gyrofluid models assuming cold ions. These models can take into account an equilibrium temperature anisotropy,and a finite βe, a parameter corresponding to the ratio between equilibrium electron kinetic pressure and magnetic pressure.We derive and analyze a dispersion relation for the growth rate of collisionless tearing modes accounting for equilibrium electron temperature anisotropy. The analytical predictions are tested against numerical simulations, showing a very good quantitative agreement.In the isotropic case, accounting for finite βe effects, we observe a stabilization of the tearing growth rate when electron finite Larmor radius effects become relevant. In the nonlinear phase, stall phases and faster than exponential phases are observed, similarly to what occurs in the presence of ion finite Larmor radius effects.We also investigate the marginal stability conditions of secondary current sheets, for the development of plasmoids, in collisionless plasmas. In the isotropic βe → 0 regime, we analyze the geometry that characterizes the reconnecting current sheet, and identify the conditions for which it is plasmoid unstable. Our study shows that plasmoids can be obtained, in this context, from current sheets with an aspect ratio much smaller than in the collisional regime. Furthermore, we investigate the plasmoid formation comparing gyrofluid and gyrokinetic simulations.This made it possible to show that the effect of finite βe, promotes the plasmoid instability. Finally, we study the impact of the closure applied on the moments, performed during the derivation of the gyrofluid model, on the distribution and conversion of energy during reconnection.
La reconnexion magnétique est une modification de la topologie du champ magnétique, responsable de la libération explosive d'énergie magnétique dans les plasmas astrophysiques, comme dans le cas des orages magnétosphériques et des éjections de masse coronale, ainsi que dans les plasmas de laboratoire, comme dans le cas des crashs en dents de scie dans les tokamaks. Dans les plasmas sans collisions comme, par exemple, la magnétosphère et le vent solaire, l'inertie des électrons devient particulièrement pertinente pour provoquer la reconnexion dans les régions de courant localisé intense, appelées feuilles de courant. Dans ces environnements non collisionnels, la température peut souvent être anisotrope et les effets à l'échelle électronique sur le processus de reconnexion peuvent devenir non négligeables.Dans cette thèse, la stabilité des feuilles de courant bidimensionnelles dans des plasmas sans collisions avec un fort champ guide est analysée sur la base de modèles gyrofluides assumant des ions froids. Ces modèles peuvent prendre en compte une anisotropie de température d'équilibre, et un βe fini. Ce dernier est un paramètre correspondant au rapport entre la pression cinétique électronique d'équilibre et la pression magnétique.Nous dérivons et analysons une relation de dispersion pour le taux de croissance des modes tearing sans collisions tenant compte de l'anisotropie de la température d'équilibre des électrons. Les prédictions analytiques sont testées par des simulations numériques, montrant un très bon accord quantitatif.Dans le cas isotrope, en tenant compte des effets βe finis, nous observons une stabilisation du taux de croissance du mode tearing lorsque les effets du rayon de Larmor fini des électrons deviennent pertinents. Dans la phase non linéaire, des phases de ralentissement et des phases d'accélération sont observées, de manière similaire à ce qui se produit en présence d'effets de rayon de Larmor fini ionique.Nous étudions également les conditions de stabilité marginale des feuilles de courant secondaires, pour le développement de plasmoïdes, dans des plasmas sans collisions. Dans le régime isotrope βe → 0, nous analysons la géométrie qui caractérise le feuillet de courant, et identifions les conditions pour lesquelles elle devient instable à l'instabilité plasmoïde. Notre étude montre que des plasmoïdes peuvent être obtenus, dans ce contexte, à partir de feuille de courants aillant un rapport d'aspect beaucoup plus petit que dans le régime collisionnel. De plus, nous étudions la formation de plasmoïdes en comparant les simulations gyrofluides et gyrocinétiques.Ceci a permis de montrer que l'effet de βe favorise l'instabilité plasmoïde. Enfin, nous étudions l'impact de la fermeture appliquée sur les moments, effectuée lors de la dérivation du modèle gyrofluide, sur la distribution et la conversion de l'énergie lors de la reconnexion.
La riconnessione magnetica è un cambiamento nella topologia delcampo magnetico, responsabile del rilascio esplosivo di energia magnetica nei plasmiastrofisici, come nelle tempeste magnetosferiche e nelle espulsioni di massa coronale,nonché nei plasmi di laboratorio, come nel caso delle oscillazioni a dente di sega neitokamak. Nei plasmi non-collisionali come, ad esempio, la magnetosfera e il vento solare,l’inerzia elettronica diventa particolarmente efficace nel causare la riconnessionein regioni di corrente intensa e localizzata, detti strati di corrente. In tali plasmi noncollisionali,la temperatura può essere spesso anisotropa e gli effetti su scala elettronicasul processo di riconnessione possono diventare non trascurabili.In questa tesi, viene analizzata la stabilità di strati di corrente bidimensionali inplasmi non-collisionali con un forte campo guida, sulla base di modelli girofluidi cheassumono ioni freddi. Questi modelli possono tenere conto di un’anisotropia di temperaturadi equilibrio e di un βe finito. Quest’ultimo è un parametro corrispondente alrapporto tra la pressione cinetica elettronica di equilibrio e la pressione magnetica.Deriviamo e analizziamo una relazione di dispersione per il tasso di crescita dei moditearing non-collisionali tenendo conto dell’anisotropia della temperatura di equilibriodegli elettroni. Le previsioni analitiche sono verificate mediante simulazioni numeriche,che mostrano un ottimo accordo quantitativo. Nel caso isotropico, tenendoconto degli effetti di βe finito, si osserva una stabilizzazione del tasso di crescita delmodo tearing quando diventano rilevanti gli effetti del raggio finito di Larmor deglielettroni. Nella fase non lineare si osservano fasi di decelerazione e fasi di accelerazione,simili a quanto avviene in presenza di effetti del raggio di Larmor finito ionico.Studiamo anche le condizioni di stabilità marginale degli strati di corrente secondaria,per lo sviluppo di plasmoidi, in plasmi senza collisioni. Nel regime isotropicocon βe → 0, analizziamo la geometria che caratterizza lo strato di corrente e identifichiamole condizioni in cui esso diventa instabile a causa di un’instabilità che generaplasmoidi. Il nostro studio mostra che i plasmoidi possono essere ottenuti, in questocontesto, da strati di corrente aventi un rapporto d’aspetto molto più piccolo rispettoal regime collisionale. Inoltre, studiamo la formazione di plasmoidi confrontando simulazionigirofluidi e girocinetiche. Ciò ha permesso di dimostrare che l’effetto di βe promuove l’instabilità che genera plasmoidi. Infine, si studia l’impatto della chiusuraapplicata ai momenti, eseguita durante la derivazione del modello girofluido, sulla distribuzionee conversione dell’energia durante la riconnessione.
Fichier principal
Vignette du fichier
2022COAZ4109.pdf (19.6 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04047928 , version 1 (27-03-2023)

Identifiants

  • HAL Id : tel-04047928 , version 1

Citer

Camille Granier. New developments in the theory of current sheet instabilities in collisionless plasmas. Plasma Physics [physics.plasm-ph]. Université Côte d'Azur; Politecnico di Torino, 2022. English. ⟨NNT : 2022COAZ4109⟩. ⟨tel-04047928⟩
63 Consultations
51 Téléchargements

Partager

Gmail Facebook X LinkedIn More